JP2009170287A - Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same - Google Patents
Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same Download PDFInfo
- Publication number
- JP2009170287A JP2009170287A JP2008007856A JP2008007856A JP2009170287A JP 2009170287 A JP2009170287 A JP 2009170287A JP 2008007856 A JP2008007856 A JP 2008007856A JP 2008007856 A JP2008007856 A JP 2008007856A JP 2009170287 A JP2009170287 A JP 2009170287A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- secondary battery
- electrolyte secondary
- aqueous electrolyte
- rubber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】平易な工程で製造でき、高初回充放電効率、高極板強度、低不可逆容量を呈する非水系電解液二次電池用電極を提供すること。
【解決手段】集電体上に活物質と結着剤を含有する活物質層を形成してなる非水系電解液二次電池用電極であって、該結着剤として、金属塩と、該金属塩のイオンと分子内架橋構造又は包接化合物を形成する水溶性高分子とを含有するものであることを特徴とする非水系電解液二次電池用電極により課題を解決した。
【選択図】なしAn electrode for a non-aqueous electrolyte secondary battery that can be manufactured by a simple process and exhibits high initial charge / discharge efficiency, high electrode plate strength, and low irreversible capacity.
An electrode for a non-aqueous electrolyte secondary battery in which an active material layer containing an active material and a binder is formed on a current collector, wherein the binder includes a metal salt, The problem has been solved by an electrode for a non-aqueous electrolyte secondary battery, characterized by containing an ion of a metal salt and a water-soluble polymer that forms an intramolecular crosslinked structure or an inclusion compound.
[Selection figure] None
Description
本発明は、非水系電解液二次電池に関するものであり、更に詳しくは、特定の非水系電解液二次電池用電極及びこの電極を備えた非水系電解液二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a specific non-aqueous electrolyte secondary battery electrode and a non-aqueous electrolyte secondary battery including this electrode.
電子機器の小型化に伴い、二次電池の高容量化が望まれている。そのためニッケル・カドミウム電池、ニッケル・水素電池に比べ、よりエネルギー密度の高いリチウムイオン二次電池が注目されている。 With the downsizing of electronic devices, it is desired to increase the capacity of secondary batteries. Therefore, lithium ion secondary batteries with higher energy density are attracting attention as compared to nickel / cadmium batteries and nickel / hydrogen batteries.
その電極材料としては、正極ではコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等のリチウム金属酸化物がよく用いられ、負極には、黒鉛、非晶質炭素、リチウムと化合可能な金属・合金等が用いられる事が多い。しかし、これらの材料の多くは粉体であるため、通常電極体とするためには、結着剤が必要である。 As the electrode material, lithium metal oxides such as lithium cobaltate, lithium nickelate, and lithium manganate are often used for the positive electrode, and graphite, amorphous carbon, metal / alloy that can be combined with lithium, etc. are used for the negative electrode. Is often used. However, since many of these materials are powders, a binder is usually required to obtain an electrode body.
この結着剤としては、高分子化合物が用いられ、ポリエチレン、ポリメタクリル酸メチル、スチレン・ブタジエン共重合体、テフロン(登録商標)、ポリ四フッ化ビニリデン、テトラフルオロエチレン・パーフルオロビニルエーテル共重合体(商品名Nafion)、ポリエチレンオキシド、ポリエチレンオキシド・ポリプロピレンオキシド共重合体等がよく用いられる。 As the binder, a polymer compound is used, and polyethylene, polymethyl methacrylate, styrene / butadiene copolymer, Teflon (registered trademark), poly (vinylidene fluoride), tetrafluoroethylene / perfluorovinyl ether copolymer are used. (Trade name Nafion), polyethylene oxide, polyethylene oxide / polypropylene oxide copolymer and the like are often used.
しかし、前記した化合物は疎水性のものが多く、多くは有機溶媒に分散するか、水性ディスパージョンとして水分散する必要性がある。前者では、電極作成後に有機溶媒の除去・回収設備が必要であるため、近年では後者の水系を用いることが多い。 However, many of the aforementioned compounds are hydrophobic, and many of them need to be dispersed in an organic solvent or dispersed in water as an aqueous dispersion. In the former, since an organic solvent removal / recovery facility is required after the electrode is formed, the latter aqueous system is often used in recent years.
ところが、ディスパージョンの電極材料粉体への濡れ性は低く、前記結着剤の分散が難しいため、多糖類、通常はセルロース系有機高分子、特にカルボキシメチルセルロース(CMC)を上記結着剤と共存する「分散材」的結着剤として用いることが多い。 However, since the wettability of the dispersion to the electrode material powder is low and it is difficult to disperse the binder, a polysaccharide, usually a cellulosic organic polymer, particularly carboxymethylcellulose (CMC), coexists with the binder. Often used as a "dispersant" binder.
一方、非水系電解液の溶媒としては、高誘電率溶媒であるエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等で代表される環状カーボネート類や、低粘度溶媒であるジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類、γーブチロラクトン等の環状エステル類、テトラヒドロフラン1,3−ジオキソラン等の環状エーテル類、1,2−ジメトキシエタン等の鎖状エーテル類が、単独又は混合して用いられている。 On the other hand, as the solvent of the non-aqueous electrolyte, cyclic carbonates represented by ethylene carbonate, propylene carbonate, butylene carbonate, etc., which are high dielectric constant solvents, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, etc., which are low viscosity solvents, etc. Chain carbonates, cyclic esters such as γ-butyrolactone, cyclic ethers such as tetrahydrofuran 1,3-dioxolane, and chain ethers such as 1,2-dimethoxyethane are used alone or in combination. .
また、ビニレンカーボネートやビニルエチルカーボネートのような不飽和結合を分子内構造に持つ溶媒を少量添加することも一般的である。このように、高誘電率溶媒と低粘度溶媒とを混合して用いることが多いが、その中には電解質として、例えば、LiPF6、LiBF4、LiClO4、LiN(SO2CF3)2等のLi塩を単独又は2種以上組合せて溶解させて用いる。 It is also common to add a small amount of a solvent having an unsaturated bond in the intramolecular structure such as vinylene carbonate or vinyl ethyl carbonate. As described above, a high dielectric constant solvent and a low viscosity solvent are often mixed and used, and as the electrolyte, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2, etc. These Li salts are used alone or in combination of two or more.
しかしながら、前記の電解液と結着剤により成形した電極を組み合わせて電池に用いた場合、前記の「分散材」的結着剤は電解液に対し、膨潤・溶解性を示すことが多いため、長時間電解液と接触する場合や、電池温度を上昇させると、電池材料である活物質からの剥離や新生面の露出を招き、例えば不可逆容量の増加や、新たなガス発生を伴うといった問題がある。 However, when the electrode formed by combining the electrolytic solution and the binder is used in a battery, the “dispersant” binder often shows swelling / solubility with respect to the electrolytic solution. When the battery is in contact with the electrolyte for a long time, or when the battery temperature is raised, peeling from the active material as the battery material or exposure of the new surface is caused. For example, the irreversible capacity is increased or new gas is generated. .
一方、ゴム系を中心とする結着剤は、電極体中において、本質的にLi不透過性の膜形成をするため、リチウムの挿入脱離反応に対し抵抗となる。これを避けるためには、例えば結着剤量を減量させると良いことが知られているが、電極を構造体として保つ役目が、この結着剤の存在にあるため、前記抵抗は減るものの、活物質粉体の結着性に劣り、ひいては電極捲回時等の取り扱い性に劣ることになる。 On the other hand, a binder mainly composed of a rubber system forms an essentially Li-impermeable film in the electrode body, and is thus resistant to lithium insertion / extraction reaction. In order to avoid this, it is known that the amount of the binder is reduced, for example, but since the role of maintaining the electrode as a structure is in the presence of this binder, the resistance is reduced, The binding property of the active material powder is inferior, and as a result, it is inferior in handleability when the electrode is wound.
また、負極活物質に関する技術として、特許文献1には、電池の内部、特に負極活物質にカルシウム化合物を添加した炭素粒子を用いると、電解液中に存在するフッ素アニオンが電解液と炭素粒子の界面へ来ることを抑制することができ、急速充放電時においても高容量、高エネルギー密度で、不可逆容量の少ない充放電サイクルを示すことが開示されている。しかしながら、特許文献1の実施例では、負極結着剤としてテフロン(登録商標)を用いているために、電解液との濡れ性が不十分であり、更に充電時に結着剤とLiが反応する畏れがあり、ロス低減効果については十分とは言えなかった。また、金属塩の充填効果は、ゴム系結着剤に対する場合に比べて、ポリフッ化ビニリデン(PVdF)では不十分であり、電極強度向上が望めず、結着剤量を減量させて、電極抵抗を低減することも十分とは言えなかった。
本発明は上記背景技術に鑑みてなされたものであり、その課題は、平易な工程で、高い初回充放電効率、高い極板強度、小さい不可逆容量を呈する非水系電解液二次電池用電極を提供することにある。 The present invention has been made in view of the above-described background art, and its problem is to provide a non-aqueous electrolyte secondary battery electrode that exhibits high initial charge / discharge efficiency, high electrode plate strength, and small irreversible capacity in a simple process. It is to provide.
