JP2009173909A - Process for production of cellulose nanofiber, and catalyst for oxidation of cellulose - Google Patents
Process for production of cellulose nanofiber, and catalyst for oxidation of cellulose Download PDFInfo
- Publication number
- JP2009173909A JP2009173909A JP2008329697A JP2008329697A JP2009173909A JP 2009173909 A JP2009173909 A JP 2009173909A JP 2008329697 A JP2008329697 A JP 2008329697A JP 2008329697 A JP2008329697 A JP 2008329697A JP 2009173909 A JP2009173909 A JP 2009173909A
- Authority
- JP
- Japan
- Prior art keywords
- cellulose
- tempo
- nanofiber
- hydroxy
- nanofibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001913 cellulose Substances 0.000 title claims abstract description 50
- 229920002678 cellulose Polymers 0.000 title claims abstract description 49
- 239000002121 nanofiber Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000003054 catalyst Substances 0.000 title abstract description 9
- 238000007254 oxidation reaction Methods 0.000 title description 18
- 230000003647 oxidation Effects 0.000 title description 5
- 150000001875 compounds Chemical class 0.000 claims abstract description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- 239000007800 oxidant agent Substances 0.000 claims description 7
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000000123 paper Substances 0.000 claims description 4
- 206010061592 cardiac fibrillation Diseases 0.000 claims description 3
- 230000002600 fibrillogenic effect Effects 0.000 claims description 3
- 239000002655 kraft paper Substances 0.000 claims description 3
- 150000001649 bromium compounds Chemical class 0.000 claims description 2
- 150000004694 iodide salts Chemical class 0.000 claims description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 abstract description 25
- UZFMOKQJFYMBGY-UHFFFAOYSA-N 4-hydroxy-TEMPO Chemical class CC1(C)CC(O)CC(C)(C)N1[O] UZFMOKQJFYMBGY-UHFFFAOYSA-N 0.000 abstract description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 8
- 239000002023 wood Substances 0.000 abstract description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 abstract description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 abstract description 2
- 230000032050 esterification Effects 0.000 abstract 1
- 238000005886 esterification reaction Methods 0.000 abstract 1
- 238000006266 etherification reaction Methods 0.000 abstract 1
- 235000010980 cellulose Nutrition 0.000 description 41
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 210000001724 microfibril Anatomy 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 229920002488 Hemicellulose Polymers 0.000 description 3
- 229920002201 Oxidized cellulose Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229940107304 oxidized cellulose Drugs 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- -1 4-Pentoxy Chemical group 0.000 description 2
- WSGDRFHJFJRSFY-UHFFFAOYSA-N 4-oxo-TEMPO Chemical compound CC1(C)CC(=O)CC(C)(C)N1[O] WSGDRFHJFJRSFY-UHFFFAOYSA-N 0.000 description 2
- 0 CC(C)(CC(CC1(C)C)O*)N1[O-] Chemical compound CC(C)(CC(CC1(C)C)O*)N1[O-] 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- SFXHWRCRQNGVLJ-UHFFFAOYSA-N 4-methoxy-TEMPO Chemical compound COC1CC(C)(C)N([O])C(C)(C)C1 SFXHWRCRQNGVLJ-UHFFFAOYSA-N 0.000 description 1
- 229910014033 C-OH Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 229920001046 Nanocellulose Polymers 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910001513 alkali metal bromide Inorganic materials 0.000 description 1
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 1
- 150000005215 alkyl ethers Chemical group 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- WEDIIKBPDQQQJU-UHFFFAOYSA-N butane-1-sulfonyl chloride Chemical compound CCCCS(Cl)(=O)=O WEDIIKBPDQQQJU-UHFFFAOYSA-N 0.000 description 1
- DVECBJCOGJRVPX-UHFFFAOYSA-N butyryl chloride Chemical compound CCCC(Cl)=O DVECBJCOGJRVPX-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910052811 halogen oxide Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- NBRKLOOSMBRFMH-UHFFFAOYSA-N tert-butyl chloride Chemical compound CC(C)(C)Cl NBRKLOOSMBRFMH-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Artificial Filaments (AREA)
- Catalysts (AREA)
- Hydrogenated Pyridines (AREA)
- Paper (AREA)
Abstract
Description
本発明は、特定のN−オキシル化合物をセルロース酸化触媒として利用することで従来よりも安価にセルロースナノファイバーを製造することができる方法に関する。 The present invention relates to a method capable of producing cellulose nanofibers at a lower cost than before by using a specific N-oxyl compound as a cellulose oxidation catalyst.
セルロース素材を触媒量の2,2,6,6−テトラメチル−1−ピペリジン−N−オキシラジカル(以下、TEMPOという。)と安価な酸化剤である次亜塩素酸ナトリウム共存下で処理するとセルロースミクロフィブリル表面にカルボキシル基を効率よく導入でき、わずかな解繊エネルギーで均一かつ透明なセルロースナノファイバー水溶液が製造できる(非特許文献1 Saito, T., et al., Cellulose Commun., 14 (2), 62 (2007))。このナノセルロース製造技術は溶媒として水を使用すること、反応副生成物が塩化ナトリウムのみであること等、反応プロセスとしての環境調和性には優位性があるものの、TEMPOが非常に高価であるため製造コストの観点からは改善の余地がある。 When cellulose material is treated in the presence of a catalytic amount of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as TEMPO) and an inexpensive oxidizing agent, sodium hypochlorite, cellulose Carboxyl groups can be efficiently introduced on the microfibril surface, and a uniform and transparent cellulose nanofiber aqueous solution can be produced with a little fibrillation energy (Non-Patent Document 1 Saito, T., et al., Cellulose Commun., 14 (2 ), 62 (2007)). Although this nanocellulose production technology is superior in environmental harmony as a reaction process, such as using water as a solvent and the reaction by-product being only sodium chloride, TEMPO is very expensive. There is room for improvement in terms of manufacturing costs.
