[go: up one dir, main page]

JP2008001728A - Fine cellulose fiber - Google Patents

Fine cellulose fiber Download PDF

Info

Publication number
JP2008001728A
JP2008001728A JP2006169649A JP2006169649A JP2008001728A JP 2008001728 A JP2008001728 A JP 2008001728A JP 2006169649 A JP2006169649 A JP 2006169649A JP 2006169649 A JP2006169649 A JP 2006169649A JP 2008001728 A JP2008001728 A JP 2008001728A
Authority
JP
Japan
Prior art keywords
dispersion
fiber
cellulose
fine cellulose
fiber diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006169649A
Other languages
Japanese (ja)
Other versions
JP4998981B2 (en
Inventor
Akira Isogai
明 磯貝
Tsuguyuki Saito
継之 斎藤
Yoshiharu Nishiyama
義春 西山
Pataux Jean-Luc
ジャンリュク ピュトー
Vignon Michel
ミシェル ビニョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2006169649A priority Critical patent/JP4998981B2/en
Publication of JP2008001728A publication Critical patent/JP2008001728A/en
Application granted granted Critical
Publication of JP4998981B2 publication Critical patent/JP4998981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

【課題】最大繊維径1000nm以下かつ数平均繊維径が2〜150nmの分散安定性に優れるセルロース系のナノファイバー材料の提供。
【解決手段】N−オキシル化合物によるセルロースの表面酸化反応を利用し、最大繊維径1000nm以下かつ数平均繊維径が2〜150nmであり、セルロースの水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に酸化されており、且つセルロースI型結晶構造を有する微細セルロース繊維。
【選択図】なし
A cellulose-based nanofiber material having a maximum fiber diameter of 1000 nm or less and a number average fiber diameter of 2 to 150 nm and excellent dispersion stability is provided.
[MEANS FOR SOLVING PROBLEMS] A group using a surface oxidation reaction of cellulose by an N-oxyl compound, having a maximum fiber diameter of 1000 nm or less and a number average fiber diameter of 2 to 150 nm, and a part of hydroxyl groups of cellulose is composed of a carboxyl group and an aldehyde group. A fine cellulose fiber that is oxidized to at least one functional group selected from the group consisting of cellulose I-type crystal structure.
[Selection figure] None

Description

本発明は、各種機能性添加剤や構造材として使用できる微細なセルロース繊維に関する。   The present invention relates to fine cellulose fibers that can be used as various functional additives and structural materials.

ナノサイズの材料として、シリカ微粒子や金属微粒子等の球状の微粒子やカーボンナノロッドに代表される棒状(ウィスカー)タイプの材料の開発は盛んに進められている。これに対し、繊維状のナノ材料については上述した2種類の材料に比べ、まだまだ報告が少なく、アプリケーションの開発も含めこれからの技術領域と言える。実際に、現時点でナノサイズの繊維径をもった繊維(単にナノファイバーと呼ぶ)を人工的に作製する技術として、湿式成形をベースとしたエレクトロスピニング法や種々の溶融成形によるナノファイバー作製方法が知られている(例えば、非特許文献1参照)。しかし、これらの方法で供給される微細繊維は、真のナノサイズと呼ぶにはまだ大き過ぎ、サブミクロンサイズ(100nm−1000nmの繊維径)に止まりサブミクロンファイバーというべきものである。   As nano-sized materials, spherical fine particles such as silica fine particles and metal fine particles, and rod-shaped (whisker) type materials represented by carbon nanorods are being actively developed. In contrast, fibrous nanomaterials are still less reported than the two types of materials described above, and can be said to be a future technical area including application development. In fact, as a technology for artificially producing fibers with nano-sized fiber diameters (simply called nanofibers) at present, there are electrospinning methods based on wet molding and nanofiber production methods by various melt moldings. It is known (for example, refer nonpatent literature 1). However, the fine fibers supplied by these methods are still too large to be called true nano-size, and should only be sub-micron fibers (sub-micron size) (fiber diameter of 100 nm-1000 nm).

これに対し、天然に多量に存在するバイオマスであるセルロースは、生合成によって繊維が生成される時点では例外なくミクロフィブリルと呼ばれるナノファイバーであり、これがやがて繊維方向に集束化してより大きな単位の繊維を成長していくという特徴を有する。こうしてできた繊維の束が乾燥状態となり、主に植物の強靭な構造材として機能している。このようなマクロなセルロース構造材中では、ナノファイバー表面間での主に水素結合を介した結合力によって強く集束しているため、容易には元のナノファイバーの状態には分散させることができない。   On the other hand, cellulose, which is a biomass that exists in large quantities in nature, is a nanofiber called microfibril without exception at the time when the fiber is produced by biosynthesis, which eventually converges in the fiber direction and becomes a larger unit of fiber. It has the feature of growing. The bundle of fibers thus formed is in a dry state and functions mainly as a strong structural material for plants. In such a macroscopic cellulose structure material, the nanofiber surface is strongly focused mainly by a bonding force via hydrogen bonds, and thus cannot be easily dispersed in the original nanofiber state. .

特許文献1に記載されているように、唯一バクテリアセルロース(以下、BCと呼ぶ)と呼ばれる原始的な菌の生成するセルロースは、比較的低次元に集積した集合体をネバードライの状態で抽出できるため、ナノファイバーとして扱うことができる。特許文献2および特許文献3には、典型的なセルロースナノファイバーであるBCを樹脂材料とハイブリッド化させることにより、透明であり、しかも力学強度にも優れ、熱膨張率の低いフィルム材料として提供できることが開示されている。しかしながら、BCに関しては、通常1重量%以下のセルロース濃度のゲルの状態で生産され、生産速度も極めて遅いため、工業的な生産性という観点では必ずしも有利ではない。   As described in Patent Document 1, cellulose produced by only primitive bacteria called bacterial cellulose (hereinafter referred to as BC) can extract aggregates collected in a relatively low dimension in a never dry state. Therefore, it can be handled as nanofiber. Patent Documents 2 and 3 describe that BC, which is a typical cellulose nanofiber, is hybridized with a resin material so that it can be provided as a film material that is transparent, excellent in mechanical strength, and has a low coefficient of thermal expansion. Is disclosed. However, BC is usually not advantageous from the viewpoint of industrial productivity because it is produced in a gel state having a cellulose concentration of 1% by weight or less and the production rate is extremely slow.

汎用的に入手可能な植物系の精製セルロース(木材パルプやリンターパルプ等)を元のミクロフィブリルまでダウンサイジングする技術として、特許文献4には、高圧ホモジナイザーと呼ばれる、極めて高い圧力でフィブリル状物質を高度に微細化できる装置を用いることによりセルロースのナノファイバーが得られることが開示されている。しかしながら、該方法では、高圧ホモジナイザーによる処理時に多大なエネルギーを要し、コスト的に不利であると同時に、得られる微細化繊維の繊維径にも分布が存在し、一般的な処理条件下では微細化の程度も不完全であり、1μm以上の太い繊維も若干残ることが多い。   As a technology for downsizing plant-based refined cellulose (wood pulp, linter pulp, etc.) that can be used for general purposes to the original microfibrils, Patent Document 4 discloses a fibrillar substance at an extremely high pressure, called a high-pressure homogenizer. It is disclosed that cellulose nanofibers can be obtained by using a device that can be highly miniaturized. However, this method requires a great deal of energy when processing with a high-pressure homogenizer, and is disadvantageous in terms of cost. At the same time, there is also a distribution in the fiber diameter of the resulting refined fiber, and fine processing under general processing conditions. The degree of conversion is incomplete and thick fibers of 1 μm or more often remain a little.

一方、化学的な処理条件によりセルロースの微細化を行う方法として、特許文献5や非特許文献2にて開示されている酸加水分解法による微細化技術が知られている。しかし、該方法では、セルロース繊維の繊維方向に垂直な方向に断裂が起こることが知られており、一般に繊維の形状を保ったまま微細化することが困難である。
すなわち、汎用的に入手可能なセルロースがその構造中に内包しているナノファイバー性を活用して、産業的に利用可能な極めて微小な繊維径をもつナノファイバーを効率的に
得る方法は存在しなかった。
On the other hand, as a method for refining cellulose under chemical treatment conditions, a refining technique by an acid hydrolysis method disclosed in Patent Document 5 and Non-Patent Document 2 is known. However, in this method, it is known that tearing occurs in a direction perpendicular to the fiber direction of the cellulose fiber, and it is generally difficult to make the fiber fine while maintaining the shape of the fiber.
In other words, there is a method for efficiently obtaining nanofibers with extremely small fiber diameters that can be used industrially, by utilizing the nanofiber properties that are contained in the structure of commonly available cellulose. There wasn't.

高分子学会編,「高分子」55巻,3月号(2006)p125−p160The Society of Polymer Science, “Polymer” Volume 55, March (2006) p125-p160 O.A.Battista, Ind. Eng. Chem., 42, 502 (1950).O. A. Battista, Ind. Eng. Chem. , 42, 502 (1950). 国際公開第03/040189号パンフレットInternational Publication No. 03/040189 pamphlet 特開2004−270064号公報JP 2004-270064 A 特開2005−60680号公報JP 2005-60680 A 特開昭56−100801号公報JP-A 56-1000080 特表平9−508658号公報Japanese National Patent Publication No. 9-508658

本発明は、数平均繊維径が150nm以下の微細セルロース繊維を提供することを目的とする。また、該セルロース繊維及びその分散体をミクロフィブリルのナノファイバー性を利用して効率的に製造する方法を提供することを目的とする。   An object of this invention is to provide the fine cellulose fiber whose number average fiber diameter is 150 nm or less. It is another object of the present invention to provide a method for efficiently producing the cellulose fiber and the dispersion using the nanofiber property of microfibril.

本発明者の一部は、植物資源からリグニン等の不純物を除去、精製して得る天然セルロースをいったん溶媒に溶解させて得られる再生セルロースを原料とし、2,2,6,6−テトラメチルピペリジン−N−オキシル(以下、TEMPOと表記する)の存在下、次亜塩素酸のような酸化剤を作用させて酸化反応を進行させることにより、再生セルロースを形成するセルロース鎖が分子鎖レベルで、しかもセルロース鎖の構成モノマー単位であるグルコピラノーズ環中のC6位の一級水酸基のみが選択的に酸化され、アルデヒドを経由してカルボキシル基にまで酸化されるという報告(「Cellulose」Vol.5、1998年、第153〜164ページにおけるA. Isogai及びY. Katoによる「TEMPO触媒酸化によるセルロースからのポリウロン酸の調製」と題する記事)を以前に検討した。該反応により、β−1,4結合したポリグルクロン酸と呼ばれる新規な水溶性の多糖を得ることができる。一方、上述の報告において、再生セルロースの原料である天然セルロースに対して同様の反応を施してもポリグルクロン酸を得ることはできず、反応生成物は非水溶性のままであることが記載されている。   Some of the present inventors use 2,2,6,6-tetramethylpiperidine as a raw material, using as a raw material a regenerated cellulose obtained by dissolving natural cellulose obtained by removing impurities such as lignin from a plant resource and purifying them. In the presence of -N-oxyl (hereinafter referred to as TEMPO), an oxidant such as hypochlorous acid is allowed to act to advance the oxidation reaction, whereby the cellulose chain forming the regenerated cellulose is at the molecular chain level. In addition, only the primary hydroxyl group at the C6 position in the glucopyranose ring, which is a constituent monomer unit of the cellulose chain, is selectively oxidized and is oxidized to a carboxyl group via an aldehyde (“Cellulose” Vol. 5, In 1998, pages 153 to 164 “by TEMPO catalyzed oxidation” by A. Isogai and Y. Kato. An article entitled “Preparation of Polyuronic Acid from Cellulose” was previously investigated. By this reaction, a novel water-soluble polysaccharide called β-1,4-linked polyglucuronic acid can be obtained. On the other hand, in the above-mentioned report, it is described that polyglucuronic acid cannot be obtained even if the same reaction is applied to natural cellulose which is a raw material of regenerated cellulose, and the reaction product remains insoluble in water. ing.

ところが、本発明者らは天然セルロース原料から得られる非水溶性の上記反応性生物を精製後、水分散体とし、該分散体中へ比較的弱い分散力を加えたところ、該反応性生物は極めて容易に水中に分散することを見出した。得られた分散体を解析したところ、該分散体は数nmから数10nmの繊維径のナノファイバーの分散体であることが判明した。
さらに本発明者らは、その機構や反応条件と得られるナノファイバーの化学構造との因果関係を考察し、上記反応において、高度に膨潤したミクロフィブリルの表面にまでTEMPO触媒による酸化が到達するものの、再生セルロースに比べ結晶性の高い天然セルロースを構成するミクロフィブリルの内部にまでは反応が到らず、ほぼミクロフィブリルの表面酸化にとどまること、通常のセルロースのミクロフィブリルと異なり、該反応により得られるミクロフィブリル表面には負の電荷を有するカルボキシル基が定量的に導入されているため、ミクロフィブリル間の反発力を誘引し分散体中での安定な分散の原因となっていることを突き止め、本発明を完成させた。
However, the present inventors purified the water-insoluble reactive organism obtained from a natural cellulose raw material and then used it as an aqueous dispersion. When a relatively weak dispersion force was applied to the dispersion, the reactive organism was It was found to disperse in water very easily. Analysis of the obtained dispersion revealed that the dispersion was a dispersion of nanofibers having a fiber diameter of several nanometers to several tens of nanometers.
Furthermore, the present inventors considered the causal relationship between the mechanism and reaction conditions and the chemical structure of the resulting nanofiber, and in the above reaction, although the oxidation by the TEMPO catalyst reaches the surface of the highly swollen microfibril. The reaction does not reach the inside of the microfibrils constituting the natural cellulose, which has higher crystallinity than the regenerated cellulose, and the surface oxidation of the microfibrils remains almost the same. Since the negatively charged carboxyl group is quantitatively introduced on the surface of the microfibril, the repulsive force between the microfibrils is attracted and it is found that it causes stable dispersion in the dispersion. The present invention has been completed.

本発明の一は、最大繊維径が1000nm以下かつ数平均繊維径が2〜150nmのセルロース繊維であって、セルロースの水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に酸化されており、且つセルロースI型結晶構造を有することを特徴とする微細セルロース繊維である。
カルボキシル基とアルデヒド基の量の総和が、セルロース繊維の重量に対し0.1〜2.2mmol/gであることが好ましい。また、最大繊維径が500nm以下かつ数平均繊維径が2〜100nmであることがより好ましい。また、最大繊維径が30nm以下かつ数平均繊維径が2〜10nmであることが更に好ましい。また、カルボキシル基の量が、セルロース繊維の重量に対し0.1〜2.2mmol/gであることが好ましい。
One aspect of the present invention is a cellulose fiber having a maximum fiber diameter of 1000 nm or less and a number average fiber diameter of 2 to 150 nm, wherein at least one functional group selected from the group consisting of a carboxyl group and an aldehyde group. It is a fine cellulose fiber characterized by being oxidized to a base and having a cellulose I-type crystal structure.
The total amount of carboxyl groups and aldehyde groups is preferably 0.1 to 2.2 mmol / g based on the weight of the cellulose fiber. More preferably, the maximum fiber diameter is 500 nm or less and the number average fiber diameter is 2 to 100 nm. More preferably, the maximum fiber diameter is 30 nm or less and the number average fiber diameter is 2 to 10 nm. Moreover, it is preferable that the quantity of a carboxyl group is 0.1-2.2 mmol / g with respect to the weight of a cellulose fiber.

本発明の二は、本発明の一の微細セルロース繊維が媒体中に分散していることを特徴とする微細セルロース繊維の分散体である。
本発明の三は、本発明の二の微細セルロース繊維の分散体の製造方法であって、天然セルロースを原料とし、水中においてN−オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより該天然セルロースを酸化して反応物繊維を得る酸化反応工程、不純物を除去して水を含浸させた反応物繊維を得る精製工程、および水を含浸させた反応物繊維を溶媒に分散させる分散工程を有することを特徴とする微細セルロース繊維の分散体の製造方法である。
A second aspect of the present invention is a dispersion of fine cellulose fibers, wherein the fine cellulose fibers according to the present invention are dispersed in a medium.
A third aspect of the present invention is a method for producing a dispersion of fine cellulose fibers according to the second aspect of the present invention, wherein natural cellulose is used as a raw material, an N-oxyl compound is used as an oxidation catalyst in water, and a co-oxidant is allowed to act. An oxidation reaction step of oxidizing natural cellulose to obtain a reactant fiber, a purification step of obtaining a reactant fiber impregnated with water by removing impurities, and a dispersion step of dispersing the reactant fiber impregnated with water in a solvent It is a manufacturing method of the dispersion of the fine cellulose fiber characterized by having.

N−オキシル化合物が2,2,6,6−テトラメチル−1−ピペリジン−N−オキシルであることが好ましい。共酸化剤が次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、及び過有機酸からなる群から選ばれた少なくとも一つであることが好ましい。分散工程が、高速回転下でのホモミキサー処理、高圧ホモジナイザー処理、超高圧ホモジナイザー処理、超音波分散処理、ビーター処理、ディスク型レファイナー処理、コニカル型レファイナー処理、ダブルディスク型レファイナー処理、およびグラインダー処理のうち少なくとも一つを含むことが好ましい。
本発明の四は、本発明の一の微細セルロース繊維の製造方法であって、本発明の三の微細セルロース繊維の分散体の製造方法に加え、該分散体から溶媒を乾燥する工程を含むことを特徴とする微細セルロース繊維の製造方法である。
The N-oxyl compound is preferably 2,2,6,6-tetramethyl-1-piperidine-N-oxyl. The co-oxidant is preferably at least one selected from the group consisting of hypohalous acid or a salt thereof, hypohalous acid or a salt thereof, perhalogenic acid or a salt thereof, hydrogen peroxide, and a perorganic acid. The dispersion process includes homomixer processing under high-speed rotation, high-pressure homogenizer processing, ultra-high-pressure homogenizer processing, ultrasonic dispersion processing, beater processing, disc type refiner processing, conical type refiner processing, double disc type refiner processing, and grinder processing. It is preferable that at least one of them is included.
Four of the present invention is a method for producing a fine cellulose fiber according to one aspect of the present invention, and includes a step of drying a solvent from the dispersion in addition to the method for producing a dispersion of three fine cellulose fibers according to the present invention. It is the manufacturing method of the fine cellulose fiber characterized by these.

