[go: up one dir, main page]

JP2009205936A - Scanning electron microscope - Google Patents

Scanning electron microscope Download PDF

Info

Publication number
JP2009205936A
JP2009205936A JP2008047025A JP2008047025A JP2009205936A JP 2009205936 A JP2009205936 A JP 2009205936A JP 2008047025 A JP2008047025 A JP 2008047025A JP 2008047025 A JP2008047025 A JP 2008047025A JP 2009205936 A JP2009205936 A JP 2009205936A
Authority
JP
Japan
Prior art keywords
objective lens
acceleration voltage
electron microscope
scanning electron
control power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008047025A
Other languages
Japanese (ja)
Inventor
Naomasa Suzuki
直正 鈴木
Hiroyuki Ito
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008047025A priority Critical patent/JP2009205936A/en
Publication of JP2009205936A publication Critical patent/JP2009205936A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning electron microscope having an objective lens capable of high resolution observation at a low acceleration voltage in which a high resolution observation can be made even at a high acceleration voltage. <P>SOLUTION: The scanning electron microscope in which an image of a test piece is obtained by a secondary signal generated by irradiating electron beams on the test piece is provided with a high voltage control power source to impress an acceleration voltage between a negative electrode and a second positive electrode of an electron source, an objective lens of lower magnetic pole opening type having a thin portion, and an objective lens control power source which changes excitation intensity by changing current flowing in a coil of the objective lens. When an acceleration voltage higher than a predetermined acceleration voltage is impressed, the objective lens control power source increases current flowing in the coil of the objective lens. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、試料に電子ビームを照射して得られた二次信号から試料の画像を生成する走査電子顕微鏡に関する。   The present invention relates to a scanning electron microscope that generates an image of a sample from a secondary signal obtained by irradiating the sample with an electron beam.

走査電子顕微鏡は、電子源から発生した電子ビームを、集束レンズおよび対物レンズにて細く絞り、二次元的に試料上を走査しながら照射することにより試料から発生した二次電子や反射電子などの二次信号を検出し、その検出信号と電子ビームの走査とを同期させた信号から試料の走査像を形成する装置である。   A scanning electron microscope narrows down an electron beam generated from an electron source with a focusing lens and an objective lens and irradiates the sample while scanning the sample two-dimensionally, such as secondary electrons and reflected electrons generated from the sample. This is an apparatus for detecting a secondary signal and forming a scanning image of a sample from a signal obtained by synchronizing the detection signal and scanning of an electron beam.

走査電子顕微鏡において、近年、2kV以下の低い加速電圧での高分解能観察の要求が高く、そのために、試料を対物レンズに近づけて対物レンズの主面との距離を短くすることが行われている。一方、X線を用いた試料の元素分析を行うときは、試料からX線を放出させるために高い加速電圧とする必要がある。しかしながら、対物レンズの主面と試料との距離が短い場合、対物レンズ磁路の飽和のために、フォーカスに必要な磁界強度が得られなくなり、試料と対物レンズとの距離を長くしなければならない。   In recent years, in a scanning electron microscope, there is a high demand for high-resolution observation with an acceleration voltage as low as 2 kV or less. For this reason, the distance from the main surface of the objective lens is shortened by bringing the sample closer to the objective lens. . On the other hand, when elemental analysis of a sample using X-rays is performed, it is necessary to set a high acceleration voltage in order to emit X-rays from the sample. However, when the distance between the main surface of the objective lens and the sample is short, the magnetic field intensity necessary for focusing cannot be obtained due to saturation of the objective lens magnetic path, and the distance between the sample and the objective lens must be increased. .

低い加速電圧での高分解能観察の場合は、試料を対物レンズに近づけるように、高い加速電圧での元素分析の場合は、試料を対物レンズから遠ざけるように、試料を上下に動かすことで実現は可能である。しかしながら、試料を上または下へ移動させている待ち時間が長く、また、移動させた後にフォーカスなどの調整が必要となるため、さらに時間がかかる。半導体デバイスが形成された半導体ウェーハを試料として観察または欠陥検査する場合は、製造歩留り向上のため、検査装置に対しても高いスループットの要求があるため、試料の上下動の機構は採用を見送らざるを得ない。   In the case of high resolution observation with a low acceleration voltage, it can be realized by moving the sample up and down so that the sample moves closer to the objective lens, and in the case of elemental analysis at a higher acceleration voltage, the sample is moved away from the objective lens. Is possible. However, since the waiting time for moving the sample up or down is long, and adjustment of the focus or the like is required after the sample is moved, it takes more time. When observing or inspecting defects on a semiconductor wafer on which a semiconductor device is formed as a sample, there is a demand for high throughput for the inspection apparatus in order to improve manufacturing yield. I do not get.

一方、走査電子顕微鏡のフォーカスの高速性を実現する技術として、高分解能観察とX線分析の両立を目的として、X線分析時の高い加速電圧では、対物レンズのコイルに流れる電流をOFFまたは少なくして励磁をOFFまたは弱励磁とし、対物レンズよりも電子源側に配置された集束レンズ、または高加速電圧専用の対物レンズを設けて、フォーカスを行う技術が知られている(例えば、特許文献1参照)。   On the other hand, as a technique for realizing high-speed focusing of a scanning electron microscope, for the purpose of achieving both high-resolution observation and X-ray analysis, the current flowing through the coil of the objective lens is turned off or reduced at a high acceleration voltage during X-ray analysis. A technique is known in which focusing is performed by setting excitation to OFF or weak excitation and providing a focusing lens arranged on the electron source side of the objective lens or an objective lens dedicated to a high acceleration voltage (for example, Patent Documents). 1).

しかしながら、上記手法では、高加速電圧の観察条件において、試料とフォーカスさせるレンズの主面との距離、または焦点距離が、低加速電圧の観察条件におけるそれと大きく異なることで、分解能が大きく低下してしまう。近年は、高加速電圧条件でX線分析だけでなく試料の観察像の分解能向上も求められており、上記手法ではこれに対応することができない。   However, in the above method, the resolution is greatly reduced because the distance between the specimen and the main surface of the lens to be focused or the focal length is significantly different from that in the low acceleration voltage observation condition under the high acceleration voltage observation condition. End up. In recent years, not only X-ray analysis under high acceleration voltage conditions but also improvement in the resolution of the observation image of the sample has been demanded, and the above method cannot cope with this.

特開平11−135052号公報Japanese Patent Laid-Open No. 11-135052

本発明は、低加速電圧での高分解能観察が可能な対物レンズを備えた走査電子顕微鏡において、高加速電圧においても、高分解能観察が可能な走査電子顕微鏡を提供することを目的とする。   An object of the present invention is to provide a scanning electron microscope capable of high-resolution observation even at a high acceleration voltage in a scanning electron microscope provided with an objective lens capable of high-resolution observation at a low acceleration voltage.

上記課題を解決するために、本発明の実施態様は、試料へ電子ビームを照射して発生する二次信号から試料の画像を得る走査電子顕微鏡であって、電子源の陰極と第二陽極との間に加速電圧を印加する高電圧制御電源と、下磁極開放型であって薄肉部を有する対物レンズと、対物レンズのコイルに流れる電流を変えて励磁強度を変更する対物レンズ制御電源とを備え、予め定められた加速電圧よりも高い加速電圧が印加される場合は、対物レンズ制御電源は、対物レンズのコイルに流れる電流を増加させる構成としたものである。   In order to solve the above problems, an embodiment of the present invention is a scanning electron microscope that obtains an image of a sample from a secondary signal generated by irradiating the sample with an electron beam, the cathode of the electron source, a second anode, A high-voltage control power source for applying an acceleration voltage between the objective lens and the objective lens control power source for changing the excitation intensity by changing the current flowing through the coil of the objective lens. When the acceleration voltage higher than the predetermined acceleration voltage is applied, the objective lens control power source is configured to increase the current flowing through the coil of the objective lens.

本発明の実施態様によれば、低加速電圧での高分解能観察が可能な対物レンズを備えた走査電子顕微鏡において、高加速電圧においても、高分解能観察が可能な走査電子顕微鏡を提供することができる。   According to an embodiment of the present invention, in a scanning electron microscope equipped with an objective lens capable of high-resolution observation at a low acceleration voltage, a scanning electron microscope capable of high-resolution observation even at a high acceleration voltage can be provided. it can.

以下、本発明の実施例を図面を参照して説明する。図1は、走査電子顕微鏡の主要部の構成を示す縦断面図で、外気と遮断するための真空カラムと試料室は省略されている。電子ビームを発生する電子源は、陰極1と、第一陽極2と、第二陽極3とから構成されている。陰極1と第一陽極2の間には、高電圧制御電源30により引出電圧が印加され、所定のエミッション電流の電子ビーム4が陰極1から引き出される。陰極1と第二陽極3の間には、高電圧制御電源30により加速電圧が印加されるため、陰極1から放出された電子ビーム4は、加速されて、後段のレンズ系に進行する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a configuration of a main part of a scanning electron microscope, in which a vacuum column and a sample chamber for shielding from outside air are omitted. An electron source that generates an electron beam includes a cathode 1, a first anode 2, and a second anode 3. An extraction voltage is applied between the cathode 1 and the first anode 2 by a high voltage control power supply 30, and an electron beam 4 having a predetermined emission current is extracted from the cathode 1. Since an acceleration voltage is applied between the cathode 1 and the second anode 3 by the high voltage control power supply 30, the electron beam 4 emitted from the cathode 1 is accelerated and proceeds to the lens system at the subsequent stage.

低加速電圧による観察の場合は、予め定められた電圧値よりも低い加速電圧を印加し、高加速電圧による観察またはX線分析の場合は、予め定められた電圧値よりも高い加速電圧を印加する。   In the case of observation with a low acceleration voltage, an acceleration voltage lower than a predetermined voltage value is applied. In the case of observation with a high acceleration voltage or X-ray analysis, an acceleration voltage higher than a predetermined voltage value is applied. To do.

電子ビーム4は、絞り板5により電子ビーム4の外周に近い不要なエネルギー領域が制限され、集束レンズ制御電源31により励磁強度が制御された集束レンズ6で集束される。その後、電子ビーム4は、下磁極開放型の対物レンズ制御電源34で制御された対物レンズ7により、試料8に対して細く絞られる。一方、細く絞られた電子ビーム4を試料8の表面で走査するため、観察倍率に応じた走査幅になるように走査偏向器制御電源33により制御された走査偏向器10で、電子ビーム4が偏向される。   An unnecessary energy region near the outer periphery of the electron beam 4 is limited by the diaphragm plate 5, and the electron beam 4 is focused by the focusing lens 6 whose excitation intensity is controlled by the focusing lens control power supply 31. Thereafter, the electron beam 4 is narrowed down with respect to the sample 8 by the objective lens 7 controlled by an objective lens control power supply 34 with a lower magnetic pole open type. On the other hand, the electron beam 4 is scanned by the scanning deflector control power source 33 so as to have a scanning width corresponding to the observation magnification, so that the electron beam 4 is finely focused on the surface of the sample 8. Deflected.

高電圧制御電源30,集束レンズ制御電源31,走査偏向器制御電源33,対物レンズ制御電源34は、マイクロプロセッサを含む制御部50により、制御される。   The high voltage control power supply 30, the focusing lens control power supply 31, the scanning deflector control power supply 33, and the objective lens control power supply 34 are controlled by a control unit 50 including a microprocessor.

電子ビーム4の照射によって試料8から発生した二次電子11は、検出器9により検出される。検出信号は、信号増幅器32にて増幅され、制御部50にて電子ビーム4の走査と同期した信号処理がなされ、像表示装置35に試料像として表示される。   Secondary electrons 11 generated from the sample 8 by the irradiation of the electron beam 4 are detected by the detector 9. The detection signal is amplified by the signal amplifier 32, subjected to signal processing synchronized with the scanning of the electron beam 4 by the control unit 50, and displayed on the image display device 35 as a sample image.

図1および図2に示すように、対物レンズ7には、レンズギャップ13の近傍に、磁極の一部分を薄肉化した薄肉部12が設けられ、高加速電圧での観察における対物レンズ7の磁場の分布において、薄肉部12から磁場漏洩が生じるようにする。対物レンズ7のコイルに流れる電流が、予め定められた値以上になると、磁場漏洩が生じるように薄肉部12の形状を決める。薄肉部12の肉厚は、低加速電圧での観察における対物レンズ7の磁場の分布においては、薄肉部12からの磁場漏洩がないまたは少なくなるように決める。   As shown in FIGS. 1 and 2, the objective lens 7 is provided with a thin portion 12 in which a part of the magnetic pole is thinned in the vicinity of the lens gap 13, and the magnetic field of the objective lens 7 in observation at a high acceleration voltage is provided. In the distribution, magnetic field leakage is caused from the thin wall portion 12. When the current flowing through the coil of the objective lens 7 exceeds a predetermined value, the shape of the thin portion 12 is determined so that magnetic field leakage occurs. The thickness of the thin portion 12 is determined so that there is no or little magnetic field leakage from the thin portion 12 in the distribution of the magnetic field of the objective lens 7 in observation at a low acceleration voltage.

図2は、図1に示した対物レンズを拡大した縦断面図であり、対物レンズ7の中心軸における軸上磁場分布14を示す。図2(a)は、低加速電圧の観察のときの対物レンズ7の中心軸における軸上磁場分布14を示し、対物レンズ7の主面位置15aは、対物レンズ7が下磁極開放型であるため、試料8に近い位置に存在する。また、図2(b)は、高加速電圧の観察のときの対物レンズ7の中心軸における軸上磁場分布14を示し、対物レンズ7のコイルの電流がある一定値以上になり、対物レンズ7の薄肉部12から磁場が漏洩すると、対物レンズ7の主面位置15bは、試料8から離れた方向の薄肉部12の位置に存在する。対物レンズ7の主面位置15bが試料8から離れていると、電子ビーム4の試料8へのフォーカスが容易であり、フォーカスずれの可能性が低くなるので、フォーカス合わせの時間が短縮できる。   FIG. 2 is an enlarged longitudinal sectional view of the objective lens shown in FIG. 1 and shows an on-axis magnetic field distribution 14 on the central axis of the objective lens 7. FIG. 2A shows an on-axis magnetic field distribution 14 at the central axis of the objective lens 7 at the time of observation of a low acceleration voltage. The main lens position 15a of the objective lens 7 is such that the objective lens 7 is a lower magnetic pole open type. Therefore, it exists at a position close to the sample 8. FIG. 2B shows an on-axis magnetic field distribution 14 in the central axis of the objective lens 7 when observing a high acceleration voltage, and the current of the coil of the objective lens 7 becomes a certain value or more. When the magnetic field leaks from the thin portion 12, the main surface position 15 b of the objective lens 7 exists at the position of the thin portion 12 in the direction away from the sample 8. If the main surface position 15b of the objective lens 7 is away from the sample 8, it is easy to focus the electron beam 4 on the sample 8, and the possibility of focus shift is reduced, so that the focusing time can be shortened.

また、対物レンズ7の薄肉部12に主面位置15bを作るように構成したので、低加速電圧の観察のときと、高加速電圧の観察のときとで、対物レンズ7の主面位置の移動を小さくでき、試料から少しだけ離れるだけなので、像の分解能の劣化を少なくすることができる。   Further, since the main surface position 15b is formed in the thin portion 12 of the objective lens 7, the main surface position of the objective lens 7 is moved between the observation of the low acceleration voltage and the observation of the high acceleration voltage. The image resolution can be reduced and the image resolution can be reduced a little, so degradation of image resolution can be reduced.

図3は、図2と同じく、図1に示した対物レンズを拡大した縦断面図である。対物レンズ7に設ける薄肉部12は、図2では、試料8の上面に対して、垂直な面と水平な面とを有する切り欠きの形状としたが、図3に示すように、垂直な面のかわりに対物レンズ7の磁極先端まで薄肉である形状でも、同様の効果を得ることができる。   FIG. 3 is an enlarged longitudinal sectional view of the objective lens shown in FIG. 1, as in FIG. In FIG. 2, the thin portion 12 provided in the objective lens 7 has a notch shape having a vertical surface and a horizontal surface with respect to the upper surface of the sample 8, but as shown in FIG. Instead, the same effect can be obtained with a thin shape up to the magnetic pole tip of the objective lens 7.

走査電子顕微鏡の主要部の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the principal part of a scanning electron microscope. 図1に示した対物レンズを拡大した縦断面図。The longitudinal cross-sectional view which expanded the objective lens shown in FIG. 図1に示した対物レンズを拡大した縦断面図。The longitudinal cross-sectional view which expanded the objective lens shown in FIG.

符号の説明Explanation of symbols

1 陰極
2 第一陽極
3 第二陽極
4 電子ビーム
5 絞り板
6 集束レンズ
7 対物レンズ
8 試料
9 検出器
10 走査偏向器
11 二次電子
12 薄肉部
13 レンズギャップ
14 軸上磁場分布
15a,15b 主面位置
30 高電圧制御電源
31 集束レンズ制御電源
32 信号増幅器
33 走査偏向器制御電源
34 対物レンズ制御電源
35 像表示装置
50 制御部
DESCRIPTION OF SYMBOLS 1 Cathode 2 1st anode 3 2nd anode 4 Electron beam 5 Aperture plate 6 Focusing lens 7 Objective lens 8 Sample 9 Detector 10 Scanning deflector 11 Secondary electron 12 Thin part 13 Lens gap 14 On-axis magnetic field distribution 15a, 15b Main Surface position 30 High voltage control power supply 31 Focusing lens control power supply 32 Signal amplifier 33 Scanning deflector control power supply 34 Objective lens control power supply 35 Image display device 50 Control unit

Claims (4)

試料へ電子ビームを照射して発生する二次信号から試料の画像を得る走査電子顕微鏡であって、電子源の陰極と第二陽極との間に加速電圧を印加する高電圧制御電源と、前記電子ビームを細く絞るための下磁極開放型であって薄肉部を有する対物レンズと、該対物レンズのコイルに流れる電流を変えて励磁強度を変更する対物レンズ制御電源とを備え、予め定められた加速電圧よりも高い加速電圧が印加される場合は、前記対物レンズ制御電源は、前記対物レンズのコイルに流れる電流を増加させることを特徴とする走査電子顕微鏡。   A scanning electron microscope for obtaining an image of a sample from a secondary signal generated by irradiating the sample with an electron beam, a high voltage control power source for applying an acceleration voltage between a cathode and a second anode of the electron source, An objective lens having a lower magnetic pole opening type for narrowing the electron beam and having a thin wall portion, and an objective lens control power source for changing the excitation intensity by changing the current flowing through the coil of the objective lens, are predetermined. The scanning electron microscope according to claim 1, wherein when an acceleration voltage higher than the acceleration voltage is applied, the objective lens control power source increases a current flowing in a coil of the objective lens. 請求項1の記載において、前記予め定められた加速電圧よりも高い加速電圧が印加される場合は、前記対物レンズの主面位置が前記試料から離れる方向へ移動することを特徴とする走査電子顕微鏡。   2. The scanning electron microscope according to claim 1, wherein when an acceleration voltage higher than the predetermined acceleration voltage is applied, a position of a main surface of the objective lens moves in a direction away from the sample. . 請求項1の記載において、前記予め定められた加速電圧よりも高い加速電圧が印加される場合は、前記対物レンズの主面位置が前記対物レンズに設けられた薄肉部へ移動することを特徴とする走査電子顕微鏡。   The main surface of the objective lens is moved to a thin portion provided in the objective lens when an acceleration voltage higher than the predetermined acceleration voltage is applied. Scanning electron microscope. 請求項1の記載において、前記対物レンズの薄肉部は、前記対物レンズのコイルに流れる電流が予め定められた値以上になると磁場が漏洩するように形状が決められることを特徴とする走査電子顕微鏡。   2. The scanning electron microscope according to claim 1, wherein the thin portion of the objective lens is shaped so that a magnetic field leaks when a current flowing through a coil of the objective lens becomes a predetermined value or more. .
JP2008047025A 2008-02-28 2008-02-28 Scanning electron microscope Pending JP2009205936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008047025A JP2009205936A (en) 2008-02-28 2008-02-28 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008047025A JP2009205936A (en) 2008-02-28 2008-02-28 Scanning electron microscope

Publications (1)

Publication Number Publication Date
JP2009205936A true JP2009205936A (en) 2009-09-10

Family

ID=41148003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008047025A Pending JP2009205936A (en) 2008-02-28 2008-02-28 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP2009205936A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978433A (en) * 1982-10-26 1984-05-07 Akashi Seisakusho Co Ltd Electromagnetic objective lens
JPH0689683A (en) * 1992-09-07 1994-03-29 Apuko:Kk Electromagnetic lens
JPH11135052A (en) * 1997-10-30 1999-05-21 Hitachi Ltd Scanning electron microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978433A (en) * 1982-10-26 1984-05-07 Akashi Seisakusho Co Ltd Electromagnetic objective lens
JPH0689683A (en) * 1992-09-07 1994-03-29 Apuko:Kk Electromagnetic lens
JPH11135052A (en) * 1997-10-30 1999-05-21 Hitachi Ltd Scanning electron microscope

Similar Documents

Publication Publication Date Title
JP5103033B2 (en) Charged particle beam application equipment
US7960697B2 (en) Electron beam apparatus
JP5553489B2 (en) Scanning electron microscope and imaging method using scanning electron microscope
JP4302316B2 (en) Scanning electron microscope
JP4732917B2 (en) Scanning electron microscope and defect detection apparatus
JP6242745B2 (en) Charged particle beam apparatus and inspection method using the apparatus
US10622187B2 (en) Charged particle beam apparatus and sample processing observation method
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
WO2015050201A1 (en) Charged particle beam inclination correction method and charged particle beam device
JP4359232B2 (en) Charged particle beam equipment
CN106920723A (en) A kind of scanning focused system and electron beam control method
JP6312387B2 (en) Particle beam device and method of operating particle beam device
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
JP2001148232A (en) Scanning electron microscope
JP2007212398A (en) Device and method for inspecting substrate
JP2009205936A (en) Scanning electron microscope
JP4702472B2 (en) Inspection method and inspection apparatus using electron beam
CN206480588U (en) A kind of scanning focused system
JP4658783B2 (en) Sample image forming method
JP4853581B2 (en) Inspection method and inspection apparatus using electron beam
JP2000223542A (en) Inspection method and inspection device using electronic beam
JP4548537B2 (en) Inspection method and inspection apparatus using electron beam
JP4792074B2 (en) Substrate inspection method and substrate inspection apparatus
JPH11126573A (en) Electron beam device equipped with sample height measuring means
JP4400614B2 (en) Inspection method and inspection apparatus using electron beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002