TEMPOの誘導体である4−ヒドロキシTEMPOはTEMPOより合成が簡単であること、欧州の化審法に登録済みであるため輸出や国内流通が容易であること、しかもTEMPOよりも生分解性に優れることから国内でも年間数百トン程度の規模で生産されており、主に石油化学工業分野で重合禁止剤や汚れ防止剤として利用されている。このため4−ヒドロキシTEMPOはTEMPOに比べてかなり安価に入手可能である。しかし、4−ヒドロキシTEMPOは木材セルロースのミクロフィブリル表面に効率良くカルボキシル基を導入することができないため、木材セルロースをナノファイバー化することは困難であった。
本発明は、TEMPOよりも安価な4−ヒドロキシTEMPO誘導体を用いたセルロースナノファイバー製造方法を提供することを課題とする。 An object of the present invention is to provide a method for producing cellulose nanofibers using a 4-hydroxy TEMPO derivative that is less expensive than TEMPO.
本発明者らは、かかる従来技術の難点を解消するために鋭意検討した結果、下記式1〜3のいずれかで表されるN−オキシル化合物、すなわち、4−ヒドロキシTEMPOの水酸基を炭素数4以下の直鎖或いは分岐状炭素鎖を有するアルコールでエーテル化、またはカルボン酸或いはスルホン酸でエステル化し、疎水性を付与した4−ヒドロキシTEMPO誘導体と、並びに臭化物、ヨウ化物及びこれらの混合物からなる群から選択される化合物を触媒とすることで木材セルロースを効率良くナノファイバー化できることを見出し、その知見に基づき本発明をなすに至った。 As a result of intensive studies to solve the problems of the prior art, the present inventors have found that the N-oxyl compound represented by any one of the following formulas 1 to 3, that is, the hydroxyl group of 4-hydroxy TEMPO has 4 carbon atoms. A group consisting of 4-hydroxy TEMPO derivatives etherified with alcohols having the following linear or branched carbon chains, or esterified with carboxylic acids or sulfonic acids to impart hydrophobicity, and bromides, iodides and mixtures thereof: It was found that wood cellulose can be efficiently converted into nanofibers by using a compound selected from 1 as a catalyst, and the present invention has been made based on the findings.
(ただし、Rは炭素数4以下の直鎖或いは分岐状炭素鎖である。) (However, R is a linear or branched carbon chain having 4 or less carbon atoms.)
本発明の4−ヒドロキシTEMPO誘導体を触媒として利用することで、セルロース系原料より従来のTEMPOよりも安価に均一かつ高品質なセルロースナノファイバーを製造することができる。 By using the 4-hydroxy TEMPO derivative of the present invention as a catalyst, uniform and high-quality cellulose nanofibers can be produced at a lower cost than conventional TEMPO from cellulose-based raw materials.
本発明で用いる4−ヒドロキシTEMPO誘導体としては、水酸基を炭素数4以下の直鎖或いは分岐状炭素鎖を有するアルコールでエーテル化するか、カルボン酸或いはスルホン酸でエステル化したものであればよい。また、炭素数が4以下であれば飽和、不飽和結合の有無に関わらず水溶性となり、酸化触媒として機能する。しかし、炭素数が5以上になると疎水性が顕著に向上し、水に不溶性となるため、酸化触媒としての機能を失う。具体的には、本発明で用いる4−ヒドロキシTEMPO誘導体は、下記式1〜3のいずれかで表される。 The 4-hydroxy TEMPO derivative used in the present invention may be any one obtained by etherifying a hydroxyl group with an alcohol having a linear or branched carbon chain having 4 or less carbon atoms or esterifying with a carboxylic acid or sulfonic acid. If the number of carbon atoms is 4 or less, it becomes water-soluble regardless of the presence or absence of saturated or unsaturated bonds, and functions as an oxidation catalyst. However, when the number of carbon atoms is 5 or more, the hydrophobicity is remarkably improved and becomes insoluble in water, so that the function as an oxidation catalyst is lost. Specifically, the 4-hydroxy TEMPO derivative used in the present invention is represented by any one of the following formulas 1 to 3.
(ただし、Rは炭素数4以下の直鎖或いは分岐状炭素鎖である。)
4−ヒドロキシTEMPO誘導体の使用量は、セルロース系原料をナノファイバー化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロース系原料に対して、0.01〜10mmol、好ましくは0.01〜1mmol、さらに好ましくは0.05〜0.5mmol程度である。
(However, R is a linear or branched carbon chain having 4 or less carbon atoms.)
The usage-amount of 4-hydroxy TEMPO derivative will not be restrict | limited especially if it is the catalyst amount which can make a cellulose raw material into nanofiber. For example, it is about 0.01 to 10 mmol, preferably 0.01 to 1 mmol, and more preferably about 0.05 to 0.5 mmol with respect to 1 g of the cellulosic raw material.