本発明により、数平均繊維径が150nm以下の微細セルロース繊維、及びその分散体をミクロフィブリルのナノファイバー性を利用して効率的に製造する方法を提供することが可能となる。   According to the present invention, it is possible to provide a method for efficiently producing fine cellulose fibers having a number average fiber diameter of 150 nm or less and a dispersion thereof using the nanofiber property of microfibrils.

次に、本発明について詳細に説明する。
本発明の微細セルロース繊維は、最大繊維径が1000nm以下かつ数平均繊維径が2〜150nmであり、好ましくは最大繊維径が500nm以下かつ数平均繊維径が2〜100nm、さらに好ましくは最大繊維径が30nm以下かつ数平均繊維径が2〜10nmのセルロース繊維である。
Next, the present invention will be described in detail.
The fine cellulose fiber of the present invention has a maximum fiber diameter of 1000 nm or less and a number average fiber diameter of 2 to 150 nm, preferably a maximum fiber diameter of 500 nm or less and a number average fiber diameter of 2 to 100 nm, more preferably a maximum fiber diameter. Is a cellulose fiber having a number average fiber diameter of 2 to 10 nm.

ここで最大繊維径および数平均繊維径の解析は次のようにして行う。固形分率で0.05重量〜0.1重量%の微細セルロースの水分散体を調製し、該分散体を、親水化処理済みのカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。また、大きな繊維径の繊維を含む場合には、ガラス上へキャストした表面のSEM像を観察してもよい。構成する繊維の大きさに応じて5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。この際に、得られた画像内に縦横任意の画像幅の軸を想定した場合に少なくとも軸に対し、20本以上の繊維が軸と交差するような試料および観察条件(倍率等)とする。この条件を満足する観察画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交錯する繊維の繊維径を目視で読み取っていく。こうして最低3枚の重なっていない表面部分の画像を電子顕微鏡で撮影し、各々2つの軸に交錯する繊維の繊維径の値を読み取る(したがって、最低20本×2×3=120本の繊維径の情報が得られる)。こうして得られた繊維径のデータにより最大繊維径お
よび数平均繊維径を算出する。
Here, the analysis of the maximum fiber diameter and the number average fiber diameter is performed as follows. An aqueous dispersion of fine cellulose having a solid content of 0.05 to 0.1% by weight is prepared, and the dispersion is cast on a hydrophilized carbon film-coated grid to obtain a sample for TEM observation. . Moreover, when the fiber of a big fiber diameter is included, you may observe the SEM image of the surface cast on glass. Observation with an electron microscope image is performed at a magnification of 5000 times, 10000 times, or 50000 times depending on the size of the constituent fibers. At this time, when an axis having an arbitrary vertical and horizontal image width is assumed in the obtained image, a sample and observation conditions (magnification, etc.) are set so that at least 20 fibers intersect the axis at least with respect to the axis. With respect to an observation image satisfying this condition, two random axes are drawn vertically and horizontally per image, and the fiber diameter of the fiber intersecting with the axis is visually read. Thus, images of at least three non-overlapping surface portions are taken with an electron microscope, and the value of the fiber diameter of the fibers intersecting with each of the two axes is read (thus, at least 20 × 2 × 3 = 120 fiber diameters). Information). The maximum fiber diameter and the number average fiber diameter are calculated from the fiber diameter data thus obtained.

本発明において、最大繊維径が1000nmより大きくかつ数平均繊維径が150nmより大きな場合には、本発明で目的とするナノファイバーとしての特性が現れ難く、従来の微細化繊維との差別性が低くなるため好ましくない。
さらに本発明の微細セルロース繊維はセルロースの水酸基の一部がカルボキシル基またはアルデヒド基に酸化されており、且つセルロースI型結晶構造を有する。これは、本発明の微細セルロース繊維が、I型結晶構造を有する天然由来のセルロース固体原料を表面酸化し微細化した繊維であることを意味する。すなわち、天然セルロースの生合成の過程においてはほぼ例外なくミクロフィブリルと呼ばれるナノファイバーがまず形成され、これらが多束化して高次な固体構造を構築していることを原理的に利用し、ここにおいてミクロフィブリル間の強い凝集力の原動となっている表面間の水素結合を弱めるために、その一部が酸化され、アルデヒド基やあるいはカルボキシル基に変換されているものである。
In the present invention, when the maximum fiber diameter is larger than 1000 nm and the number average fiber diameter is larger than 150 nm, the characteristics as the nanofiber intended in the present invention hardly appear, and the differentiation from the conventional fine fiber is low. Therefore, it is not preferable.
Furthermore, the fine cellulose fiber of the present invention has a cellulose I type crystal structure in which a part of the hydroxyl group of cellulose is oxidized to a carboxyl group or an aldehyde group. This means that the fine cellulose fiber of the present invention is a fiber obtained by surface-oxidizing a naturally-derived cellulose solid raw material having an I-type crystal structure. That is, in the process of biosynthesis of natural cellulose, nanofibers called microfibrils are first formed almost without exception, and it is used in principle to build a higher-order solid structure by bunching them. In order to weaken the hydrogen bond between the surfaces, which is the driving force of strong cohesive force between microfibrils, a part thereof is oxidized and converted into an aldehyde group or a carboxyl group.

ここで、本発明の微細セルロース繊維がI型結晶構造であることは、その広角X線回折像測定により得られる回折プロファイルにおいて、2シータ=14〜17°付近と2シータ=22〜23°付近の二つの位置に典型的なピークをもつことから同定することができる。さらに、本発明の微細セルロース繊維のセルロースにアルデヒド基あるいはカルボキシル基が導入されていることは、水分を完全に除去したサンプルにおいて全反射式赤外分光スペクトル(ATR)においてカルボニル基に起因する吸収(1608cm−1付近)が存在することにより確認することができる。特に、酸型のカルボキシル基(COOH)の場合には、上記の測定において1730cm−1に吸収が存在する。 Here, the fine cellulose fiber of the present invention has an I-type crystal structure in the diffraction profile obtained by the wide-angle X-ray diffraction image measurement, in the vicinity of 2 theta = 14 to 17 ° and 2 theta = 22 to 23 °. It can be identified from having typical peaks at the two positions. Furthermore, the introduction of an aldehyde group or a carboxyl group into the cellulose of the fine cellulose fiber of the present invention means that absorption caused by a carbonyl group in a total reflection infrared spectroscopic spectrum (ATR) in a sample from which moisture has been completely removed (ATR) It can be confirmed by the presence of the vicinity of 1608 cm −1 . In particular, in the case of an acid-type carboxyl group (COOH), absorption exists at 1730 cm −1 in the above measurement.

本発明の微細なセルロース繊維は、上述した理由により、セルロースに存在するカルボキシル基とアルデヒド基の量の総和が多いほうがより微小な繊維径として安定に存在し得る。たとえば木材パルプや綿パルプの場合、本発明の微細なセルロース繊維に存在するカルボキシル基とアルデヒド基の量の総和がセルロース繊維の重量に対し、0.2〜2.2mmol/g、好ましくは0.5〜2.2mmol/g、さらに好ましくは0.8〜2.2mmol/gであるとナノファイバーとしての安定性に優れた繊維として提供することができる。また、BCやホヤからの抽出セルロースのような比較的ミクロフィブリルの繊維径が太いセルロースの場合(平均径が数10nmのオーダー)には、該総和量は0.1〜0.8mmol/g、好ましくは0.2〜0.8mmol/gであるとナノファイバーとしての安定性に優れた繊維として提供できる。該総和量が0.1mmol/gよりも小さい場合には、従来知られている微細化されたセルロース繊維との物性上の差異(例えば、分散体における分散安定化効果)も小さくなると同時に、微小な繊維径の繊維として得られ難くなるため、好ましくない。   For the reasons described above, the fine cellulose fiber of the present invention can be stably present as a finer fiber diameter when the total amount of carboxyl groups and aldehyde groups present in cellulose is larger. For example, in the case of wood pulp or cotton pulp, the total amount of carboxyl groups and aldehyde groups present in the fine cellulose fibers of the present invention is 0.2 to 2.2 mmol / g, preferably 0.8. When it is 5 to 2.2 mmol / g, more preferably 0.8 to 2.2 mmol / g, it can be provided as a fiber having excellent stability as a nanofiber. Further, in the case of cellulose having a relatively large fiber diameter of microfibrils such as cellulose extracted from BC or sea squirt (average diameter is on the order of several tens of nm), the total amount is 0.1 to 0.8 mmol / g, It can provide as a fiber excellent in stability as a nanofiber as it is preferably 0.2-0.8 mmol / g. When the total amount is less than 0.1 mmol / g, the difference in physical properties from the conventionally known refined cellulose fibers (for example, the dispersion stabilizing effect in the dispersion) is also reduced and at the same time This is not preferable because it is difficult to obtain a fiber having a large fiber diameter.

さらに、ノニオン性の置換基であるアルデヒド基に対し、カルボキシル基が導入されることにより、電気的な反発力が生まれ、ミクロフィブリルが凝集を維持せずにばらばらになろうとする傾向が増大するため、ナノファイバーとしての安定性はより増大する。たとえば木材パルプや綿パルプの場合、本発明の微細なセルロース繊維に存在するカルボキシル基の量がセルロース繊維の重量に対し、0.2〜2.2mmol/g、好ましくは0.4〜2.2mmol/g、さらに好ましくは0.6〜2.2mmol/gであるとナノファイバーとしての極めて安定性に優れた繊維として提供することができる。また、BCやホヤからの抽出セルロースのような比較的ミクロフィブリルの繊維径が太いセルロースの場合には、カルボキシル基の量は0.1〜0.8mmol/g、好ましくは0.2〜0.8mmol/gであるとナノファイバーとしての安定性に優れた繊維として提供できる。   Furthermore, the introduction of a carboxyl group with respect to an aldehyde group that is a nonionic substituent creates an electric repulsive force, which increases the tendency of microfibrils to break apart without maintaining aggregation. In addition, the stability as a nanofiber is further increased. For example, in the case of wood pulp or cotton pulp, the amount of carboxyl groups present in the fine cellulose fiber of the present invention is 0.2 to 2.2 mmol / g, preferably 0.4 to 2.2 mmol, based on the weight of the cellulose fiber. / G, more preferably 0.6 to 2.2 mmol / g, it can be provided as a fiber having extremely excellent stability as a nanofiber. In the case of cellulose having a relatively large fiber diameter of microfibrils, such as cellulose extracted from BC or sea squirt, the amount of carboxyl groups is 0.1 to 0.8 mmol / g, preferably 0.2 to 0.00. It can provide as a fiber excellent in stability as nanofiber as it is 8 mmol / g.

ここで、セルロース繊維の重量に対するセルロースのアルデヒド基およびカルボキシル
基の量(mmol/g)は、以下の手法により評価する。
乾燥重量を精秤したセルロース試料から0.5〜1重量%スラリーを60ml調製し、0.1Mの塩酸水溶液によってpHを約2.5とした後、0.05Mの水酸化ナトリウム水溶液を滴下して電気伝導度測定を行う。測定はpHが約11になるまで続ける。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下式を用いて官能基量1を決定する。該官能基量1がカルボキシル基の量を示す。
官能基量(mmol/g)=V(ml)×0.05/セルロースの質量(g)
次に、セルロース試料を、酢酸でpHを4〜5に調製した2%亜塩素酸ナトリウム水溶液中でさらに48時間常温で酸化し、上記手法によって再び官能基量2を測定する。この酸化によって追加された官能基量(=官能基量2−官能基量1)を算出し、アルデヒド基量とする。
Here, the amount (mmol / g) of aldehyde group and carboxyl group of cellulose relative to the weight of cellulose fiber is evaluated by the following method.
60 ml of a 0.5 to 1 wt% slurry was prepared from a dry-weighted cellulose sample, and the pH was adjusted to about 2.5 with a 0.1 M aqueous hydrochloric acid solution, and then a 0.05 M aqueous sodium hydroxide solution was added dropwise. To measure the electrical conductivity. The measurement is continued until the pH is about 11. The amount of functional group 1 is determined from the amount (V) of sodium hydroxide consumed in the neutralization step of the weak acid whose electrical conductivity changes slowly. The functional group amount 1 indicates the amount of carboxyl groups.
Functional group amount (mmol / g) = V (ml) × 0.05 / mass of cellulose (g)
Next, the cellulose sample is further oxidized at room temperature for 48 hours in a 2% aqueous sodium chlorite solution adjusted to pH 4 to 5 with acetic acid, and the functional group amount 2 is measured again by the above method. The amount of functional groups added by this oxidation (= functional group amount 2 -functional group amount 1) is calculated and used as the aldehyde group amount.

以上の条件を満たす本発明の微細セルロース繊維は、他材料との混合性に優れ、水などの親水性媒体中で極めて高い分散安定効果を示すばかりでなく、例えば、水や親水性の有機溶媒中に分散させることにより高いチキソトロピー性を発現し、条件によってはゲル状となるため、ゲル化剤としても有効である。また、本発明が例えば最大繊維径が30nm以下かつ数平均繊維径が3〜10nmのような極めて微小な繊維として提供される場合には、水や親水性の有機溶媒中への分散体は透明となる場合もある。また、本発明の微細なセルロース繊維は、抄紙法やキャスト法により製膜することにより、高強度で耐熱性にも優れ、かつ極めて低い熱膨張性を有する材料となる。製膜の際の原液として使用する本発明の微細なセルロース繊維の分散体が透明である場合には、得られる膜も透明なものとなる。該膜は親水性付与を目的としたコーティング層としても有効に機能する。   The fine cellulose fiber of the present invention that satisfies the above conditions is excellent in mixing with other materials and exhibits not only a very high dispersion stability effect in a hydrophilic medium such as water, but also, for example, water or a hydrophilic organic solvent. When dispersed in the gel, it exhibits high thixotropic properties and, depending on the conditions, becomes a gel, it is also effective as a gelling agent. In addition, when the present invention is provided as extremely fine fibers having a maximum fiber diameter of 30 nm or less and a number average fiber diameter of 3 to 10 nm, for example, the dispersion in water or a hydrophilic organic solvent is transparent. It may become. Further, the fine cellulose fiber of the present invention becomes a material having high strength, excellent heat resistance and extremely low thermal expansion by forming a film by a papermaking method or a casting method. When the fine cellulose fiber dispersion of the present invention used as a stock solution for film formation is transparent, the resulting film is also transparent. The film functions effectively as a coating layer for the purpose of imparting hydrophilicity.

さらに、本発明の微細なセルロース繊維を例えば樹脂材料などの他材料と複合化する際には、他材料中での分散性に優れるため、好適な場合には透明性に優れた複合体を提供することができる。該複合体においては、本発明の微細なセルロース繊維は補強フィラーとしても機能し、複合体中で繊維が高度にネットワークを形成するような場合には、使用した樹脂単体に比べ、著しく高強度を示すようになると同時に著しい熱膨張率の低下を誘引することもできる。この他にも本発明の微細なセルロース繊維は、セルロースのもつ両親媒的性質も併せ持つため、例えば乳化剤や分散安定剤としても機能する。特に繊維中にカルボキシル基を有することで、表面電位の絶対値が大きくなるため、等電点(イオン濃度が増大した際に凝集が起こり始める濃度)が低pH側にシフトすることが期待される。これによって、より広範なイオン濃度条件で分散安定化効果が期待できる。さらに、カルボキシル基は金属イオンと対イオンを形成するため、金属イオンの捕集剤等としても有効である。   Furthermore, when the fine cellulose fiber of the present invention is compounded with other materials such as resin materials, it is excellent in dispersibility in other materials, and therefore, a composite with excellent transparency is provided when suitable. can do. In the composite, the fine cellulose fiber of the present invention also functions as a reinforcing filler, and when the fiber forms a high network in the composite, the strength is significantly higher than that of the single resin used. At the same time, a significant decrease in the coefficient of thermal expansion can be induced. In addition, since the fine cellulose fiber of the present invention also has the amphipathic properties of cellulose, it functions as, for example, an emulsifier or a dispersion stabilizer. In particular, the presence of a carboxyl group in the fiber increases the absolute value of the surface potential, so the isoelectric point (the concentration at which aggregation begins to occur when the ion concentration increases) is expected to shift to the lower pH side. . As a result, a dispersion stabilizing effect can be expected under a wider range of ion concentration conditions. Furthermore, since the carboxyl group forms a counter ion with the metal ion, it is also effective as a metal ion scavenger or the like.

次に、本発明の微細セルロース繊維が媒体中に分散している分散体、および該分散体の製造方法について説明する。
本発明の微細セルロース繊維の分散体は、前述した微細セルロース繊維が後述する溶媒中に分散しているものをいう。該分散体は、例えば、天然セルロースを原料とし、水中においてN−オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより該天然セルロースを酸化して反応物繊維を得る酸化反応工程、不純物を除去して水を含浸させた反応物繊維を得る精製工程、および水を含浸させた反応物繊維を溶媒に分散させる分散工程の3つの工程により得ることができる。以下に各工程について詳細に説明する。
Next, a dispersion in which the fine cellulose fibers of the present invention are dispersed in a medium and a method for producing the dispersion will be described.
The dispersion of fine cellulose fibers of the present invention refers to a dispersion in which the fine cellulose fibers described above are dispersed in a solvent described later. The dispersion includes, for example, an oxidation reaction step in which natural cellulose is used as a raw material, an N-oxyl compound is used as an oxidation catalyst in water, and a natural fiber is oxidized by acting a cooxidant to obtain a reaction product fiber. It can be obtained by three steps: a purification step for obtaining a reactant fiber impregnated with water by removal and a dispersion step for dispersing the reactant fiber impregnated with water in a solvent. Each step will be described in detail below.