本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、電極の結着剤として、少なくとも、金属塩と「該金属塩のイオンと分子内架橋構造又は包接化合物を形成する水溶性高分子」とを含有することで、物理的にも高強度で、また、電解液に対しても耐性をもつ電極が作製可能であることを見出し、本発明を完成した。特に、「分散材」的結着剤として用いられるセルロース系高分子等の水溶性高分子に対し、架橋性作用又は包接的作用を示す金属塩を電極中に含有させることで、高強度な電極体が作製可能であること、また、これにより結着剤量を低減させることが可能であり、また、セルロース系高分子等の水溶性高分子の電解液への膨潤・溶解性を低減させられることで、不可逆容量が低減できることを見出し、本発明を完成した。更には、該金属塩がゴム系を中心とする結着剤に対し、充填効果をもつことによって、上記性能の更なる向上ができることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have at least a metal salt as an electrode binder and “form an intramolecular cross-linked structure or inclusion compound with an ion of the metal salt. It has been found that by containing a “water-soluble polymer”, an electrode having high physical strength and resistance to an electrolyte can be produced, and the present invention has been completed. In particular, by incorporating a metal salt exhibiting a crosslinking action or an inclusion action into a water-soluble polymer such as a cellulose-based polymer used as a “dispersant” -like binder, a high strength can be obtained. It is possible to produce an electrode body, it is possible to reduce the amount of binder, and to reduce the swelling / solubility of water-soluble polymers such as cellulosic polymers in electrolytes. As a result, the irreversible capacity was found to be reduced, and the present invention was completed. Furthermore, the present inventors have found that the metal salt has a filling effect with respect to a binder mainly composed of a rubber system, so that the performance can be further improved, and the present invention has been completed.
すなわち、本発明は、集電体上に活物質と結着剤を含有する活物質層を形成してなる非水系電解液二次電池用電極であって、該結着剤として、金属塩と、該金属塩のイオンと分子内架橋構造又は包接化合物を形成する水溶性高分子とを含有するものであることを特徴とする非水系電解液二次電池用電極を提供するものである。また、本発明は、上記の非水系電解液二次電池用電極を用いることを特徴とする非水系電解液二次電池を提供するものである。 That is, the present invention relates to an electrode for a non-aqueous electrolyte secondary battery in which an active material layer containing an active material and a binder is formed on a current collector, and the binder includes a metal salt and The present invention provides an electrode for a non-aqueous electrolyte secondary battery characterized in that it contains an ion of the metal salt and a water-soluble polymer that forms an intramolecular crosslinked structure or an inclusion compound. Moreover, this invention provides the nonaqueous electrolyte secondary battery characterized by using said electrode for nonaqueous electrolyte secondary batteries.
本発明によれば、安価であり、工程が平易であり、初回充放電効率、極板強度、不可逆容量に優れた非水系電解液二次電池用電極を提供することができる。 According to the present invention, it is possible to provide an electrode for a non-aqueous electrolyte secondary battery that is inexpensive, has a simple process, and has excellent initial charge / discharge efficiency, electrode plate strength, and irreversible capacity.
以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの具体的内容に限定はされず、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and is not limited to these specific contents. Various modifications can be made within the scope of the gist.
<非水系電解液二次電池用電極>
本発明の非水系電解液二次電池用電極は、集電体上に活物質と結着剤を含有する活物質層を形成してなる非水系電解液二次電池用電極であって、結着剤が、少なくとも金属塩と該金属塩のイオンと分子内架橋構造又は包接化合物を形成する水溶性高分子とを含有する。
<Electrode for non-aqueous electrolyte secondary battery>
The electrode for a non-aqueous electrolyte secondary battery of the present invention is an electrode for a non-aqueous electrolyte secondary battery formed by forming an active material layer containing an active material and a binder on a current collector. The adhesive contains at least a metal salt and an ion of the metal salt and a water-soluble polymer that forms an intramolecular crosslinked structure or an inclusion compound.
[活物質]
(負極活物質)
負極活物質としては、リチウムイオンを吸蔵放出できる材料であれば特に制限はないが、例えば、黒鉛から非晶質のものにいたるまでの種々の黒鉛化度の炭素材、Liと合金化可能な金属粒子及びLiと合金化可能な金属酸化物粒子からなる群から選ばれたものを用いることが好ましい。これらのなかでも、黒鉛は、商業的にも容易に入手できるので特に好ましい。
[Active material]
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium ions. For example, carbon materials having various degrees of graphitization ranging from graphite to amorphous materials can be alloyed with Li. It is preferable to use those selected from the group consisting of metal particles and metal oxide particles that can be alloyed with Li. Among these, graphite is particularly preferable because it can be easily obtained commercially.
黒鉛は、天然黒鉛及び人造黒鉛の何れをも用いることができる。黒鉛は不純物の少ないものであるのが好ましく、必要に応じて種々の精製処理を施して用いる。これらのなかでも、黒鉛は、X線広角回折法による(002)面の面間隔(d002)が、3.37Å未満の黒鉛化度の大きいもの用いるのが特に好ましい。 As the graphite, either natural graphite or artificial graphite can be used. It is preferable that graphite has few impurities, and it is used after being subjected to various purification treatments as necessary. Among these, it is particularly preferable to use graphite having a high degree of graphitization with a (002) plane spacing (d002) of less than 3.37 mm by the X-ray wide angle diffraction method.
人造黒鉛の具体例としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等の有機物を、通常2500〜3200℃の焼成温度で黒鉛化したものが挙げられる。 Specific examples of artificial graphite include coal tar pitch, coal heavy oil, atmospheric residue, petroleum heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride, Polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, imide resin, and other organic substances, usually graphitized at a firing temperature of 2500 to 3200 ° C. Is mentioned.
また、黒鉛化度の小さい炭素材としては、有機物を通常2500℃以下の温度で焼成したものが用いられる。有機物の具体例としては、コールタールピッチ、乾留液化油等の石炭系重質油;常圧残油、減圧残油等の直留系重質油;原油、ナフサ等の熱分解時に副生するエチレンタール等の分解系重質油等の石油系重質油;アセナフチレン、デカシクレン、アントラセン等の芳香族炭化水素;フェナジン、アクリジン等の窒素含有環状化合物;チオフェン等の硫黄含有環状化合物;アダマンタン等の脂肪族環状化合物;ビフェニル、テルフェニル等のポリフェニレン;ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチラール等のポリビニル化合物;ポリビニルアルコール等の熱可塑性高分子等が挙げられる。 Further, as the carbon material having a low graphitization degree, a material obtained by firing an organic substance at a temperature of usually 2500 ° C. or lower is used. Specific examples of organic substances include coal-based heavy oils such as coal tar pitch and dry-distilled liquefied oil; straight-run heavy oils such as atmospheric residual oil and vacuum residual oil; by-product during thermal decomposition of crude oil, naphtha, etc. Petroleum heavy oils such as cracked heavy oil such as ethylene tar; Aromatic hydrocarbons such as acenaphthylene, decacyclene and anthracene; Nitrogen-containing cyclic compounds such as phenazine and acridine; Sulfur-containing cyclic compounds such as thiophene; Aliphatic cyclic compounds; polyphenylenes such as biphenyl and terphenyl; polyvinyl compounds such as polyvinyl chloride, polyvinyl acetate, and polyvinyl butyral; thermoplastic polymers such as polyvinyl alcohol;
黒鉛化度の小さい炭素材の焼成温度は、通常600℃以上、好ましくは900℃以上、より好ましくは950℃以上であり、その上限は炭素材に所望の黒鉛化度等により異なるが、通常2500℃以下である。好ましくは2000℃以下、特に好ましくは1400℃以下で焼成される。焼成する際には、有機物に燐酸、ホウ酸、塩酸等の酸類、水酸化ナトリウム等のアルカリ類を混合してもよい。 The firing temperature of the carbon material having a low degree of graphitization is usually 600 ° C. or higher, preferably 900 ° C. or higher, more preferably 950 ° C. or higher. The upper limit varies depending on the degree of graphitization desired for the carbon material, but is usually 2500. It is below ℃. The firing is preferably performed at 2000 ° C. or lower, particularly preferably 1400 ° C. or lower. At the time of baking, acids such as phosphoric acid, boric acid and hydrochloric acid, and alkalis such as sodium hydroxide may be mixed with the organic matter.
負極活物質としては、上記の黒鉛、黒鉛化度の小さい炭素材、Liと合金化可能な金属粒子、及びLiと合金化可能な金属酸化物粒子、から選ばれる1種以上のものを適宜混合して用いることも好ましい。例えば、黒鉛の表面を黒鉛化度の小さい炭素材で被覆した構造の炭素質粒子や、黒鉛粒子を適当な有機物で集合させ再黒鉛化したものが好ましい。更に、前記複合粒子中に、Sn、Si、Al、Bi等のLiと合金化可能な金属を含んでいることも好ましい。 As the negative electrode active material, one or more selected from the above graphite, a carbon material having a low graphitization degree, metal particles that can be alloyed with Li, and metal oxide particles that can be alloyed with Li are appropriately mixed. It is also preferable to use them. For example, carbonaceous particles having a structure in which the surface of graphite is coated with a carbon material having a low degree of graphitization, and those obtained by aggregating graphite particles with an appropriate organic substance and regraphitizing are preferable. Furthermore, it is preferable that the composite particles contain a metal that can be alloyed with Li, such as Sn, Si, Al, and Bi.
<負極活物質の粒径>
負極活物質の平均粒径は、通常50μm以下、好ましくは25μm以下、特に好ましくは18μm以下であり、一方、上限は通常5μm以上である。なお、負極活物質が炭素材料である場合は複数の粒子が凝集している二次粒子であってもよい。この場合は二次粒子の平均粒径が前述の範囲であることが好ましく、一次粒子の平均粒径は、通常15μm以下である。粒径が小さすぎると、比表面積が大きくなり電解液との反応面が増加して不可逆容量が大きくなる場合がある。逆に粒径が大きすぎると、活物質と結着剤をスラリー化したものを集電体に塗布するに際し、大塊によるいわゆる筋引き等が起こり、均一な膜厚の活物質層の形成が困難となる場合がある。
<Particle size of negative electrode active material>
The average particle diameter of the negative electrode active material is usually 50 μm or less, preferably 25 μm or less, particularly preferably 18 μm or less, while the upper limit is usually 5 μm or more. In addition, when the negative electrode active material is a carbon material, secondary particles in which a plurality of particles are aggregated may be used. In this case, the average particle size of the secondary particles is preferably in the above-mentioned range, and the average particle size of the primary particles is usually 15 μm or less. If the particle size is too small, the specific surface area increases, the reaction surface with the electrolyte increases, and the irreversible capacity may increase. On the other hand, if the particle size is too large, when applying a slurry of the active material and the binder to the current collector, so-called striations due to large lumps occur, resulting in the formation of an active material layer with a uniform thickness. It can be difficult.