本発明のセルロース系原料の酸化方法は、前記4−ヒドロキシTEMPO誘導体と、並びに臭化物、ヨウ化物及びこれら混合物からなる群から選択される化合物の存在下で、酸化剤を用い水中にて行うことを特徴とするもので、これにより得られた酸化されたセルロース系原料は効率良くナノファイバー化することができる。この臭化物またはヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などが使用できる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gのセルロース系原料に対して、0.1〜100mmol、好ましくは0.1〜10mmol、さらに好ましくは0.5〜5mmol程度である。 The method for oxidizing a cellulose-based raw material of the present invention is carried out in water using an oxidizing agent in the presence of the 4-hydroxy TEMPO derivative and a compound selected from the group consisting of bromide, iodide and a mixture thereof. It is a characteristic, and the oxidized cellulose-based raw material thus obtained can be efficiently converted into nanofibers. As the bromide or iodide, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used. The amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction. For example, it is about 0.1 to 100 mmol, preferably about 0.1 to 10 mmol, and more preferably about 0.5 to 5 mmol with respect to 1 g of an absolutely dry cellulosic material.
酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸や過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。ナノファイバー生産コストの観点から、使用する酸化剤として現在工業プロセスにおいて最も汎用されている安価で環境負荷の少ない次亜塩素酸ナトリウムが好適である。酸化剤の使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gの漂白済み木材パルプに対して、0.5〜500mmol、好ましくは0.5〜50mmol、さらに好ましくは2.5〜25mmol程度である。 The oxidizing agent may be any oxidizing agent that can promote the desired oxidation reaction, such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, and peroxide. Agents can also be used. From the viewpoint of nanofiber production cost, sodium hypochlorite, which is the most widely used oxidant in industrial processes at present and is low in environmental load, is suitable. The amount of the oxidizing agent used can be selected within a range that can promote the oxidation reaction. For example, it is 0.5 to 500 mmol, preferably 0.5 to 50 mmol, and more preferably about 2.5 to 25 mmol with respect to 1 g of bleached wood pulp.
本発明で用いるセルロース系原料は特に限定されるものではなく、各種木材由来のクラフトあるいはサルファイトパルプ、それらを高圧ホモジナイザーやミル等で粉砕した粉末状セルロースや酸加水分解などの化学処理により精製した微結晶セルロース粉末を使用できる。このうち、漂白済みクラフトパルプまたは漂白済みサルファイトパルプを使用することが好ましい。 The cellulose-based raw material used in the present invention is not particularly limited, and it is purified by chemical treatment such as kraft or sulfite pulp derived from various woods, powdered cellulose obtained by pulverizing them with a high-pressure homogenizer, a mill or the like, or acid hydrolysis. Microcrystalline cellulose powder can be used. Of these, bleached kraft pulp or bleached sulfite pulp is preferably used.
本発明の方法は温和な条件であっても酸化反応を円滑に進行させることができるという特色がある。そのため、反応温度は15〜30℃程度の室温であってもセルロース系原料を効率良く酸化できる。なお、反応の進行に伴ってセルロースにカルボキシル基が生成し、反応液のpH低下が認められる。そのため、酸化反応を効率良く進行させるためには、反応液のpHを9〜12、好ましくは10〜11程度に維持することが望ましい。 The method of the present invention is characterized in that the oxidation reaction can proceed smoothly even under mild conditions. Therefore, even if the reaction temperature is about 15 to 30 ° C., the cellulosic material can be oxidized efficiently. In addition, a carboxyl group produces | generates in a cellulose with progress of reaction, and the pH fall of a reaction liquid is recognized. Therefore, in order to advance the oxidation reaction efficiently, it is desirable to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11.
本発明にて得られた酸化処理されたセルロースより、簡易な方法で解繊処理することによりセルロースナノファイバーを得ることができる。例えば、酸化処理されたセルロース系原料を十分に水洗し、高速せん断ミキサーや高圧ホモジナイザーなど公知の混合・攪拌、乳化・分散装置を必要に応じて単独もしくは2種類以上組合せて処理することでセルロースナノファイバー化することができる。装置の種類として高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などが挙げられる。せん断速度は1000sec−1以上であれば、凝集構造のない均一かつ透明なセルロースナノファイバーを得ることができる。 From the oxidized cellulose obtained in the present invention, cellulose nanofibers can be obtained by fibrillation treatment by a simple method. For example, cellulosic nanomaterials can be obtained by thoroughly washing the oxidized cellulose raw material with water and treating known mixing / stirring / emulsifying / dispersing devices such as high-speed shear mixers and high-pressure homogenizers singly or in combination of two or more as required. Can be fiberized. Examples of the apparatus include a high-speed rotation type, a colloid mill type, a high-pressure type, a roll mill type, and an ultrasonic type. If the shear rate is 1000 sec −1 or more, uniform and transparent cellulose nanofibers having no aggregate structure can be obtained.