まず、酸化反応工程では、水中に天然セルロースを分散させた分散液を調製する。ここで、天然セルロースは、植物,動物,バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを意味する。より具体的には、針葉樹系パルプ、広葉樹系パルプ、コットンリンターやコットンリントのような綿系パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、BC、ホヤから単離されるセルロース、海草から単離されるセルロ
ースなどを挙げることができるが、これに限定されるものではない。天然セルロースは好ましくは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができる。さらに、天然セルロースとして、単離、精製の後、ネバードライで保存していたものを使用するとミクロフィブリルの集束体が膨潤し易い状態であるため、やはり反応効率を高め、微細化処理後の数平均繊維径を小さくすることができ、好ましい。
反応における天然セルロースの分散媒は水であり、反応水溶液中の天然セルロース濃度は、試薬の十分な拡散が可能な濃度であれば任意であるが、通常、反応水溶液の重量に対して約5%以下である。
First, in the oxidation reaction step, a dispersion in which natural cellulose is dispersed in water is prepared. Here, natural cellulose means purified cellulose isolated from cellulose biosynthetic systems such as plants, animals, and bacteria-producing gels. More specifically, softwood pulp, hardwood pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as straw pulp and bagasse pulp, BC, cellulose isolated from sea squirt, and seaweed The cellulose can be exemplified, but is not limited thereto. Natural cellulose is preferably subjected to a treatment for increasing the surface area such as beating, whereby the reaction efficiency can be increased and the productivity can be increased. Furthermore, when natural cellulose that has been isolated and purified and stored in Never Dry is used, the microfibril bundles are likely to swell. The average fiber diameter can be reduced, which is preferable.
The dispersion medium of natural cellulose in the reaction is water, and the concentration of natural cellulose in the reaction aqueous solution is arbitrary as long as the reagent can sufficiently diffuse, but usually about 5% with respect to the weight of the reaction aqueous solution. It is as follows.

また、セルロースの酸化触媒として使用可能なN−オキシル化合物は数多く報告されている(「Cellulose」Vol.10、2003年、第335〜341ページにおけるI. Shibata及びA. Isogaiによる「TEMPO誘導体を用いたセルロースの触媒酸化:酸化生成物のHPSEC及びNMR分析」と題する記事)が、特にTEMPO、4−アセトアミド−TEMPO、4−カルボキシ−TEMPO、及び4−フォスフォノオキシ−TEMPOは水中常温での反応速度において好ましい。これらN−オキシル化合物の添加は触媒量で十分であり、好ましくは0.1〜4mmol/l、さらに好ましくは0.2〜2mmol/lの範囲で反応水溶液に添加する。   Many N-oxyl compounds that can be used as an oxidation catalyst for cellulose have been reported ("Cellulose" Vol. 10, 2003, pages 335 to 341, using "TEMPO derivatives by I. Shibata and A. Isogai"). Articles entitled “Catalyzed Oxidation of Cellulose: HPSEC and NMR Analysis of Oxidation Products”), in particular, TEMPO, 4-acetamido-TEMPO, 4-carboxy-TEMPO, and 4-phosphonooxy-TEMPO react at room temperature in water. Preferred in speed. A catalytic amount is sufficient for the addition of these N-oxyl compounds, preferably 0.1 to 4 mmol / l, more preferably 0.2 to 2 mmol / l.

共酸化剤として、次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、および過有機酸などが本発明において使用可能であるが、好ましくはアルカリ金属次亜ハロゲン酸塩、たとえば、次亜塩素酸ナトリウムや次亜臭素酸ナトリウムである。次亜塩素酸ナトリウムを使用する場合、臭化アルカリ金属、たとえば臭化ナトリウムの存在下で反応を進めることが反応速度において好ましい。この臭化アルカリ金属の添加量は、N−オキシル化合物に対して約1〜40倍モル量、好ましくは約10〜20倍モル量である。
反応水溶液のpHは約8〜11の範囲で維持されることが好ましい。水溶液の温度は約4〜40度において任意であるが、反応は室温で行うことが可能であり、特に温度の制御は必要としない。
As the co-oxidant, hypohalous acid or a salt thereof, hypohalous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide, a perorganic acid, and the like can be used in the present invention. Hypohalites such as sodium hypochlorite and sodium hypobromite. When sodium hypochlorite is used, it is preferable in terms of the reaction rate to advance the reaction in the presence of an alkali metal bromide such as sodium bromide. The addition amount of the alkali metal bromide is about 1 to 40 times mol, preferably about 10 to 20 times mol for the N-oxyl compound.
The pH of the aqueous reaction solution is preferably maintained in the range of about 8-11. The temperature of the aqueous solution is arbitrary at about 4 to 40 degrees, but the reaction can be performed at room temperature, and the temperature is not particularly required to be controlled.

本発明の微細セルロース繊維を得るために必要なカルボキシル基量は天然セルロース種により異なり、カルボキシル基量が多いほど、微細化処理後の最大繊維径、及び数平均繊維径は小さくなる。たとえば、木材系パルプおよび綿系パルプでは0.2〜2.2mmol/g、BCやホヤからの抽出セルロースでは0.1〜0.8mmol/gの範囲でカルボキシル基が導入されて微細化は進む。従って、酸化の程度を共酸化剤の添加量と反応時間により制御し、天然セルロース種に応じた酸化条件を最適化することで、目的とするカルボキシル基量を得ることが好ましい。一般に共酸化剤の添加量は、天然セルロース1gに対して約0.5〜8mmolの範囲で選択することが好ましく、反応は約5〜120分、長くとも240分以内に完了する。   The amount of carboxyl groups required to obtain the fine cellulose fibers of the present invention varies depending on the natural cellulose species. The greater the amount of carboxyl groups, the smaller the maximum fiber diameter and the number average fiber diameter after refinement. For example, in the case of wood-based pulp and cotton-based pulp, the carboxyl group is introduced in the range of 0.2 to 2.2 mmol / g, and in the case of cellulose extracted from BC and sea squirt, the carboxyl group is introduced in the range of 0.1 to 0.8 mmol / g, and the refinement proceeds. . Therefore, it is preferable to obtain the target amount of carboxyl groups by controlling the degree of oxidation by the addition amount of the co-oxidant and the reaction time and optimizing the oxidation conditions according to the natural cellulose species. In general, the amount of co-oxidant added is preferably in the range of about 0.5 to 8 mmol with respect to 1 g of natural cellulose, and the reaction is completed within about 5 to 120 minutes and at most 240 minutes.

精製工程に於いては、未反応の次亜塩素酸や各種副生成物等の反応スラリー中に含まれる反応物繊維と水以外の化合物を系外へ除去するが、反応物繊維は通常、この段階ではナノファイバー単位までばらばらに分散しているわけではないため、通常の精製法、すなわち水洗とろ過を繰り返すことで高純度(99重量%以上)の反応物繊維と水の分散体とする。該精製工程における精製方法は遠心脱水を利用する方法(例えば、連続式デカンダー)のように、上述した目的を達成できる装置であればどんな装置を利用しても構わない。こうして得られる反応物繊維の水分散体は絞った状態で固形分(セルロース)濃度としておよそ10重量%〜50重量%の範囲にある。この後の工程で、ナノファイバーへ分散させることを考慮すると、50重量%よりも高い固形分濃度とすると、分散に極めて高いエネルギーが必要となることから好ましくない。   In the refining process, the reactant fibers and compounds other than water contained in the reaction slurry such as unreacted hypochlorous acid and various by-products are removed from the system. At the stage, the nanofiber unit is not dispersed in a dispersed manner, so that the usual purification method, that is, washing with water and filtration are repeated to obtain a high purity (99% by weight or more) reactant fiber and water dispersion. As the purification method in the purification step, any apparatus can be used as long as it can achieve the above-described object, such as a method using centrifugal dehydration (for example, a continuous decanter). The aqueous dispersion of the reactant fibers thus obtained is in the range of approximately 10 wt% to 50 wt% as the solid content (cellulose) concentration in the squeezed state. In consideration of the dispersion in the nanofiber in the subsequent step, if the solid content concentration is higher than 50% by weight, it is not preferable because extremely high energy is required for the dispersion.

さらに、本発明では、上述した精製工程にて得られる水を含浸した反応物繊維(水分散体)を溶媒中に分散させ分散処理を施すことにより、本発明の微細セルロース繊維の分散体として提供することができる。
ここで、分散媒としての溶媒は通常は水が好ましいが、水以外にも目的に応じて水に可溶するアルコール類(メタノール、エタノール、イソプロパノール、イソブタノール、sec−ブタノール、tert−ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリン等)、エーテル類(エチレングリコールジメチルエーテル、1,4−ジオキサン、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン)やN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキサイド等を使用してもよい。また、これらの混合物も好適に使用できる。さらに、上述した反応物繊維の分散体を溶媒によって希釈、分散する際には、少しづつ溶媒を加えて分散していく、段階的な分散を試みると効率的にナノファイバーレベルの繊維の分散体を得ることができることがある。操作上の問題から、分散工程後の状態は粘性のある分散液あるいはゲル状の状態となるように分散条件を選ぶとよい。
Furthermore, in the present invention, the reaction fiber (water dispersion) impregnated with water obtained in the purification step described above is dispersed in a solvent and subjected to dispersion treatment, thereby providing a dispersion of fine cellulose fibers of the present invention. can do.
Here, the solvent as the dispersion medium is usually preferably water, but in addition to water, alcohols that are soluble in water depending on the purpose (methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl) Cellosolve, ethyl cellosolve, ethylene glycol, glycerin, etc.), ethers (ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone), N, N-dimethylformamide, N, N-dimethylacetamide Dimethyl sulfoxide or the like may be used. Moreover, these mixtures can also be used conveniently. Furthermore, when the dispersion of the above-described reactant fibers is diluted and dispersed with a solvent, the solvent is gradually added to disperse, and when a stepwise dispersion is attempted, a nanofiber-level fiber dispersion is efficiently obtained. You may be able to get Due to operational problems, the dispersion conditions may be selected so that the state after the dispersion step is a viscous dispersion or gel.

次に、分散工程で使用する分散機としては、種々なものを使用することができる。具体例を示せば、反応物繊維における反応の進行度(アルデヒド基やカルボキシル基への変換量)にも依存するが、好適に反応が進行する条件下では、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサー等の工業生産機としての汎用の分散機で十分に本発明の微細セルロース繊維の分散体を得ることができる。
しかし、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、超音波分散処理、ビーター、ディスク型レファイナー、コニカル型レファイナー、ダブルディスク型レファイナー、およびグラインダーのようなより強力で叩解能力のある装置を使用することにより、より効率的かつ高度なダウンサイジングが可能となる。さらに、これらの装置を使用することにより、アルデヒド基やカルボキシル基の量が比較的小さい場合(例えば、アルデヒド基やカルボキシル基のセルロースに対する総和量として、0.1〜0.5mmol/g)にも高度に微細化された本発明の微細セルロース繊維の分散体を提供できる。
Next, various devices can be used as the disperser used in the dispersion step. For example, depending on the progress of the reaction in the reaction product fiber (the amount of conversion to aldehyde groups and carboxyl groups), a screw-type mixer, paddle mixer, and disper type are suitable under conditions where the reaction proceeds appropriately. The dispersion of fine cellulose fibers of the present invention can be sufficiently obtained with a general-purpose disperser as an industrial production machine such as a mixer or a turbine mixer.
However, more powerful and defeating devices such as homomixers, high pressure homogenizers, ultra high pressure homogenizers, ultrasonic dispersion processing, beaters, disc refiners, conical refiners, double disc refiners, and grinders under high speed rotation By using, more efficient and advanced downsizing becomes possible. Furthermore, by using these devices, even when the amount of aldehyde group or carboxyl group is relatively small (for example, 0.1 to 0.5 mmol / g as the total amount of aldehyde group or carboxyl group to cellulose). A highly refined dispersion of fine cellulose fibers of the present invention can be provided.

次に、本発明の微細セルロース繊維を媒体中に分散させた分散体から、本発明の微細セルロース繊維を製造する方法について説明する。
上述した本発明の微細セルロース繊維の分散体を乾燥させることによって本発明の微細セルロース繊維を製造することができる。
ここで乾燥には、例えば、分散体の溶媒が水である場合には凍結乾燥法、分散体の溶媒が水と有機溶媒の混合溶液である場合には、ドラムドライヤーによる乾燥や場合によってはスプレイドライヤーによる噴霧乾燥を好適に使用することができる。また、上述した微細セルロースの分散体の中にバインダーとして水溶性高分子(ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリルアミド、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、デンプン、天然ガム類等)や糖類(グルコース、フルクトース、マンノース、ガラクトース、トレハロース等)のような極めて沸点が高くしかもセルロースに対して親和性を有する化合物を混入させておくことにより、ドラムドライヤーやスプレイドライヤーのような汎用の乾燥法でも再度溶媒中にナノファイバーとして分散できる本発明の微細セルロース繊維を得ることができる。この場合には、分散体中に添加するバインダーの量は、反応物繊維に対して10重量%〜80重量%の範囲にあることが望ましい。
該微細セルロース繊維は再び、溶媒(水や有機溶媒あるいはその混合溶液)中へ混入し、適当な分散力(例えば、上述した本発明の微細セルロース繊維の分散体の製造における分散工程で使用する各種分散機を用いた分散)を加えることにより微細セルロース繊維の分散体とすることができる。
Next, a method for producing the fine cellulose fiber of the present invention from a dispersion in which the fine cellulose fiber of the present invention is dispersed in a medium will be described.
The fine cellulose fiber of this invention can be manufactured by drying the dispersion of the fine cellulose fiber of this invention mentioned above.
Here, the drying may be performed by, for example, a freeze-drying method when the solvent of the dispersion is water, or by a drum dryer or a spray depending on the case when the solvent of the dispersion is a mixed solution of water and an organic solvent. Spray drying with a dryer can be suitably used. In addition, a water-soluble polymer (polyethylene oxide, polyvinyl alcohol, polyacrylamide, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, starch, natural gums, etc.) and saccharides (such as natural gums) as a binder in the fine cellulose dispersion described above. By mixing a compound having an extremely high boiling point such as glucose, fructose, mannose, galactose, trehalose, etc. and having an affinity for cellulose, a general drying method such as a drum dryer or a spray dryer can be used again. The fine cellulose fiber of this invention which can be disperse | distributed as a nanofiber in a solvent can be obtained. In this case, the amount of the binder added to the dispersion is desirably in the range of 10% by weight to 80% by weight with respect to the reactant fiber.
The fine cellulose fibers are mixed again in a solvent (water, an organic solvent or a mixed solution thereof), and have an appropriate dispersion force (for example, various types used in the dispersion step in the production of the fine cellulose fiber dispersion of the present invention described above). A dispersion of fine cellulose fibers can be obtained by adding dispersion using a disperser.

本発明を実施例に基づいて説明する。
[実施例1および比較例1]
実施例1として、乾燥重量で2g相当分の未乾燥の亜硫酸漂白針葉樹パルプ(主に1000nmを超える繊維径の繊維から成る)、0.025gのTEMPOおよび0.25gの臭化ナトリウムを水150mlに分散させた後、13重量%次亜塩素酸ナトリウム水溶液を、1gのパルプに対して次亜塩素酸ナトリウムの量が2.5mmolとなるように次亜塩素酸ナトリウムを加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10.5に保った。pHに変化が見られなくなった時点で反応終了と見なし、反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を5回繰り返し、固形分量25重量%の水を含浸させた反応物繊維を得た。
The present invention will be described based on examples.
[Example 1 and Comparative Example 1]
As Example 1, 2 g of dry sulfite bleached softwood pulp (mainly consisting of fibers with a fiber diameter of more than 1000 nm), 0.025 g of TEMPO and 0.25 g of sodium bromide in 150 ml of water was used. After the dispersion, 13% by weight sodium hypochlorite aqueous solution was added with sodium hypochlorite so that the amount of sodium hypochlorite was 2.5 mmol with respect to 1 g of pulp to initiate the reaction. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10.5. When the pH no longer changes, the reaction is considered to be complete, the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered five times to impregnate with a solid content of 25% by weight of water. Reactant fibers were obtained.

次に、該反応物繊維に水を加え、2重量%スラリーとし、回転刃式ミキサーで約5分間の処理を行った。処理に伴って著しくスラリーの粘度が上昇したため、少しづつ水を加えていき固形分濃度が0.15重量%となるまでミキサーによる分散処理を続けた。こうして得られたセルロース濃度が0.15重量%の微細セルロース繊維の分散体に対して、遠心分離により浮遊物の除去を行った後、水による濃度調製を行ってセルロース濃度が0.1重量%の透明かつやや粘調な微細セルロース繊維の分散体S1を得た。S1を乾燥させて得られた透明な膜状のセルロースの広角X線回折像から、S1がセルロースI型結晶構造を有するセルロースから成ることが示され、また同じ膜状セルロースのATRスペクトルのパターンからカルボニル基の存在が確認された。   Next, water was added to the reactant fiber to make a 2 wt% slurry, which was then treated for about 5 minutes with a rotary blade mixer. Since the viscosity of the slurry increased significantly with the treatment, water was gradually added, and the dispersion treatment with the mixer was continued until the solid content concentration became 0.15% by weight. The dispersion of fine cellulose fibers having a cellulose concentration of 0.15% by weight thus obtained was subjected to removal of suspended matter by centrifugation, and then the concentration was adjusted with water to give a cellulose concentration of 0.1% by weight. A transparent and slightly viscous fine cellulose fiber dispersion S1 was obtained. A wide-angle X-ray diffraction image of a transparent membranous cellulose obtained by drying S1 shows that S1 is composed of cellulose having a cellulose I-type crystal structure, and from the ATR spectrum pattern of the same membranous cellulose. The presence of a carbonyl group was confirmed.