<負極活物質の形状>
形状は、特に限定されないが、例えば、前述の黒鉛、黒鉛化度の小さい炭素材、Liと合金化可能な金属粒子、及びLiと合金化可能な金属酸化物粒子、から選ばれる原材料を、機械的・物理的処理;酸化、プラズマ処理等の化学的処理等により球形化したものが好ましい。体積平均粒径10〜40μmの範囲にある粒子の円形度が、好ましくは0.80以上、特に好ましくは0.90以上、更に好ましくは0.93以上であるものは、電極体にしたときの粒子間空隙の形状が整うので好ましい。
<Shape of negative electrode active material>
The shape is not particularly limited. For example, a raw material selected from the above-described graphite, a carbon material having a low degree of graphitization, metal particles that can be alloyed with Li, and metal oxide particles that can be alloyed with Li is used as a machine. Preferred is a spheroid formed by chemical treatment such as oxidation or plasma treatment. The circularity of particles having a volume average particle size in the range of 10 to 40 μm is preferably 0.80 or more, particularly preferably 0.90 or more, and further preferably 0.93 or more. This is preferable because the shape of the interparticle voids is uniform.
「円形度」は、[粒子投影像の面積と同じ面積の円の周囲長]/[粒子投影像の周囲長]で定義される。円形度1の場合が理論的真球である。フロー式粒子像分析装置であるシスメックスインダストリアル社製FPIAを用い、測定対象(ここでは負極材料)0.2gを界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2体積%水溶液約50mLに混合し、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、10〜40μmの範囲の粒子について測定した値を用いる。 “Circularity” is defined as [perimeter of a circle having the same area as the area of the particle projection image] / [perimeter of the particle projection image]. The case of a circularity of 1 is a theoretical sphere. Using an FPIA manufactured by Sysmex Industrial Co., which is a flow type particle image analyzer, 0.2 g of a measurement target (here, negative electrode material) is 0.2% by volume aqueous solution of polyoxyethylene (20) sorbitan monolaurate as a surfactant. After mixing with about 50 mL and irradiating 28 kHz ultrasonic waves at an output of 60 W for 1 minute, the detection range is specified as 0.6 to 400 μm, and the values measured for particles in the range of 10 to 40 μm are used.
(正極活物質)
正極活物質としては、リチウムイオン等のアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物等が挙げられる。金属カルコゲン化合物としては、バナジウムの酸化物、モリブデンの酸化物、マンガンの酸化物、クロムの酸化物、チタンの酸化物、タングステンの酸化物等の遷移金属酸化物;バナジウムの硫化物、モリブデンの硫化物、チタンの硫化物、CuS等の遷移金属硫化物;NiPS3、FePS3等の遷移金属のリン−硫黄化合物;VSe2、NbSe3等の遷移金属のセレン化合物;Fe0.25V0.75S2、Na0.1CrS2等の遷移金属の複合酸化物;LiCoS2、LiNiS2等の遷移金属の複合硫化物等が挙げられる。
(Positive electrode active material)
Examples of the positive electrode active material include metal chalcogen compounds that can occlude and release alkali metal cations such as lithium ions during charge and discharge. Examples of metal chalcogen compounds include vanadium oxide, molybdenum oxide, manganese oxide, chromium oxide, titanium oxide, tungsten oxide, and other transition metal oxides; vanadium sulfide, molybdenum sulfide things, sulfides of titanium, transition metal sulfides such as CuS; NiPS 3, FePS 3 phosphate of a transition metal such as - sulfur compounds; VSe 2, NbSe selenium compound of a transition metal such as 3; Fe 0.25 V 0.75 S 2 , Examples include composite oxides of transition metals such as Na 0.1 CrS 2 ; composite sulfides of transition metals such as LiCoS 2 and LiNiS 2, and the like.
これらの中でも、V2O5、V5O13、VO2、Cr2O5、MnO2、TiO、MoV2O8、LiCoO2、LiNiO2、LiMn2O4、TiS2、V2S5、Cr0.25V0.75S2、Cr0.5V0.5S2等が好ましく、特に好ましくは、LiCoO2、LiNiO2、LiMn2O4や、これらの遷移金属の一部を他の金属で置換したリチウム遷移金属複合酸化物である。これらの正極活物質は、単独で用いても複数を混合して用いてもよい。 Among these, V 2 O 5 , V 5 O 13 , VO 2 , Cr 2 O 5 , MnO 2 , TiO, MoV 2 O 8 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , TiS 2 , V 2 S 5 , Cr 0.25 V 0.75 S 2 , Cr 0.5 V 0.5 S 2, etc. are preferable, and particularly preferable are LiCoO 2 , LiNiO 2 , LiMn 2 O 4, and lithium transitions in which some of these transition metals are substituted with other metals. It is a metal complex oxide. These positive electrode active materials may be used alone or in combination.
正極活物質層中には、電極の導電性を向上させるために、導電材を含有させてもよい。導電材としては、活物質に適量混合して導電性を付与できるものであれば特に制限はないが、通常、アセチレンブラック、カーボンブラック、黒鉛等の炭素粉末;各種の金属の繊維、粉末、箔等が挙げられる。 The positive electrode active material layer may contain a conductive material in order to improve the conductivity of the electrode. The conductive material is not particularly limited as long as an appropriate amount can be mixed with the active material to impart conductivity, but is usually carbon powder such as acetylene black, carbon black, graphite, etc .; fiber, powder, foil of various metals Etc.
[結着剤]
本発明の非水系電解液二次電池における結着剤は、負極用にも正極用にも用いられる。すなわち、負極活物質層にも正極活物質層にも好適に含有される。
1)金属塩のイオンと分子内架橋構造又は包接化合物を形成する水溶性高分子
本発明の非水系電解液二次電池における結着剤は、金属塩と「該金属塩のイオンと分子内架橋構造又は包接化合物を形成する水溶性高分子」とを含有することが必須である。「金属塩のイオンと分子内架橋構造又は包接化合物を形成する水溶性高分子」(以下、単に「水溶性高分子」と略記する)としては水溶性多糖類を広く好適に用いることができ、例えば、ペントース、ヘキソース骨格がグルコシド結合を持った高分子を好適に用いることができる。増粘効果や湿潤効果を持つものが好ましく、中でも、セルロース類は安価で入手しやすいので特に好ましい。水溶性高分子の例としては、ヒドロキシメチルセルロース、エチルセルロース、メチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、寒天、カラギナン、ファーセラン、ペクチン、スターチ、マンナン、カードラン、アーネストガム、澱粉、プルラン、グアーガム、ザンサンガム(キサンタンガム)等多糖類;ゼラチン等のタンパク質;ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル類;ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール類;ポリアクリル酸、ポリメタクリル酸等のポリ酸、又はこれらの金属塩等が挙げられる。
[Binder]
The binder in the non-aqueous electrolyte secondary battery of the present invention is used for both the negative electrode and the positive electrode. That is, it is suitably contained in both the negative electrode active material layer and the positive electrode active material layer.
1) Water-soluble polymer which forms intramolecular cross-linked structure or clathrate compound with metal salt ion The binder in the non-aqueous electrolyte secondary battery of the present invention includes a metal salt, “ion of the metal salt and intramolecular It is essential to contain a “water-soluble polymer that forms a crosslinked structure or an inclusion compound”. Water-soluble polysaccharides can be widely and suitably used as “water-soluble polymers that form intramolecular cross-linked structures or inclusion compounds with metal salt ions” (hereinafter simply referred to as “water-soluble polymers”). For example, a polymer in which a pentose or hexose skeleton has a glucoside bond can be preferably used. Those having a thickening effect and a wetting effect are preferable. Among them, celluloses are particularly preferable because they are inexpensive and easily available. Examples of water-soluble polymers include hydroxymethylcellulose, ethylcellulose, methylcellulose, carboxymethylcellulose, carboxyethylcellulose, agar, carrageenan, fercelan, pectin, starch, mannan, curdlan, Ernest gum, starch, pullulan, guar gum, xanthan gum (xanthan gum) Polysaccharides such as gelatin; Polyethers such as polyethylene oxide and polypropylene oxide; Vinyl alcohols such as polyvinyl alcohol and polyvinyl butyral; Polyacids such as polyacrylic acid and polymethacrylic acid; and metal salts thereof Can be mentioned.
これらの中でも、多糖類又はタンパク質が好ましく、カルボキシメチルセルロースは、分子量や、対イオンとしてバリエーションに富んだものを選択でき、活物質と共にスラリーにした際、適度な粘弾性に調整する事ができるので特に好ましい。 Among these, polysaccharides or proteins are preferable, and carboxymethylcellulose can be selected from those having a wide variety of molecular weights and counterions, and can be adjusted to an appropriate viscoelasticity when slurried with an active material, in particular. preferable.