本発明により製造されたセルロースナノファイバーは、幅2〜5nm、長さ1〜5μm程度のセルロースシングルミクロフィブリルである。このセルロースナノファイバーは、バリヤー性、透明性、耐熱性に優れるので、包装材料等の様々な用途に使用することが可能である。例えば、セルロースナノファイバーを紙基材に塗布または含浸して含有させた紙シートは、バリヤー性、耐熱性に優れた包装材料として使用することができる。
[作用]
本発明の4−ヒドロキシTEMPO誘導体が木材セルロースのナノファイバー化に優れる理由について以下のように推察している。木材細胞壁はセルロースミクロフィブリル、ヘミセルロース、リグニンから構成され、セルロースミクロフィブリル間の空間的スペースは4〜5nmである。この間隙にヘミセルロースとリグニン分子がコンパクトに詰め込まれている(セルロース学会編, セルロースの事典, p.111, 朝倉書店 (2000))。セルロースおよびヘミセルロース分子鎖にはC−OH基に由来する親水性領域とC−H基に由来する疎水領域があるため、ミクロフィブリル間隙には親水性領域と疎水性領域が混在する。親水性領域は水素結合サイトを有する親水性の高い化合物と相互作用し易く、疎水性領域は疎水性に富む化合物と相互作用し易いと考えられる。従って、この間隙に入り込み、ミクロフィブリル表面に存在するセルロースの一級水酸基を効率良く酸化するにはTEMPO部分構造として下記2点を満足する必要がある。
(1)親水性領域と強く相互作用可能な水素結合サイトがなく、ミクロフィブリル間隙に存在する親水性領域を自由に移動できる。
(2)適度な疎水性を有し、ミクロフィブリル間隙に存在する疎水性領域へ容易に進入できる。
The cellulose nanofiber produced by the present invention is a cellulose single microfibril having a width of 2 to 5 nm and a length of about 1 to 5 μm. Since this cellulose nanofiber is excellent in barrier property, transparency, and heat resistance, it can be used for various applications such as packaging materials. For example, a paper sheet in which cellulose nanofibers are coated or impregnated on a paper substrate can be used as a packaging material having excellent barrier properties and heat resistance.
[Action]
The reason why the 4-hydroxy TEMPO derivative of the present invention is excellent in the conversion of wood cellulose into nanofibers is presumed as follows. Wood cell walls are composed of cellulose microfibrils, hemicelluloses, and lignin, and the spatial space between cellulose microfibrils is 4-5 nm. This space is packed with hemicellulose and lignin molecules in a compact manner (edited by Cellulose Society, Encyclopedia of Cellulose, p.111, Asakura Shoten (2000)). Since cellulose and hemicellulose molecular chains have a hydrophilic region derived from a C—OH group and a hydrophobic region derived from a C—H group, a hydrophilic region and a hydrophobic region are mixed in the microfibril gap. The hydrophilic region is likely to interact with a highly hydrophilic compound having a hydrogen bonding site, and the hydrophobic region is likely to interact with a compound rich in hydrophobicity. Therefore, it is necessary to satisfy the following two points as the TEMPO partial structure in order to efficiently oxidize the primary hydroxyl group of cellulose existing in the gap and existing on the microfibril surface.
(1) There is no hydrogen bonding site capable of strongly interacting with the hydrophilic region, and the hydrophilic region existing in the microfibril gap can be freely moved.
(2) It has moderate hydrophobicity and can easily enter a hydrophobic region existing in the microfibril gap.
4−ヒドロキシや4−オキソTEMPOは相互に強く水素結合できる水酸基やカルボニル基をTEMPO構造の4位に有しているため、ミクロフィブリル間隙に入り込むことができたとしても水素結合サイトが多数存在する親水性領域と強く吸着し、効率の良い触媒酸化が進行しない。しかし、高い水素結合能を有する4位水酸基をアルキルエーテルあるいはアセトキシ基などへ置換すれば、水素結合能を低下させ、かつ適度な疎水性を付与できるためミクロフィブリル表面の酸化反応が円滑に進行し、水分散性に優れたセルロ−スナノファイバーが得られるものと推察される。なお、疎水化した候補化合物として4−ヒドロキシTEMPOの4位にある水酸基を酸化して得られる4−オキソTEMPOも検討したが、4−ヒドロキシTEMPO同様、ナノファイバー化には不適であった。 4-Hydroxy and 4-oxo TEMPO have a hydroxyl group and a carbonyl group that can strongly hydrogen bond with each other at the 4-position of the TEMPO structure, so there are many hydrogen bonding sites even if they can enter the microfibril gaps. Adsorbs strongly to the hydrophilic region, and efficient catalytic oxidation does not proceed. However, if the 4-position hydroxyl group having a high hydrogen bonding ability is substituted with an alkyl ether or an acetoxy group, the hydrogen bonding ability can be lowered and appropriate hydrophobicity can be imparted, so that the oxidation reaction on the microfibril surface proceeds smoothly. It is presumed that cellulose nanofibers excellent in water dispersibility can be obtained. In addition, 4-oxo TEMPO obtained by oxidizing the hydroxyl group at the 4-position of 4-hydroxy TEMPO was examined as a hydrophobized candidate compound. However, like 4-hydroxy TEMPO, it was unsuitable for nanofiber formation.
次に実施例に基づき、本発明をさらに詳細に説明するが、本発明の内容は、それらに限定されるべきものではない。
[実施例1]
針葉樹由来の漂白済み未叩解サルファイトパルプ(日本製紙ケミカル社)5g(絶乾)を4−メトキシTEMPO(Sigma Aldrich社)94mg(0.5nmol)と臭化ナトリウム755mg(5mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで攪拌した。反応系に次亜塩素酸ナトリウム水溶液(有効塩素5%)18ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応した後、ガラスフィルターで濾過し、十分に水洗することで酸化処理したパルプを得た。酸化処理したパルプの0.3%(w/v)スラリーを12,000rpmで10分攪拌したところ、透明なゲル状水溶液が得られた。この水溶液を透過型電子顕微鏡で観察するとナノファイバー化していることが確認できた(写真1)。また、0.3%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は950mPa・sであった。
[実施例2]
4−tert−ブトシキTEMPOを用いた以外、実施例1と同様にして酸化反応を行い、12,000rpmで10分攪拌したところ、ナノファイバー化していることが確認できた。また、0.3%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は930mPa・sであった。
EXAMPLES Next, although this invention is demonstrated in detail based on an Example, the content of this invention should not be limited to them.