これに対し、比較例1として、実施例1の原料として用いた亜硫酸漂白針葉樹パルプ(主に1000nmを超える繊維径の繊維から成る)に水を加え、S1と同等のミキサー処理により0.1重量%とした分散体(H1)を調製した。
図1のaおよびbに、H1(非コロイド)およびS1(コロイド)の写真をそれぞれ示した。酸化反応工程を経ていない比較例1の分散体H1は機械処理のみでは懸濁せず、沈降が起こるのに対し、S1は透明な分散液であり、沈降が全く起こらず、極めて微細な繊維から成る分散体(コロイド)であることが分かる。微細繊維の分散体においては光の透過方向に対する繊維片の持続長さ(最も短い場合には繊維径)が可視波長よりも小さくなると分散液中での界面散乱が著しく抑えられるため、透明性が大きく向上したと解釈される。
On the other hand, as Comparative Example 1, water was added to the sulfite bleached softwood pulp (mainly composed of fibers having a fiber diameter exceeding 1000 nm) used as the raw material of Example 1, and 0.1 wt. % Dispersion (H1) was prepared.
FIGS. 1a and 1b show photographs of H1 (non-colloid) and S1 (colloid), respectively. Dispersion H1 of Comparative Example 1 that has not undergone the oxidation reaction step does not suspend only by mechanical treatment and sedimentation occurs, whereas S1 is a transparent dispersion and does not undergo sedimentation at all. It can be seen that this is a dispersion (colloid). In the dispersion of fine fibers, if the continuous length of the fiber piece in the light transmission direction (fiber diameter in the shortest case) becomes smaller than the visible wavelength, interface scattering in the dispersion liquid is remarkably suppressed, so that transparency is reduced. It is interpreted as a great improvement.

さらに、S1は0.1重量%でも粘度が極めて高く、直交偏光板の間に置くと、静止した状態でも複屈折が確認でき、分散液中に含まれる微細な繊維が高い結晶配向性を有しており、かつ分散液中で部分的に秩序構造を有している可能性も示唆された。図2には、S1の微細セルロース繊維を親水化処理済みのカーボン膜被覆グリッド上にキャスト後、2%ウラニルアセテートでネガティブ染色したTEM像を示した。S1は繊維状のセルロースから構成されており、最大繊維径が10nmかつ数平均繊維径が6nmであった。
また、上述した方法により評価したS1を乾燥させて得られる透明膜状のセルロース中のアルデヒド基の量およびカルボキシル基の量は、それぞれ0.33mmol/gおよび0.99mmol/gであった。
以上により実施例1により得られた微細セルロース繊維の分散体は本発明の微細セルロース繊維を含有していることが確認された。
Furthermore, S1 has a very high viscosity even at 0.1% by weight, and when placed between crossed polarizing plates, birefringence can be confirmed even in a stationary state, and fine fibers contained in the dispersion have high crystal orientation. In addition, the possibility of having an ordered structure partially in the dispersion was also suggested. FIG. 2 shows a TEM image in which S1 fine cellulose fibers were cast on a hydrophilized carbon film-coated grid and then negatively stained with 2% uranyl acetate. S1 is composed of fibrous cellulose, and has a maximum fiber diameter of 10 nm and a number average fiber diameter of 6 nm.
Moreover, the amount of aldehyde groups and the amount of carboxyl groups in the transparent film-like cellulose obtained by drying S1 evaluated by the method described above were 0.33 mmol / g and 0.99 mmol / g, respectively.
From the above, it was confirmed that the fine cellulose fiber dispersion obtained in Example 1 contained the fine cellulose fiber of the present invention.

[実施例2,3,4]
実施例1において、原料を、精製後未乾燥のコットンリント(実施例2)、精製後未乾燥の酢酸菌生産のバクテリアセルロース(BC)(実施例3)、ホヤから単離した精製後未乾燥のセルロース(実施例4)とし、原料セルロースに対する次亜塩素酸ナトリウムの
添加量を、実施例2では実施例1と同様、2.5mmol/g、実施例3および実施例4では共に1.8mmol/gとし、他の条件はすべて実施例1と同じとしていずれも0.1重量%の透明な微細セルロース繊維の分散体を得た。実施例2,3,4の各々において得られた0.1重量%のセルロース濃度の微細セルロース繊維の分散体を各々、S2、S3、S4とする。
[Examples 2, 3, and 4]
In Example 1, the raw material was purified from undried cotton lint (Example 2), purified from undried acetic acid bacteria produced bacterial cellulose (BC) (Example 3), and purified from squirt The amount of sodium hypochlorite added to the raw material cellulose was 2.5 mmol / g in the same manner as in Example 1 and 1.8 mmol in both Examples 3 and 4. / G, and all other conditions were the same as in Example 1, and a 0.1% by weight transparent fine cellulose fiber dispersion was obtained. The dispersions of fine cellulose fibers having a cellulose concentration of 0.1% by weight obtained in each of Examples 2, 3, and 4 are designated as S2, S3, and S4, respectively.

S2−S4のいずれからも乾燥により、透明な膜状のセルロースが得られ、セルロースI型結晶構造を有することとカルボニル基の吸収バンドを有することが実施例1と同様の手法により確認された。
実施例1と同様にしてTEM観察により評価した、S2−S4の最大繊維径および数平均繊維径は、それぞれ、最大繊維径,15nm,数平均繊維径,8nm(S2)、最大繊維径,90nm,数平均繊維径,37nm(S3)、最大繊維径,62nm,数平均繊維径,22nm(S4)であった。
さらにS2−S4の各々を乾燥させて得られる透明膜状のセルロース中のアルデヒド基の量およびカルボキシル基の量は、それぞれ0.21mmol/gおよび0.67mmol/g(S2)、0.01mmol/gおよび0.50mmol/g(S3)、0.03mmol/gおよび0.31mmol/gであり、実施例2〜4により得られた微細セルロース繊維の分散体S2−S4が本発明の微細セルロース繊維を含有していることが証明された。
By drying from any of S2-S4, transparent film-like cellulose was obtained, and it was confirmed by the same method as in Example 1 that it had a cellulose I-type crystal structure and had a carbonyl group absorption band.
The maximum fiber diameter and the number average fiber diameter of S2-S4 evaluated by TEM observation in the same manner as in Example 1 were the maximum fiber diameter, 15 nm, the number average fiber diameter, 8 nm (S2), the maximum fiber diameter, and 90 nm, respectively. , Number average fiber diameter, 37 nm (S3), maximum fiber diameter, 62 nm, number average fiber diameter, 22 nm (S4).
Furthermore, the amount of aldehyde groups and the amount of carboxyl groups in the transparent film-like cellulose obtained by drying each of S2-S4 were 0.21 mmol / g, 0.67 mmol / g (S2), 0.01 mmol / g and 0.50 mmol / g (S3), 0.03 mmol / g and 0.31 mmol / g, and the fine cellulose fiber dispersion S2-S4 obtained in Examples 2 to 4 is the fine cellulose fiber of the present invention. It was proved to contain.

以上S1−S4に含まれる微細セルロース繊維がコーティング材として有効に機能することを示すために以下の実験を実施した。すなわち、S1−S4の各々をガラス上にキャストしたところ、いずれも平滑性に優れ透明な表面を形成した。また、各サンプルの端をピンセットで摘み上げるといずれも自立した膜を形成していることが明らかになった。すなわち、本発明の微細セルロース繊維の分散液は優れたコーティング材としての性能を有する可能性が示唆された。   In order to show that the fine cellulose fibers contained in S1-S4 function effectively as a coating material, the following experiment was performed. That is, when each of S1-S4 was cast on glass, all formed a transparent surface with excellent smoothness. In addition, it was revealed that when the ends of each sample were picked up with tweezers, a self-supporting film was formed. That is, it was suggested that the dispersion of fine cellulose fibers of the present invention may have excellent performance as a coating material.

[比較例2]
木材パルプの高圧ホモジナイザー処理により得られる微細化繊維状セルロースとして知られるセリッシュ(ダイセル化学社製、セリッシュKY−100G、セルロース濃度10重量%の水分散体)の0.1重量%の水分散体(H2)を、実施例1と同様のミキサー処理により調製した。得られた白色の分散液から構成する繊維のSEM観察を行ったところ、最大繊維径は、1.9μm、数平均繊維径は140nmであった。
得られた水分散体(H2)は、ミキサー分散後静置しておくと数分程度で沈降が起こった。同時に、H2をガラス上にキャストしたところ、自立膜は形成するものの白色でざらざらした表面平滑性に劣る表面であり、コーティング材としては不適であることが判明した。
[Comparative Example 2]
0.1% by weight aqueous dispersion of serish (manufactured by Daicel Chemical Industries, serish KY-100G, aqueous dispersion having a cellulose concentration of 10% by weight) known as refined fibrous cellulose obtained by high-pressure homogenizer treatment of wood pulp ( H2) was prepared by the same mixer treatment as in Example 1. When the SEM observation of the fiber comprised from the obtained white dispersion liquid was performed, the maximum fiber diameter was 1.9 μm and the number average fiber diameter was 140 nm.
When the obtained water dispersion (H2) was allowed to stand after dispersing the mixer, sedimentation occurred in about several minutes. At the same time, when H2 was cast on glass, it was found that a self-supporting film was formed, but it was a white and rough surface with poor surface smoothness, and was unsuitable as a coating material.

本発明の微細セルロース繊維は、新規なナノファイバー膜の原料や複合化材料用のナノフィラーとして適用し得るだけでなく、コーティング基材、各種機能性添加剤(ゲル化剤、乳化剤等)としても好適に利用できる。   The fine cellulose fiber of the present invention can be applied not only as a raw material for novel nanofiber membranes and nanofillers for composite materials, but also as a coating substrate and various functional additives (gelling agent, emulsifier, etc.) It can be suitably used.

(a)比較例1の分散体H1(非コロイド)の写真(b)実施例1の分散体S1(コロイド)の写真(A) Photo of Dispersion H1 (Non-Colloid) of Comparative Example 1 (b) Photo of Dispersion S1 (Colloid) of Example 1 実施例1の分散体S1のキャストサンプルの透過型電子顕微鏡写真Transmission electron micrograph of cast sample of dispersion S1 of Example 1

Claims (11)

最大繊維径が1000nm以下かつ数平均繊維径が2〜150nmのセルロース繊維であって、セルロースの水酸基の一部がカルボキシル基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に酸化されており、且つセルロースI型結晶構造を有することを特徴とする微細セルロース繊維。   A cellulose fiber having a maximum fiber diameter of 1000 nm or less and a number average fiber diameter of 2 to 150 nm, wherein a part of the hydroxyl group of cellulose is oxidized to at least one functional group selected from the group consisting of a carboxyl group and an aldehyde group And a fine cellulose fiber having a cellulose I-type crystal structure. カルボキシル基とアルデヒド基の量の総和がセルロース繊維の重量に対し、0.1〜2.2mmol/gであることを特徴とする請求項1に記載の微細セルロース繊維。   2. The fine cellulose fiber according to claim 1, wherein the total amount of carboxyl groups and aldehyde groups is 0.1 to 2.2 mmol / g based on the weight of the cellulose fiber. 最大繊維径が500nm以下かつ数平均繊維径が2〜100nmであることを特徴とする請求項1または請求項2に記載の微細セルロース繊維。   3. The fine cellulose fiber according to claim 1 or 2, wherein the maximum fiber diameter is 500 nm or less and the number average fiber diameter is 2 to 100 nm. 最大繊維径が30nm以下かつ数平均繊維径が2〜10nmであることを特徴とする請求項3に記載の微細セルロース繊維。   4. The fine cellulose fiber according to claim 3, wherein the maximum fiber diameter is 30 nm or less and the number average fiber diameter is 2 to 10 nm. カルボキシル基の量がセルロース繊維の重量に対し、0.1〜2.2mmol/gであることを特徴とする請求項1〜4のいずれか1項に記載の微細セルロース繊維。   The amount of a carboxyl group is 0.1-2.2 mmol / g with respect to the weight of a cellulose fiber, The fine cellulose fiber of any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のいずれか1項に記載した微細セルロース繊維が媒体中に分散していることを特徴とする微細セルロース繊維の分散体。   The fine cellulose fiber dispersion according to any one of claims 1 to 5, wherein the fine cellulose fiber is dispersed in a medium. 請求項6に記載した微細セルロース繊維の分散体の製造方法であって、天然セルロースを原料とし、水中においてN−オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより該天然セルロースを酸化して反応物繊維を得る酸化反応工程、不純物を除去して水を含浸させた反応物繊維を得る精製工程、および水を含浸させた反応物繊維を溶媒に分散させる分散工程を有することを特徴とする微細セルロース繊維の分散体の製造方法。   The method for producing a dispersion of fine cellulose fibers according to claim 6, wherein natural cellulose is used as a raw material, N-oxyl compound is used as an oxidation catalyst in water, and the natural cellulose is oxidized by acting a co-oxidant. Characterized in that it has an oxidation reaction step for obtaining a reaction product fiber, a purification step for obtaining a reaction product fiber impregnated with water by removing impurities, and a dispersion step for dispersing the reaction product fiber impregnated with water in a solvent. A method for producing a dispersion of fine cellulose fibers. N−オキシル化合物が2,2,6,6−テトラメチル−1−ピペリジン−N−オキシルであることを特徴とする請求項7に記載の微細セルロース繊維の分散体の製造方法。   The method for producing a fine cellulose fiber dispersion according to claim 7, wherein the N-oxyl compound is 2,2,6,6-tetramethyl-1-piperidine-N-oxyl. 共酸化剤が次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、及び過有機酸からなる群から選ばれた少なくとも一つであることを特徴とする請求項7または8に記載の微細セルロース繊維の分散体の製造方法。   The co-oxidant is at least one selected from the group consisting of hypohalous acid or a salt thereof, hypohalous acid or a salt thereof, perhalogenic acid or a salt thereof, hydrogen peroxide, and a perorganic acid. A process for producing a dispersion of fine cellulose fibers according to claim 7 or 8. 分散工程が、高速回転下でのホモミキサー処理、高圧ホモジナイザー処理、超高圧ホモジナイザー処理、超音波分散処理、ビーター処理、ディスク型レファイナー処理、コニカル型レファイナー処理、ダブルディスク型レファイナー処理、およびグラインダー処理のうち少なくとも一つを含むことを特徴とする請求項7〜9のいずれか1項に記載の微細セルロース繊維の分散体の製造方法。   The dispersion process includes homomixer processing under high-speed rotation, high-pressure homogenizer processing, ultrahigh-pressure homogenizer processing, ultrasonic dispersion processing, beater processing, disc type refiner processing, conical type refiner processing, double disc type refiner processing, and grinder processing. The method for producing a dispersion of fine cellulose fibers according to any one of claims 7 to 9, comprising at least one of them. 請求項1〜5のいずれか1項に記載した微細セルロース繊維の製造方法であって、請求項7〜10のいずれか1項に記載の微細セルロース繊維の分散体の製造方法に加え、該分散体から溶媒を乾燥する工程を含むことを特徴とする微細セルロース繊維の製造方法。   It is a manufacturing method of the fine cellulose fiber described in any one of Claims 1-5, Comprising: In addition to the manufacturing method of the dispersion of the fine cellulose fiber of any one of Claims 7-10, this dispersion The manufacturing method of the fine cellulose fiber characterized by including the process of drying a solvent from a body.
JP2006169649A 2006-06-20 2006-06-20 Fine cellulose fiber Active JP4998981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006169649A JP4998981B2 (en) 2006-06-20 2006-06-20 Fine cellulose fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006169649A JP4998981B2 (en) 2006-06-20 2006-06-20 Fine cellulose fiber

Publications (2)

Publication Number Publication Date
JP2008001728A true JP2008001728A (en) 2008-01-10
JP4998981B2 JP4998981B2 (en) 2012-08-15

Family

ID=39006377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006169649A Active JP4998981B2 (en) 2006-06-20 2006-06-20 Fine cellulose fiber

Country Status (1)

Country Link
JP (1) JP4998981B2 (en)