水溶性高分子の含有量は、活物質100重量部に対し通常0.5重量部以上、好ましくは0.7重量部以上、より好ましくは1重量部以上、通常3重量部以下、好ましくは2重量部以下、より好ましくは1.5重量部以下である。水溶性高分子の含有量が少なすぎると、活物質の分散性を悪化させ、また結合性を司る下記ゴム系結着剤の分散性に欠けるため、ダマが生じる場合があり、電極内で結着剤が偏在しやすい場合がある。一方、水溶性高分子の含有量が多すぎると、活物質を被覆しすぎ、Liの挿入脱離に対し、抵抗を生じやすい場合があり、非水系電解液二次電池用の性能が低下する場合がある。 The content of the water-soluble polymer is usually 0.5 parts by weight or more, preferably 0.7 parts by weight or more, more preferably 1 part by weight or more, usually 3 parts by weight or less, preferably 2 parts per 100 parts by weight of the active material. The amount is not more than parts by weight, more preferably not more than 1.5 parts by weight. If the content of the water-soluble polymer is too small, the dispersibility of the active material is deteriorated, and the dispersibility of the following rubber-based binder that controls the binding property is lacking. There are cases where the adhesive is ubiquitous. On the other hand, if the content of the water-soluble polymer is too large, the active material may be coated too much, and resistance to Li insertion / desorption may occur easily, and the performance for a non-aqueous electrolyte secondary battery is deteriorated. There is a case.
水溶性高分子は、後述のゴム系結着剤を併用する場合には、ゴム系結着剤の電極内での分散性、展性の向上、活物質の凝集塊をほぐす役目等を担っている。また、同量で比較するとゴム系には及ばないものの電極強度を持つ。 The water-soluble polymer, when used in combination with a rubber-based binder described later, is responsible for improving the dispersibility of the rubber-based binder in the electrode, improving malleability, and loosening the agglomerates of the active material. Yes. Moreover, when compared with the same amount, it has an electrode strength that is not as good as that of a rubber system.
水溶性高分子は、セルロース骨格を有し、金属塩を共存させた際、該金属塩のイオンと分子内架橋構造又は包接化合物を形成するものであることが好ましい。セルロース骨格を持つものの多くが、疎水性部分と親水性部分を合わせ持つ、いわゆる両親媒性を示すため、水溶液にすることが可能で、かつ疎水性の活物質表面への吸着性を持つことで、活物質粉体を擬似的な親水性粉体として取り扱うことが可能になる。また、セルロース分子内の酸素原子は、下記金属塩の解離体である金属カチオンとイオン性の相互作用を持ち、架橋体とすることができる。 The water-soluble polymer preferably has a cellulose skeleton and, when a metal salt coexists, forms an intramolecular crosslinked structure or an inclusion compound with ions of the metal salt. Many of the cellulose skeletons have so-called amphipathic properties that have both a hydrophobic part and a hydrophilic part, so that they can be made into aqueous solutions and adsorb to the surface of hydrophobic active materials. The active material powder can be handled as a pseudo hydrophilic powder. Moreover, the oxygen atom in a cellulose molecule has an ionic interaction with the metal cation which is a dissociation body of the following metal salt, and can be made into a crosslinked body.
2)金属塩
金属塩の種類としては、上記相互作用を持つ金属イオンを解離できるものである限り、限定無く使用が可能であるが、1A族若しくは2A族の炭酸塩、硫酸塩、硝酸塩、リン酸塩、しゅう酸塩又は塩酸塩であることが好ましい。また、Li、Na、K、Mg、Ca、Sr又はBaの塩であることが好ましい。例えば、Li、Na、K、Mg、Ca、Sr、Ba等の1A族、2A族金属の炭酸塩、硫酸塩、硝酸塩、リン酸塩、しゅう酸塩、塩酸塩等が特に好ましい。具体的には、炭酸カルシウム、炭酸ナトリウム、炭酸リチウム、炭酸カリウム、炭酸ニッケル、炭酸バリウム等の炭酸塩が好ましく、重質炭酸カルシウム、軽質炭酸カルシウム、膠質炭酸カルシウム等の炭酸カルシウム塩が、安価でかつ大量に入手できるので特に好ましい。
2) Metal salt The metal salt can be used without limitation as long as it can dissociate the metal ion having the above-mentioned interaction, but it is possible to use 1A group or 2A group carbonate, sulfate, nitrate, phosphorus. Preference is given to acid salts, oxalates or hydrochlorides. Moreover, it is preferable that it is a salt of Li, Na, K, Mg, Ca, Sr, or Ba. For example, carbonates, sulfates, nitrates, phosphates, oxalates, hydrochlorides, and the like of Group 1A, Group 2A metals such as Li, Na, K, Mg, Ca, Sr, and Ba are particularly preferable. Specifically, carbonates such as calcium carbonate, sodium carbonate, lithium carbonate, potassium carbonate, nickel carbonate, and barium carbonate are preferable, and calcium carbonate salts such as heavy calcium carbonate, light calcium carbonate, and colloidal calcium carbonate are inexpensive. It is particularly preferable because it is available in large quantities.
金属塩の含有量は、水溶性高分子固形分全体に対し、通常5質量%以下、より好ましくは3質量%以下、通常0.001質量%以上、より好ましくは0.1質量%以上である。含有量が少なすぎると、十分な相互作用による架橋効果が得られない場合がある。一方、含有量が多すぎると、水溶性高分子との相互作用が強すぎ、また、金属塩の解離が十分でなく、電極体としたときの可撓性に欠ける場合がある。 The content of the metal salt is usually 5% by mass or less, more preferably 3% by mass or less, usually 0.001% by mass or more, more preferably 0.1% by mass or more with respect to the entire water-soluble polymer solid content. . If the content is too small, the crosslinking effect due to sufficient interaction may not be obtained. On the other hand, when the content is too large, the interaction with the water-soluble polymer is too strong, the metal salt is not sufficiently dissociated, and the flexibility of the electrode body may be insufficient.
3)ゴム系結着剤
本発明の非水系電解液二次電池における結着剤には、水溶性高分子と金属塩に加え、更に、ゴム系結着剤を含有することが好ましい。ゴム系結着剤としては、分子内にオレフィン性不飽和結合を有するものが好ましい。その種類は特に制限されないが、具体例としては、スチレン・ブタジエンゴム、スチレン・イソプレン・スチレンゴム、イソプレンゴム、アクリロニトリル・ブタジエンゴム、ブタジエンゴム、クロロプレンゴム、ネオプレンゴム、エチレン・プロピレン・ジエン共重合体等が挙げられる。中でも、水性ディスパージョンとして得ることができるスチレン・ブタジエンゴムが特に好ましい。
3) Rubber-based binder The binder in the non-aqueous electrolyte secondary battery of the present invention preferably further contains a rubber-based binder in addition to the water-soluble polymer and the metal salt. As the rubber binder, those having an olefinically unsaturated bond in the molecule are preferable. The type is not particularly limited, but specific examples include styrene / butadiene rubber, styrene / isoprene / styrene rubber, isoprene rubber, acrylonitrile / butadiene rubber, butadiene rubber, chloroprene rubber, neoprene rubber, ethylene / propylene / diene copolymer. Etc. Of these, styrene-butadiene rubber that can be obtained as an aqueous dispersion is particularly preferred.
ゴム系結着剤の分子量は特に限定はないが、その重量平均分子量が通常1万以上、好ましくは5万以上、通常100万以下、好ましくは30万以下の範囲にあるものが望ましい。 The molecular weight of the rubber-based binder is not particularly limited, but it is desirable that the weight average molecular weight is usually 10,000 or more, preferably 50,000 or more, usually 1,000,000 or less, preferably 300,000 or less.
ゴム系結着剤は、スチレンユニットを持ち、金属塩が該ゴム系結着剤に対し充填剤として作用するものであることが、高強度な電極体の作製が可能であり、結着剤量を低減させることが可能であり、水溶性高分子の電解液への膨潤・溶解性を低減できる等の点で好ましい。「充填剤としての作用」とは、ゴム系結着剤の強度を増加させることをいう。 The rubber-based binder has a styrene unit, and the metal salt acts as a filler for the rubber-based binder, so that a high-strength electrode body can be produced. This is preferable in that the swelling and solubility of the water-soluble polymer in the electrolyte can be reduced. “Action as a filler” means increasing the strength of a rubber-based binder.
このようなゴム系結着剤に対し、前述の活物質、水溶性高分子及び金属塩を組み合わせて用いることにより、負極板等の極板の強度を高くすることができる。極板の強度が高いと、充放電による極板の劣化が抑制され、サイクル寿命を長くすることができる。また、本発明では、活物質層と集電体との接着強度が高いので、活物質層中の結着剤の含有量を低減させても、極板を捲回して電池を製造する際に、集電体から活物質層が剥離するという問題点も起こらない。 By using such a rubber-based binder in combination with the above-mentioned active material, water-soluble polymer and metal salt, the strength of an electrode plate such as a negative electrode plate can be increased. When the strength of the electrode plate is high, deterioration of the electrode plate due to charge / discharge is suppressed, and the cycle life can be extended. In the present invention, since the adhesive strength between the active material layer and the current collector is high, even when the content of the binder in the active material layer is reduced, the battery is manufactured by winding the electrode plate. The problem that the active material layer peels from the current collector does not occur.
4)結着剤の成分の組み合わせ
結着剤に含有される成分の組み合わせとしては、水溶液又は水系ディスパージョンとして取り扱いが可能なことから、セルロース系の多糖類、炭酸金属塩及びゴム系結着剤が特に好ましい。中でも、カルボキシメチルセルロース、炭酸カルシウム及びスチレン・ブタジエンゴムの組み合わせが最も好ましい。
4) Combination of binder components The combination of components contained in the binder can be handled as an aqueous solution or aqueous dispersion, so that the cellulose-based polysaccharides, metal carbonates, and rubber-based binders can be used. Is particularly preferred. Of these, a combination of carboxymethylcellulose, calcium carbonate and styrene-butadiene rubber is most preferable.
5)含有比率
水溶性高分子と金属塩の比率は、通常水溶性高分子固形分100重量部に対し、金属塩が0.1重量部以上、好ましくは10重量部以上、より好ましくは50重量部以上、通常500重量部以下、好ましくは300重量部以下、より好ましくは150重量部以下である。下限を下回ると、架橋効果が十分でない場合があり、上限を上回ると、金属塩が解離しにくい場合や架橋が強すぎてLiの挿入脱離反応を邪魔する場合がある。
5) Content ratio The ratio of the water-soluble polymer to the metal salt is usually 0.1 parts by weight or more, preferably 10 parts by weight or more, more preferably 50 parts by weight with respect to 100 parts by weight of the solid content of the water-soluble polymer. Part or more, usually 500 parts by weight or less, preferably 300 parts by weight or less, more preferably 150 parts by weight or less. If the lower limit is not reached, the crosslinking effect may not be sufficient. If the upper limit is exceeded, the metal salt may be difficult to dissociate, or the crosslinking may be too strong to interfere with the Li insertion / release reaction.
ゴム系結着剤を含有する場合には、ゴム系結着剤100重量部に対し、水溶性高分子と金属塩の合計量は、通常30重量部以上、好ましくは50重量部以上、より好ましくは100重量部以上、通常300重量部以下、好ましくは200重量部以下、より好ましくは160重量部以下である。下限を下回ると、ゴム系結着剤の負極材への添着性に劣るため、電極の十分な強度が得られず、例えば、集電体上から剥離しやすい。一方、上限を上回ると、電池にしたときの初期の抵抗が大きくなり、十分な充電容量が得られない。「負極材」又は「正極材」とは、集電体上に設けられる負極又は正極の活物質層を形成する全ての材料をいう。以下同様とする。 When the rubber-based binder is contained, the total amount of the water-soluble polymer and the metal salt is usually 30 parts by weight or more, preferably 50 parts by weight or more, more preferably with respect to 100 parts by weight of the rubber-based binder. Is 100 parts by weight or more, usually 300 parts by weight or less, preferably 200 parts by weight or less, more preferably 160 parts by weight or less. Below the lower limit, the adhesion of the rubber-based binder to the negative electrode material is inferior, so that sufficient strength of the electrode cannot be obtained, and for example, it is easy to peel off from the current collector. On the other hand, if the upper limit is exceeded, the initial resistance when the battery is made increases, and a sufficient charge capacity cannot be obtained. “Negative electrode material” or “positive electrode material” refers to all materials that form an active material layer of a negative electrode or a positive electrode provided on a current collector. The same shall apply hereinafter.
また、本発明においては、活物質層を形成する全ての成分、すなわち負極材又は正極材中には、上記結着剤(水溶性高分子、金属塩、ゴム系結着剤)以外に、後述する導電材等の「その他の成分」を含有させることができるが、活物質層を形成する全ての成分100重量部に対して、上記結着剤が乾燥重量で、通常90重量部以上、好ましくは92重量部以上、特に好ましくは95重量部以上、上限は、通常99.9重量部以下、好ましくは99重量部以下、特に好ましくは98.5重量部以下である。上記結着剤が多すぎると容量の減少や、抵抗増大を招く場合があり、上記結着剤が少なすぎると極板強度が劣る場合がある。 In the present invention, all the components forming the active material layer, that is, the negative electrode material or the positive electrode material, will be described later in addition to the binder (water-soluble polymer, metal salt, rubber-based binder). "Other components" such as a conductive material can be contained, but the binder is usually 90 parts by weight or more by dry weight with respect to 100 parts by weight of all the components forming the active material layer. Is 92 parts by weight or more, particularly preferably 95 parts by weight or more, and the upper limit is usually 99.9 parts by weight or less, preferably 99 parts by weight or less, particularly preferably 98.5 parts by weight or less. If the amount of the binder is too large, the capacity may be decreased and the resistance may be increased. If the amount of the binder is too small, the electrode plate strength may be inferior.
6)他の結着剤
本発明の非水系電解液二次電池における上記結着剤は、負極用にも正極用にも用いられる。本発明における上記結着剤が負極用に用いられた場合には、正極活物質を結着する結着剤としても上記結着剤が用いられ得るが、また、正極用には公知のものも用いられる。具体的には、シリケート、水ガラスのような無機化合物、テフロン(登録商標)、ポリフッ化ビニリデン等の不飽和結合を有さない樹脂等が挙げられる。これらの中で特に好ましいものは、不飽和結合を有さない樹脂である。正極活物質を結着する樹脂として不飽和結合を有する樹脂を用いると酸化反応時に分解される場合がある。これらの樹脂の重量平均分子量は通常1万以上、好ましくは10万以上であり、通常300万以下、好ましくは100万以下である。
6) Other binders The binder in the non-aqueous electrolyte secondary battery of the present invention is used for both the negative electrode and the positive electrode. When the binder in the present invention is used for a negative electrode, the binder can also be used as a binder for binding a positive electrode active material. Used. Specific examples include inorganic compounds such as silicate and water glass, resins having no unsaturated bond, such as Teflon (registered trademark) and polyvinylidene fluoride. Among these, a resin having no unsaturated bond is particularly preferable. If a resin having an unsaturated bond is used as the resin for binding the positive electrode active material, it may be decomposed during the oxidation reaction. The weight average molecular weight of these resins is usually 10,000 or more, preferably 100,000 or more, and usually 3 million or less, preferably 1 million or less.
[作用]
本発明の効果が得られる理由は明らかではないが、以下のことが考えられる。ただし本発明は、以下の作用効果の範囲に限定されるわけではない。
[Action]
The reason why the effect of the present invention is obtained is not clear, but the following can be considered. However, the present invention is not limited to the range of the following effects.
金属塩は、溶媒スラリー内では、金属カチオンとアニオンとに電離するが、上述した水溶性高分子と金属カチオンは、イオン−イオン或いは、イオン−双極子相互作用を持つことが知られている。この形態は金属イオンの廻りを水溶性高分子のヘリックスが巻き付く形態、2本の水溶性高分子βシート間に金属イオンが挟撃される形態等があるが、何れにおいても、活物質表面を覆う水溶性高分子に対し、金属イオンが上記架橋作用をもたらすことで、水溶性高分子分子鎖の自由体積が減少し、電解液に対し膨潤し難くなると考えられる。従って、負極活物質活性表面と電解液が接触する面積が減少し、SEI(Solid Electrolyte Interface 固体電解質界面)形成に代表される不可逆容量の発生が抑制されると考えられる。 The metal salt is ionized into a metal cation and an anion in the solvent slurry, and it is known that the water-soluble polymer and the metal cation described above have an ion-ion or ion-dipole interaction. This form includes a form in which a helix of a water-soluble polymer wraps around a metal ion, and a form in which metal ions are pinched between two water-soluble polymer β sheets. It is considered that the metal ions bring about the above-mentioned crosslinking action on the water-soluble polymer to be covered, thereby reducing the free volume of the water-soluble polymer molecular chain and making it difficult to swell against the electrolytic solution. Therefore, the area where the negative electrode active material active surface is in contact with the electrolytic solution is reduced, and it is considered that generation of irreversible capacity represented by SEI (Solid Electrolyte Interface solid electrolyte interface) formation is suppressed.
更に、ゴム系結着剤を用いると、いわゆる充填効果(フィラー効果)により、ゴムの物理的強度が向上し、負極中においても同様の効果を発現させることができると思われる。 Furthermore, when a rubber-based binder is used, the physical strength of the rubber is improved by a so-called filling effect (filler effect), and it is considered that the same effect can be exhibited in the negative electrode.
[電極製造方法]
本発明の非水系二次電池における負極は、負極活物質、上記した結着剤及びその他の成分を溶媒に分散させてスラリーとし、これを集電体に塗布することにより形成される。また、本発明の非水系二次電池における正極は、正極活物質、上記した結着剤及びその他の成分を溶媒に分散させてスラリーとし、これを集電体に塗布することにより形成される。溶媒としてはアルコール等の有機溶媒や水を用いることができる。なお、所望によりスラリーには、導電材を含有させてもよい。導電材としては、アセチレンブラック、ケッチェンブラック、ファーネスブラック等のカーボンブラック、平均粒径1μm以下のCu、Ni又はこれらの合金からなる微粉末等が挙げられる。導電材の添加量は、活物質に対して、通常10質量%以下である。
[Electrode manufacturing method]
The negative electrode in the non-aqueous secondary battery of the present invention is formed by dispersing a negative electrode active material, the above-described binder and other components in a solvent to form a slurry, which is applied to a current collector. The positive electrode in the non-aqueous secondary battery of the present invention is formed by dispersing a positive electrode active material, the above-described binder and other components in a solvent to form a slurry, which is applied to a current collector. As the solvent, an organic solvent such as alcohol or water can be used. If desired, the slurry may contain a conductive material. Examples of the conductive material include carbon black such as acetylene black, ketjen black, and furnace black, and fine powder made of Cu, Ni, or an alloy thereof having an average particle size of 1 μm or less. The amount of the conductive material added is usually 10% by mass or less with respect to the active material.
スラリーを塗布する集電体としては、従来公知のものを用いることができる。具体的には、圧延銅箔、電解銅箔、ステンレス箔等の金属薄膜が挙げられる。集電体の厚さは、通常5μm以上、好ましくは9μm以上であり、通常30μm以下、好ましくは20μm以下である。スラリーを集電体上に塗布した後、通常、60〜200℃、好ましくは80〜195℃で、乾燥空気又は不活性雰囲気下で乾燥し、活物性層を形成する。 A conventionally well-known thing can be used as a collector which apply | coats a slurry. Specific examples include metal thin films such as rolled copper foil, electrolytic copper foil, and stainless steel foil. The thickness of the current collector is usually 5 μm or more, preferably 9 μm or more, and usually 30 μm or less, preferably 20 μm or less. After apply | coating a slurry on a collector, it is normally dried at 60-200 degreeC, Preferably it is 80-195 degreeC in dry air or an inert atmosphere, and an active-physical property layer is formed.