[Example 1]
Bleached unbeaten sulfite pulp (Nippon Paper Chemical Co., Ltd.) 5 g (absolutely dry) derived from coniferous tree was added to 500 ml of an aqueous solution in which 94 mg (0.5 nmol) of 4-methoxy TEMPO (Sigma Aldrich) and 755 mg (5 mmol) of sodium bromide were dissolved. In addition, stirring was performed until the pulp was uniformly dispersed. After adding 18 ml of sodium hypochlorite aqueous solution (effective chlorine 5%) to the reaction system, the pH was adjusted to 10.3 with 0.5N hydrochloric acid aqueous solution, and the oxidation reaction was started. During the reaction, the pH in the system was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. After reacting for 2 hours, it was filtered through a glass filter and sufficiently washed with water to obtain an oxidized pulp. When a 0.3% (w / v) slurry of the oxidized pulp was stirred at 12,000 rpm for 10 minutes, a transparent gel aqueous solution was obtained. When this aqueous solution was observed with a transmission electron microscope, it was confirmed that the solution was nanofibrous (Photo 1). Further, the B-type viscosity (60 rpm, 20 ° C.) of the 0.3% (w / v) cellulose nanofiber solution was 950 mPa · s.
[Example 2]
An oxidation reaction was carried out in the same manner as in Example 1 except that 4-tert-butoshiki TEMPO was used, and the mixture was stirred at 12,000 rpm for 10 minutes. As a result, nanofiber formation was confirmed. Further, the B-type viscosity (60 rpm, 20 ° C.) of the 0.3% (w / v) cellulose nanofiber solution was 930 mPa · s.
なお、4−tert−ブトキシTEMPOは4−ヒドロキシTEMPOとtert−ブチルクロライドをジクロロメタン中で、0〜5℃で反応することで得た。
[実施例3]
4−O−アセチルTEMPOを用いた以外、実施例1と同様にして酸化反応を行い、12,000rpmで10分攪拌したところ、ナノファイバー化していることが確認できた。また、0.3%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は980mPa・sであった。
4-tert-butoxy TEMPO was obtained by reacting 4-hydroxy TEMPO and tert-butyl chloride in dichloromethane at 0 to 5 ° C.
[Example 3]
An oxidation reaction was carried out in the same manner as in Example 1 except that 4-O-acetyl TEMPO was used, and the mixture was stirred at 12,000 rpm for 10 minutes. As a result, nanofiber formation was confirmed. Further, the B-type viscosity (60 rpm, 20 ° C.) of the 0.3% (w / v) cellulose nanofiber solution was 980 mPa · s.
なお、4−O−アセチルTEMPOは4−ヒドロキシTEMPOとアセチルクロライドをジクロロメタン中で、0〜5℃で反応することで得た。
[実施例4]
4−O−ブチリルTEMPOを用いた以外、実施例1と同様にして酸化反応を行い、12,000rpmで10分攪拌したところ、ナノファイバー化していることが確認できた。また、0.3%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は900mPa・sであった。
4-O-acetyl TEMPO was obtained by reacting 4-hydroxy TEMPO and acetyl chloride in dichloromethane at 0 to 5 ° C.
[Example 4]
An oxidation reaction was carried out in the same manner as in Example 1 except that 4-O-butyryl TEMPO was used, and the mixture was stirred at 12,000 rpm for 10 minutes. As a result, nanofiber formation was confirmed. Further, the B-type viscosity (60 rpm, 20 ° C.) of the 0.3% (w / v) cellulose nanofiber solution was 900 mPa · s.
なお、4−O−ブチリルTEMPOは4−ヒドロキシTEMPOとブチリルクロライドをジクロロメタン中で、0〜5℃で反応することで得た。
[実施例5]
4−O−メタンスルホニルTEMPOを用いた以外、実施例1と同様にして酸化反応を行い、12,000rpmで10分攪拌したところ、ナノファイバー化していることが確認できた。また、0.3%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は1050mPa・sであった。
4-O-butyryl TEMPO was obtained by reacting 4-hydroxy TEMPO and butyryl chloride in dichloromethane at 0 to 5 ° C.
[Example 5]
An oxidation reaction was carried out in the same manner as in Example 1 except that 4-O-methanesulfonyl TEMPO was used, followed by stirring at 12,000 rpm for 10 minutes. As a result, nanofiber formation was confirmed. Further, the B-type viscosity (60 rpm, 20 ° C.) of the 0.3% (w / v) cellulose nanofiber solution was 1050 mPa · s.
なお、4−O−メタンスルホニルTEMPOは4−ヒドロキシTEMPOとメタンスルホニルクロライドをジクロロメタン中で、0〜5℃で反応することで得た。
[実施例6]
4−O−ブタンスルホニルTEMPOを用いた以外、実施例1と同様にして酸化反応を行い、12,000rpmで10分攪拌したところ、ナノファイバー化していることが確認できた。また、0.3%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は1020mPa・sであった。
4-O-methanesulfonyl TEMPO was obtained by reacting 4-hydroxy TEMPO and methanesulfonyl chloride in dichloromethane at 0 to 5 ° C.
[Example 6]
Except that 4-O-butanesulfonyl TEMPO was used, an oxidation reaction was carried out in the same manner as in Example 1, and the mixture was stirred at 12,000 rpm for 10 minutes. Further, the B-type viscosity (60 rpm, 20 ° C.) of the 0.3% (w / v) cellulose nanofiber solution was 1020 mPa · s.
なお、4−O−ブタンスルホニルTEMPOは4−ヒドロキシTEMPOとブタンスルホニルクロライドをジクロロメタン中で、0〜5℃で反応することで得た。
[比較例1]
4−ペントキシTEMPOは水に溶解せず、ナノファイバー化しなかった。
[比較例2]
4−O−2−メチルブチリルTEMPOは水に溶解せず、ナノファイバー化しなかった。
[比較例3]
4−O−ペンタンスルホニルTEMPOは水に溶解せず、ナノファイバー化しなかった。
[比較例4]
4−O−ベンゾイルTEMPO(Sigma Aldrich社)は水に溶解せず、ナノファイバー化しなかった。
4-O-butanesulfonyl TEMPO was obtained by reacting 4-hydroxy TEMPO and butanesulfonyl chloride in dichloromethane at 0 to 5 ° C.
[Comparative Example 1]
4-Pentoxy TEMPO did not dissolve in water and did not turn into nanofibers.
[Comparative Example 2]
4-O-2-methylbutyryl TEMPO did not dissolve in water and did not turn into nanofibers.
[Comparative Example 3]
4-O-pentanesulfonyl TEMPO did not dissolve in water and did not turn into nanofibers.
[Comparative Example 4]
4-O-benzoyl TEMPO (Sigma Aldrich) did not dissolve in water and did not become nanofibrous.
実施例1〜6で得られたセルロースナノファイバー水溶液についてB型粘度(20℃、60rpm)、および酸素バリヤー性を測定した。また、ポリエチレンテレフタレートフィルム(厚み20μm)片面にセルロースナノファイバー水溶液を塗布し、膜厚100nmの皮膜を形成させたフィルムを調製し、MOCON社 OXTRAN 10/50A を用い、JIS K 7126 B法に示された測定方法に準じて酸素バリヤー性を測定した。また、透明性を目視にて評価し、○が良好、△がやや良好、×が不良と評価した。
結果を表1に示した。
The cellulose nanofiber aqueous solutions obtained in Examples 1 to 6 were measured for B-type viscosity (20 ° C., 60 rpm) and oxygen barrier properties. In addition, a polyethylene terephthalate film (thickness 20 μm) was coated with cellulose nanofiber aqueous solution on one side to prepare a film with a film thickness of 100 nm, and it was shown in JIS K 7126 B method using MOCON OXTRAN 10 / 50A. The oxygen barrier property was measured according to the measurement method. Moreover, transparency was evaluated visually and (circle) was favorable, (triangle | delta) was somewhat favorable, and x evaluated that it was unsatisfactory.
The results are shown in Table 1.
実施例1〜4の4−ヒドロキシTEMPO誘導体を触媒として用いたセルロースの酸化反応では、透明性、酸素バリヤー性に優れる高品質のナノファイバーが得られる。 In the oxidation reaction of cellulose using the 4-hydroxy TEMPO derivative of Examples 1 to 4 as a catalyst, high-quality nanofibers excellent in transparency and oxygen barrier properties are obtained.
Claims (4)
のいずれかで表されるN−オキシル化合物と、並びに臭化物、ヨウ化物及びこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用い水中にてセルロース系原料を処理して酸化されたセルロースを調製し、該酸化されたセルロースを解繊処理してナノファイバー化することを特徴とするセルロースナノファイバーの製造方法。 Formulas 1-3 below:
In the presence of a compound selected from the group consisting of N-oxyl compounds represented by any of the above, and bromides, iodides, and mixtures thereof, the cellulosic raw material is treated in water with an oxidizing agent to oxidize A method for producing cellulose nanofibers, comprising: preparing cellulose that has been oxidized, and performing fibrillation treatment to form nanofibers.
のいずれかで表されるN−オキシル化合物と、並びに臭化物、ヨウ化物及びこれらの混合物からなる群から選択される化合物からなるセルロースの酸化触媒。 Formulas 1-3 below:
And an N-oxyl compound represented by any one of the above and a compound selected from the group consisting of bromide, iodide and a mixture thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008329697A JP4503674B2 (en) | 2007-12-28 | 2008-12-25 | Method for producing cellulose nanofiber and oxidation catalyst for cellulose |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007340371 | 2007-12-28 | ||
JP2008329697A JP4503674B2 (en) | 2007-12-28 | 2008-12-25 | Method for producing cellulose nanofiber and oxidation catalyst for cellulose |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010047998A Division JP4603095B2 (en) | 2007-12-28 | 2010-03-04 | Cellulose oxidation method and cellulose oxidation catalyst |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009173909A true JP2009173909A (en) | 2009-08-06 |
JP2009173909A5 JP2009173909A5 (en) | 2010-01-21 |
JP4503674B2 JP4503674B2 (en) | 2010-07-14 |
Family
ID=41029329
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008329697A Expired - Fee Related JP4503674B2 (en) | 2007-12-28 | 2008-12-25 | Method for producing cellulose nanofiber and oxidation catalyst for cellulose |
JP2010047998A Expired - Fee Related JP4603095B2 (en) | 2007-12-28 | 2010-03-04 | Cellulose oxidation method and cellulose oxidation catalyst |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010047998A Expired - Fee Related JP4603095B2 (en) | 2007-12-28 | 2010-03-04 | Cellulose oxidation method and cellulose oxidation catalyst |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP4503674B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074528A (en) * | 2009-09-30 | 2011-04-14 | Nippon Paper Industries Co Ltd | Paper made by adding cellulose nanofiber, and method for producing the same |
JP2011099064A (en) * | 2009-11-09 | 2011-05-19 | Sumitomo Bakelite Co Ltd | Cellulose fiber, molded product, and substrate for display element |
WO2012132663A1 (en) * | 2011-03-30 | 2012-10-04 | 日本製紙株式会社 | Method for producing cellulose nanofibers |
JP2012201740A (en) * | 2011-03-24 | 2012-10-22 | Nippon Paper Industries Co Ltd | Method for producing cellulose nanofiber and oxidation catalyst for cellulose |
WO2013154414A1 (en) | 2012-04-13 | 2013-10-17 | Sigma Alimentos, S. A. De C. V. | Hydrophobic paper or cardboard with self-assembled nanoparticles and method for the production thereof |
JP2014510846A (en) * | 2011-03-08 | 2014-05-01 | エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ | Method for spinning anion-modified cellulose and fiber produced by using the method |
JP2014510845A (en) * | 2011-03-08 | 2014-05-01 | エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ | Neutral and anion-modified cellulose dry spinning method and fibers produced using the method |
KR101694255B1 (en) * | 2015-09-23 | 2017-01-11 | 한국화학연구원 | Method for producing oxidized cellulose fiber using waste paper |
US10544524B2 (en) | 2015-04-28 | 2020-01-28 | Spinnova Oy | Mechanical method and system for the manufacture of fibrous yarn and fibrous yarn |
US10570535B2 (en) | 2015-04-28 | 2020-02-25 | Spinnova Oy | Chemical method and system for the manufacture of fibrous yarn |
JP2020524507A (en) * | 2017-06-22 | 2020-08-20 | ユー ピー エム キュンメネ コーポレーション | Supportive nanofibril cellulose scaffolds for proliferating cells |
CN116623458A (en) * | 2023-07-11 | 2023-08-22 | 浙江科技学院 | Preparation method of lignocellulose |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2710550C (en) * | 2007-12-28 | 2015-02-24 | Nippon Paper Industries Co., Ltd. | Processes for producing cellulose nanofibers, cellulose oxidation catalysts and methods for oxidizing cellulose |
FI122548B (en) | 2010-09-17 | 2012-03-15 | Upm Kymmene Corp | Procedure for improving dewatering |
KR101921130B1 (en) | 2010-09-29 | 2018-11-22 | 디아이씨 가부시끼가이샤 | Method for pulverizing cellulose, cellulose nanofiber, masterbatch and resin composition |
FI126513B (en) | 2011-01-20 | 2017-01-13 | Upm Kymmene Corp | Method for improving strength and retention and paper product |
FI127301B (en) | 2011-02-10 | 2018-03-15 | Upm Kymmene Corp | A method for treating nanocellulose and a product obtained by the method |
FI125941B (en) | 2012-02-13 | 2016-04-15 | Upm Kymmene Corp | Method and apparatus for processing fibrillar cellulose and fibrillar cellulose product |
FI126013B (en) | 2012-02-13 | 2016-05-31 | Upm Kymmene Corp | Process and system for the treatment of fibril cellulose, as well as fibril cellulose material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003026701A (en) * | 2001-03-28 | 2003-01-29 | Natl Starch & Chem Investment Holding Corp | Modified fluff pulp, fluff pulp product and use thereof |
JP2003516939A (en) * | 1999-11-08 | 2003-05-20 | エスシーエイ・ハイジーン・プロダクツ・ゼイスト・ベー・ブイ | How to oxidize primary alcohols |
WO2006001387A1 (en) * | 2004-06-25 | 2006-01-05 | Tohoku University | Alcohol oxidation catalyst and method of synthesizing the same |
JP2008001728A (en) * | 2006-06-20 | 2008-01-10 | Asahi Kasei Corp | Fine cellulose fiber |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6379494B1 (en) * | 1999-03-19 | 2002-04-30 | Weyerhaeuser Company | Method of making carboxylated cellulose fibers and products of the method |
-
2008
- 2008-12-25 JP JP2008329697A patent/JP4503674B2/en not_active Expired - Fee Related
-
2010
- 2010-03-04 JP JP2010047998A patent/JP4603095B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003516939A (en) * | 1999-11-08 | 2003-05-20 | エスシーエイ・ハイジーン・プロダクツ・ゼイスト・ベー・ブイ | How to oxidize primary alcohols |
JP2003026701A (en) * | 2001-03-28 | 2003-01-29 | Natl Starch & Chem Investment Holding Corp | Modified fluff pulp, fluff pulp product and use thereof |
WO2006001387A1 (en) * | 2004-06-25 | 2006-01-05 | Tohoku University | Alcohol oxidation catalyst and method of synthesizing the same |
JP2008001728A (en) * | 2006-06-20 | 2008-01-10 | Asahi Kasei Corp | Fine cellulose fiber |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011074528A (en) * | 2009-09-30 | 2011-04-14 | Nippon Paper Industries Co Ltd | Paper made by adding cellulose nanofiber, and method for producing the same |
JP2011099064A (en) * | 2009-11-09 | 2011-05-19 | Sumitomo Bakelite Co Ltd | Cellulose fiber, molded product, and substrate for display element |
JP2014510846A (en) * | 2011-03-08 | 2014-05-01 | エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ | Method for spinning anion-modified cellulose and fiber produced by using the method |
JP2014510845A (en) * | 2011-03-08 | 2014-05-01 | エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ | Neutral and anion-modified cellulose dry spinning method and fibers produced using the method |
JP2012201740A (en) * | 2011-03-24 | 2012-10-22 | Nippon Paper Industries Co Ltd | Method for producing cellulose nanofiber and oxidation catalyst for cellulose |
WO2012132663A1 (en) * | 2011-03-30 | 2012-10-04 | 日本製紙株式会社 | Method for producing cellulose nanofibers |
WO2013154414A1 (en) | 2012-04-13 | 2013-10-17 | Sigma Alimentos, S. A. De C. V. | Hydrophobic paper or cardboard with self-assembled nanoparticles and method for the production thereof |
US9783930B2 (en) * | 2012-04-13 | 2017-10-10 | Sigmaq Alimentos, S.A. De C.V. | Hydrophobic paper or cardboard with self-assembled nanoparticles and method for the production thereof |
US10544524B2 (en) | 2015-04-28 | 2020-01-28 | Spinnova Oy | Mechanical method and system for the manufacture of fibrous yarn and fibrous yarn |
US10570535B2 (en) | 2015-04-28 | 2020-02-25 | Spinnova Oy | Chemical method and system for the manufacture of fibrous yarn |
KR101694255B1 (en) * | 2015-09-23 | 2017-01-11 | 한국화학연구원 | Method for producing oxidized cellulose fiber using waste paper |
JP2020524507A (en) * | 2017-06-22 | 2020-08-20 | ユー ピー エム キュンメネ コーポレーション | Supportive nanofibril cellulose scaffolds for proliferating cells |
JP7497981B2 (en) | 2017-06-22 | 2024-06-11 | ユー ピー エム キュンメネ コーポレーション | Supportive nanofibrillar cellulose scaffolds for proliferating cells |
US12227761B2 (en) | 2017-06-22 | 2025-02-18 | Upm-Kymmene Corporation | Supportive nanofibrillar cellulose scaffold for expanding cells |
CN116623458A (en) * | 2023-07-11 | 2023-08-22 | 浙江科技学院 | Preparation method of lignocellulose |
Also Published As
Publication number | Publication date |
---|---|
JP4503674B2 (en) | 2010-07-14 |
JP4603095B2 (en) | 2010-12-22 |
JP2010209510A (en) | 2010-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4503674B2 (en) | Method for producing cellulose nanofiber and oxidation catalyst for cellulose | |
TWI454459B (en) | Production method of cellulose nanofibers, oxidative catalyst of cellulose and oxidation method of cellulose | |
JP5351417B2 (en) | Cellulose oxidation method, cellulose oxidation catalyst, and cellulose nanofiber production method | |
JP5381338B2 (en) | Method for producing cellulose nanofiber | |
JP2009263652A (en) | Method of producing cellulose nanofibers | |
JP4981735B2 (en) | Method for producing cellulose nanofiber | |
JP5329279B2 (en) | Method for producing cellulose nanofiber | |
WO2011074301A1 (en) | Method for oxidation of cellulose and process for production of cellulose nanofibers | |
JP6361123B2 (en) | Water-based adhesive composition | |
Gao et al. | Sustainable preparation of cellulose nanocrystals: state of the art and perspectives | |
WO2012043103A1 (en) | Cellulose nanofiber | |
JP2010235679A (en) | Method for manufacturing cellulose nano-fiber | |
JP5426209B2 (en) | Method for removing organic oxidation catalyst remaining in oxidized pulp | |
JP5731253B2 (en) | Method for producing cellulose nanofiber | |
WO2022138686A1 (en) | Cellulose nanofiber composition and production method therefor | |
JP2017025235A (en) | Piping friction resistance reduction agent and transport medium | |
JP2014193580A (en) | Laminate | |
JP2019094482A (en) | Composition containing cellulose nanofibers and halloysite nanotubes, and film and composite containing the same | |
JP2010236109A (en) | Process for producing cellulose nanofibers | |
JP2019035041A (en) | Method for producing hydrophobized cellulose nanofiber dispersion liquid | |
JP2019173255A (en) | Paper or sheet paper containing cellulose nanofiber | |
JP2021134263A (en) | Hydrophobized anion-modified cellulose nanofiber dispersion element, production method therefor, dry solid material of hydrophobized anion-modified cellulose and method for production thereof | |
JP2020105429A (en) | Modified cellulose fiber, dispersion liquid thereof, and method for producing the same | |
JP7459411B1 (en) | Cellulose nanofiber and aqueous dispersion composition containing it | |
TW202421892A (en) | Cellulose nanofiber, and aqueous dispersion composition containing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091130 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20091130 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100323 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4503674 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160430 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |