JP2009201456A - Ozone nutritious liquid producing apparatus - Google Patents
Ozone nutritious liquid producing apparatus Download PDFInfo
- Publication number
- JP2009201456A JP2009201456A JP2008049138A JP2008049138A JP2009201456A JP 2009201456 A JP2009201456 A JP 2009201456A JP 2008049138 A JP2008049138 A JP 2008049138A JP 2008049138 A JP2008049138 A JP 2008049138A JP 2009201456 A JP2009201456 A JP 2009201456A
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- nutrient solution
- tank
- oxygen
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y02P60/216—
Landscapes
- Hydroponics (AREA)
Abstract
Description
本発明は、オゾン発生手段で発生したオゾンを養液に溶解させてオゾン養液を得るためのオゾン養液生成装置に関するものである。 The present invention relates to an ozone nutrient solution generator for obtaining ozone nutrient solution by dissolving ozone generated by ozone generating means in a nutrient solution.
水耕栽培など養液栽培(土を使わない無土壌栽培)においては、肥料が溶解された養液を植物に与えるものとされているが、病気発生の抑制を目的として当該養液中にオゾン水を混入させて使用することが提案されるに至っている(特許文献1参照)。即ち、オゾンを水に溶解させたオゾン水は、その殺菌消毒効果が顕著であることから、立ち枯れ病などの原因菌に対し消毒可能とされているのである。かかるオゾン水は、対向する電極に電圧を印加させて放電させ、その間に酸素を流通させることによりオゾンを発生させた後、当該オゾンを水に溶解させることにより得られるものである。
しかしながら、上記従来の如く生成したオゾン水を養液に混ぜてオゾン養液を生成するものにあっては、大量のオゾン養液を生成しようとする場合、オゾン濃度が著しく低下して殺菌効果を得ることができない虞があった。また、オゾン水を得る際、通常、水中にオゾンをバブリングさせて溶解させるため、当該オゾンが周囲に飛散してしまい作業環境が悪化してしまう虞もあった。 However, in the case of generating ozone nutrient solution by mixing ozone water generated as described above with a nutrient solution, when trying to produce a large amount of ozone nutrient solution, the ozone concentration is remarkably lowered and the bactericidal effect is obtained. There was a possibility that it could not be obtained. Further, when ozone water is obtained, ozone is normally bubbled and dissolved in water, so that the ozone is scattered around and the working environment may be deteriorated.
本発明は、このような事情に鑑みてなされたもので、所望濃度のオゾン養液を容易に得ることができるとともに、オゾンが周囲に飛散してしまうのを回避することができるオゾン養液生成装置を提供することにある。 The present invention has been made in view of such circumstances, and it is possible to easily obtain an ozone nourishing liquid having a desired concentration and to generate an ozone nourishing liquid capable of avoiding ozone from being scattered around. To provide an apparatus.
請求項1記載の発明は、養液栽培で使用されるべく肥料が溶解された養液中にオゾンを溶解してオゾン養液を得るためのオゾン養液生成装置であって、内部に酸素を流通させる酸素流通路が形成されるとともに当該酸素流通路を挟んで対向した部位に電圧を印加して放電させることによりオゾンを発生させるオゾン発生手段と、前記養液を所定量収容し得るオゾン溶解タンクと、前記オゾン発生手段から延びて前記オゾン溶解タンクに連結され、当該オゾン発生手段により発生したオゾンを当該オゾン溶解タンクに供給し得るオゾン供給路とを備え、前記オゾン溶解タンク内の養液に対して前記オゾン供給路から供給されたオゾンを溶解させてオゾン養液を得ることを特徴とする。
The invention according to
請求項2記載の発明は、請求項1記載のオゾン養液生成装置において、前記オゾン溶解タンクの上部から延びて前記オゾン発生手段に連結され、当該オゾン溶解タンク内の未溶解のオゾンを当該オゾン発生手段に送り込み可能な戻り流路を具備し、前記戻り流路及びオゾン供給路により未溶解のオゾンを前記オゾン溶解タンクとオゾン発生手段との間で循環可能としたことを特徴とする。 According to a second aspect of the present invention, there is provided the ozone nutrient solution generating apparatus according to the first aspect, wherein the ozone dissolving tank extends from an upper part of the ozone dissolving tank and is connected to the ozone generating means. A return flow path capable of being sent to the generation means is provided, and undissolved ozone can be circulated between the ozone dissolution tank and the ozone generation means by the return flow path and the ozone supply path.
請求項3記載の発明は、請求項2記載のオゾン養液生成装置において、酸素供給源と接続される酸素吸入口から延びて前記戻り流路の途中と連結され、当該戻り流路を介して前記オゾン発生手段の酸素流通路に酸素を供給可能な酸素供給路を具備したことを特徴とする。 According to a third aspect of the present invention, in the ozone nutrient solution generating apparatus according to the second aspect of the present invention, the ozone nutrient solution generating apparatus extends from an oxygen inlet connected to an oxygen supply source and is connected to the middle of the return flow path. An oxygen supply path capable of supplying oxygen is provided in the oxygen flow path of the ozone generating means.
請求項1の発明によれば、オゾン溶解タンク内の養液に対してオゾン供給路から供給されたオゾンを溶解させてオゾン養液を得るので、所望濃度のオゾン養液を容易に得ることができるとともに、オゾンが周囲に飛散してしまうのを回避することができる。 According to the first aspect of the present invention, the ozone nutrient solution is obtained by dissolving the ozone supplied from the ozone supply path to the nutrient solution in the ozone dissolution tank, so that an ozone nutrient solution having a desired concentration can be easily obtained. In addition, ozone can be prevented from being scattered around.