スラリーを塗布、乾燥して得られる活物質層の厚さは、通常、5μm以上、好ましくは、20μm以上、更に好ましくは30μm以上であり、通常200μm以下、好ましくは100μm以下、更に好ましくは75μm以下である。活物質層が薄すぎると、活物質の粒径との兼ね合いから負極又は正極としての実用性に欠け、厚すぎると、高密度の電流値に対する十分なLiの吸蔵放出の機能が得られにくい。 The thickness of the active material layer obtained by applying and drying the slurry is usually 5 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and usually 200 μm or less, preferably 100 μm or less, more preferably 75 μm or less. It is. If the active material layer is too thin, the practicality as a negative electrode or a positive electrode is lacking due to the balance with the particle size of the active material, and if it is too thick, it is difficult to obtain a sufficient Li occlusion / release function for high-density current values.
<非水系電解液二次電池>
本発明の非水系電解液二次電池用電極は、特に非水系電解液二次電池用負極として用いるのに好適である。以下、この負極を用いた非水系電解液二次電池について説明する。
<Non-aqueous electrolyte secondary battery>
The electrode for a non-aqueous electrolyte secondary battery of the present invention is particularly suitable for use as a negative electrode for a non-aqueous electrolyte secondary battery. Hereinafter, a non-aqueous electrolyte secondary battery using this negative electrode will be described.
この非水系電解液二次電池の基本的構成は、従来公知の非水系電解液二次電池と同様であり、通常、正極と負極とが、非水系電解液が含浸されている多孔膜を介してケースに収納されている。したがって、本発明に係る二次電池の構造は特に限定されるものではなく、例えば、コイン型電池、円筒型電池、角型電池等任意の形態で用いることができる。 The basic configuration of this non-aqueous electrolyte secondary battery is the same as that of a conventionally known non-aqueous electrolyte secondary battery. Usually, the positive electrode and the negative electrode are interposed through a porous membrane impregnated with the non-aqueous electrolyte. In the case. Therefore, the structure of the secondary battery according to the present invention is not particularly limited. For example, the secondary battery can be used in any form such as a coin-type battery, a cylindrical battery, and a square battery.
正極は、前記したような負極の製造と同様の手法で、活物質、結着剤等を溶剤でスラリー化し、集電体上に塗布、乾燥することにより製造される。正極の集電体としては、特に限定はないが、アルミニウム、ニッケル、SUS等が用いられる。 The positive electrode is manufactured by slurrying an active material, a binder, and the like with a solvent, applying the mixture on a current collector, and drying in the same manner as the above-described negative electrode. The current collector for the positive electrode is not particularly limited, and aluminum, nickel, SUS or the like is used.
非水系電解液の主成分は、公知の非水系電解液と同じく、通常、リチウム塩及びこれを溶解しやすい非水系溶媒である。 The main component of the non-aqueous electrolyte solution is usually a lithium salt and a non-aqueous solvent that easily dissolves the lithium salt, as in known non-aqueous electrolyte solutions.
非水系溶媒としては、従来から非水系電解液の溶媒として提案されている非水系溶媒のなかから適宜選択して用いることができる。例えば、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類、1,2−ジメトキシエタン等の鎖状エーテル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、1,3−ジオキソラン等の環状エーテル類;ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類等が挙げられる。 As the non-aqueous solvent, any non-aqueous solvent conventionally proposed as a solvent for non-aqueous electrolytes can be appropriately selected and used. For example, chain carbonates such as ethylene carbonate, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate; cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain ethers such as 1,2-dimethoxyethane; tetrahydrofuran, Cyclic ethers such as 2-methyltetrahydrofuran, sulfolane and 1,3-dioxolane; chain esters such as methyl formate, methyl acetate and methyl propionate; cyclic esters such as γ-butyrolactone and γ-valerolactone It is done.
これらの非水系溶媒は、単独で用いても、2種以上を混合して用いてもよいが、環状カーボネートと鎖状カーボネートを含む混合溶媒の組合せが好ましい。 These non-aqueous solvents may be used alone or in combination of two or more, but a combination of a mixed solvent containing a cyclic carbonate and a chain carbonate is preferred.
リチウム塩としては、この用途に用い得ることが知られているものであれば、特に制限はなく、例えば、LiCl、LiBr等のハロゲン化物;LiClO4、LiBrO4、LiClO4等の過ハロゲン酸塩;LiPF6、LiBF4、LiAsF6等の無機フッ化物塩等の無機リチウム塩;LiCF3SO3、LiC4F9SO3等のパーフルオロアルカンスルホン酸塩;Liトリフルオロスルフォンイミド((CF3SO2)2NLi)等のパーフルオロアルカンスルホン酸イミド塩等の含フッ素有機リチウム塩等が挙げられる。リチウム塩は、単独で用いても2種以上を混合して用いてもよい。 The lithium salt is not particularly limited as long as it is known to be usable in this application. For example, a halide such as LiCl or LiBr; a perhalogenate such as LiClO 4 , LiBrO 4 , or LiClO 4 Inorganic lithium salts such as inorganic fluoride salts such as LiPF 6 , LiBF 4 and LiAsF 6 ; perfluoroalkane sulfonates such as LiCF 3 SO 3 and LiC 4 F 9 SO 3 ; Li trifluorosulfonimide ((CF 3 And fluorine-containing organic lithium salts such as perfluoroalkanesulfonic acid imide salts such as SO 2 ) 2 NLi). Lithium salts may be used alone or in admixture of two or more.
非水系電解液中のリチウム塩の濃度は、通常0.5〜2.0M程度である。 The concentration of the lithium salt in the non-aqueous electrolyte is usually about 0.5 to 2.0M.
非水系電解液は、電解液中に有機高分子化合物を含ませ、ゲル状、ゴム状又は固体シート状としてもよい。有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等のビニル系高分子化合物;ポリ(ω−メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω−メトキシオリゴオキシエチレンメタクリレート−メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン−フッ化ビニリデン)等のポリマー共重合体等が挙げられる。 The nonaqueous electrolytic solution may contain an organic polymer compound in the electrolytic solution, and may be in the form of a gel, rubber, or solid sheet. Specific examples of organic polymer compounds include polyether polymer compounds such as polyethylene oxide and polypropylene oxide; cross-linked polymers of polyether polymer compounds; vinyl alcohol polymer compounds such as polyvinyl alcohol and polyvinyl butyral; vinyl Insoluble matter of alcohol-based polymer compound; polyepichlorohydrin; polyphosphazene; polysiloxane; vinyl-based polymer compound such as polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile; poly (ω-methoxyoligooxyethylene methacrylate), poly (ω Examples thereof include polymer copolymers such as -methoxyoligooxyethylene methacrylate-methyl methacrylate) and poly (hexafluoropropylene-vinylidene fluoride).
非水系電解液は、皮膜形成剤を含んでいても良い。皮膜形成剤としては、ビニレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネート等のカーボネート化合物;エチレンサルファイド、プロピレンサルファイド等のアルケンサルファイド、1,3−プロパンスルトン、1,4−ブタンスルトン等のスルトン化合物;マレイン酸無水物、コハク酸無水物等の酸無水物等が挙げられる。皮膜形成剤の含有量は、非水系電解液全体に対して、通常10質量%以下、好ましくは8質量%以下、更に好ましくは5質量%以下、最も好ましくは2質量%以下である。皮膜形成剤の含有量が多すぎると初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼす場合がある。 The nonaqueous electrolytic solution may contain a film forming agent. Examples of film forming agents include carbonate compounds such as vinylene carbonate, vinyl ethyl carbonate, and methylphenyl carbonate; alkene sulfides such as ethylene sulfide and propylene sulfide; sultone compounds such as 1,3-propane sultone and 1,4-butane sultone; maleic acid Acid anhydrides such as anhydride and succinic anhydride are listed. The content of the film forming agent is usually 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and most preferably 2% by mass or less with respect to the entire non-aqueous electrolyte solution. If the content of the film forming agent is too large, other battery characteristics such as an increase in initial irreversible capacity, low temperature characteristics, and deterioration in rate characteristics may be adversely affected.
また、非水系電解液として、リチウムイオン等のアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。高分子固体電解質としては、前述のポリエーテル系高分子化合物にLiの塩を溶解させたものや、ポリエーテル末端水酸基がアルコキシドに置換されているポリマー等が挙げられる。 Further, as the nonaqueous electrolytic solution, a polymer solid electrolyte that is a conductor of an alkali metal cation such as lithium ion can be used. Examples of the polymer solid electrolyte include a polymer obtained by dissolving a Li salt in the above-described polyether polymer compound, and a polymer in which a polyether terminal hydroxyl group is substituted with an alkoxide.
正極と負極の間には、短絡を防止するために、通常は、多孔膜や不織布等の多孔性のセパレータを介在させる。この場合、電解液は、多孔性のセパレータに含浸させて用いる。セパレータの材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエーテルスルホン等が用いられ、好ましくはポリオレフィンである。 In order to prevent a short circuit, a porous separator such as a porous film or a nonwoven fabric is usually interposed between the positive electrode and the negative electrode. In this case, the electrolytic solution is used by impregnating a porous separator. As a material for the separator, polyolefin such as polyethylene and polypropylene; polyethersulfone and the like are used, and polyolefin is preferable.
以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples unless it exceeds the gist.
実施例1
非晶質で被覆した黒鉛(d50が15μm)100重量部に対し、固形分で1重量部の1質量%カルボキシメチルセルロース(CMC)水溶液、及び、固形分で0.5重量部の50質量%スチレン・ブタジエンゴム(SBR)ディスパージョンを添加、攪拌・混合し、これに更に1重量部の膠質炭酸カルシウムを添加し、更に攪拌した。脱泡後、スラリーとなったものを、厚み20μmの銅薄膜上に乾燥膜厚11mg/cm2となるように塗布、乾燥し、負極板とした。これを電極活物質密度1.6g/ccまで、ロールプレス機により圧延し試験体とした。
Example 1
1 part by weight of 1% by weight carboxymethylcellulose (CMC) aqueous solution and 0.5 part by weight of 50% by weight styrene by solid content with respect to 100 parts by weight of graphite coated with amorphous (d50 = 15 μm) -A butadiene rubber (SBR) dispersion was added, stirred and mixed, and 1 part by weight of colloidal calcium carbonate was further added thereto, followed by further stirring. After defoaming, the slurry was applied and dried on a copper thin film having a thickness of 20 μm to a dry film thickness of 11 mg / cm 2 to obtain a negative electrode plate. This was rolled by a roll press to an electrode active material density of 1.6 g / cc to obtain a test specimen.
実施例2
実施例1の非晶質で被覆した黒鉛(d50が15μm)に代え球状天然黒鉛粒子を用いた以外は実施例1と同様にして試験体を得た。
Example 2
A specimen was obtained in the same manner as in Example 1 except that spherical natural graphite particles were used in place of the amorphous coated graphite (d50 = 15 μm) in Example 1.
実施例3
実施例1で膠質炭酸カルシウムの代わりに軟質炭酸カルシウムを用いた以外は実施例1と同様にして試験体を得た。
Example 3
A test body was obtained in the same manner as in Example 1 except that soft calcium carbonate was used instead of colloidal calcium carbonate in Example 1.
比較例1
実施例1で重質炭酸カルシウムを添加しなかった以外は実施例1と同様にして試験体を得た。
Comparative Example 1
A test body was obtained in the same manner as in Example 1 except that heavy calcium carbonate was not added in Example 1.
比較例2
実施例2で重質炭酸カルシウムを添加しなかった以外は実施例2と同様にして試験体を得た。
Comparative Example 2
A test body was obtained in the same manner as in Example 2 except that heavy calcium carbonate was not added in Example 2.
比較例3
実施例1で重質炭酸カルシウムの代わりに、1重量部の直径250nm無水シリカを添加した以外は実施例1と同様にして試験体を得た。
Comparative Example 3
A test specimen was obtained in the same manner as in Example 1 except that 1 part by weight of anhydrous silica having a diameter of 250 nm was added instead of heavy calcium carbonate in Example 1.
比較例4
実施例1のカルボキシメチルセルロース(CMC)水溶液とスチレン・ブタジエンゴム(SBR)ディスパージョンの代わりに、12.5質量%のポリフッ化ビニリデン(PVdF)ディスパージョンを固形分で8重量部用いた以外は実施例1と同様にして試験体を得た。
Comparative Example 4
Implemented except that 12.5% by weight of polyvinylidene fluoride (PVdF) dispersion in solid content was used in place of the carboxymethyl cellulose (CMC) aqueous solution and styrene-butadiene rubber (SBR) dispersion of Example 1. A test body was obtained in the same manner as in Example 1.
実施例1〜3及び比較例1〜4で得られた試験体を用いて、下記の<電池の評価>の項で述べる測定方法で、測定を実施した。結果を表1に示す。 Using the test bodies obtained in Examples 1 to 3 and Comparative Examples 1 to 4, the measurement was carried out by the measurement method described in the section <Battery Evaluation> below. The results are shown in Table 1.
<電池の評価>
(極板強度)
試験体に対し、Heidon社製、連続荷重式引っ掻き試験機に、先端0.1mmRのジルコニア製引っ掻き針を装填したもの用い、引っ掻き試験を行った。試験は4回測定の平均とし、「極板強度」は、銅箔面がはじめて現れた時点での荷重(g)、すなわち、銅箔面が現れる最低荷重(g)とした。
<Battery evaluation>
(Plate strength)
The specimen was subjected to a scratch test using a continuous load type scratch tester manufactured by Heidon Co., Ltd., which was loaded with a zirconia scratch needle having a tip of 0.1 mmR. The test was an average of four measurements, and the “electrode strength” was the load (g) when the copper foil surface first appeared, that is, the minimum load (g) at which the copper foil surface appeared.
(3回目放電容量及び不可逆容量)
試験体より、1.23cm2の円形に打ち抜き、Liを対極として、エチレンカーボネート/エチルメチルカーボネート=3/7(体積比)を溶媒として、1MのLiPF6の電解液を用い、ポリエチレン(PE)セパレータを介して半電池を作成し、定電流密度0.16mA、極間電位0〜1.5V(vs.Li)にて3サイクル(3回)充放電を行い、「3回目放電容量」と「3回目までに生じた不可逆容量」を計測した。それぞれの測定値は4試行の平均値とした。
(3rd discharge capacity and irreversible capacity)
From the specimen, it was punched into a circle of 1.23 cm 2 , using Li as the counter electrode, ethylene carbonate / ethyl methyl carbonate = 3/7 (volume ratio) as a solvent, and 1M LiPF 6 electrolyte solution, polyethylene (PE) A half cell was created through a separator, and charged and discharged three times (three times) at a constant current density of 0.16 mA and an interelectrode potential of 0 to 1.5 V (vs. Li). The “irreversible capacity generated up to the third time” was measured. Each measured value was an average of 4 trials.
表1の結果から明らかなように、本発明の非水系電解液二次電池用電極を用いたもの(実施例1〜実施例3)では、極板強度及び不可逆容量を改善させることができた。また、「3回目放電容量」は十分に大きく問題はなかった。 As is clear from the results in Table 1, the electrode plate strength and irreversible capacity could be improved in those using the nonaqueous electrolyte secondary battery electrode of the present invention (Examples 1 to 3). . Further, the “third discharge capacity” was sufficiently large and had no problem.
一方、本発明の非水系電解液二次電池用電極を用いないもの(比較例1〜比較例4)では、実施例に比べ、全て極板強度に劣り、不可逆容量も大きかった。 On the other hand, the non-aqueous electrolyte secondary battery electrodes of the present invention (Comparative Examples 1 to 4) were all inferior in electrode plate strength and large in irreversible capacity as compared with Examples.
本発明の非水系電解液二次電池用電極を用いた非水系電解液二次電池は、平易な工程で、高い初回充放電効率、高い極板強度、小さい不可逆容量を呈するので、工業上非常に有用である。 The non-aqueous electrolyte secondary battery using the electrode for the non-aqueous electrolyte secondary battery of the present invention is a very simple process and exhibits high initial charge / discharge efficiency, high electrode plate strength, and a small irreversible capacity. Useful for.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008007856A JP2009170287A (en) | 2008-01-17 | 2008-01-17 | Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008007856A JP2009170287A (en) | 2008-01-17 | 2008-01-17 | Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009170287A true JP2009170287A (en) | 2009-07-30 |
Family
ID=40971232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008007856A Pending JP2009170287A (en) | 2008-01-17 | 2008-01-17 | Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009170287A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011024797A1 (en) * | 2009-08-27 | 2011-03-03 | 大日精化工業株式会社 | Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device |
CN102906912A (en) * | 2010-04-23 | 2013-01-30 | 加拿大国家研究委员会 | Use of Xanthan Gum as Anode Binder |
JP2013165033A (en) * | 2012-02-13 | 2013-08-22 | Jsr Corp | Binder composition for electrode, electrode slurry, electrode and electricity storage device |
WO2014049697A1 (en) * | 2012-09-26 | 2014-04-03 | 昭和電工株式会社 | Negative electrode for secondary batteries, and secondary battery |
JP2014203781A (en) * | 2013-04-09 | 2014-10-27 | トヨタ自動車株式会社 | Nonaqueous electrolytic secondary battery, and method for manufacturing the same |
US20140374673A1 (en) * | 2013-06-24 | 2014-12-25 | Southwest Research Institute | Hybrid silicon and carbon clathrates |
WO2015126227A1 (en) * | 2014-02-24 | 2015-08-27 | (주)오렌지파워 | Electrode composition for secondary battery and preparation method therefor |
US9362559B2 (en) | 2013-09-10 | 2016-06-07 | Southwest Research Institute | Nitrogen substituted carbon and silicon clathrates |
CN107429009A (en) * | 2015-03-30 | 2017-12-01 | 东洋油墨Sc控股株式会社 | Conductive composition, collector of the electrical storage device with substrate, electrode for power storage device and electrical storage device |
KR20180048778A (en) * | 2015-08-26 | 2018-05-10 | 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 | Aqueous binder for lithium ion battery, manufacturing method and use thereof |
CN108598482A (en) * | 2018-04-02 | 2018-09-28 | 合肥国轩高科动力能源有限公司 | Carbon black modified water-based SBR lithium ion battery binder and preparation method thereof |
CN111668487A (en) * | 2020-06-08 | 2020-09-15 | 广州市乐基智能科技有限公司 | Modified xanthan gum water-based binder and preparation method thereof |
WO2023243955A1 (en) * | 2022-06-13 | 2023-12-21 | 인천대학교 산학협력단 | Binder for aqueous silicon anode containing lambda carrageenan-based polymer, silicon anode comprising same, and lithium secondary battery comprising same |
US12362363B2 (en) * | 2019-12-24 | 2025-07-15 | Resonac Corporation | Electrode binder for a nonaqueous secondary battery and nonaqueous secondary battery electrode |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08138743A (en) * | 1994-11-14 | 1996-05-31 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
JPH08153516A (en) * | 1994-11-28 | 1996-06-11 | Shin Kobe Electric Mach Co Ltd | Nickel electrode for alkaline storage battery, its manufacturing method and alkaline storage battery |
JPH1092422A (en) * | 1996-09-11 | 1998-04-10 | Shin Kobe Electric Mach Co Ltd | Hydrogen storage alloy electrode for alkaline storage batteries |
JP2003123836A (en) * | 2001-10-11 | 2003-04-25 | Ngk Insulators Ltd | Lithium secondary battery |
JP2003208923A (en) * | 2001-11-08 | 2003-07-25 | Sony Corp | Lithium ion nonaqueous electrolyte secondary battery |
JP2003331848A (en) * | 2002-05-15 | 2003-11-21 | Sanyo Chem Ind Ltd | Electrode binder for electrochemical device and method for producing electrode |
JP2006164723A (en) * | 2004-12-07 | 2006-06-22 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte battery |
JP2009093820A (en) * | 2007-10-04 | 2009-04-30 | Panasonic Corp | Method for producing negative electrode plate for lithium ion secondary battery |
-
2008
- 2008-01-17 JP JP2008007856A patent/JP2009170287A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08138743A (en) * | 1994-11-14 | 1996-05-31 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
JPH08153516A (en) * | 1994-11-28 | 1996-06-11 | Shin Kobe Electric Mach Co Ltd | Nickel electrode for alkaline storage battery, its manufacturing method and alkaline storage battery |
JPH1092422A (en) * | 1996-09-11 | 1998-04-10 | Shin Kobe Electric Mach Co Ltd | Hydrogen storage alloy electrode for alkaline storage batteries |
JP2003123836A (en) * | 2001-10-11 | 2003-04-25 | Ngk Insulators Ltd | Lithium secondary battery |
JP2003208923A (en) * | 2001-11-08 | 2003-07-25 | Sony Corp | Lithium ion nonaqueous electrolyte secondary battery |
JP2003331848A (en) * | 2002-05-15 | 2003-11-21 | Sanyo Chem Ind Ltd | Electrode binder for electrochemical device and method for producing electrode |
JP2006164723A (en) * | 2004-12-07 | 2006-06-22 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte battery |
JP2009093820A (en) * | 2007-10-04 | 2009-04-30 | Panasonic Corp | Method for producing negative electrode plate for lithium ion secondary battery |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9834688B2 (en) | 2009-08-27 | 2017-12-05 | Dainichiseika Color & Chemicals Mfg. Co., Ltd. | Aqueous carbon filler dispersion coating liquid, conductivity-imparting material, electrode plate for an electrical storage device, manufacturing method therefore, and electrical storage device |
KR101489042B1 (en) * | 2009-08-27 | 2015-02-02 | 다이니치 세이카 고교 가부시키가이샤 | Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device |
WO2011024797A1 (en) * | 2009-08-27 | 2011-03-03 | 大日精化工業株式会社 | Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device |
US9359508B2 (en) | 2009-08-27 | 2016-06-07 | Dainichiseika Color & Chemicals Mfg. Co., Ltd. | Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device |
US8628610B2 (en) | 2009-08-27 | 2014-01-14 | Dainichiseika Color & Chemicals Mfg. Co., Ltd. | Dispersant for use in a carbon filler |
US9359509B2 (en) | 2009-08-27 | 2016-06-07 | Dainichiseika Color & Chemicals Mfg. Co., Ltd. | Aqueous carbon filler dispersion coating liquid, conductivity-imparting material, electrode plate for an electrical storage device, manufacturing method therefore, and electrical storage device |
JP5499040B2 (en) * | 2009-08-27 | 2014-05-21 | 大日精化工業株式会社 | Aqueous slurry composition, electrode plate for power storage device, and power storage device |
US8945767B2 (en) | 2009-08-27 | 2015-02-03 | Dainichiseika Color & Chemicals Mfg. Co., Ltd | Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device |
US9601774B2 (en) | 2010-04-23 | 2017-03-21 | National Research Council Of Canada | Use of xanthan gum as an anode binder |
CN102906912A (en) * | 2010-04-23 | 2013-01-30 | 加拿大国家研究委员会 | Use of Xanthan Gum as Anode Binder |
JP2013525957A (en) * | 2010-04-23 | 2013-06-20 | ナショナル リサーチ カウンシル オブ カナダ | Use of xanthan gum as anode binder |
JP2013165033A (en) * | 2012-02-13 | 2013-08-22 | Jsr Corp | Binder composition for electrode, electrode slurry, electrode and electricity storage device |
CN104662713A (en) * | 2012-09-26 | 2015-05-27 | 昭和电工株式会社 | Negative electrode for secondary batteries, and secondary battery |
WO2014049697A1 (en) * | 2012-09-26 | 2014-04-03 | 昭和電工株式会社 | Negative electrode for secondary batteries, and secondary battery |
JP2014203781A (en) * | 2013-04-09 | 2014-10-27 | トヨタ自動車株式会社 | Nonaqueous electrolytic secondary battery, and method for manufacturing the same |
US20140374673A1 (en) * | 2013-06-24 | 2014-12-25 | Southwest Research Institute | Hybrid silicon and carbon clathrates |
US9564633B2 (en) * | 2013-06-24 | 2017-02-07 | Southwest Research Institute | Hybrid silicon and carbon clathrates |
US9362559B2 (en) | 2013-09-10 | 2016-06-07 | Southwest Research Institute | Nitrogen substituted carbon and silicon clathrates |
US10236511B2 (en) | 2013-09-10 | 2019-03-19 | Southwest Research Institute | Nitrogen substituted carbon and silicon clathrates |
WO2015126227A1 (en) * | 2014-02-24 | 2015-08-27 | (주)오렌지파워 | Electrode composition for secondary battery and preparation method therefor |
KR101561678B1 (en) | 2014-02-24 | 2015-10-20 | (주)오렌지파워 | Electrode material for rechargeable battery and method of fabricating the same |
US10626264B2 (en) | 2015-03-30 | 2020-04-21 | Toyo Ink Sc Holdings Co., Ltd. | Conductive composition, current collector with base layer for electric storage device, electrode for electric storage device, and electric storage device |
CN107429009A (en) * | 2015-03-30 | 2017-12-01 | 东洋油墨Sc控股株式会社 | Conductive composition, collector of the electrical storage device with substrate, electrode for power storage device and electrical storage device |
CN107429009B (en) * | 2015-03-30 | 2021-03-30 | 东洋油墨Sc控股株式会社 | Conductive composition and method for producing the same, current collector with base layer for power storage device, electrode for power storage device, and power storage device |
EP3279251A4 (en) * | 2015-03-30 | 2018-12-05 | Toyo Ink Sc Holdings Co., Ltd. | Electrically conductive composition, under layer-attached current collector for electric storage devices, electrode for electric storage devices, and electric storage device |
KR20180048778A (en) * | 2015-08-26 | 2018-05-10 | 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 | Aqueous binder for lithium ion battery, manufacturing method and use thereof |
KR102105380B1 (en) | 2015-08-26 | 2020-04-29 | 썬쩐 비티아르 뉴 에너지 머티어리얼스 아이엔씨이 | Aqueous binder for lithium ion battery, manufacturing method and use thereof |
CN108598482A (en) * | 2018-04-02 | 2018-09-28 | 合肥国轩高科动力能源有限公司 | Carbon black modified water-based SBR lithium ion battery binder and preparation method thereof |
US12362363B2 (en) * | 2019-12-24 | 2025-07-15 | Resonac Corporation | Electrode binder for a nonaqueous secondary battery and nonaqueous secondary battery electrode |
CN111668487A (en) * | 2020-06-08 | 2020-09-15 | 广州市乐基智能科技有限公司 | Modified xanthan gum water-based binder and preparation method thereof |
CN111668487B (en) * | 2020-06-08 | 2021-05-04 | 广州市乐基智能科技有限公司 | Modified xanthan gum water-based binder and preparation method thereof |
WO2023243955A1 (en) * | 2022-06-13 | 2023-12-21 | 인천대학교 산학협력단 | Binder for aqueous silicon anode containing lambda carrageenan-based polymer, silicon anode comprising same, and lithium secondary battery comprising same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009170287A (en) | Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same | |
JP4686974B2 (en) | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP6156939B2 (en) | Lithium ion secondary battery | |
JP5426763B2 (en) | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery | |
JP5268023B2 (en) | Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP5540805B2 (en) | Non-aqueous secondary battery carbon material, negative electrode material and non-aqueous secondary battery | |
JP6522167B2 (en) | POSITIVE ELECTRODE ACTIVE MATERIAL COMPRISING METAL NANOPARTICLES AND POSITIVE ELECTRODE, AND LITHIUM-SULFUR CELL CONTAINING SAME | |
WO2006008930A1 (en) | Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery | |
JP5540826B2 (en) | Non-aqueous electrolyte secondary battery carbon material, negative electrode material, and non-aqueous electrolyte secondary battery | |
WO2014141552A1 (en) | Method for manufacturing paste for manufacturing negative electrode, method for manufacturing negative electrode for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell | |
JP2010534915A (en) | Porous network electrode for non-aqueous electrolyte secondary battery | |
CN113692661A (en) | Binder for lithium secondary battery electrode, positive electrode for lithium secondary battery comprising same, and lithium secondary battery | |
JPWO2017159267A1 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
JP2007042285A (en) | Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same | |
JP2015043316A (en) | Non-aqueous secondary battery negative electrode active material, and negative electrode and non-aqueous secondary battery using the same | |
JP6641538B1 (en) | Carbon material, conductive assistant, electrode for power storage device, and power storage device | |
JP2015187934A (en) | Active material for nonaqueous secondary battery negative electrodes, negative electrode arranged by use thereof, and nonaqueous secondary battery | |
US20150349341A1 (en) | Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method thereof | |
CN109935905B (en) | Electrolyte and lithium ion battery | |
WO2019155881A1 (en) | Carbon material, electrode for electricity storage devices, electricity storage device, and nonaqueous electrolyte secondary battery | |
JP2016167443A (en) | Non-aqueous electrolyte storage element | |
JP4120439B2 (en) | Lithium ion secondary battery | |
JP4833276B2 (en) | Carbon material for lithium battery and lithium battery | |
JP2017228710A (en) | Lithium ion capacitor and electrolyte solution for lithium ion capacitor | |
WO2020066263A1 (en) | Secondary battery positive electrode active material and secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121225 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130507 |