Cited By (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020239A1 (en) 2007-08-07 2009-02-12 Kao Corporation Gas barrier material
WO2009084566A1 (en) * 2007-12-28 2009-07-09 Nippon Paper Industries Co., Ltd. Process for production of cellulose nanofiber, catalyst for oxidation of cellulose, and method for oxidation of cellulose
JP2009161613A (en) * 2007-12-28 2009-07-23 Nippon Paper Industries Co Ltd Method for oxidizing cellulose, oxidation catalyst for cellulose, and method for producing cellulose nano-fiber
JP2009161893A (en) * 2007-12-11 2009-07-23 Kao Corp Method for producing cellulose dispersion
JP2009173909A (en) * 2007-12-28 2009-08-06 Nippon Paper Industries Co Ltd Process for production of cellulose nanofiber, and catalyst for oxidation of cellulose
JP2009197122A (en) * 2008-02-21 2009-09-03 Kao Corp Resin composition
WO2009122982A1 (en) * 2008-03-31 2009-10-08 日本製紙株式会社 Additive for papermaking and paper containing the same
JP2009228186A (en) * 2008-03-25 2009-10-08 Nippon Paper Industries Co Ltd Method for treating pulp
JP2009242990A (en) * 2008-03-31 2009-10-22 Kao Corp Wrinkle-removing agent composition for fiber product
JP2009243010A (en) * 2008-03-31 2009-10-22 Nippon Paper Industries Co Ltd Base paper for converting paper
JP2009242991A (en) * 2008-03-31 2009-10-22 Kao Corp Tensioning agent composition for fiber product
JP2009298972A (en) * 2008-06-17 2009-12-24 Kao Corp Cellulose fiber and manufacturing method thereof
JP2010037200A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Composition for spraying and spraying device using the same
WO2010018808A1 (en) * 2008-08-10 2010-02-18 国立大学法人東京大学 Composite material, functional material, process for producing composite material, and process for producing composite-material thin film
JP2010037348A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like composition
JP2010037199A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Cosmetic composition
JP2010053461A (en) * 2008-08-26 2010-03-11 Asahi Kasei Corp Method for producing bulky structure
JP2010059571A (en) * 2008-09-03 2010-03-18 Teijin Ltd Fine cellulose ester fiber
JP2010059304A (en) * 2008-09-03 2010-03-18 Teijin Ltd Epoxy resin composite
WO2010042647A2 (en) 2008-10-07 2010-04-15 The Research Foundation Of State University Of New York High flux high efficiency nanofiber membranes and methods of production thereof
JP2010090330A (en) * 2008-10-10 2010-04-22 Kao Corp Aromatic composition
JP2010116477A (en) * 2008-11-13 2010-05-27 Sumitomo Bakelite Co Ltd Composite composition
JP2010116332A (en) * 2008-11-11 2010-05-27 Asahi Kasei Corp Wiping-off sheet
JP2010125814A (en) * 2008-12-01 2010-06-10 Toppan Printing Co Ltd Laminated body
WO2010074340A1 (en) 2008-12-26 2010-07-01 花王株式会社 Gas-barrier material, gas-barrier molded article, and method for producing the gas-barrier molded article
WO2010074341A1 (en) 2008-12-26 2010-07-01 花王株式会社 Cellulose fiber suspension and manufacturing method therefor, and film-like formed body and manufacturing method therefor
WO2010076292A1 (en) 2008-12-29 2010-07-08 Unilever Plc Structured aqueous detergent compositions
JP2010156069A (en) * 2008-12-26 2010-07-15 Kao Corp Paper-making flocculant
JP2010155427A (en) * 2009-01-05 2010-07-15 Konica Minolta Holdings Inc Polymer film having cellulose coating film
JP2010155363A (en) * 2008-12-26 2010-07-15 Kao Corp Gas-barrier laminate
JP2010168573A (en) * 2008-12-26 2010-08-05 Kao Corp Suspension of cellulose fiber and method for producing the same
JP2010167411A (en) * 2008-12-26 2010-08-05 Kao Corp Method of manufacturing film-like formed body
JP2010168572A (en) * 2008-12-26 2010-08-05 Kao Corp Gas-barrier material, gas-barrier molded article, and method for producing the same
WO2010089948A1 (en) 2009-02-06 2010-08-12 花王株式会社 Suspension of cellulose fibers and method for producing same
JP2010179580A (en) * 2009-02-06 2010-08-19 Kao Corp Gas barrier laminated body and method for manufacturing the same
JP2010179579A (en) * 2009-02-06 2010-08-19 Kao Corp Gas barrier laminate and method for producing the same
WO2010095574A1 (en) * 2009-02-18 2010-08-26 国立大学法人 九州大学 Complex comprising cellulose nanofibers and metal nanoparticles, and process for producing same
JP2010184999A (en) * 2009-02-12 2010-08-26 Toppan Printing Co Ltd Coating agent and molded body
JP2010201414A (en) * 2009-02-06 2010-09-16 Kao Corp Method of manufacturing filmy molded article
JP2010202855A (en) * 2009-02-06 2010-09-16 Kao Corp Film-like formed article and manufacturing method therefor
JP2010216021A (en) * 2009-03-13 2010-09-30 Kyoto Univ Method for producing cellulose nanofiber
WO2010113805A1 (en) * 2009-03-31 2010-10-07 日本製紙株式会社 Coated paper
WO2010116826A1 (en) * 2009-03-30 2010-10-14 日本製紙株式会社 Process for producing cellulose nanofibers
JP2010236109A (en) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd Process for producing cellulose nanofibers
JP2010236106A (en) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd Process for removing organic oxidizing catalyst remaining in oxidized pulp
JP2010235679A (en) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nano-fiber
JP2010235681A (en) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nano-fiber
CN101874043A (en) * 2007-11-26 2010-10-27 国立大学法人东京大学 Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
JP2010242063A (en) * 2009-03-17 2010-10-28 Kuraray Co Ltd Cellulose nanofiber composite polyvinyl alcohol polymer composition
JP2010535869A (en) * 2007-08-10 2010-11-25 ダウ グローバル テクノロジーズ インコーポレイティド Finely oxidized cellulose nanoparticles
WO2010134357A1 (en) * 2009-05-22 2010-11-25 国立大学法人東京大学 Method for producing cellulose nanofiber dispersion, cellulose nanofiber dispersion, molded cellulose nanofiber article, and cellulose nanofiber composite
JP2010270315A (en) * 2009-04-24 2010-12-02 Sumitomo Bakelite Co Ltd Composite composition
JP2010275659A (en) * 2009-05-28 2010-12-09 Nippon Paper Industries Co Ltd Method for producing cellulose nanofiber
WO2011001706A1 (en) * 2009-06-29 2011-01-06 日本製紙株式会社 Paper for recording of information and processed paper
JP2011038031A (en) * 2009-08-17 2011-02-24 Toppan Printing Co Ltd Method for producing molded product and molded product
JP2011042903A (en) * 2009-08-21 2011-03-03 Asahi Kasei Corp Apparatus and method for producing sheet containing fine fibers
JP2011047084A (en) * 2009-08-28 2011-03-10 Sumitomo Bakelite Co Ltd Organized fiber, resin composition, and method for producing the resin composition
JP2011057746A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like composition
JP2011057747A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Liquid detergent composition for spray, and detergent contained in spray container prepared by using the same
JP2011057567A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Hydrophobic solid-containing aqueous composition, hydrophobic solid-containing dried product using the same, and cosmetic composition
JP2011055884A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like aromatic deodorant composition and gel-like aromatic deodorant using the same
JP2011057749A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Water-based coating composition
WO2011040547A1 (en) * 2009-09-30 2011-04-07 日本製紙株式会社 Paper barrier material
JP2011068799A (en) * 2009-09-28 2011-04-07 Toppan Printing Co Ltd Cellulose material and laminate thereof
WO2011071156A1 (en) * 2009-12-11 2011-06-16 花王株式会社 Composite material
WO2011074301A1 (en) * 2009-12-14 2011-06-23 日本製紙株式会社 Method for oxidation of cellulose and process for production of cellulose nanofibers
JP2011122014A (en) * 2009-12-09 2011-06-23 Konica Minolta Opto Inc Resin composite, method for producing the same, and method for producing cellulose nanofiber used in the same
JP2011127067A (en) * 2009-12-21 2011-06-30 Teijin Ltd Method for producing microstructurally modified cellulose
JP2011131452A (en) * 2009-12-24 2011-07-07 Kao Corp Method for manufacturing gas barrier laminate
JP2011140738A (en) * 2009-12-11 2011-07-21 Kao Corp Composite body of micro cellulose fiber, liquid dispersion of micro cellulose fiber and composite material
JP2011140632A (en) * 2009-12-11 2011-07-21 Kao Corp Composite material
WO2011089709A1 (en) * 2010-01-22 2011-07-28 第一工業製薬株式会社 Viscous composition
JP2011173993A (en) * 2010-02-24 2011-09-08 Sumitomo Bakelite Co Ltd Composite composition and composite
WO2011111612A1 (en) 2010-03-09 2011-09-15 凸版印刷株式会社 Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body
JP2011184825A (en) * 2010-03-09 2011-09-22 Toppan Printing Co Ltd Method for producing cellulose nanofiber, cellulose nanofiber and cellulose nanofiber dispersion
WO2011115154A1 (en) 2010-03-19 2011-09-22 国立大学法人京都大学 Molding material and manufacturing method therefor
JP2011184648A (en) * 2010-03-11 2011-09-22 Toppan Printing Co Ltd Production method for idized cellulose
WO2011118360A1 (en) 2010-03-26 2011-09-29 凸版印刷株式会社 Film-forming composition and sheet
WO2011118748A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
WO2011118520A1 (en) 2010-03-25 2011-09-29 凸版印刷株式会社 Gas barrier laminate and packaging material
WO2011118746A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
JP2011202101A (en) * 2010-03-26 2011-10-13 Toppan Printing Co Ltd Sheet, and method for manufacturing the same
CN102220718A (en) * 2011-06-08 2011-10-19 南京林业大学 Method for preparing nano celluloses through high-pressure homogenizing and low-temperature cooling
JP2012001626A (en) * 2010-06-16 2012-01-05 Univ Of Tokyo Physical gel and method of producing the same
JP2012082395A (en) * 2010-09-15 2012-04-26 Kuraray Co Ltd Polyvinyl alcohol film
JP2012081533A (en) * 2010-10-07 2012-04-26 Hokuetsu Kishu Paper Co Ltd Porous material and method of manufacturing the same
JP2012087256A (en) * 2010-10-22 2012-05-10 Dai Ichi Kogyo Seiyaku Co Ltd Viscous aqueous composition, and method for producing the same
WO2012070441A1 (en) 2010-11-25 2012-05-31 凸版印刷株式会社 Laminate and method for producing same
JP2012107199A (en) * 2010-10-26 2012-06-07 Sumitomo Bakelite Co Ltd Modified cellulose fiber, resin composition, molded body and method for producing the resin composition and the molded body
WO2012102153A1 (en) * 2011-01-26 2012-08-02 グンゼ株式会社 Method for producing hydrophilized cellulose fiber, and method for reducing oxidized cellulose fiber
WO2012115115A1 (en) 2011-02-21 2012-08-30 三菱化学株式会社 Cellulose fiber and manufacturing process therefor, cellulose fiber aggregate and cellulose fiber composite material
CN102675475A (en) * 2012-05-24 2012-09-19 东华大学 Method for preparing fibrilia carboxylation cellulose nanowhiskers
WO2012132903A1 (en) 2011-03-30 2012-10-04 日本製紙株式会社 Method for producing cellulose nanofibers
JP2012525448A (en) * 2009-05-01 2012-10-22 エフピーイノベイションズ Control of the iridescent wavelength of nanocrystalline cellulose films
JP2012207135A (en) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
JP2012207133A (en) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
JP2012214717A (en) * 2011-03-30 2012-11-08 Nippon Paper Industries Co Ltd Method for producing cellulose nanofiber
CN102776594A (en) * 2012-07-10 2012-11-14 东华大学 Cellulose fiber-supported nano silver antibacterial material and preparation method thereof
US20130000513A1 (en) * 2010-03-18 2013-01-03 Toppan Printing Co., Ltd. Cellulose liquid dispersion, method for producing the same, and molded body using the same
JP2013018918A (en) * 2011-07-13 2013-01-31 Kao Corp Rubber composition, and method of manufacturing the same
JP2013042405A (en) * 2011-08-18 2013-02-28 Foster Electric Co Ltd Method for manufacturing diaphragm for electroacoustic transducer, diaphragm produced by the same, and electroacoustic transducer provided with diaphragm
WO2013042654A1 (en) 2011-09-22 2013-03-28 凸版印刷株式会社 Composition for film molding, laminate, film, sheet substrate, packaging material, method for producing composition for film molding, and method for producing cellulose dispersion
WO2013047218A1 (en) 2011-09-30 2013-04-04 日本製紙株式会社 Method for producing cellulose nanofibers
JP2013107927A (en) * 2011-11-17 2013-06-06 Oji Holdings Corp Method for producing fine fibrous cellulose
JP2013127146A (en) * 2013-03-11 2013-06-27 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like composition
WO2013094563A1 (en) * 2011-12-19 2013-06-27 住友ベークライト株式会社 Resin composition and method for producing same
JP2013151661A (en) * 2011-12-28 2013-08-08 Kao Corp Molded article made from polyester resin composition
JP2013151636A (en) * 2011-12-28 2013-08-08 Kao Corp Polyester resin composition
WO2013121781A1 (en) * 2012-02-15 2013-08-22 凸版印刷株式会社 Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell
WO2013121539A1 (en) 2012-02-15 2013-08-22 北越紀州製紙株式会社 Porous body and process for manufacturing same
JP2013181169A (en) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd Abrasive composition
JP2013180947A (en) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd Glaze composition
WO2013137140A1 (en) 2012-03-14 2013-09-19 日本製紙株式会社 Method for producing anion-modified cellulose nanofiber dispersion liquid
JP2013203920A (en) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd Method of preparing cellulose fiber fluid dispersion, cellulose fiber fluid dispersion and composite composition
JP2013540804A (en) * 2010-10-27 2013-11-07 ユー ピー エム キュンメネ コーポレーション Drug delivery composition
JP2013249449A (en) * 2012-06-04 2013-12-12 Dai Ichi Kogyo Seiyaku Co Ltd Water-containing lubricant composition
WO2013183415A1 (en) 2012-06-05 2013-12-12 北越紀州製紙株式会社 Porous cellulose body and method for producing same
JP2013251236A (en) * 2012-06-04 2013-12-12 Dai Ichi Kogyo Seiyaku Co Ltd Separator for electrochemical device
JP2014055323A (en) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd Metal/cellulose composite fine fiber, method for producing the same, and transparent electrically-conducive film containing the metal/cellulose composite fine fiber
WO2014061485A1 (en) 2012-10-16 2014-04-24 日本製紙株式会社 Cellulose nanofibers
JP2014118521A (en) * 2012-12-18 2014-06-30 Kao Corp Method for producing cellulose nanofiber dispersion liquid
JP2014122458A (en) * 2007-12-21 2014-07-03 Mitsubishi Chemicals Corp Fiber composite
JP2014132091A (en) * 2014-03-26 2014-07-17 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous coating composition
JP2014136775A (en) * 2013-01-18 2014-07-28 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
WO2014115560A1 (en) 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
CN104047198A (en) * 2013-03-14 2014-09-17 金东纸业(江苏)股份有限公司 Preparation method for nano-cellulose
JP2014220342A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
JP2014240538A (en) * 2013-05-16 2014-12-25 日本製紙株式会社 Method for manufacturing composite of metal nanoparticles and cellulose-based fiber
WO2015050117A1 (en) * 2013-10-04 2015-04-09 Dic株式会社 Modified cellulose nanofiber, method for producing same, resin composition using same, molded body, and method for producing resin composition
JPWO2013077354A1 (en) * 2011-11-22 2015-04-27 国立大学法人 東京大学 Cellulose nanofiber dispersion and production method thereof, modified cellulose nanofiber, and cellulose nanofiber composite
WO2015108050A1 (en) * 2014-01-17 2015-07-23 国立大学法人東京大学 Method for producing minute cellulose fiber dispersion, method for producing minute cellulose fibers, and method for minutely dispersing dried oxidized cellulose fibers
JP2015149980A (en) * 2014-02-19 2015-08-24 凸版印刷株式会社 Cultivation apparatus and manufacturing method thereof
JP2015183095A (en) * 2014-03-24 2015-10-22 凸版印刷株式会社 Functional cellulose, manufacturing method thereof and functional cellulose dispersion and molding
JP2015531033A (en) * 2012-08-20 2015-10-29 ストラ エンソ オサケ ユキチュアユルキネンStora Enso Oyj Processes and intermediates for the production of highly micronized or microfibrillated cellulose
KR20160002811A (en) * 2013-04-23 2016-01-08 다이요 홀딩스 가부시키가이샤 Printed-circuit-board material and printed circuit board using same
KR20160002810A (en) * 2013-04-23 2016-01-08 다이요 홀딩스 가부시키가이샤 Printed-circuit-board material and printed circuit board using same
KR20160005028A (en) * 2013-04-23 2016-01-13 다이요 홀딩스 가부시키가이샤 Solder-resist composition and printed circuit board using same
JP2016030809A (en) * 2014-07-30 2016-03-07 ハイモ株式会社 Method for producing cellulose nanofiber
JP2016052620A (en) * 2014-09-03 2016-04-14 日本製紙株式会社 Composite of metal-organic framework and cellulose nanofiber
JP2016064501A (en) * 2014-05-22 2016-04-28 国立大学法人九州工業大学 Biomass nanofiber manufacturing method and biomass nanofiber / polymer resin composite manufacturing method
JP2016069617A (en) * 2014-09-28 2016-05-09 第一工業製薬株式会社 Aqueous ink composition and writing instrument using the same
US9371616B2 (en) 2009-01-05 2016-06-21 Konica Minolta Holdings, Inc. Laminate and production method thereof
JP2016145356A (en) * 2016-02-10 2016-08-12 王子ホールディングス株式会社 Fibrous cellulose, resin composition and cellulose-suspended liquid
JP2016155971A (en) * 2015-02-26 2016-09-01 花王株式会社 Fine cellulose fiber composite
JP2016207879A (en) * 2015-04-24 2016-12-08 凸版印刷株式会社 Magnetic fluid and method for producing magnetic fluid
CN106283209A (en) * 2016-08-16 2017-01-04 东华大学 A kind of method utilizing coir fibre to prepare different scale nanometer fibril and purposes
JP2017025206A (en) * 2015-07-23 2017-02-02 第一工業製薬株式会社 Cellulose ester aqueous dispersed body
JP2017043647A (en) * 2015-08-24 2017-03-02 第一工業製薬株式会社 Cellulose ester aqueous dispersion
JP2017043648A (en) * 2015-08-24 2017-03-02 第一工業製薬株式会社 Cellulose ester aqueous dispersion
JP2017095664A (en) * 2015-11-27 2017-06-01 日本製紙株式会社 Manufacturing method of dry solid article of cellulose nanofiber
KR20170115505A (en) 2015-02-04 2017-10-17 니폰 제온 가부시키가이샤 Metal oxide cellulose nanofibers dispersion and production method thereof
US9797093B2 (en) 2012-11-03 2017-10-24 Upm-Kymmene Corporation Method for producing nanofibrillar cellulose
JP2017193627A (en) * 2016-04-20 2017-10-26 凸版印刷株式会社 Humidity-responsive moisture-permeable sheet and method for producing the same
KR20170120019A (en) 2016-04-20 2017-10-30 주식회사 엘지생활건강 Method for producing dispersed cellulose nanofiber for cosmetic ingredient
JP2017536447A (en) * 2014-10-29 2017-12-07 ケミラ ユルキネン オサケイティエKemira Oyj Method for producing microfibrillated cellulose and microfibrillated cellulose
KR101829269B1 (en) 2016-05-25 2018-02-19 포항공과대학교 산학협력단 Fluid for transmitting heat comprising cellulose nano fiber and method for preparing the same
JP2018076572A (en) * 2016-11-11 2018-05-17 セイコーエプソン株式会社 Granulated powder and method for producing granulated powder
US9987686B2 (en) 2014-05-09 2018-06-05 Toppan Printing Co., Ltd. Complex, method for producing complex, dispersion liquid, method for producing dispersion liquid, and optical material
JP2018105971A (en) * 2016-12-26 2018-07-05 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development
WO2018143149A1 (en) * 2017-02-03 2018-08-09 株式会社片山化学工業研究所 Production method of dried cellulose nanofibers
WO2018151050A1 (en) 2017-02-14 2018-08-23 日本製紙株式会社 Composition
KR20180098576A (en) 2016-12-28 2018-09-04 아사히 가세이 가부시키가이샤 Cellulose-containing resin composition and cellulose preparation
JP2018150546A (en) * 2018-05-01 2018-09-27 太陽ホールディングス株式会社 Composition and cured product using the same
WO2018216474A1 (en) * 2017-05-24 2018-11-29 日本製紙株式会社 Oxidized cellulose nanofibers, dispersion of oxidized cellulose nanofibers, and production method for dispersion of oxidized cellulose nanofibers
KR20190008282A (en) 2016-08-08 2019-01-23 닛뽕세이시 가부시키가이샤 A method for evaluating a cellulose nanofiber dispersion, a cellulose nanofiber water dispersion, a food, a cosmetic and a rubber composition containing a cellulose nanofiber
WO2019026405A1 (en) 2017-08-01 2019-02-07 信越化学工業株式会社 Cellulose nanofiber-supporting inorganic powder and method for producing same
JP2019026977A (en) * 2017-08-01 2019-02-21 グンゼ株式会社 Method for producing carboxylated cellulose fiber and carboxylated cellulose fiber
WO2019111928A1 (en) 2017-12-07 2019-06-13 日本製紙株式会社 Method for manufacturing carboxymethylated cellulose nanofiber
WO2019111939A1 (en) 2017-12-07 2019-06-13 日本製紙株式会社 Carboxymethylated cellulose nanofibers
WO2019111941A1 (en) 2017-12-07 2019-06-13 日本製紙株式会社 Carboxymethylated cellulose nanofibers
WO2019135384A1 (en) 2018-01-05 2019-07-11 凸版印刷株式会社 Composite particles, production method for composite particles, dry powder, and resin composition for molding
CN110091397A (en) * 2019-05-22 2019-08-06 中国林业科学研究院木材工业研究所 A kind of preparation method of wood cell wall 2D sheet layer material
WO2019181838A1 (en) 2018-03-20 2019-09-26 大王製紙株式会社 Cellulose nanofiber manufacturing method
WO2019208801A1 (en) 2018-04-27 2019-10-31 凸版印刷株式会社 Sustained-release composite particles, method for producing sustained-release composite particles, dry powder, and wallpaper
WO2019208802A1 (en) 2018-04-27 2019-10-31 凸版印刷株式会社 Composite particles, method for producing composite particles, dry powder, composition for application to skin, and method for producing composition for application to skin
WO2019244927A1 (en) 2018-06-20 2019-12-26 Fdk株式会社 Alkaline battery and method for producing negative-electrode gel for alkaline battery
US10556197B2 (en) 2015-08-03 2020-02-11 Hokuetsu Corporation Method for manufacturing filter medium for air filter
EP3459366A4 (en) * 2016-05-16 2020-03-11 Nippon Paper Industries Co., Ltd. Additive for food
WO2020050015A1 (en) 2018-09-04 2020-03-12 日本製紙株式会社 Oxidized cellulose nanofibers and dispersion of oxidized cellulose nanofibers
EP3699586A1 (en) 2015-02-17 2020-08-26 Nippon Paper Industries Co., Ltd. Method for evaluating cellulose nanofiber dispersion
WO2020170995A1 (en) 2019-02-19 2020-08-27 凸版印刷株式会社 Composite particles, composite-particle composition, and method for producing composite-particle composition
JP2020177984A (en) * 2019-04-16 2020-10-29 凸版印刷株式会社 Magnetic material-encapsulating composite particles, method for producing magnetic material-encapsulating composite particles, and dry powder
CN111944069A (en) * 2019-05-14 2020-11-17 中国科学技术大学 A kind of biomass nanocomposite environmental protection water-based thermal insulation coating and preparation method thereof
US10850218B2 (en) 2015-11-02 2020-12-01 Nippon Paper Industries Co., Ltd. Filtration method and production process of cellulose nanofiber dispersion
WO2021002194A1 (en) 2019-07-03 2021-01-07 日本製紙株式会社 Mixed solution
WO2021002290A1 (en) 2019-07-01 2021-01-07 凸版印刷株式会社 Composite particle and method for producing composite particle
CN112739722A (en) * 2018-09-21 2021-04-30 东洋制罐集团控股株式会社 Nano cellulose and production method thereof
JP2021120436A (en) * 2020-01-30 2021-08-19 花王株式会社 Cellulose fiber complex
EP3879029A1 (en) 2015-05-15 2021-09-15 Nippon Paper Industries Co., Ltd. Anion-modified cellulose nanofiber dispersion liquid and composition
US11136164B2 (en) 2016-04-15 2021-10-05 Toppan Printing Co., Ltd. Barrier paper and paper cup
JP2021183755A (en) * 2009-05-15 2021-12-02 ファイバーリーン テクノロジーズ リミテッド Paper filler composition
WO2021246388A1 (en) 2020-06-01 2021-12-09 株式会社大塚製薬工場 Adhesion-preventing agent and method for preventing adhesion using same
WO2023017687A1 (en) 2021-08-10 2023-02-16 フタムラ化学株式会社 Type ii unmodified cellulose microfibers, and method for manufacturing type ii unmodified cellulose microfibers and compact of same
WO2023074848A1 (en) 2021-10-29 2023-05-04 横河電機株式会社 Fine cellulose fiber powder and method for producing fine cellulose fiber powder
WO2023074849A1 (en) 2021-10-29 2023-05-04 横河電機株式会社 Fine cellulose fiber solid material and method for producing fine cellulose fiber solid material
WO2023153416A1 (en) 2022-02-08 2023-08-17 横河電機株式会社 Solid water-degradable complex and method for manufacturing same
US11760811B2 (en) 2017-12-07 2023-09-19 Nippon Paper Industries Co., Ltd. Carboxymethylated cellulose
WO2024004466A1 (en) 2022-07-01 2024-01-04 フタムラ化学株式会社 Unmodified cellulose beads and method for manufacturing same
WO2024071075A1 (en) 2022-09-27 2024-04-04 日本製紙株式会社 Cellulose nanofiber, and aqueous dispersion composition containing same
US12331456B2 (en) 2020-01-25 2025-06-17 Tohoku Seiren Co., Ltd. Method for processing recycled cellulose fibers, and processed recycled cellulose fibers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917366B (en) 2011-09-22 2016-06-08 凸版印刷株式会社 The preparation method of layered product, this layered product and gas barrier material
CN108290785A (en) 2015-11-26 2018-07-17 旭硝子株式会社 Laminated glass, window glass for automobile and building glass pane
WO2017155054A1 (en) 2016-03-11 2017-09-14 国立大学法人北海道大学 Cellulose acetate fibers, cellulose acetate composition, and method for producing same
KR101851321B1 (en) * 2016-09-09 2018-04-23 한국화학연구원 Method for manufacturing of nanocellulose using old newspaper
WO2019044669A1 (en) 2017-09-01 2019-03-07 Agc株式会社 Methods for producing wet gel and xerogel
JP7462953B2 (en) * 2018-11-12 2024-04-08 国立大学法人 東京大学 Deodorizing aerogel material and its manufacturing method
JP7287460B2 (en) 2019-04-25 2023-06-06 東洋製罐グループホールディングス株式会社 Cellulose nanocrystal composite and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100801A (en) * 1979-12-26 1981-08-13 Itt Microfibrous cellulose and its manufacture
JP2002537503A (en) * 1999-02-24 2002-11-05 エスシーエー ハイジーン プロダクツ ゲゼルシャフト ミト ベシュレンクテル ハフツング Oxidized cellulose-containing fibrous materials and articles made therefrom
WO2003040189A1 (en) * 2001-11-08 2003-05-15 Asahi Kasei Kabushiki Kaisha Novel cellulose-type material
JP2004270064A (en) * 2003-03-07 2004-09-30 Asahi Kasei Corp Structure
JP2005060680A (en) * 2003-07-31 2005-03-10 Kyoto Univ FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND WIRING BOARD
JP2005097818A (en) * 2003-08-05 2005-04-14 Weyerhaeuser Co Method for producing carboxylated pulp fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100801A (en) * 1979-12-26 1981-08-13 Itt Microfibrous cellulose and its manufacture
JP2002537503A (en) * 1999-02-24 2002-11-05 エスシーエー ハイジーン プロダクツ ゲゼルシャフト ミト ベシュレンクテル ハフツング Oxidized cellulose-containing fibrous materials and articles made therefrom
WO2003040189A1 (en) * 2001-11-08 2003-05-15 Asahi Kasei Kabushiki Kaisha Novel cellulose-type material
JP2004270064A (en) * 2003-03-07 2004-09-30 Asahi Kasei Corp Structure
JP2005060680A (en) * 2003-07-31 2005-03-10 Kyoto Univ FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND WIRING BOARD
JP2005097818A (en) * 2003-08-05 2005-04-14 Weyerhaeuser Co Method for producing carboxylated pulp fiber

Cited By (296)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029896B2 (en) * 2007-08-07 2011-10-04 Kao Corporation Gas barrier material
WO2009020239A1 (en) 2007-08-07 2009-02-12 Kao Corporation Gas barrier material
JP2010535869A (en) * 2007-08-10 2010-11-25 ダウ グローバル テクノロジーズ インコーポレイティド Finely oxidized cellulose nanoparticles
US8992728B2 (en) 2007-11-26 2015-03-31 The University Of Tokyo Cellulose nanofiber, production method of same and cellulose nanofiber dispersion
CN101874043A (en) * 2007-11-26 2010-10-27 国立大学法人东京大学 Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
JPWO2009069641A1 (en) * 2007-11-26 2011-04-14 国立大学法人 東京大学 Cellulose nanofiber and method for producing the same, cellulose nanofiber dispersion
JP2009161893A (en) * 2007-12-11 2009-07-23 Kao Corp Method for producing cellulose dispersion
JP2014122458A (en) * 2007-12-21 2014-07-03 Mitsubishi Chemicals Corp Fiber composite
JP2009173909A (en) * 2007-12-28 2009-08-06 Nippon Paper Industries Co Ltd Process for production of cellulose nanofiber, and catalyst for oxidation of cellulose
US8287692B2 (en) 2007-12-28 2012-10-16 Nippon Paper Industries Co., Ltd. Processes for producing cellulose nanofibers
JP2009161613A (en) * 2007-12-28 2009-07-23 Nippon Paper Industries Co Ltd Method for oxidizing cellulose, oxidation catalyst for cellulose, and method for producing cellulose nano-fiber
WO2009084566A1 (en) * 2007-12-28 2009-07-09 Nippon Paper Industries Co., Ltd. Process for production of cellulose nanofiber, catalyst for oxidation of cellulose, and method for oxidation of cellulose
JP2009197122A (en) * 2008-02-21 2009-09-03 Kao Corp Resin composition
JP2009228186A (en) * 2008-03-25 2009-10-08 Nippon Paper Industries Co Ltd Method for treating pulp
JP2010242286A (en) * 2008-03-31 2010-10-28 Nippon Paper Industries Co Ltd Paper containing cellulose nanofibers
JP2009242991A (en) * 2008-03-31 2009-10-22 Kao Corp Tensioning agent composition for fiber product
WO2009122982A1 (en) * 2008-03-31 2009-10-08 日本製紙株式会社 Additive for papermaking and paper containing the same
JP2009242990A (en) * 2008-03-31 2009-10-22 Kao Corp Wrinkle-removing agent composition for fiber product
JP2009243010A (en) * 2008-03-31 2009-10-22 Nippon Paper Industries Co Ltd Base paper for converting paper
TWI465621B (en) * 2008-03-31 2014-12-21 Jujo Paper Co Ltd Papermaking additive and paper containing the same
JP2009263850A (en) * 2008-03-31 2009-11-12 Nippon Paper Industries Co Ltd Printing paper
JP2009263848A (en) * 2008-03-31 2009-11-12 Nippon Paper Industries Co Ltd Additive for papermaking and paper containing the same
JP2009263853A (en) * 2008-03-31 2009-11-12 Nippon Paper Industries Co Ltd Coated paper for offset printing
US20110008638A1 (en) * 2008-03-31 2011-01-13 Shoichi Miyawaki Papermaking additive and paper containing the same
JP2009263854A (en) * 2008-03-31 2009-11-12 Nippon Paper Industries Co Ltd Coated paper for gravure printing
JP2009263849A (en) * 2008-03-31 2009-11-12 Nippon Paper Industries Co Ltd Printing paper
US8377563B2 (en) 2008-03-31 2013-02-19 Nippon Paper Industruies Co., Ltd. Papermaking additive and paper containing the same
JP2009298972A (en) * 2008-06-17 2009-12-24 Kao Corp Cellulose fiber and manufacturing method thereof
JP2010037199A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Cosmetic composition
JP2010037348A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like composition
JP2010037200A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Composition for spraying and spraying device using the same
WO2010018808A1 (en) * 2008-08-10 2010-02-18 国立大学法人東京大学 Composite material, functional material, process for producing composite material, and process for producing composite-material thin film
JP2010053461A (en) * 2008-08-26 2010-03-11 Asahi Kasei Corp Method for producing bulky structure
JP2010059304A (en) * 2008-09-03 2010-03-18 Teijin Ltd Epoxy resin composite
JP2010059571A (en) * 2008-09-03 2010-03-18 Teijin Ltd Fine cellulose ester fiber
US9511329B2 (en) 2008-10-07 2016-12-06 The Research Foundation For The State University Of New York High flux high efficiency nanofiber membranes and methods of production thereof
EP2361144A4 (en) * 2008-10-07 2012-09-19 Univ New York State Res Found HIGH FLOW AND HIGH EFFICIENCY NANO FIBER MEMBRANES AND MANUFACTURING METHOD THEREFOR
WO2010042647A2 (en) 2008-10-07 2010-04-15 The Research Foundation Of State University Of New York High flux high efficiency nanofiber membranes and methods of production thereof
JP2010090330A (en) * 2008-10-10 2010-04-22 Kao Corp Aromatic composition
JP2010116332A (en) * 2008-11-11 2010-05-27 Asahi Kasei Corp Wiping-off sheet
JP2010116477A (en) * 2008-11-13 2010-05-27 Sumitomo Bakelite Co Ltd Composite composition
JP2010125814A (en) * 2008-12-01 2010-06-10 Toppan Printing Co Ltd Laminated body
JP2010155363A (en) * 2008-12-26 2010-07-15 Kao Corp Gas-barrier laminate
JP2010156069A (en) * 2008-12-26 2010-07-15 Kao Corp Paper-making flocculant
WO2010074341A1 (en) 2008-12-26 2010-07-01 花王株式会社 Cellulose fiber suspension and manufacturing method therefor, and film-like formed body and manufacturing method therefor
WO2010074340A1 (en) 2008-12-26 2010-07-01 花王株式会社 Gas-barrier material, gas-barrier molded article, and method for producing the gas-barrier molded article
JP2010167411A (en) * 2008-12-26 2010-08-05 Kao Corp Method of manufacturing film-like formed body
JP2010168573A (en) * 2008-12-26 2010-08-05 Kao Corp Suspension of cellulose fiber and method for producing the same
JP2010168572A (en) * 2008-12-26 2010-08-05 Kao Corp Gas-barrier material, gas-barrier molded article, and method for producing the same
WO2010076292A1 (en) 2008-12-29 2010-07-08 Unilever Plc Structured aqueous detergent compositions
US8450260B2 (en) 2008-12-29 2013-05-28 Conopco, Inc. Structured aqueous detergent compositions
JP2010155427A (en) * 2009-01-05 2010-07-15 Konica Minolta Holdings Inc Polymer film having cellulose coating film
US9371616B2 (en) 2009-01-05 2016-06-21 Konica Minolta Holdings, Inc. Laminate and production method thereof
WO2010089948A1 (en) 2009-02-06 2010-08-12 花王株式会社 Suspension of cellulose fibers and method for producing same
JP2010179580A (en) * 2009-02-06 2010-08-19 Kao Corp Gas barrier laminated body and method for manufacturing the same
CN102264766A (en) * 2009-02-06 2011-11-30 花王株式会社 Suspension of cellulose fiber and its production method
JP2010179579A (en) * 2009-02-06 2010-08-19 Kao Corp Gas barrier laminate and method for producing the same
JP2010201414A (en) * 2009-02-06 2010-09-16 Kao Corp Method of manufacturing filmy molded article
JP2010202855A (en) * 2009-02-06 2010-09-16 Kao Corp Film-like formed article and manufacturing method therefor
JP2010202856A (en) * 2009-02-06 2010-09-16 Kao Corp Suspension of cellulose fiber and method for producing the same
JP2010184999A (en) * 2009-02-12 2010-08-26 Toppan Printing Co Ltd Coating agent and molded body
JPWO2010095574A1 (en) * 2009-02-18 2012-08-23 国立大学法人九州大学 Composite comprising cellulose nanofiber and metal nanoparticle, and production method thereof
WO2010095574A1 (en) * 2009-02-18 2010-08-26 国立大学法人 九州大学 Complex comprising cellulose nanofibers and metal nanoparticles, and process for producing same
JP2010216021A (en) * 2009-03-13 2010-09-30 Kyoto Univ Method for producing cellulose nanofiber
JP2010242063A (en) * 2009-03-17 2010-10-28 Kuraray Co Ltd Cellulose nanofiber composite polyvinyl alcohol polymer composition
JP2010236109A (en) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd Process for producing cellulose nanofibers
WO2010116826A1 (en) * 2009-03-30 2010-10-14 日本製紙株式会社 Process for producing cellulose nanofibers
JP2010236106A (en) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd Process for removing organic oxidizing catalyst remaining in oxidized pulp
JP2010235679A (en) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nano-fiber
JP2010235681A (en) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nano-fiber
WO2010113805A1 (en) * 2009-03-31 2010-10-07 日本製紙株式会社 Coated paper
JP2010270315A (en) * 2009-04-24 2010-12-02 Sumitomo Bakelite Co Ltd Composite composition
JP2012525448A (en) * 2009-05-01 2012-10-22 エフピーイノベイションズ Control of the iridescent wavelength of nanocrystalline cellulose films
US9394481B2 (en) 2009-05-01 2016-07-19 Fpinnovations Control of nanocrystalline cellulose film iridescence wavelength
JP7249383B2 (en) 2009-05-15 2023-03-30 ファイバーリーン テクノロジーズ リミテッド paper filler composition
JP2021183755A (en) * 2009-05-15 2021-12-02 ファイバーリーン テクノロジーズ リミテッド Paper filler composition
JPWO2010134357A1 (en) * 2009-05-22 2012-11-08 国立大学法人 東京大学 Method for producing cellulose nanofiber dispersion, cellulose nanofiber dispersion, cellulose nanofiber molded body, and cellulose nanofiber composite
WO2010134357A1 (en) * 2009-05-22 2010-11-25 国立大学法人東京大学 Method for producing cellulose nanofiber dispersion, cellulose nanofiber dispersion, molded cellulose nanofiber article, and cellulose nanofiber composite
JP2010275659A (en) * 2009-05-28 2010-12-09 Nippon Paper Industries Co Ltd Method for producing cellulose nanofiber
WO2011001706A1 (en) * 2009-06-29 2011-01-06 日本製紙株式会社 Paper for recording of information and processed paper
JP2011038031A (en) * 2009-08-17 2011-02-24 Toppan Printing Co Ltd Method for producing molded product and molded product
JP2011042903A (en) * 2009-08-21 2011-03-03 Asahi Kasei Corp Apparatus and method for producing sheet containing fine fibers
JP2011047084A (en) * 2009-08-28 2011-03-10 Sumitomo Bakelite Co Ltd Organized fiber, resin composition, and method for producing the resin composition
JP2011055884A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like aromatic deodorant composition and gel-like aromatic deodorant using the same
JP2011057746A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like composition
JP2011057749A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Water-based coating composition
JP2011057747A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Liquid detergent composition for spray, and detergent contained in spray container prepared by using the same
JP2011057567A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Hydrophobic solid-containing aqueous composition, hydrophobic solid-containing dried product using the same, and cosmetic composition
JP2011068799A (en) * 2009-09-28 2011-04-07 Toppan Printing Co Ltd Cellulose material and laminate thereof
JPWO2011040547A1 (en) * 2009-09-30 2013-02-28 日本製紙株式会社 Paper barrier material
WO2011040547A1 (en) * 2009-09-30 2011-04-07 日本製紙株式会社 Paper barrier material
JP2011122014A (en) * 2009-12-09 2011-06-23 Konica Minolta Opto Inc Resin composite, method for producing the same, and method for producing cellulose nanofiber used in the same
JP2011140738A (en) * 2009-12-11 2011-07-21 Kao Corp Composite body of micro cellulose fiber, liquid dispersion of micro cellulose fiber and composite material
CN102652154A (en) * 2009-12-11 2012-08-29 花王株式会社 Composite material
WO2011071156A1 (en) * 2009-12-11 2011-06-16 花王株式会社 Composite material
US9243128B2 (en) 2009-12-11 2016-01-26 Kao Corporation Composite material
JP2011140632A (en) * 2009-12-11 2011-07-21 Kao Corp Composite material
WO2011074301A1 (en) * 2009-12-14 2011-06-23 日本製紙株式会社 Method for oxidation of cellulose and process for production of cellulose nanofibers
JPWO2011074301A1 (en) * 2009-12-14 2013-04-25 日本製紙株式会社 Method for oxidizing cellulose and method for producing cellulose nanofiber
JP2011127067A (en) * 2009-12-21 2011-06-30 Teijin Ltd Method for producing microstructurally modified cellulose
JP2011131452A (en) * 2009-12-24 2011-07-07 Kao Corp Method for manufacturing gas barrier laminate
US20160074305A1 (en) * 2010-01-22 2016-03-17 Dai-Ichi Kogyo Seiyaku Co., Ltd. Viscous composition
KR101512886B1 (en) 2010-01-22 2015-04-16 다이이치 고교 세이야쿠 가부시키가이샤 Viscous composition
US9801802B2 (en) 2010-01-22 2017-10-31 Dai-Ichi Kogyo Seiyaku Co., Ltd. Viscous composition
US9901527B2 (en) 2010-01-22 2018-02-27 Dai-Ichi Kogyo Seiyaku Co., Ltd. Viscous composition
US9248090B2 (en) 2010-01-22 2016-02-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Viscous composition
WO2011089709A1 (en) * 2010-01-22 2011-07-28 第一工業製薬株式会社 Viscous composition
JP2011173993A (en) * 2010-02-24 2011-09-08 Sumitomo Bakelite Co Ltd Composite composition and composite
US9534091B2 (en) 2010-03-09 2017-01-03 Toppan Printing Co., Ltd. Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body
WO2011111612A1 (en) 2010-03-09 2011-09-15 凸版印刷株式会社 Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body
US9850352B2 (en) 2010-03-09 2017-12-26 Toppan Printing Co., Ltd. Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body
JP2011184825A (en) * 2010-03-09 2011-09-22 Toppan Printing Co Ltd Method for producing cellulose nanofiber, cellulose nanofiber and cellulose nanofiber dispersion
JP2011184648A (en) * 2010-03-11 2011-09-22 Toppan Printing Co Ltd Production method for idized cellulose
US20130000513A1 (en) * 2010-03-18 2013-01-03 Toppan Printing Co., Ltd. Cellulose liquid dispersion, method for producing the same, and molded body using the same
US9365684B2 (en) * 2010-03-18 2016-06-14 Toppan Printing Co., Ltd. Cellulose liquid dispersion, method for producing the same, and molded body using the same
US9327426B2 (en) 2010-03-19 2016-05-03 Nippon Paper Industries Co., Ltd. Molding material and manufacturing method therefor
WO2011115154A1 (en) 2010-03-19 2011-09-22 国立大学法人京都大学 Molding material and manufacturing method therefor
JPWO2011118520A1 (en) * 2010-03-25 2013-07-04 凸版印刷株式会社 Gas barrier laminate and packaging material
KR20130040184A (en) 2010-03-25 2013-04-23 도판 인사츠 가부시키가이샤 Gas Barrier Laminates and Packaging Materials
WO2011118520A1 (en) 2010-03-25 2011-09-29 凸版印刷株式会社 Gas barrier laminate and packaging material
JP2011202101A (en) * 2010-03-26 2011-10-13 Toppan Printing Co Ltd Sheet, and method for manufacturing the same
WO2011118746A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
WO2011118360A1 (en) 2010-03-26 2011-09-29 凸版印刷株式会社 Film-forming composition and sheet
WO2011118748A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
EP2554589A4 (en) * 2010-03-26 2013-08-28 Toppan Printing Co Ltd COMPOSITION AND FILMOGENES SHEET
JP2012001626A (en) * 2010-06-16 2012-01-05 Univ Of Tokyo Physical gel and method of producing the same
JP2012082395A (en) * 2010-09-15 2012-04-26 Kuraray Co Ltd Polyvinyl alcohol film
JP2015157955A (en) * 2010-09-15 2015-09-03 株式会社クラレ polyvinyl alcohol film
JP2012081533A (en) * 2010-10-07 2012-04-26 Hokuetsu Kishu Paper Co Ltd Porous material and method of manufacturing the same
JP2012087256A (en) * 2010-10-22 2012-05-10 Dai Ichi Kogyo Seiyaku Co Ltd Viscous aqueous composition, and method for producing the same
JP2012107199A (en) * 2010-10-26 2012-06-07 Sumitomo Bakelite Co Ltd Modified cellulose fiber, resin composition, molded body and method for producing the resin composition and the molded body
US10612003B2 (en) 2010-10-27 2020-04-07 Upm-Kymmene Corporation Plant derived cell culture material
US9631177B2 (en) 2010-10-27 2017-04-25 Upm-Kymmene Corporation Drug delivery compositions
JP2013540804A (en) * 2010-10-27 2013-11-07 ユー ピー エム キュンメネ コーポレーション Drug delivery composition
JP2013541956A (en) * 2010-10-27 2013-11-21 ユー ピー エム キュンメネ コーポレーション Plant-derived cell culture material
KR20130140627A (en) 2010-11-25 2013-12-24 도판 인사츠 가부시키가이샤 Laminate and method for producing same
WO2012070441A1 (en) 2010-11-25 2012-05-31 凸版印刷株式会社 Laminate and method for producing same
US9404016B2 (en) 2010-11-25 2016-08-02 Toppan Printing Co., Ltd. Laminated body
US9296829B2 (en) 2011-01-26 2016-03-29 Gunze Limited Method for producing hydrophilized cellulose fiber, and method for reducing oxidized cellulose fiber
WO2012102153A1 (en) * 2011-01-26 2012-08-02 グンゼ株式会社 Method for producing hydrophilized cellulose fiber, and method for reducing oxidized cellulose fiber
CN103328715A (en) * 2011-01-26 2013-09-25 郡是株式会社 Method for producing hydrophilized cellulose fiber, and method for reducing oxidized cellulose fiber
CN103429622A (en) * 2011-02-21 2013-12-04 三菱化学株式会社 Cellulose fiber, method for producing the same, cellulose fiber aggregate, and cellulose fiber composite material
JP2012188654A (en) * 2011-02-21 2012-10-04 Mitsubishi Chemicals Corp Cellulose fiber and method of producing the cellulose fiber
WO2012115115A1 (en) 2011-02-21 2012-08-30 三菱化学株式会社 Cellulose fiber and manufacturing process therefor, cellulose fiber aggregate and cellulose fiber composite material
CN103429622B (en) * 2011-02-21 2018-01-02 王子控股株式会社 Cellulose fibre and its manufacture method, cellulose fibre aggregation and cellulose fiber composite material
US9309385B2 (en) 2011-02-21 2016-04-12 Oji Holdings Corporation Cellulose fibers and process for producing the same, cellulose fiber assembly, and cellulose-fiber composite material
EP2679604A4 (en) * 2011-02-21 2015-08-26 Oji Holdings Corp CELLULOSE FIBER AND ASSOCIATED MANUFACTURING METHOD, AGGREGATE OF CELLULOSE FIBERS, AND COMPOSITE MATERIAL BASED ON CELLULOSE FIBERS
JP2012214717A (en) * 2011-03-30 2012-11-08 Nippon Paper Industries Co Ltd Method for producing cellulose nanofiber
JP2012207135A (en) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
JP2012207133A (en) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
WO2012132903A1 (en) 2011-03-30 2012-10-04 日本製紙株式会社 Method for producing cellulose nanofibers
US9139662B2 (en) 2011-03-30 2015-09-22 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
CN102220718A (en) * 2011-06-08 2011-10-19 南京林业大学 Method for preparing nano celluloses through high-pressure homogenizing and low-temperature cooling
JP2013018918A (en) * 2011-07-13 2013-01-31 Kao Corp Rubber composition, and method of manufacturing the same
JP2013042405A (en) * 2011-08-18 2013-02-28 Foster Electric Co Ltd Method for manufacturing diaphragm for electroacoustic transducer, diaphragm produced by the same, and electroacoustic transducer provided with diaphragm
WO2013042654A1 (en) 2011-09-22 2013-03-28 凸版印刷株式会社 Composition for film molding, laminate, film, sheet substrate, packaging material, method for producing composition for film molding, and method for producing cellulose dispersion
US9481805B2 (en) 2011-09-22 2016-11-01 Toppan Printing Co., Ltd. Composition for film formation, laminate, film, sheet base material, method for producing composition for film formation, and method for preparing a cellulose dispersion
US9718969B2 (en) 2011-09-22 2017-08-01 Toppan Printing Co., Ltd. Composition for film formation, laminate, film, sheet base material, method for producing a composition for film formation, and method for preparing a cellulose dispersion
US9365973B2 (en) 2011-09-30 2016-06-14 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
WO2013047218A1 (en) 2011-09-30 2013-04-04 日本製紙株式会社 Method for producing cellulose nanofibers
JP2013107927A (en) * 2011-11-17 2013-06-06 Oji Holdings Corp Method for producing fine fibrous cellulose
JPWO2013077354A1 (en) * 2011-11-22 2015-04-27 国立大学法人 東京大学 Cellulose nanofiber dispersion and production method thereof, modified cellulose nanofiber, and cellulose nanofiber composite
WO2013094563A1 (en) * 2011-12-19 2013-06-27 住友ベークライト株式会社 Resin composition and method for producing same
US10093798B2 (en) 2011-12-28 2018-10-09 Kao Corporation Polyester resin composition
JP2013151661A (en) * 2011-12-28 2013-08-08 Kao Corp Molded article made from polyester resin composition
JP2013151636A (en) * 2011-12-28 2013-08-08 Kao Corp Polyester resin composition
KR101634024B1 (en) * 2012-02-15 2016-06-27 호쿠에츠 기슈 세이시 가부시키가이샤 Porous body and process for manufacturing same
US11969695B2 (en) 2012-02-15 2024-04-30 Hokuetsu Corporation Porous body and process for manufacturing same
KR20140123954A (en) 2012-02-15 2014-10-23 호쿠에츠 기슈 세이시 가부시키가이샤 Porous body and process for manufacturing same
JPWO2013121781A1 (en) * 2012-02-15 2015-05-11 凸版印刷株式会社 CARBON FIBER COMPOSITE, PROCESS FOR PRODUCING THE SAME, CATALYST CARRIER AND SOLID POLYMER FUEL CELL
WO2013121781A1 (en) * 2012-02-15 2013-08-22 凸版印刷株式会社 Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell
WO2013121539A1 (en) 2012-02-15 2013-08-22 北越紀州製紙株式会社 Porous body and process for manufacturing same
JP2013181169A (en) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd Abrasive composition
JP2013180947A (en) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd Glaze composition
WO2013137140A1 (en) 2012-03-14 2013-09-19 日本製紙株式会社 Method for producing anion-modified cellulose nanofiber dispersion liquid
JP2013203920A (en) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd Method of preparing cellulose fiber fluid dispersion, cellulose fiber fluid dispersion and composite composition
CN102675475A (en) * 2012-05-24 2012-09-19 东华大学 Method for preparing fibrilia carboxylation cellulose nanowhiskers
JP2013251236A (en) * 2012-06-04 2013-12-12 Dai Ichi Kogyo Seiyaku Co Ltd Separator for electrochemical device
JP2013249449A (en) * 2012-06-04 2013-12-12 Dai Ichi Kogyo Seiyaku Co Ltd Water-containing lubricant composition
KR20160087912A (en) 2012-06-05 2016-07-22 호쿠에츠 기슈 세이시 가부시키가이샤 Porous cellulose body and method for producing same
WO2013183415A1 (en) 2012-06-05 2013-12-12 北越紀州製紙株式会社 Porous cellulose body and method for producing same
US9328211B2 (en) 2012-06-05 2016-05-03 Hokuetsu Kishu Paper Co., Ltd. Porous cellulose body and method for producing same
CN102776594A (en) * 2012-07-10 2012-11-14 东华大学 Cellulose fiber-supported nano silver antibacterial material and preparation method thereof
JP2015531033A (en) * 2012-08-20 2015-10-29 ストラ エンソ オサケ ユキチュアユルキネンStora Enso Oyj Processes and intermediates for the production of highly micronized or microfibrillated cellulose
US10900169B2 (en) 2012-08-20 2021-01-26 Stora Enso Oyj Method and intermediate for the production of highly refined or microfibrillated cellulose
JP2014055323A (en) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd Metal/cellulose composite fine fiber, method for producing the same, and transparent electrically-conducive film containing the metal/cellulose composite fine fiber
WO2014061485A1 (en) 2012-10-16 2014-04-24 日本製紙株式会社 Cellulose nanofibers
KR20150073195A (en) 2012-10-16 2015-06-30 니뽄 세이시 가부시끼가이샤 Cellulose nanofibers
US9797093B2 (en) 2012-11-03 2017-10-24 Upm-Kymmene Corporation Method for producing nanofibrillar cellulose
JP2014118521A (en) * 2012-12-18 2014-06-30 Kao Corp Method for producing cellulose nanofiber dispersion liquid
JP2014136775A (en) * 2013-01-18 2014-07-28 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
WO2014115560A1 (en) 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP2013127146A (en) * 2013-03-11 2013-06-27 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like composition
CN104047198A (en) * 2013-03-14 2014-09-17 金东纸业(江苏)股份有限公司 Preparation method for nano-cellulose
KR20160005028A (en) * 2013-04-23 2016-01-13 다이요 홀딩스 가부시키가이샤 Solder-resist composition and printed circuit board using same
KR20160002811A (en) * 2013-04-23 2016-01-08 다이요 홀딩스 가부시키가이샤 Printed-circuit-board material and printed circuit board using same
KR102218425B1 (en) * 2013-04-23 2021-02-22 다이요 홀딩스 가부시키가이샤 Solder-resist composition and printed circuit board using same
KR20160002810A (en) * 2013-04-23 2016-01-08 다이요 홀딩스 가부시키가이샤 Printed-circuit-board material and printed circuit board using same
KR102226066B1 (en) 2013-04-23 2021-03-10 다이요 홀딩스 가부시키가이샤 Printed-circuit-board material and printed circuit board using same
KR102192598B1 (en) 2013-04-23 2020-12-17 다이요 홀딩스 가부시키가이샤 Printed-circuit-board material and printed circuit board using same
JP2014220342A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
JP2014240538A (en) * 2013-05-16 2014-12-25 日本製紙株式会社 Method for manufacturing composite of metal nanoparticles and cellulose-based fiber
WO2015050117A1 (en) * 2013-10-04 2015-04-09 Dic株式会社 Modified cellulose nanofiber, method for producing same, resin composition using same, molded body, and method for producing resin composition
JP2015134870A (en) * 2014-01-17 2015-07-27 国立大学法人 東京大学 Method for producing fine cellulose fiber dispersion, method for producing fine cellulose fiber, and method for finely dispersing dried oxidized cellulose fiber
WO2015108050A1 (en) * 2014-01-17 2015-07-23 国立大学法人東京大学 Method for producing minute cellulose fiber dispersion, method for producing minute cellulose fibers, and method for minutely dispersing dried oxidized cellulose fibers
JP2015149980A (en) * 2014-02-19 2015-08-24 凸版印刷株式会社 Cultivation apparatus and manufacturing method thereof
JP2015183095A (en) * 2014-03-24 2015-10-22 凸版印刷株式会社 Functional cellulose, manufacturing method thereof and functional cellulose dispersion and molding
JP2014132091A (en) * 2014-03-26 2014-07-17 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous coating composition
US9987686B2 (en) 2014-05-09 2018-06-05 Toppan Printing Co., Ltd. Complex, method for producing complex, dispersion liquid, method for producing dispersion liquid, and optical material
JP2016064501A (en) * 2014-05-22 2016-04-28 国立大学法人九州工業大学 Biomass nanofiber manufacturing method and biomass nanofiber / polymer resin composite manufacturing method
JP2016030809A (en) * 2014-07-30 2016-03-07 ハイモ株式会社 Method for producing cellulose nanofiber
JP2016052620A (en) * 2014-09-03 2016-04-14 日本製紙株式会社 Composite of metal-organic framework and cellulose nanofiber
JP2016069617A (en) * 2014-09-28 2016-05-09 第一工業製薬株式会社 Aqueous ink composition and writing instrument using the same
JP2017536447A (en) * 2014-10-29 2017-12-07 ケミラ ユルキネン オサケイティエKemira Oyj Method for producing microfibrillated cellulose and microfibrillated cellulose
US11198740B2 (en) 2015-02-04 2021-12-14 Zeon Corporation Metal-containing oxidized cellulose nanofiber dispersion and method of producing the same
KR20170115505A (en) 2015-02-04 2017-10-17 니폰 제온 가부시키가이샤 Metal oxide cellulose nanofibers dispersion and production method thereof
CN113358446A (en) * 2015-02-17 2021-09-07 日本制纸株式会社 Evaluation method of cellulose nanofiber dispersion
EP3699586A1 (en) 2015-02-17 2020-08-26 Nippon Paper Industries Co., Ltd. Method for evaluating cellulose nanofiber dispersion
JP2016155971A (en) * 2015-02-26 2016-09-01 花王株式会社 Fine cellulose fiber composite
JP2016207879A (en) * 2015-04-24 2016-12-08 凸版印刷株式会社 Magnetic fluid and method for producing magnetic fluid
EP3879029A1 (en) 2015-05-15 2021-09-15 Nippon Paper Industries Co., Ltd. Anion-modified cellulose nanofiber dispersion liquid and composition
JP2017025206A (en) * 2015-07-23 2017-02-02 第一工業製薬株式会社 Cellulose ester aqueous dispersed body
US10556197B2 (en) 2015-08-03 2020-02-11 Hokuetsu Corporation Method for manufacturing filter medium for air filter
JP2017043648A (en) * 2015-08-24 2017-03-02 第一工業製薬株式会社 Cellulose ester aqueous dispersion
JP2017043647A (en) * 2015-08-24 2017-03-02 第一工業製薬株式会社 Cellulose ester aqueous dispersion
US10850218B2 (en) 2015-11-02 2020-12-01 Nippon Paper Industries Co., Ltd. Filtration method and production process of cellulose nanofiber dispersion
JP2017095664A (en) * 2015-11-27 2017-06-01 日本製紙株式会社 Manufacturing method of dry solid article of cellulose nanofiber
JP2016145356A (en) * 2016-02-10 2016-08-12 王子ホールディングス株式会社 Fibrous cellulose, resin composition and cellulose-suspended liquid
US11136164B2 (en) 2016-04-15 2021-10-05 Toppan Printing Co., Ltd. Barrier paper and paper cup
KR20170120019A (en) 2016-04-20 2017-10-30 주식회사 엘지생활건강 Method for producing dispersed cellulose nanofiber for cosmetic ingredient
JP2017193627A (en) * 2016-04-20 2017-10-26 凸版印刷株式会社 Humidity-responsive moisture-permeable sheet and method for producing the same
EP3459366A4 (en) * 2016-05-16 2020-03-11 Nippon Paper Industries Co., Ltd. Additive for food
KR101829269B1 (en) 2016-05-25 2018-02-19 포항공과대학교 산학협력단 Fluid for transmitting heat comprising cellulose nano fiber and method for preparing the same
KR20210013347A (en) 2016-08-08 2021-02-03 닛뽕세이시 가부시키가이샤 Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
KR20190008282A (en) 2016-08-08 2019-01-23 닛뽕세이시 가부시키가이샤 A method for evaluating a cellulose nanofiber dispersion, a cellulose nanofiber water dispersion, a food, a cosmetic and a rubber composition containing a cellulose nanofiber
US11105789B2 (en) 2016-08-08 2021-08-31 Nippon Paper Industries Co., Ltd. Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
EP4179880A1 (en) 2016-08-08 2023-05-17 Nippon Paper Industries Co., Ltd. Cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
CN106283209A (en) * 2016-08-16 2017-01-04 东华大学 A kind of method utilizing coir fibre to prepare different scale nanometer fibril and purposes
JP2018076572A (en) * 2016-11-11 2018-05-17 セイコーエプソン株式会社 Granulated powder and method for producing granulated powder
JP2018105971A (en) * 2016-12-26 2018-07-05 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development
US11390728B2 (en) 2016-12-28 2022-07-19 Asahi Kasei Kabushiki Kaisha Cellulose-containing resin composition and cellulosic ingredient
KR20190133296A (en) 2016-12-28 2019-12-02 아사히 가세이 가부시키가이샤 Cellulose-containing resin composition and cellulosic ingredient
KR20180098576A (en) 2016-12-28 2018-09-04 아사히 가세이 가부시키가이샤 Cellulose-containing resin composition and cellulose preparation
WO2018143149A1 (en) * 2017-02-03 2018-08-09 株式会社片山化学工業研究所 Production method of dried cellulose nanofibers
JPWO2018143149A1 (en) * 2017-02-03 2019-11-21 株式会社片山化学工業研究所 Method for producing dry cellulose nanofiber
WO2018151050A1 (en) 2017-02-14 2018-08-23 日本製紙株式会社 Composition
WO2018216474A1 (en) * 2017-05-24 2018-11-29 日本製紙株式会社 Oxidized cellulose nanofibers, dispersion of oxidized cellulose nanofibers, and production method for dispersion of oxidized cellulose nanofibers
JPWO2018216474A1 (en) * 2017-05-24 2020-03-26 日本製紙株式会社 Oxidized cellulose nanofiber, oxidized cellulose nanofiber dispersion, and method for producing oxidized cellulose nanofiber dispersion
WO2019026405A1 (en) 2017-08-01 2019-02-07 信越化学工業株式会社 Cellulose nanofiber-supporting inorganic powder and method for producing same
JP2019026977A (en) * 2017-08-01 2019-02-21 グンゼ株式会社 Method for producing carboxylated cellulose fiber and carboxylated cellulose fiber
US11760811B2 (en) 2017-12-07 2023-09-19 Nippon Paper Industries Co., Ltd. Carboxymethylated cellulose
WO2019111928A1 (en) 2017-12-07 2019-06-13 日本製紙株式会社 Method for manufacturing carboxymethylated cellulose nanofiber
WO2019111933A1 (en) 2017-12-07 2019-06-13 日本製紙株式会社 Method for producing carboxymethylated cellulose and carboxymethylated cellulose nanofibers
US11518820B2 (en) 2017-12-07 2022-12-06 Nippon Paper Industries Co., Ltd. Method for producing carboxymethylated cellulose and carboxymethylated cellulose nanofibers
US11732055B2 (en) 2017-12-07 2023-08-22 Nippon Paper Industries Co., Ltd. Method for manufacturing carboxymethylated cellulose nanofiber
WO2019111941A1 (en) 2017-12-07 2019-06-13 日本製紙株式会社 Carboxymethylated cellulose nanofibers
US12123109B2 (en) 2017-12-07 2024-10-22 Nippon Paper Industries Co., Ltd. Carboxymethylated cellulose nanofibers
US11591412B2 (en) 2017-12-07 2023-02-28 Nippon Paper Industries Co., Ltd. Carboxymethylated cellulose nanofibers
WO2019111939A1 (en) 2017-12-07 2019-06-13 日本製紙株式会社 Carboxymethylated cellulose nanofibers
US11685799B2 (en) 2018-01-05 2023-06-27 Toppan Printing Co., Ltd. Composite particles, method of producing composite particles, dry powder, and molding resin composition
WO2019135384A1 (en) 2018-01-05 2019-07-11 凸版印刷株式会社 Composite particles, production method for composite particles, dry powder, and resin composition for molding
KR20200133749A (en) 2018-03-20 2020-11-30 다이오 페이퍼 코퍼레이션 Method for producing cellulose nanofibers
WO2019181838A1 (en) 2018-03-20 2019-09-26 大王製紙株式会社 Cellulose nanofiber manufacturing method
US11905657B2 (en) 2018-03-20 2024-02-20 Daio Paper Corporation Method for producing cellulose nanofibers
WO2019208801A1 (en) 2018-04-27 2019-10-31 凸版印刷株式会社 Sustained-release composite particles, method for producing sustained-release composite particles, dry powder, and wallpaper
WO2019208802A1 (en) 2018-04-27 2019-10-31 凸版印刷株式会社 Composite particles, method for producing composite particles, dry powder, composition for application to skin, and method for producing composition for application to skin
US12075775B2 (en) 2018-04-27 2024-09-03 Toppan Printing Co., Ltd. Sustained-release composite particles, method for producing sustained-release composite particles, dry powder, and wallpaper
JP2018150546A (en) * 2018-05-01 2018-09-27 太陽ホールディングス株式会社 Composition and cured product using the same
WO2019244927A1 (en) 2018-06-20 2019-12-26 Fdk株式会社 Alkaline battery and method for producing negative-electrode gel for alkaline battery
US12218340B2 (en) 2018-06-20 2025-02-04 Fdk Corporation Alkaline battery and method of producing negative electrode gel for alkaline battery
WO2020050015A1 (en) 2018-09-04 2020-03-12 日本製紙株式会社 Oxidized cellulose nanofibers and dispersion of oxidized cellulose nanofibers
CN112739722B (en) * 2018-09-21 2023-08-08 东洋制罐集团控股株式会社 Nanocellulose and production method thereof
CN112739722A (en) * 2018-09-21 2021-04-30 东洋制罐集团控股株式会社 Nano cellulose and production method thereof
US12195608B2 (en) 2019-02-19 2025-01-14 Toppan Inc. Composite particles, composite-particle composition, and method for producing composite-particle composition
WO2020170995A1 (en) 2019-02-19 2020-08-27 凸版印刷株式会社 Composite particles, composite-particle composition, and method for producing composite-particle composition
JP2020177984A (en) * 2019-04-16 2020-10-29 凸版印刷株式会社 Magnetic material-encapsulating composite particles, method for producing magnetic material-encapsulating composite particles, and dry powder
JP7356675B2 (en) 2019-04-16 2023-10-05 凸版印刷株式会社 Magnetic material-containing composite particles, method for producing magnetic material-containing composite particles, and dry powder
CN111944068B (en) * 2019-05-14 2022-04-19 中国科学技术大学 A kind of biomass sponge and its preparation method and application
CN111944066A (en) * 2019-05-14 2020-11-17 中国科学技术大学 Cellulose-containing biomass material with surface nanocrystallisation and preparation method and use thereof
CN111944069B (en) * 2019-05-14 2022-05-17 中国科学技术大学 Biomass nano-composite environment-friendly water-based heat-insulating coating and preparation method thereof
CN111944069A (en) * 2019-05-14 2020-11-17 中国科学技术大学 A kind of biomass nanocomposite environmental protection water-based thermal insulation coating and preparation method thereof
CN111944068A (en) * 2019-05-14 2020-11-17 中国科学技术大学 A kind of biomass sponge and its preparation method and application
CN110091397A (en) * 2019-05-22 2019-08-06 中国林业科学研究院木材工业研究所 A kind of preparation method of wood cell wall 2D sheet layer material
WO2021002290A1 (en) 2019-07-01 2021-01-07 凸版印刷株式会社 Composite particle and method for producing composite particle
WO2021002194A1 (en) 2019-07-03 2021-01-07 日本製紙株式会社 Mixed solution
US12331456B2 (en) 2020-01-25 2025-06-17 Tohoku Seiren Co., Ltd. Method for processing recycled cellulose fibers, and processed recycled cellulose fibers
JP2021120436A (en) * 2020-01-30 2021-08-19 花王株式会社 Cellulose fiber complex
WO2021246388A1 (en) 2020-06-01 2021-12-09 株式会社大塚製薬工場 Adhesion-preventing agent and method for preventing adhesion using same
KR20240037197A (en) 2021-08-10 2024-03-21 후타무라 가가쿠 가부시키가이샤 Method for producing type II unmodified cellulose microfibers, type II unmodified cellulose microfibers, and molded articles thereof
WO2023017687A1 (en) 2021-08-10 2023-02-16 フタムラ化学株式会社 Type ii unmodified cellulose microfibers, and method for manufacturing type ii unmodified cellulose microfibers and compact of same
WO2023074849A1 (en) 2021-10-29 2023-05-04 横河電機株式会社 Fine cellulose fiber solid material and method for producing fine cellulose fiber solid material
WO2023074848A1 (en) 2021-10-29 2023-05-04 横河電機株式会社 Fine cellulose fiber powder and method for producing fine cellulose fiber powder
WO2023153416A1 (en) 2022-02-08 2023-08-17 横河電機株式会社 Solid water-degradable complex and method for manufacturing same
WO2024004466A1 (en) 2022-07-01 2024-01-04 フタムラ化学株式会社 Unmodified cellulose beads and method for manufacturing same
KR20250029911A (en) 2022-07-01 2025-03-05 후타무라 가가쿠 가부시키가이샤 Untreated cellulose beads and their manufacturing method
WO2024071075A1 (en) 2022-09-27 2024-04-04 日本製紙株式会社 Cellulose nanofiber, and aqueous dispersion composition containing same

Also Published As

Publication number Publication date
JP4998981B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4998981B2 (en) Fine cellulose fiber
Levanič et al. Analyzing TEMPO-oxidized cellulose fiber morphology: New insights into optimization of the oxidation process and nanocellulose dispersion quality
Zeng et al. Cellulose nanofibrils manufactured by various methods with application as paper strength additives
Chen et al. Individual cotton cellulose nanofibers: pretreatment and fibrillation technique
JPWO2009069641A1 (en) Cellulose nanofiber and method for producing the same, cellulose nanofiber dispersion
CA2824125C (en) Method for processing nanofibrillar cellulose
EP2857583B1 (en) Porous cellulose body and method for producing same
Chen et al. Morphological changes of sterically stabilized nanocrystalline cellulose after periodate oxidation
Hirota et al. Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8
Salem et al. The topochemistry of cellulose nanofibrils as a function of mechanical generation energy
WO2014115560A1 (en) Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP6073210B2 (en) Cellulose porous body and method for producing the same
JP6286131B2 (en) Fine cellulose fiber, production method thereof and dispersion
JP2017082202A (en) Hydrophilic resin composition
JP2013104133A (en) Method for producing cellulose fiber for thickening and cellulose fiber for thickening obtained by the same
Chen et al. Surface modification of cellulose originated from different plant sources through TEMPO/Laccase/O2 oxidation
CN116375891B (en) Bamboo-based micro-nano composite cellulose, preparation method and cellulose film with multi-scale structure
JP2016196534A (en) Method for producing cellulose porous body
JP6063234B2 (en) Method for producing cellulose nanofiber
JP7232072B2 (en) MODIFIED CELLULOSE NANOFIBER, GAS BARRIER MATERIAL AND GAS BARRIER MOLDED PRODUCT
Haerunnisa et al. Synthesis of crystalline nanocellulose by various methods
JP6212622B2 (en) Cellulose porous material
JP7550107B2 (en) Method for producing oxidized polysaccharides
JP6965909B2 (en) Cellulose nanofiber sheet
Hu et al. Water-Soluble Polysaccharides Promoting Production of Redispersible Nanocellulose with Saved Energy Consumption

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20060710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120327

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

R150 Certificate of patent or registration of utility model

Ref document number: 4998981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250