請求項2の発明によれば、戻り流路及びオゾン供給路により未溶解のオゾンをオゾン溶解タンクとオゾン発生手段との間で循環可能としたので、オゾンの周囲への飛散をより確実に回避することができるとともに、未溶解のオゾンを再利用でき、装置のランニングコストを低減させることができる。
According to the invention of
請求項3の発明によれば、酸素供給源と接続される酸素吸入口から延びて戻り流路の途中と連結され、当該戻り流路を介してオゾン発生手段の酸素流通路に酸素を供給可能な酸素供給路を具備したので、酸素と共に未溶解のオゾンがオゾン発生手段に供給されて効率よくオゾンを発生させることができる。 According to the third aspect of the present invention, the oxygen can be supplied to the oxygen flow passage of the ozone generating means through the return flow path that extends from the oxygen inlet connected to the oxygen supply source and is connected to the middle of the return flow path. Since the oxygen supply path is provided, undissolved ozone together with oxygen is supplied to the ozone generating means, and ozone can be generated efficiently.
以下、本発明の実施形態について図面を参照しながら具体的に説明する。
本実施形態に係るオゾン養液生成装置は、養液栽培で使用されべく肥料が溶解された養液中にオゾンを溶解してオゾン養液を得るためのものであり、図1〜図3に示すように、オゾン発生手段2と、オゾン溶解タンク4と、冷却液収容タンク5と、酸素をオゾン発生手段2に供給するための酸素供給路L1と、オゾン発生手段2で発生したオゾンをオゾン溶解タンク4に供給するためのオゾン供給路L2と、オゾン溶解タンク4に接続されて養液が流通する養液供給路L4と、オゾン溶解タンク4に接続されて当該オゾン溶解タンク4内のオゾン養液を排出するオゾン養液排出路L5と、冷却液が流通する流路L6及びL7等とから主に構成されている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The ozone nutrient solution generator according to the present embodiment is for obtaining ozone nutrient solution by dissolving ozone in a nutrient solution in which fertilizer is dissolved so as to be used in nutrient culture. As shown, the ozone generating means 2, the ozone dissolution tank 4, the coolant storage tank 5, the oxygen
尚、図中符号L1aは、不図示の酸素供給源(酸素ボンベ等)と接続される酸素吸入口、L4aは養液栽培の栽培槽と連結され、当該栽培槽内の養液が導入される養液吸入口、符号L5aは養液栽培の栽培槽と連結され、当該栽培槽内へオゾン養液が吐出される吐出口をそれぞれ示しているとともに、養液供給路L4の途中の符号V2は、バルブを示している。また、本オゾン養液生成装置における種々構成要素は、筐体1内に配設されている。
In addition, the code | symbol L1a in a figure is connected with an oxygen supply source (oxygen cylinder etc.) not shown, L4a is connected with the cultivation tank of nutrient solution cultivation, and the nutrient solution in the said cultivation tank is introduce | transduced The nutrient solution inlet, symbol L5a is connected to the cultivation tank for nutrient solution cultivation, and indicates a discharge port through which the ozone nutrient solution is discharged into the cultivation tank, and symbol V2 in the middle of the nutrient solution supply path L4 is Shows the valve. Various components in the ozone nutrient solution generator are arranged in the
養液栽培とは、土を使わない栽培(無土壌栽培)をいい、例えば水耕の他、固形培地耕、噴霧耕などが挙げられる。水耕には、主に湛液型水耕、NFTなどがあり、固形培地耕には、主に無機培地耕及び有機培地耕などがある。噴霧耕には噴霧水耕、噴霧耕などがある。本発明においては何れの養液栽培にも適用可能である。 Hydroponic cultivation refers to cultivation without soil (soil-free cultivation), and includes, for example, hydroponics, solid medium cultivation, spray cultivation, and the like. Hydroponics mainly includes submerged hydroponics, NFT, and the like, and solid medium cultivation mainly includes inorganic medium cultivation and organic medium cultivation. Spray plowing includes spray hydroponic and spray plowing. In this invention, it can apply to any hydroponics.
オゾン発生手段2は、3重管方式の石英管から成り、図2及び図3に示すように、主に第1管状部材2a、第2管状部材2b及び第3管状部材2cにて構成されている。即ち、第1管状部材2aの外周を間隙を有しつつ覆う如く第2管状部材2bが形成され、更に当該第2管状部材2bの外周を間隙を有しつつ覆う如く第3管状部材2cが形成されており、第1管状部材2aの内部が第1冷却液流通路W1、第1管状部材2aと第2管状部材2bとの間の間隙が酸素流通路O、第2管状部材2bと第3管状部材2cとの間の間隙が第2冷却液流通路W2を構成している。
The ozone generating means 2 is composed of a triple tube type quartz tube, and as shown in FIGS. 2 and 3, is mainly composed of a first
酸素流通路Oの一端は、酸素供給路L1が接続された戻り流路L3と接続されているとともに、他端はオゾン供給路L2と接続されている。また、酸素流路供給路Oを挟んで対向した部位(即ち、第1管状部材2a及び第2管状部材2b)には、図示しない電極が形成されているとともに、これら電極に所定の電圧を印加し得る電圧印加手段3が接続されており、当該電圧印加手段3による電圧の印加で酸素流通路Oにおいて放電がなされるよう構成されている。
One end of the oxygen flow path O is connected to the return flow path L3 to which the oxygen supply path L1 is connected, and the other end is connected to the ozone supply path L2. In addition, electrodes (not shown) are formed at portions facing the oxygen flow path supply path O (that is, the first
これにより、戻り流路L3を介して酸素供給路L1から供給された酸素(O2)は、酸素流通路Oを流通する過程で放電により反応し、オゾン(O3)が発生することとなり、その得られたオゾンがオゾン供給路L2に排出される。一方、冷却液を導入する流路L6は、第1冷却液流通路W1、接続流路L6a、第2冷却液流通路W2を介して流路L7と接続されており、これら流路を流通する冷却液によりオゾン発生手段2を冷却し得るようになている。 Thereby, oxygen (O 2 ) supplied from the oxygen supply path L1 via the return flow path L3 reacts by discharge in the process of flowing through the oxygen flow path O, and ozone (O 3 ) is generated. The obtained ozone is discharged to the ozone supply path L2. On the other hand, the flow path L6 for introducing the cooling liquid is connected to the flow path L7 via the first cooling liquid flow path W1, the connection flow path L6a, and the second cooling liquid flow path W2, and flows through these flow paths. The ozone generating means 2 can be cooled by the coolant.
ところで、オゾン供給路L2の先端は、図1に示すように、養液供給路L4に配設されたエジェクタ7に接続されており、オゾン発生手段2で発生したオゾンがエジェクタ7を介して養液と共にオゾン溶解タンク4に至るよう構成されている。即ち、エジェクタ7により養液とオゾンとが良好に混合し、養液にオゾンが溶解してオゾン養液が得られるとともに、その得られたオゾン養液がオゾン溶解タンク4に所定量収容されるのである。かかるオゾン溶解タンク4内のオゾン養液は、オゾン養液排出路L5の吐出口L5aから吐出可能とされ、例えば水耕栽培などの養液栽培に使用されることとなる。
Incidentally, the tip of the ozone supply path L2 is connected to an
また、オゾン溶解タンク4の上部(気層側)からは、戻り流路L3、排気流路L9が延設されるとともに、下部からは液位監視管L8が上方に向かって延設されている。然るに、戻り流路L3は、その途中に液位監視管L8の分岐管L8a、L8bを介して延設され、オゾン発生手段2の酸素流通路Oに連通するよう構成されている。戻り流路L3の途中には、バルブV4が接続されている。これにより、バルブV4を開状態とすれば、オゾン溶解タンク4の気層中に放出された酸素やオゾン等がオゾン発生手段2の酸素流通路Oに再び導かれることとなる。 A return flow path L3 and an exhaust flow path L9 are extended from the upper part (air layer side) of the ozone dissolution tank 4, and a liquid level monitoring pipe L8 is extended upward from the lower part. . However, the return flow path L3 extends in the middle through the branch pipes L8a and L8b of the liquid level monitoring pipe L8 and is configured to communicate with the oxygen flow path O of the ozone generating means 2. A valve V4 is connected in the middle of the return flow path L3. As a result, when the valve V4 is opened, oxygen, ozone, etc. released into the gas layer of the ozone dissolution tank 4 are guided again to the oxygen flow passage O of the ozone generating means 2.
尚、図中の符号11、V3は、排気流路L9に接続された圧力センサ及びバルブを示しており、これらによって、装置の使用初期におけるオゾン溶解タンク4内の圧力監視及び圧力の逃がしを行い得るようになっている。また、排気流路L9の先端は、オゾン養液排出路L5の途中に接続されている。
更に、液位監視管L8は、上端の分岐管L8a、L8bにて戻り流路L3の途中と接続されているため、オゾン溶解タンク4内のオゾン養液が何らかの理由(原料水と同一配管上で稼動する電磁弁等の急閉による急激なオゾン溶解タンク4内部の圧力上昇などの理由)で吹き上がり、戻り流路L3に至った場合でも当該オゾン溶解タンク4内に戻し得るよう構成されている。尚、オゾン溶解タンク4内の圧力が過大となり、オゾン養液が戻り流路L3に至った状態で一定時間(予め設定された時間)経過しても戻らない場合には、液位センサ6が信号を発し、安全のために装置全体が停止されるとともに、異常を知らせるべくアラーム等が鳴るよう構成されている。 Furthermore, since the liquid level monitoring pipe L8 is connected to the middle of the return flow path L3 at the upper branch pipes L8a and L8b, the ozone nutrient solution in the ozone dissolution tank 4 is for some reason (on the same pipe as the raw water). For example, when the pressure of the inside of the ozone dissolution tank 4 suddenly increases due to the sudden closing of the solenoid valve or the like operating in the above-described manner, and even when it reaches the return flow path L3, it can be returned to the ozone dissolution tank 4. Yes. If the pressure in the ozone dissolution tank 4 becomes excessive, and the ozone nutrient solution does not return even after a predetermined time (preset time) has passed in the state where the return to the return flow path L3, the liquid level sensor 6 The system is configured to emit a signal to stop the entire apparatus for safety, and to sound an alarm or the like to notify an abnormality.
また更に、液位監視管L8の途中には、液位センサ6が配設されており、かかる液位センサ6にてオゾン溶解タンク4内の液位が所定より上昇したことを検知すると、酸素供給路L1の途中に配設されたバルブV1を開け、オゾン発生手段2の酸素流通路Oに酸素を供給し得るよう構成されている。これにより、酸素の使用量を抑制することができ、より効率的にオゾンを発生させることができる。 Furthermore, a liquid level sensor 6 is disposed in the middle of the liquid level monitoring pipe L8. When the liquid level sensor 6 detects that the liquid level in the ozone dissolution tank 4 has risen above a predetermined level, oxygen level sensor 6 is provided. The valve V1 disposed in the middle of the supply path L1 is opened so that oxygen can be supplied to the oxygen flow path O of the ozone generating means 2. Thereby, the usage-amount of oxygen can be suppressed and ozone can be generated more efficiently.
また、オゾン発生手段2の冷却液流通路W1、W2を流路の一部とした閉鎖型循環流路を成し、冷却液を循環して流通させ得る冷却液循環流路が構成されている。この冷却液循環流路は、流路L6、L7、冷却液流通路W1、W2及び冷却液収容タンク5から成るとともに、冷却液収容タンク5内の冷却液がポンプPの駆動力により流路L6を介して冷却液流通路W1、W2に至り、オゾン発生手段2を冷却した後、流路L7を介して冷却液収容タンク5内に戻るようになっている。 Further, a closed circulation channel is formed with the coolant flow passages W1 and W2 of the ozone generating means 2 as a part of the channel, and a coolant circulation channel capable of circulating and circulating the coolant is configured. . This cooling liquid circulation flow path includes flow paths L6 and L7, cooling liquid flow paths W1 and W2, and a cooling liquid storage tank 5, and the cooling liquid in the cooling liquid storage tank 5 is flow path L6 by the driving force of the pump P. Through the coolant flow passages W1 and W2, after cooling the ozone generating means 2, it returns to the coolant storage tank 5 through the flow path L7.
上記の如き冷却液循環流路の途中(流路L7)には、ファン9からの送風により当該冷却液循環流路内を流通する冷却液を大気との間で熱交換させ放熱可能なラジエータ8が形成されている。即ち、ラジエータ8は、流路が細く且つ格子状等に形成されて冷却液を流通させる一方、モータMにより駆動されるファン9から送られた風がラジエータ8に当たり、当該ラジエータ8内の冷却液が効率よく冷却されるのである。 In the middle of the coolant circulation path as described above (flow path L7), a radiator 8 capable of dissipating heat by exchanging heat between the coolant circulating in the coolant circulation path and the atmosphere by air blown from the fan 9. Is formed. That is, the radiator 8 has a narrow flow path and is formed in a lattice shape or the like to distribute the coolant, while the wind sent from the fan 9 driven by the motor M hits the radiator 8 and the coolant in the radiator 8 Is efficiently cooled.
また、冷却液循環流路の途中(流路L7であってラジエータ8より上流側)には、冷却液の温度を検知する温度センサ10が配設されており、当該温度センサ10にて検知された温度に基づきファン9のモータMが制御されるよう構成されている。これにより、冷却循環流路を循環する冷却液の温度を最適値とすることができ、オゾン発生手段2を効率的に冷却させることができる。
In addition, a
ここで、本実施形態に係るオゾン養液生成装置を養液栽培に適用した場合について説明する。例えば、図4に示すように、培養液タンクT1、殺菌タンクT2及び戻り液タンクT3を用意し、培養液タンクT1と栽培槽Yとをポンプを介して連結させるとともに、戻り液タンクT3と栽培槽Yとを連結させたものとすることができる。この場合、培養タンクT1と殺菌タンクT2、及び戻り液タンクT3と殺菌タンクT2とをポンプを介して連結させ、当該殺菌タンクT2と本オゾン養液生成装置が連結されている。尚、同図中符号Rは、ロックウールを示している。 Here, the case where the ozone nutrient solution production | generation apparatus which concerns on this embodiment is applied to nutrient solution cultivation is demonstrated. For example, as shown in FIG. 4, a culture solution tank T1, a sterilization tank T2, and a return solution tank T3 are prepared, and the culture solution tank T1 and the cultivation tank Y are connected via a pump, and the return solution tank T3 and the cultivation solution are connected. The tank Y can be connected. In this case, the culture tank T1 and the sterilization tank T2, and the return liquid tank T3 and the sterilization tank T2 are connected via a pump, and the sterilization tank T2 and the ozone nutrient solution generator are connected. In addition, the code | symbol R in the same figure has shown the rock wool.
また、図5に示すように、培養液タンクT1及び戻り液タンクT3を用意し、培養液タンクT1と栽培槽Yとをポンプを介して連結させるとともに、戻り液タンクT3と栽培槽Yとを連結させたものとすることができる。この場合、培養タンクT1と本オゾン養液生成装置、及び戻り液タンクT3と本オゾン養液生成装置とをそれぞれ連結されている。尚、同図中符号Rは、ロックウールを示している。 Moreover, as shown in FIG. 5, while preparing the culture solution tank T1 and the return solution tank T3, and connecting the culture solution tank T1 and the cultivation tank Y via a pump, the return solution tank T3 and the cultivation tank Y are connected. It can be connected. In this case, culture tank T1 and this ozone nutrient solution production | generation apparatus, return liquid tank T3 and this ozone nutrient solution production | generation apparatus are each connected. In addition, the code | symbol R in the same figure has shown the rock wool.
また、図6に示すように、培養液タンクT4を用意し、培養液タンクT4と栽培槽Yとを連結させるとともに、当該溶媒タンクT4に直接本オゾン養液生成装置を連結させたものとすることができる。更に、図7に示すように、培養液タンクT4を用意し、培養液タンクT4と栽培槽Yとを連結させるとともに、養液の戻り側の経路の途中に本オゾン養液生成装置を連結して介在させたものとすることができる。尚、図6、7中符号Sは、スチロール板を示している。 In addition, as shown in FIG. 6, a culture solution tank T4 is prepared, the culture solution tank T4 and the cultivation tank Y are connected, and the ozone nutrient solution generator is directly connected to the solvent tank T4. be able to. Further, as shown in FIG. 7, a culture solution tank T4 is prepared, the culture solution tank T4 and the cultivation tank Y are connected, and the ozone nutrient solution generator is connected in the middle of the return path of the nutrient solution. Can be interposed. In addition, the code | symbol S in FIG. 6, 7 has shown the styrene board.
次に、本発明の技術的優位性を示すための実験結果について説明する。
(実験1)
図8に示すように、250リットルの養液を収容可能なタンクAa内に、養液に見立てた試供液を収容し、オゾン養液生成装置(或いは従来のオゾン生成装置)と当該タンクAaとを連結する経路Ab及びAcを形成するとともに、ポンプPで循環可能な経路Adを形成した実験装置を用意した。
Next, experimental results for showing the technical superiority of the present invention will be described.
(Experiment 1)
As shown in FIG. 8, a sample liquid that is regarded as a nutrient solution is accommodated in a tank Aa capable of accommodating a 250-liter nutrient solution, and an ozone nutrient solution generator (or a conventional ozone generator) and the tank Aa The experimental apparatus which formed the path | route Ad which can circulate with the pump P was prepared.
タンクAaは、直径70(cm)、高さ86.5(cm)の円筒形タンクから成るものであり、試供液は、トマト溶液栽培現地の排養液を想定し、水に市販の粉末緑茶(植物に無害な有機物、肥料などによる微量な汚れを想定)を0.005(g/L)溶解して使用した。尚、殺菌対象の菌(供試菌)として、トマト根腐萎凋病菌105(個/L)の分生子菌懸濁液を水1(L)あたり1(mL)入れた(以下、供試養液という)。 Tank Aa consists of a cylindrical tank with a diameter of 70 (cm) and a height of 86.5 (cm), and the sample solution is assumed to be a local nutrient solution for tomato solution cultivation. 0.005 (g / L) was dissolved and used (assuming a trace amount of dirt caused by organic matter, fertilizer, etc. that are harmless to plants). In addition, as fungi to be sterilized (test bacteria), 1 (mL) of conidial fungus suspension of tomato root rot wilt fungus 10 5 (cells / L) was added per 1 (L) of water (hereinafter, test Called nutrient solution).
(実施例1)
本実施形態に係るオゾン養液生成装置にて経路Acで導入した供試養液を直接オゾン化させるとともに、その養液を経路AbにてタンクAaに戻した。このとき、ポンプPの駆動により、タンクAd中央の養液は、経路Adにて循環される。そして、タンクAdの略中央における液面近傍(養液内)の採取部位αにて養液を経時的に採取し、その殺菌率について測定した。尚、オゾン養液の温度は、26℃に設定した。
Example 1
The test nutrient solution introduced by the path Ac in the ozone nutrient solution generation apparatus according to the present embodiment was directly ozonized, and the nutrient solution was returned to the tank Aa by the route Ab. At this time, the nutrient solution in the center of the tank Ad is circulated through the path Ad by driving the pump P. And the nutrient solution was extract | collected with time in the collection site | part (alpha) of the liquid level vicinity (inside of nutrient solution) in the approximate center of the tank Ad, and the disinfection rate was measured. The temperature of the ozone nutrient solution was set to 26 ° C.
(比較例1)
オゾン養液生成装置の代わりに単にオゾン(O3)を発生し得るオゾン発生装置を接続し、当該オゾン発生装置にて得られたオゾンを経路Abを介して供試養液が入るタンクAaに供給した。供給したオゾンは、経路Abの先端から気泡として放出(バブリング)されることとなる。この場合、経路Acによる養液の戻りはないが、ポンプPの駆動による経路Adの循環作用は維持される。そして、タンクAdの略中央における液面近傍(養液内)の採取部位αにて養液を経時的に採取し、その殺菌率について測定した。尚、オゾン養液の温度は、21℃に設定した。
(Comparative Example 1)
Instead of the ozone nutrient solution generator, an ozone generator that can simply generate ozone (O 3 ) is connected, and the ozone obtained by the ozone generator is supplied to the tank Aa into which the test nutrient solution enters via the route Ab. Supplied. The supplied ozone is released (bubbled) as bubbles from the tip of the path Ab. In this case, the nutrient solution does not return through the path Ac, but the circulation action of the path Ad by driving the pump P is maintained. And the nutrient solution was extract | collected with time in the collection site | part (alpha) of the liquid level vicinity (inside of nutrient solution) in the approximate center of the tank Ad, and the disinfection rate was measured. The temperature of the ozone nutrient solution was set to 21 ° C.
(比較例2)
比較例1と同様、オゾン養液生成装置の代わりに単にオゾン(O3)を発生し得るオゾン発生装置を接続し、当該オゾン発生装置にて得られたオゾンを経路Abを介して供試養液が入るタンクAaに供給した。供給したオゾンは、経路Abの先端から気泡として放出(バブリング)されることとなる。この場合、経路Acによる養液の戻りはないが、ポンプPの駆動による経路Adの循環作用は維持される。そして、タンクAdの略中央における液面近傍(養液内)の採取部位αにて養液を経時的に採取し、その殺菌率について測定した。尚、オゾン養液の温度は、23℃に設定した。
(Comparative Example 2)
As in Comparative Example 1, instead of the ozone nutrient solution generator, an ozone generator that can simply generate ozone (O 3 ) is connected, and the ozone obtained by the ozone generator is tested through the path Ab. It was supplied to the tank Aa in which the liquid entered. The supplied ozone is released (bubbled) as bubbles from the tip of the path Ab. In this case, the nutrient solution does not return through the path Ac, but the circulation action of the path Ad by driving the pump P is maintained. And the nutrient solution was extract | collected with time in the collection site | part (alpha) of the liquid level vicinity (inside of nutrient solution) in the approximate center of the tank Ad, and the disinfection rate was measured. The temperature of the ozone nutrient solution was set to 23 ° C.
実施例1、比較例1、2において、5分毎に採取部位αにおける養液を採取し、その殺菌率(%)を測定した。その結果について図9に示す。この実験で分かるように、実施例1のものは、極めて短時間で養液中の殺菌率が100(%)に達するのに対し、比較例1、2のものは、殺菌率100(%)に到達するのに比較的長時間が必要である。 In Example 1 and Comparative Examples 1 and 2, the nutrient solution at the collection site α was collected every 5 minutes, and the sterilization rate (%) was measured. The results are shown in FIG. As can be seen from this experiment, in Example 1, the sterilization rate in the nutrient solution reaches 100 (%) in a very short time, while those in Comparative Examples 1 and 2 have a sterilization rate of 100 (%). It takes a relatively long time to reach
(実験2)
図10に示すように、1800リットルの養液を収容可能なタンクBa内に、養液に見立てた供試養液を収容し、オゾン養液生成装置(或いは従来のオゾン生成装置)と当該タンクBaとを連結する経路Bb及びBcを形成するとともに、ポンプPで循環可能な経路BAdを形成した実験装置を用意した。
(Experiment 2)
As shown in FIG. 10, in a tank Ba capable of storing 1800 liters of nutrient solution, a test nutrient solution that is regarded as a nutrient solution is accommodated, and an ozone nutrient solution generator (or a conventional ozone generator) and the tank An experimental apparatus was prepared in which paths Bb and Bc connecting Ba were formed and a path BAd that could be circulated by the pump P was formed.
タンクBaは、縦、横及び高さが200(cm)、100(cm)及び100(cm)の立方体タンクから成るものであり、試供液は、実験1と同様、トマト養液栽培現地の排養液を想定し、水に市販の粉末緑茶(植物に無害な有機物、肥料及び微量な汚れを想定)を0.005(g/L)溶解して使用した。尚、殺菌対象の菌(試供菌)として、トマト根腐萎凋病菌105(個/L)の分生子菌懸濁液を水1(L)あたり1(mL)入れた(以下、供試養液という)。 The tank Ba is composed of cubic tanks having a length, width and height of 200 (cm), 100 (cm) and 100 (cm). Assuming a nutrient solution, 0.005 (g / L) of a commercially available powdered green tea (assuming organic substances, fertilizers, and traces of dirt harmless to plants) dissolved in water was used. In addition, as a fungus to be sterilized (sample fungus), 1 (mL) of a conidial fungus suspension of 10 5 (units / L) of tomato root rot wilt fungus was added per 1 (L) of water (hereinafter, test culture Called liquid).
(実施例2)
本実施形態に係るオゾン養液生成装置にて経路Acで導入した供試養液を直接オゾン化させるとともに、その養液を経路BbにてタンクBaに戻した。このとき、ポンプPの駆動により、タンクBa中央の養液は、経路Bdにて循環される。そして、タンクBaの略中央における液面近傍(養液内)の採取部位βにて養液を経時的に採取し、その殺菌率について測定した。
(Example 2)
The test nutrient solution introduced by the path Ac in the ozone nutrient solution generation apparatus according to the present embodiment was directly ozonized, and the nutrient solution was returned to the tank Ba via the path Bb. At this time, the nutrient solution in the center of the tank Ba is circulated through the path Bd by driving the pump P. Then, the nutrient solution was sampled with time at the sampling site β in the vicinity of the liquid level (inside the nutrient solution) at the approximate center of the tank Ba, and the sterilization rate was measured.
(実施例3)
本実施形態に係るオゾン養液生成装置にて経路Acで導入した供試養液を直接オゾン化させるとともに、その養液を経路BbにてタンクBaに戻した。このとき、ポンプPの駆動により、タンクBa中央の養液は、経路Bdにて循環される。そして、タンクBaの端における液面近傍(養液内)の採取部位γにて養液を経時的に採取し、その殺菌率について測定した。
(Example 3)
The test nutrient solution introduced by the path Ac in the ozone nutrient solution generation apparatus according to the present embodiment was directly ozonized, and the nutrient solution was returned to the tank Ba via the path Bb. At this time, the nutrient solution in the center of the tank Ba is circulated through the path Bd by driving the pump P. Then, the nutrient solution was sampled over time at the sampling site γ in the vicinity of the liquid level (in the nutrient solution) at the end of the tank Ba, and the sterilization rate was measured.
(比較例3)
オゾン養液生成装置の代わりに単にオゾン(O3)を発生し得るオゾン発生装置を接続し、当該オゾン発生装置にて得られたオゾンを経路Bbを介して供試養液が入るタンクBaに供給した。供給したオゾンは、経路Bbの先端から気泡として放出(バブリング)されることとなる。この場合、経路Bcによる養液の戻りはないが、ポンプPの駆動による経路Bdの循環作用は維持される。そして、タンクBdの略中央における液面近傍(養液内)の採取部位βにて養液を経時的に採取し、その殺菌率について測定した。
(Comparative Example 3)
Instead of the ozone nutrient solution generator, an ozone generator that can simply generate ozone (O 3 ) is connected, and the ozone obtained by the ozone generator is supplied to the tank Ba into which the test nutrient solution enters via the path Bb. Supplied. The supplied ozone is released (bubbled) as bubbles from the tip of the path Bb. In this case, the nutrient solution does not return through the path Bc, but the circulation action of the path Bd by driving the pump P is maintained. Then, the nutrient solution was sampled over time at the sampling site β in the vicinity of the liquid level (inside the nutrient solution) at the approximate center of the tank Bd, and the sterilization rate was measured.
(比較例4)
オゾン養液生成装置の代わりに単にオゾン(O3)を発生し得るオゾン発生装置を接続し、当該オゾン発生装置にて得られたオゾンを経路Bbを介して供試養液が入るタンクBaに供給した。供給したオゾンは、経路Bbの先端から気泡として放出(バブリング)されることとなる。この場合、経路Bcによる養液の戻りはないが、ポンプPの駆動による経路Bdの循環作用は維持される。そして、タンクBdの端における液面近傍(養液内)の採取部位γにて養液を経時的に採取し、その殺菌率について測定した。
(Comparative Example 4)
Instead of the ozone nutrient solution generator, an ozone generator that can simply generate ozone (O 3 ) is connected, and the ozone obtained by the ozone generator is supplied to the tank Ba into which the test nutrient solution enters via the path Bb. Supplied. The supplied ozone is released (bubbled) as bubbles from the tip of the path Bb. In this case, the nutrient solution does not return through the path Bc, but the circulation action of the path Bd by driving the pump P is maintained. Then, the nutrient solution was sampled over time at the sampling site γ in the vicinity of the liquid level (in the nutrient solution) at the end of the tank Bd, and the sterilization rate was measured.
実施例2、3、比較例3、4において、5分毎に採取部位β或いはγにおける養液を採取し、その殺菌率(%)を測定した。その結果について図11に示す。この実験で分かるように、実施例2、3のものは、極めて短時間で養液中の殺菌率が100(%)に達するのに対し、比較例3、4のものは、殺菌率100(%)に到達しない。また、実施例2、3を比較しても分かるように、タンクBaの略中央でも端でも、殺菌率が100(%)に達する時間は略同一であり、タンクBa全体に亘って均一な殺菌を行うことができる。 In Examples 2 and 3 and Comparative Examples 3 and 4, the nutrient solution at the collection site β or γ was collected every 5 minutes, and the sterilization rate (%) was measured. The results are shown in FIG. As can be seen from this experiment, in Examples 2 and 3, the sterilization rate in the nutrient solution reached 100 (%) in a very short time, while in Comparative Examples 3 and 4, the sterilization rate 100 ( %) Not reached. Further, as can be seen from the comparison between Examples 2 and 3, the time for the sterilization rate to reach 100 (%) is substantially the same at the substantial center and at the end of the tank Ba, and uniform sterilization over the entire tank Ba. It can be performed.
(実験3)
図8に示す250リットル収容のタンクAaにおいて、採取部位αの上方略5(cm)程度に採取部位α’を設定し、実施例1と同様、本実施形態に係るオゾン養液生成装置にて経路Acで導入した供試養液を直接オゾン化させるとともに、その養液を経路AbにてタンクAaに戻した。このとき、ポンプPの駆動により、タンクAd中央の養液は、経路Adにて循環される。そして、採取部位α、α’におけるオゾン濃度(ppm)について経時的に測定した。
(Experiment 3)
In the tank Aa containing 250 liters shown in FIG. 8, the collection site α ′ is set to about 5 (cm) above the collection site α, and in the ozone nutrient solution generating apparatus according to the present embodiment, as in Example 1. The test nutrient solution introduced by the route Ac was directly ozonized, and the nutrient solution was returned to the tank Aa by the route Ab. At this time, the nutrient solution in the center of the tank Ad is circulated through the path Ad by driving the pump P. And it measured with time about the ozone concentration (ppm) in sampling part (alpha) and (alpha) '.
当該実験3の実験結果について図12に示す。尚、同様の実験を図10で示すタンクBaにて行い、採取部位β、γ、β’(採取部位βの上方略5(cm)程度に設定した採取部位)のオゾン濃度(ppm)について経時的に測定した。当該実験について図13に示す。これら実験結果からも明らかなように、本実施例によれば、外気に飛散するオゾンが極めて少なく、養液をオゾン化する上での作業環境を著しく改善することができる。
The experimental results of
上記実施形態によれば、オゾン溶解タンク4内の養液に対してオゾン供給路L2から供給されたオゾンを溶解させてオゾン養液を得るので、従来の如く一旦オゾン水(オゾンを水に溶解させたもの)を作製し、そのオゾン水を養液に溶解させるものやバブリングによりオゾンを溶解させるもの等に比べ、所望濃度のオゾン養液を容易に得ることができるとともに、オゾンが周囲に飛散してしまうのを回避することができる。 According to the above embodiment, the ozone supplied from the ozone supply path L2 is dissolved in the nutrient solution in the ozone dissolution tank 4 to obtain the ozone nutrient solution. Compared to those that dissolve the ozone water in the nutrient solution and those that dissolve ozone by bubbling, etc., the ozone nutrient solution of the desired concentration can be easily obtained, and the ozone is scattered around Can be avoided.
また、本実施形態によれば、戻り流路L3及びオゾン供給路L2により未溶解のオゾンをオゾン溶解タンク4とオゾン発生手段2との間で循環可能としたので、オゾンの周囲への飛散をより確実に回避することができるとともに、未溶解のオゾンを再利用でき、装置のランニングコストを低減させることができる。 In addition, according to the present embodiment, since the undissolved ozone can be circulated between the ozone dissolution tank 4 and the ozone generating means 2 by the return flow path L3 and the ozone supply path L2, the scattering of ozone to the surroundings is prevented. While avoiding more reliably, undissolved ozone can be reused and the running cost of the apparatus can be reduced.
更に、本実施形態によれば、酸素供給源と接続される酸素吸入口L1aから延びて戻り流路L3の途中と連結され、当該戻り流路L3を介してオゾン発生手段2の酸素流通路に酸素を供給可能な酸素供給路L1を具備したので、酸素と共に未溶解のオゾンがオゾン発生手段2に供給されて効率よくオゾンを発生させることができる。 Furthermore, according to the present embodiment, the oxygen inlet L1a connected to the oxygen supply source is connected to the middle of the return flow path L3 and is connected to the oxygen flow path of the ozone generating means 2 via the return flow path L3. Since the oxygen supply path L1 capable of supplying oxygen is provided, undissolved ozone together with oxygen can be supplied to the ozone generating means 2 to efficiently generate ozone.
以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えば3重管方式の石英管に代えて2重管方式のオゾン発生手段を具備したもの、或いはその他の形態のオゾン発生手段を具備したものに適用してもよい。また、冷却液循環流路の構成要素は、汎用的な何れのものであってもよく、或いは当該冷却循環流路を具備しないものとしてもよい。 Although the present embodiment has been described above, the present invention is not limited to this embodiment. For example, the embodiment includes a double-pipe ozone generating means instead of the triple-pipe type quartz tube, or other forms. You may apply to what comprises the ozone generation means. Further, the constituent elements of the coolant circulation channel may be any general-purpose component or may not include the coolant circulation channel.
養液栽培で使用されべく肥料が溶解された養液中にオゾンを溶解してオゾン養液を得るためのオゾン養液生成装置であって、内部に酸素を流通させる酸素流通路が形成されるとともに当該酸素流通路を挟んで対向した部位に電圧を印加して放電させることによりオゾンを発生させるオゾン発生手段と、養液を所定量収容し得るオゾン溶解タンクと、オゾン発生手段から延びてオゾン溶解タンクに連結され、当該オゾン発生手段により発生したオゾンを当該オゾン溶解タンクに供給し得るオゾン供給路とを備え、オゾン溶解タンク内の養液に対してオゾン供給路から供給されたオゾンを溶解させてオゾン養液を得るオゾン養液生成装置であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。 An ozone nutrient solution generating device for obtaining ozone nutrient solution by dissolving ozone in a nutrient solution in which fertilizer is dissolved to be used in nutrient solution cultivation, and an oxygen flow passage for circulating oxygen therein is formed. In addition, an ozone generating means for generating ozone by applying a voltage to a portion opposed across the oxygen flow path to discharge, an ozone dissolving tank capable of storing a predetermined amount of nutrient solution, and an ozone extending from the ozone generating means An ozone supply path connected to the dissolution tank and capable of supplying ozone generated by the ozone generation means to the ozone dissolution tank, and dissolves the ozone supplied from the ozone supply path to the nutrient solution in the ozone dissolution tank If it is an ozone nutrient solution generation device that obtains an ozone nutrient solution, it can also be applied to devices having different external shapes or those to which other functions are added.
1 筐体
2 オゾン発生手段
3 電圧印加手段
4 オゾン溶解タンク
5 冷却液収容タンク
6 液位センサ
7 エジェクタ
8 ラジエータ
9 ファン
10 温度センサ
11 圧力センサ
O 酸素流通路
DESCRIPTION OF
Claims (3)
内部に酸素を流通させる酸素流通路が形成されるとともに当該酸素流通路を挟んで対向した部位に電圧を印加して放電させることによりオゾンを発生させるオゾン発生手段と、
前記養液を所定量収容し得るオゾン溶解タンクと、
前記オゾン発生手段から延びて前記オゾン溶解タンクに連結され、当該オゾン発生手段により発生したオゾンを当該オゾン溶解タンクに供給し得るオゾン供給路と、
を備え、前記オゾン溶解タンク内の養液に対して前記オゾン供給路から供給されたオゾンを溶解させてオゾン養液を得ることを特徴とするオゾン養液生成装置。 An ozone nutrient solution generating device for obtaining ozone nutrient solution by dissolving ozone in a nutrient solution in which fertilizer is dissolved to be used in nutrient solution cultivation,
An ozone generating means for generating ozone by forming an oxygen flow path through which oxygen is circulated and applying a voltage to a portion facing the oxygen flow path to discharge the oxygen flow path;
An ozone dissolution tank capable of storing a predetermined amount of the nutrient solution;
An ozone supply path that extends from the ozone generation means and is connected to the ozone dissolution tank, and is capable of supplying ozone generated by the ozone generation means to the ozone dissolution tank;
The ozone nutrient solution generator is characterized in that the ozone nutrient solution is obtained by dissolving the ozone supplied from the ozone supply path to the nutrient solution in the ozone dissolution tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008049138A JP5238970B2 (en) | 2008-02-29 | 2008-02-29 | Ozone nutrient solution generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008049138A JP5238970B2 (en) | 2008-02-29 | 2008-02-29 | Ozone nutrient solution generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009201456A true JP2009201456A (en) | 2009-09-10 |
JP5238970B2 JP5238970B2 (en) | 2013-07-17 |
Family
ID=41144338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008049138A Expired - Fee Related JP5238970B2 (en) | 2008-02-29 | 2008-02-29 | Ozone nutrient solution generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5238970B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012024012A (en) * | 2010-07-22 | 2012-02-09 | Regal Joint Co Ltd | Hydroponic method and hydroponic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04126020A (en) * | 1990-09-14 | 1992-04-27 | O C Eng Kk | Sterilization of culture liquid, etc., for hydroponic culture and hydroponic culture apparatus |
JPH11347564A (en) * | 1998-06-04 | 1999-12-21 | Saburo Tamura | Sterilizing water generating apparatus |
JP2001286228A (en) * | 2000-04-06 | 2001-10-16 | Seiwa:Kk | Drain sterilization apparatus and liquid feeding system for plant cultivation |
JP2002020211A (en) * | 2000-06-30 | 2002-01-23 | Shinko Plant Kensetsu Kk | Plant blight controlling method and apparatus therefor |
-
2008
- 2008-02-29 JP JP2008049138A patent/JP5238970B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04126020A (en) * | 1990-09-14 | 1992-04-27 | O C Eng Kk | Sterilization of culture liquid, etc., for hydroponic culture and hydroponic culture apparatus |
JPH11347564A (en) * | 1998-06-04 | 1999-12-21 | Saburo Tamura | Sterilizing water generating apparatus |
JP2001286228A (en) * | 2000-04-06 | 2001-10-16 | Seiwa:Kk | Drain sterilization apparatus and liquid feeding system for plant cultivation |
JP2002020211A (en) * | 2000-06-30 | 2002-01-23 | Shinko Plant Kensetsu Kk | Plant blight controlling method and apparatus therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012024012A (en) * | 2010-07-22 | 2012-02-09 | Regal Joint Co Ltd | Hydroponic method and hydroponic device |
Also Published As
Publication number | Publication date |
---|---|
JP5238970B2 (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7082826B2 (en) | Fungicide and its manufacturing method | |
US5624635A (en) | Method and apparatus for ozone treatment of soil | |
JP6122139B2 (en) | Method for producing and using slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles | |
US5566627A (en) | Method and apparatus for ozone treatment of soil to kill living organisms | |
JP2019509894A (en) | Composition comprising nanobubbles in a liquid carrier | |
JP4754512B2 (en) | Sanitizable hydroponics apparatus and hydroponics method | |
CN203486954U (en) | Soil disinfection equipment | |
US10287194B1 (en) | System and method for gas-based water disinfection | |
JP5453600B2 (en) | Hydroponic cultivation equipment and hydroponic cultivation method using ozone water | |
JP5238970B2 (en) | Ozone nutrient solution generator | |
JP2009066467A (en) | Manufacturing method of aqueous solution of dissolved ozone and supersaturated dissolved oxygen of three or more times of saturated concentration, and use method thereof | |
JP4869122B2 (en) | Cooling method and cooling device | |
KR102189633B1 (en) | Culture device | |
KR100918758B1 (en) | Performance Enhancement Device of Ultraviolet and Ozone Mixed Water Treatment System and Its Improvement Method | |
CN102657887A (en) | Method for disinfection of soilless culture nutrient solution | |
JP6643861B2 (en) | Plant cultivation method and cultivation equipment | |
CN201006028Y (en) | Medical appliance decontaminating apparatus | |
JP6350986B2 (en) | Method and apparatus for sterilizing culture medium for hydroponics | |
JP2012024012A (en) | Hydroponic method and hydroponic device | |
JP3388465B2 (en) | Pressurized tank system Water dissolved gas (gas) automatic control method | |
CN101781013A (en) | Ozone disinfecting integrated device of overground swimming pool | |
CN204897503U (en) | Intelligent sewage does not have chlorine disinfection system | |
JPH02144191A (en) | Method for purifying water circulating in cooling tower | |
JP2015043729A (en) | Water for plant cultivation, method for producing water for plant cultivation, water production equipment for plant cultivation, and plant cultivation system | |
JP3029857U (en) | Chlorine dioxide water dilution device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130226 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160412 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5238970 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |