[go: up one dir, main page]

JP4120439B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP4120439B2
JP4120439B2 JP2003088097A JP2003088097A JP4120439B2 JP 4120439 B2 JP4120439 B2 JP 4120439B2 JP 2003088097 A JP2003088097 A JP 2003088097A JP 2003088097 A JP2003088097 A JP 2003088097A JP 4120439 B2 JP4120439 B2 JP 4120439B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003088097A
Other languages
Japanese (ja)
Other versions
JP2004296305A (en
Inventor
勇一 伊藤
厳 佐々木
要二 竹内
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003088097A priority Critical patent/JP4120439B2/en
Publication of JP2004296305A publication Critical patent/JP2004296305A/en
Application granted granted Critical
Publication of JP4120439B2 publication Critical patent/JP4120439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムの吸蔵、脱離現象を利用したリチウムイオン2次電池であり、特に低温環境下で良好な特性を示すリチウムイオン2次電池に関する。
【0002】
【従来の技術】
リチウムの吸蔵、脱離現象を利用したリチウムイオン2次電池は、高エネルギー密度であることから、携帯電話、パソコン等の小型化に伴い、通信機器、情報関連機器の分野で広く普及するに至っている。一方で、環境問題、資源問題から、自動車の分野でも電気自動車の開発が急がれており、この電気自動車用の電源としても、リチウムイオン2次電池が検討されている。
【0003】
リチウムイオン2次電池を電気自動車(ハイブリッドカーを含む)用電源として用いる場合、他の用途とは異なる特性が要求される。自動車は屋外を走行するものであり、リチウム2次電池が置かれる環境を想定した場合、60℃程度の高温から−30℃程度の低温において良好な特性を発揮する必要がある。また、発進時、加速時等には、大きな電流を放電しなければならず、特に電池反応が不活性な低温域において良好なパワー特性(単位時間当たりにどの程度大きな出力を得られるかという特性)を有することが必要となる。
【0004】
現在一般的に用いられているリチウムイオン2次電池は常温域で使用することが前提であり、また高エネルギー密度化の要求から負極活物質の比表面積を1.0m/g前後とし、負極電極シートの負極活物質の充填密度を1.2g/cm以上としたものが主流となっている。
【0005】
【特許文献1】
特開平10−261406号公報
【特許文献2】
特開平10−116619号公報
【0006】
【発明が解決しようとする課題】
従来のリチウム2次電池は低温環境下(−30℃)での使用は想定されておらず、そのような環境下で用いた場合、小さな出力値しか取り出すことが出来なかった。これはリチウムイオン2次電池の内部抵抗が大きいことが原因である。
【0007】
リチウムイオン2次電池の内部抵抗は、負極活性物質の表面と電解液の界面でのLiイオンの挿入、脱離に伴う抵抗、すなわち反応抵抗成分が大きな割合を占めている。つまり低温環境下でも良好な特性を得るためには、この負極活性物質の表面と電解液の界面の面積を増大させれば良い。
【0008】
しかしながら、単純に負極活性物質の表面と電解液の界面の面積を増加させた場合、リチウムイオン2次電池そのもののエネルギー密度が低下し、結果とし低温環境下での良好な特性を得ることができない。
【0009】
本発明は負極活性物質の表面と電解液の界面の面積を増大させ負極側の電極反応抵抗を低減させながらも、リチウムイオン2次電池全体としてのエネルギー密度のバランスを保ち、低温環境下でも電気自動車等のパワーソースとして用いることが出来るリチウムイオン2次電池を提供するものである。
【0010】
【課題を解決するための手段】
本発明のリチウムイオン2次電池は、炭素材料からなる負極活物質の比表面積が1.2m/g以上6m/g以下であり、該負極活物質を負極電極シートに0.8g/cm以上1.5g/cm以下の充填密度で設けたことを特徴とする。 つまり、負極活物質の比表面積をより大きな値とし、また負極電極シートに設けた負極活物質の密度をより小さい値とするものである。このことにより内部抵抗が小さくなり、低温環境下でも良好な特性を示すものである。
【0011】
さらに負極活物質に用いる炭素材料には粒状グラファイトを含有することを特徴とする。このことにより、炭素材料が低密度状態であっても十分な電子導電性を確保する。
【0012】
【実施の形態】
本発明のリチウム2次電池は、リチウム含有遷移金属複合酸化物を正極活物質とした正極と、炭素材料を負極活物質とした負極とを主要構成要素とし、この正極および負極、そして正極と負極との間に狭装されるセパレータ、非水電解液等を電池ケースに組み付けることによって構成することができる。
以下に、本発明のリチウムイオン2次電池の実施形態について、各構成要素に分けて詳細に記載する。
【0013】
〈正極の構成〉
正極は、正極活物質であるリチウム含有遷移金属複合酸化物の粉状体に導電助材および結着材を混合し、適当な溶剤を加えてペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。
【0014】
正極活物質となるリチウム含有遷移金属複合酸化物は、Co、Ni、Mn、Fe、Ti、V、Mo等の1種以上をその構成元素とする。 中でも酸化還元電位が高く、4V級のリチウムイオン2次電池を構成できる等の理由から、基本組成をLiNiO、LiCoO、LiMnO、LiFePO等とするリチウム含有遷移合金複合酸化物を用いることが望ましい。
特に、理論容量が大きくかつ比較的安価であるという利点を考慮すれば、Niを主要構成とした基本組成をLiNiOとする規則配列層状岩塩構造リチウムニッケル複合酸化物を用いることが望ましい。
また、必要とする特性に応じてAl、Mg、Co、Mn、Ni等を添加することも可能である。
【0015】
なお、上記「基本組成を〜とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるLi、Co、Ni、Mn等のサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。
【0016】
正極を形成する際、活物質であるリチウム含有遷移金属複合酸化物に混合させる導導電助材は正極の電気伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛、ケッチェンブラック等の炭素質粉状体の1種又は2種以上を混合したものを用いることができる。
【0017】
結着材は活物質粒子および導電助材を繋ぎ止める役割を果たすもので、フッ素系高分子材料であるポリフッ化ビニリデン(PVDF)、テフロン(登録商標)(PTFE)、アクリル系ゴム質共重合体、スチレン−ブタジエン共重合体、ポリエチレンなどのポリマーバインダーを用いることができる。
【0018】
これら活物質、導電助材、結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン(NMP)等の有機溶剤を用いることができる。
【0019】
このようにして得られた正極合材のペーストをアルミニウム等の金属箔の両面に塗布乾燥させ、正極電極シートを作製する。この正極電極シートにロールプレスを行い、正極合材と金属箔の密着力の向上および正極活物質の充填密度の調整を行う。
【0020】
〈負極の構成〉
負極は、負極活物質にリチウムを吸蔵、放出できる炭素材料の粉状体を用い、この炭素材料に結着剤を混合し、溶剤を加えてペースト状にした負極合材を、銅等の金属箔集合体の表面に塗布乾燥し、必要に応じて充填密度を高めるべく圧縮して形成することができる。
【0021】
負極活物質として用いる炭素材料は、比表面積が1.2m/g以上6m/g以下であるものを用いるのが望ましい。比表面積を大きくすることにより負極活物質の表面と電解液の界面の面積を増大させることができ、出力向上を図ることができる。
しかし後述する金属箔集合体への塗布時の接着強度が低下するので上限を6m/gとしている。また1.2m/g以下であれば負極活物質の表面と電解液の界面の面積が増大せず出力向上が望めない。
より望ましい範囲は1.4m/g以上5.4m/g以下であり、さらに望ましくは1.8m/g以上4.2m/g以下である。
【0022】
なお炭素材料は上記比表面積を備えるのもであれば特に種類を限定するものでなく、黒鉛系、易黒鉛化性炭素系(コークス系)、難黒鉛化性炭素系、低温焼成炭素等、種々の材料を用いることが出来る。なお、これらは単独で用いることも、2種以上を混合して活物質とするものでもよい。
【0023】
また炭素材料は副成分として粒状グラファイトを含有するものが望ましい。粒状グラファイトは主成分である炭素材料間の導電性を確保する働きがあるため、炭素材料が低密度状態であっても良好な導電性を示すからである。
粒状グラファイトに限らず炭素材料の導電性を確保するものであればよく、鱗片状黒鉛、球状黒鉛、塊状黒鉛、繊維状黒鉛等を副成分として含むものであってもよい。
【0024】
負極活物質を結着する結着剤は、既に公知の結着剤を用いることができ、その種類を限定するものではない。例えば、フッ素系高分子材料であるポリフッ化ビニリデン(PVDF)、同じくテフロン(登録商標)(PTFE)、アクリル系ゴム質共重合体、スチレン−ブタジエン共重合体等のポリマーバインダー、またはスチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等の水系バインダーなどを用いることができる。
【0025】
負極合材は、上記負極活物質に上記結着剤を混合して行う。混合の方法は特に限定するものでない。例えば攪拌機、混練機、ボールミル等の装置を用いて均一になるように行えばよい。
これら活物質、結着剤を溶剤に分散させ負極合材ペーストとする。分散させる溶剤としてはN−メチル−2−ピロリドン(NMP)等の有機溶剤を用いることができる。
【0026】
このようにして得られた負極合材のペーストを銅等の金属箔集合体の両面に塗布乾燥させ、負極電極シートを作製する。この負極電極シートにロールプレスを行い負極合材と金属箔の密着力の向上、および負極活物質の充填密度の調整を行う。
負極活物質の充填密度は0.8g/cm以上、1.5g/cm以下の範囲とするのが望ましい。
【0027】
リチウム2次電池の内部抵抗を低減すべく、負極活性物質の表面と電解液の界面の面積を増大させるためには、負極活物質の充填密度が低いほど良い。しかし負極活物質の密度が小さくなるとリチウムイオン2次電池自体のエネルギー密度も低下し、その結果必要な出力を得るためにリチウムイオン2次電池そのものを巨大化させる必要がある。
【0028】
そこで本発明者は低温環境下における負極活物質の充填密度とリチウムイオン2次電池の単位体積あたりの出力との関係について後述する実験、検討を行った結果、負極活物質の充填密度が1.0g/cm付近でリチウム2次電池の単位体積あたりの出力が極大値を示すことが判明した。
よって負極活物質の充填密度を上記の範囲とする。さらに望ましくは0.8g/cm以上、1.2g/cm以下であり、より望ましくは0.9g/cm以上、1.1g/cm以下である。
【0029】
〈その他の構成要素〉
上記正極及び負極の他の構成要素として、正極及び負極の間に挟装されるセパレータ、電解液があり、これらを電池ケースに収納し、正極集電体及び負極集電体から外部に通ずる正極端子及び負極端子までの間を集電用リード等を用いて接続し、電池ケースを密閉し電池系を外部と隔離してリチウムイオン2次電池を完成する。
なお、リチウムイオン2次電池の形状は円筒型、積層型、コイン型等、様々なものとすることができる。
【0030】
正極及び負極に挟装させるセパレータは、正極と負極とを分離し電解液を保持するものであれば特に限定するものではないが、ポリエチレン、ポリプロピレン、ポリエチレンとポリプロピレンを重ね合わせたもの、紙、ポリフッ化ビニリデン等の薄い微多孔膜を用いることができる。
【0031】
電解液は電解質としてのリチウム塩を有機溶媒に溶解させたものである。リチウム塩は有機溶媒中に溶解することによって解離し、リチウムイオンとなって電解液中に存在する。使用できるリチウム塩としてはLiPF、LiBF、LiClO、LiCFSO、LiAsF、LiSbF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)等が挙げられる。これらのリチウム塩は、それぞれ単独で用いてもよく、また2種以上のものを併用することもできる。
【0032】
以上、本発明のリチウムイオン2次電池の実施形態について説明したが、上述した実施形態は一実施形態にすぎず、本発明のリチウム2次電池は、上記実施形態を始めとして、当業者の知識の基づいて種々の変更、改良を施した形態で実施することもできる。
【0033】
【実施例】
上記実施形態に基づき、本発明のリチウムイオン2次電池を作製し、従来のリチウムイオン2次電池とで特性比較を行った。また負極活物質の充填密度が異なる種々のリチウムイオン2次電池も作製し、負極活物質の充填密度とエネルギー出力との関係も調査した。
以下これらについて記載する。
【0034】
〈実施例のリチウムイオン2次電池〉
本発明のリチウムイオン2次電池の実施例として、以下の構成のリチウムイオン2次電池を作製した。
正極活物質としてニッケル酸リチウムLiNiCo0.15Al0.05、導電助材としてカーボンブラック(東海カーボン製TB5500)、バインダとしてポリフッ化ビニリデン(呉羽化学工業製 KFポリマ)を用い、これら正極活物質/導電助材/バインダを85/10/5wt%の比で混合した正極合材を作製した。
【0035】
上記正極合材をN−メチル−2−ピロリドン(NMP)で分散させたペーストを、厚さ20μmのアルミニウム箔の両面に塗布乾燥させた。その後、ロールプレスにて充填密度を2.3g/mとしたものを正極シート電極として用いた。正極シート電極サイズは54mm×450mmとした。
【0036】
負極活物質としてグラファイト添加炭素繊維材(ペトカ製 GMCF:比表面積2.6m/g)を、バインダとしてポリフッ化ビニリデン(呉羽化学工業製 KFポリマ)を用い、それぞれ95/5wt%で混合し、N−メチル−2−ピロリドン(NMP)で分散させた負極合材のペーストを、厚さ10μmの銅箔の両面に塗布乾燥させ、ロールプレスしたものを負極シート電極とした。なお、負極活物質の充填密度はロールプレスの圧力を変化させることにより0.8g/mから1.5g/mとした。
【0037】
電池の作製は、上記正極、負極シート電極をセパレータ(東燃タルピス製、PE製25μm厚、幅58mm)を介してロール状に巻回し、18650電池缶に挿入し、電解液(富山薬品工業製、1MLiPF6 EC+DEC〔溶媒:3/7vol比〕)を注入した後に、トップキャップをかしめて密閉した。
【0038】
〈比較例のリチウムイオン2次電池〉
比較例として負極活物質に球状人造黒鉛(大阪ガスケミカル製 MCMB25−28:比表面積1.0m/g)を使用したリチウム2次電池を作製した。負極シートサイズを56mm×500mmとし、負極活物質の充填密度を1.1g/cmから1.4g/cmとした以外は実施例と同様とした。
【0039】
〈電池性能評価〉
上記実施例と比較例の各リチウムイオン2次電池について電池性能評価を行った。−30℃において所定の電流を一定時間流したときの電位降下を測定することで電池性能を評価した。
測定方法はそれぞれ負極活物質の充填密度を1.3g/cmとした実施例及び比較例の各リチウムイオン2次電池を20℃環境下で充電率50%に調整した後、−30℃において所定の電流(0.12A、0.4A、1.2A、1.8A、2.4A、4.8A)を10秒間通電し、その際の10秒目電圧と通電した電流値の関係をプロットした。結果を図1に表す。
【0040】
図1より、実施例の方が通電した電流値が同じでも電位降下が小さく、低抵抗化していることがわかる。また低抵抗化により出力W(=2.5V×〔2.5V時の電流値〕)は5.5Wとなっている。
比較例の出力Wは3.2Wであり、実施例の方が70%程度大きな出力を得ることができる。
【0041】
〈低密度化の評価〉
負極活物質の充填密度と、リチウムイオン2次電としての単位体積あたりの出力の関係について評価した。
評価方法は、負極活物質の充填密度を0.8g/m、1.0g/m、1.3g/m、1.5g/mとした各実施例のリチウム2次電池において、前記(電池性能評価)と同様の測定を行った。結果を図2に示す。なお図2には図1の比較例も併せてプロットしておく。
また各実施例の負極活物質の充填密度と出力W(=2.5V×〔2.5V時の電流値〕)の関係を図3に示す。
【0042】
この結果より負極活物質の充填密度を低くすると出力値が高くなり、低温環境下でも大きな電力を取り出すことができることが確認できた。
しかしながら負極活物質の充填密度を低くすると、必要な出力を取り出すためのリチウムイオン2次電池のサイズを大きくする必要がある。そこで図3の結果をもとに、リチウムイオン2次電池としたときの巻き電極の単位体積あたりの出力値(W/mm)を計算し、負極活物質の充填密度との関係を図4に示した。
【0043】
図4により、負極活物質の充填密度を1.6g/mから低くしていくと単位体積あたりの出力は増加していき、1.0g/m前後で極大点を示す。しかし、それ以上負極活物質の充填密度が低下すると単位体積あたりの出力値は低くなっていく。
【0044】
なお比較例についても実施例と同様に、負極活物質の充填密度を変化させた場合の−30℃における「電流−10秒目電圧」を測定した。結果を図5に示す。
比較例では実施例と異なり、負極活物質の充填密度が低下するほど取り出せる電流値が小さくなり、得られる出力値が下がることが判明した。
【0045】
〈特性向上の解析〉
以上のように実施例では低温環境下での出力値を大幅に向上することができた。ここで特性向上の要因について解析するため、リチウムイオン2次電池の複素インピーダンス解析を実施した。
【0046】
図6にリチウム2次電池の抵抗成分を模式的に示す。各成分の詳細は下記の通りである。
sol:液抵抗 電子移動に関わる抵抗成分
dl:電気二重層容量 電解液−電極界面に形成される電気二重層の容量
ct:反応抵抗 電解液−電極界面で電荷を交換する際に発生する抵抗
D:拡散抵抗 電解液−電極界面に酸化体・還元体を補給するための物質拡散に伴う抵抗
【0047】
実施例と比較例における負極活物質の複素インピーダンス解析例を図7に示す。このときの実施例はグラファイト添加炭素繊維材(充填密度0.87g/cm)であり、比較例は球状人造黒鉛(充填密度1.3g/cm)である。
【0048】
なお交流における抵抗を意味するインピーダンスZの一般式はZ=Zre+Zim(Zre:実数成分 Zim:虚数成分)で示さる。図7の横軸はZre、縦軸はZimを示し、電池反応の複素インピーダンスプロットの周波数依存性を示している。
【0049】
高周波側では抵抗とコンデンサの並列回路に類似した半円が表れ、低周波側では45度の傾きの直線が現れている。円弧の始まり部がRSOLに、円弧の径がRctに相当する。図7では反応抵抗Rctを示す円弧の径が小さくなっている。図7における各成分のそれぞれの密充填度における詳細を表1に表す。
【0050】
実施例の負極活物質は比較例の負極活物質に比べ、ほぼ同じ充填密度のときであっても負極の反応抵抗Rctを小さくすることができている。ただし電気二重層容量Cdlはほとんど変化していないことから、負極活物質と電解液の界面での反応そのものが起こり易くなっていると考えられる。
【0051】
また実施例では負極活物質の充填密度を低くすることによっても負極の反応抵抗Rctを小さくすることができている。それと同時に電気二重層容量Cdlは増加していることから負極活物質の低充填密度化により、負極活物質と電解液の界面での反応有効面積が増加し、それに伴い抵抗を減少できたと考えられる。
ただし比較例では図5に示したように、負極活物質の低充填密度化により逆に出力が低下している。これは以下のように考えられる。
【0052】
図8に表したのは実施例(グラファイト添加炭素繊維材料)と比較例(球状人造黒鉛)との負極電極シートの断面模式図である。
電極反応の際、電解液へのLiイオンの挿入離脱に伴い集電箔Wを通じて、電子(e)の移動が起こる。比較材では、密度が高ければ負極活物質同士の接触性が確保され、電子伝導性は良好に保たれる。しかし充填密度が低い場合は、負極活物質同士の接触性が悪くなり、電極シート内の導電性が低下する。
そのため比較材では低充填密度化により負極活物質と電解液の界面における反応有効面積を増加しても、出力を向上させることができないと考えられる。
【0053】
一方、実施例での負極活物質は、副成分である板状グラファイトが、主成分である炭素繊維同士の電子導電性を確保する効果があり、図8に示すように低充填密度化しても、電極シート内での導電性が低下しない。よってリチウム2次電池の出力を向上することができると考えられる。
【0054】
【表1】

Figure 0004120439
【0055】
【発明の効果】
本発明はリチウム2次電池において負極活性物質の比表面積と充填密度の最適化を図ることにより、特に低温環境下で良好な特性を得ることができる。
【図面の簡単な説明】
【図1】実施例と比較例における電流と10秒目電圧の関係
【図2】実施例での各負極活物質の充填密度における電流と10秒目電圧の関係
【図3】実施例における出力と負極活物質の充填密度との関係
【図4】実施例における単位体積あたりの出力と負極活物質の充填密度との関係
【図5】比較例での各負極活物質の充填密度における電流と10秒目電圧の関係
【図6】電極反応に伴う抵抗成分の模式図
【図7】複素インピーダンス解析図
【図8】実施例と比較例の負極における電極シートの模式断面図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium ion secondary battery that utilizes the phenomenon of insertion and extraction of lithium, and more particularly to a lithium ion secondary battery that exhibits good characteristics in a low temperature environment.
[0002]
[Prior art]
Lithium ion secondary batteries that use the lithium absorption and desorption phenomenon have high energy density, and as a result, miniaturization of mobile phones, personal computers, etc. has led to widespread use in the fields of communication equipment and information-related equipment. Yes. On the other hand, due to environmental problems and resource problems, the development of electric vehicles has been urgently carried out in the field of automobiles, and lithium ion secondary batteries have been studied as power sources for the electric vehicles.
[0003]
When a lithium ion secondary battery is used as a power source for an electric vehicle (including a hybrid car), characteristics different from those of other applications are required. An automobile travels outdoors, and it is necessary to exhibit good characteristics from a high temperature of about 60 ° C. to a low temperature of about −30 ° C. assuming an environment where a lithium secondary battery is placed. Also, when starting, accelerating, etc., a large current must be discharged, especially in a low temperature range where the battery reaction is inactive (characteristic of how much output can be obtained per unit time) ).
[0004]
Currently used lithium ion secondary batteries are premised to be used at room temperature, and the negative electrode active material has a specific surface area of around 1.0 m 2 / g to meet the demand for higher energy density. A material in which the packing density of the negative electrode active material of the electrode sheet is 1.2 g / cm 3 or more is the mainstream.
[0005]
[Patent Document 1]
JP-A-10-261406 [Patent Document 2]
Japanese Patent Laid-Open No. 10-116619
[Problems to be solved by the invention]
Conventional lithium secondary batteries are not expected to be used in a low temperature environment (−30 ° C.), and when used in such an environment, only a small output value can be taken out. This is because the internal resistance of the lithium ion secondary battery is large.
[0007]
As for the internal resistance of the lithium ion secondary battery, the resistance accompanying the insertion and desorption of Li ions at the interface between the surface of the negative electrode active material and the electrolytic solution, that is, the reaction resistance component occupies a large proportion. That is, in order to obtain good characteristics even in a low temperature environment, the area of the interface between the surface of the negative electrode active material and the electrolytic solution may be increased.
[0008]
However, when the area of the negative electrode active material surface and the interface between the electrolyte solution is simply increased, the energy density of the lithium ion secondary battery itself decreases, and as a result, good characteristics cannot be obtained in a low temperature environment. .
[0009]
The present invention increases the area of the surface of the negative electrode active material and the electrolyte and reduces the electrode reaction resistance on the negative electrode side, while maintaining the balance of the energy density of the lithium ion secondary battery as a whole. The present invention provides a lithium ion secondary battery that can be used as a power source for automobiles and the like.
[0010]
[Means for Solving the Problems]
In the lithium ion secondary battery of the present invention, the specific surface area of the negative electrode active material made of a carbon material is 1.2 m 2 / g or more and 6 m 2 / g or less, and the negative electrode active material is applied to the negative electrode sheet at 0.8 g / cm. wherein the 3 or more 1.5 g / cm 3 that is provided in the following packing density. That is, the specific surface area of the negative electrode active material is set to a larger value, and the density of the negative electrode active material provided on the negative electrode sheet is set to a smaller value. As a result, the internal resistance is reduced, and good characteristics are exhibited even in a low temperature environment.
[0011]
Furthermore, the carbon material used for the negative electrode active material contains granular graphite. This ensures sufficient electronic conductivity even when the carbon material is in a low density state.
[0012]
Embodiment
The lithium secondary battery of the present invention includes a positive electrode using a lithium-containing transition metal composite oxide as a positive electrode active material and a negative electrode using a carbon material as a negative electrode active material. The positive electrode and the negative electrode, and the positive electrode and the negative electrode A separator, a non-aqueous electrolyte, or the like that is sandwiched between the battery case and the battery case can be assembled.
Hereinafter, embodiments of the lithium ion secondary battery of the present invention will be described in detail for each component.
[0013]
<Configuration of positive electrode>
The positive electrode is made by mixing a conductive additive and a binder with a powder of a lithium-containing transition metal composite oxide, which is a positive electrode active material, and adding a suitable solvent to form a paste-like positive electrode mixture such as aluminum. It can be formed by applying and drying on the surface of the current collector made of metal foil and compressing it to increase the electrode density as necessary.
[0014]
The lithium-containing transition metal composite oxide serving as the positive electrode active material has one or more elements such as Co, Ni, Mn, Fe, Ti, V, and Mo as constituent elements. Among them, a lithium-containing transition alloy composite oxide having a basic composition of LiNiO 2 , LiCoO 2 , LiMnO 4 , LiFePO 4, etc. is used because it has a high oxidation-reduction potential and can constitute a 4V-class lithium ion secondary battery. Is desirable.
In particular, in consideration of the advantages of a large theoretical capacity and relatively low cost, it is desirable to use a regularly arranged layered rock salt structure lithium nickel composite oxide in which the basic composition mainly composed of Ni is LiNiO 2 .
Moreover, Al, Mg, Co, Mn, Ni, etc. can be added according to the required characteristics.
[0015]
In addition, the above-mentioned “basic composition is assumed to be” means that not only the composition represented by the composition formula but also a part of sites such as Li, Co, Ni, and Mn in the crystal structure are replaced with other elements. It is meant to include. Furthermore, it means that not only a stoichiometric composition but also a non-stoichiometric composition in which some elements are deficient or the like is included.
[0016]
When forming the positive electrode, the conductive aid mixed with the lithium-containing transition metal composite oxide, which is the active material, is for ensuring the electrical conductivity of the positive electrode. Carbon black, acetylene black, graphite, ketjen black What mixed 1 type, or 2 or more types of carbonaceous powders, such as these, can be used.
[0017]
The binder plays a role of connecting the active material particles and the conductive additive, and is a fluorine-based polymer material such as polyvinylidene fluoride (PVDF), Teflon (registered trademark) (PTFE), and an acrylic rubbery copolymer. Polymer binders such as styrene-butadiene copolymer and polyethylene can be used.
[0018]
An organic solvent such as N-methyl-2-pyrrolidone (NMP) can be used as a solvent for dispersing these active materials, conductive additives, and binders.
[0019]
The positive electrode mixture paste thus obtained is applied to and dried on both surfaces of a metal foil such as aluminum to produce a positive electrode sheet. This positive electrode sheet is roll-pressed to improve the adhesion between the positive electrode mixture and the metal foil and adjust the packing density of the positive electrode active material.
[0020]
<Negative electrode configuration>
The negative electrode is a carbon material powder that can occlude and release lithium in the negative electrode active material. The carbon material is mixed with a binder, and a solvent is added to form a paste into the negative electrode mixture, such as copper. It can be formed by applying and drying on the surface of the foil assembly and, if necessary, compressing to increase the packing density.
[0021]
The carbon material used as the negative electrode active material is preferably a carbon material having a specific surface area of 1.2 m 2 / g or more and 6 m 2 / g or less. By increasing the specific surface area, it is possible to increase the area of the interface between the surface of the negative electrode active material and the electrolytic solution, and to improve the output.
However, since the adhesive strength at the time of application to the metal foil aggregate described later is lowered, the upper limit is set to 6 m 2 / g. Moreover, if it is 1.2 m < 2 > / g or less, the area of the interface of a negative electrode active material and electrolyte solution does not increase, and an output improvement cannot be expected.
A more desirable range is 1.4 m 2 / g or more and 5.4 m 2 / g or less, and further desirably 1.8 m 2 / g or more and 4.2 m 2 / g or less.
[0022]
The carbon material is not particularly limited as long as it has the above specific surface area, and various types such as graphite, graphitizable carbon (coke), non-graphitizable carbon, low-temperature calcined carbon, etc. These materials can be used. In addition, these may be used independently or 2 or more types may be mixed and used as an active material.
[0023]
The carbon material preferably contains granular graphite as an accessory component. This is because granular graphite has a function of ensuring electrical conductivity between carbon materials, which are main components, and therefore exhibits excellent electrical conductivity even when the carbon material is in a low density state.
It is not limited to granular graphite, and any carbon material may be used as long as it ensures the conductivity of the carbon material, and it may include scaly graphite, spherical graphite, massive graphite, fibrous graphite, and the like as subcomponents.
[0024]
As the binder for binding the negative electrode active material, a known binder can be used, and the kind thereof is not limited. For example, polyvinylidene fluoride (PVDF) which is a fluorine polymer material, polymer binder such as Teflon (registered trademark) (PTFE), acrylic rubber copolymer, styrene-butadiene copolymer, or styrene-butadiene rubber An aqueous binder such as (SBR) or carboxymethylcellulose (CMC) can be used.
[0025]
The negative electrode mixture is performed by mixing the above-mentioned binder with the above-mentioned negative electrode active material. The mixing method is not particularly limited. For example, it may be performed uniformly using an apparatus such as a stirrer, a kneader, or a ball mill.
These active material and binder are dispersed in a solvent to obtain a negative electrode mixture paste. As the solvent to be dispersed, an organic solvent such as N-methyl-2-pyrrolidone (NMP) can be used.
[0026]
The negative electrode mixture paste thus obtained is applied to and dried on both surfaces of a metal foil aggregate such as copper to produce a negative electrode sheet. This negative electrode sheet is roll-pressed to improve the adhesion between the negative electrode mixture and the metal foil and to adjust the filling density of the negative electrode active material.
The packing density of the negative electrode active material is desirably in the range of 0.8 g / cm 3 or more and 1.5 g / cm 3 or less.
[0027]
In order to increase the area of the interface between the surface of the negative electrode active material and the electrolytic solution in order to reduce the internal resistance of the lithium secondary battery, the lower the packing density of the negative electrode active material, the better. However, as the density of the negative electrode active material decreases, the energy density of the lithium ion secondary battery itself also decreases, and as a result, it is necessary to enlarge the lithium ion secondary battery itself in order to obtain the required output.
[0028]
Therefore, the present inventor conducted experiments and examinations described later on the relationship between the packing density of the negative electrode active material and the output per unit volume of the lithium ion secondary battery in a low temperature environment, and as a result, the packing density of the negative electrode active material was 1. It was found that the output per unit volume of the lithium secondary battery showed a maximum value near 0 g / cm 3 .
Therefore, the filling density of the negative electrode active material is set to the above range. More desirably, it is 0.8 g / cm 3 or more and 1.2 g / cm 3 or less, and more desirably 0.9 g / cm 3 or more and 1.1 g / cm 3 or less.
[0029]
<Other components>
As other components of the positive electrode and the negative electrode, there are a separator and an electrolytic solution sandwiched between the positive electrode and the negative electrode. The positive electrode is housed in a battery case and communicates with the positive electrode current collector and the negative electrode current collector to the outside. The terminal and the negative terminal are connected using a current collecting lead or the like, the battery case is sealed, the battery system is isolated from the outside, and the lithium ion secondary battery is completed.
The shape of the lithium ion secondary battery can be various, such as a cylindrical shape, a stacked shape, and a coin shape.
[0030]
The separator sandwiched between the positive electrode and the negative electrode is not particularly limited as long as it separates the positive electrode and the negative electrode and retains the electrolytic solution. However, polyethylene, polypropylene, a laminate of polyethylene and polypropylene, paper, A thin microporous film such as vinylidene chloride can be used.
[0031]
The electrolytic solution is obtained by dissolving a lithium salt as an electrolyte in an organic solvent. The lithium salt is dissociated by dissolving in an organic solvent, and becomes lithium ions and exists in the electrolytic solution. LiPF 6 as the lithium salt can be used, LiBF 4, LiClO 4, LiCF 3 SO 3, LiAsF 6, LiSbF 6, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and the like. These lithium salts may be used alone or in combination of two or more.
[0032]
The embodiment of the lithium ion secondary battery of the present invention has been described above. However, the above-described embodiment is only one embodiment, and the lithium secondary battery of the present invention includes knowledge of those skilled in the art including the above embodiment. It is also possible to implement the invention in various modifications and improvements based on the above.
[0033]
【Example】
Based on the above embodiment, the lithium ion secondary battery of the present invention was manufactured, and the characteristics were compared with those of the conventional lithium ion secondary battery. Various lithium ion secondary batteries having different negative electrode active material packing densities were also produced, and the relationship between the negative electrode active material packing density and the energy output was also investigated.
These are described below.
[0034]
<Lithium ion secondary battery of Example>
As an example of the lithium ion secondary battery of the present invention, a lithium ion secondary battery having the following configuration was produced.
Lithium nickelate LiNiCo 0.15 Al 0.05 O 2 as the positive electrode active material, carbon black (TB5500 manufactured by Tokai Carbon Co., Ltd.) as the conductive additive, and polyvinylidene fluoride (KF polymer manufactured by Kureha Chemical Industries) as the binder, A positive electrode mixture in which the substance / conductive aid / binder was mixed at a ratio of 85/10/5 wt% was produced.
[0035]
A paste in which the positive electrode mixture was dispersed with N-methyl-2-pyrrolidone (NMP) was applied to both surfaces of an aluminum foil having a thickness of 20 μm and dried. Then, what made the packing density 2.3g / m < 3 > with the roll press was used as a positive electrode sheet electrode. The size of the positive electrode sheet electrode was 54 mm × 450 mm.
[0036]
Using graphite-added carbon fiber material (GMCF made by Petka: specific surface area 2.6 m 2 / g) as the negative electrode active material and polyvinylidene fluoride (KF polymer made by Kureha Chemical Industries) as the binder, mixing each at 95/5 wt%, A negative electrode mixture paste dispersed with N-methyl-2-pyrrolidone (NMP) was applied to and dried on both sides of a copper foil having a thickness of 10 μm and roll-pressed to obtain a negative electrode sheet electrode. The filling density of the negative electrode active material was from 0.8 g / m 3 and 1.5 g / m 3 by changing the pressure of the roll press.
[0037]
The battery was prepared by winding the positive electrode and negative electrode sheet electrodes in a roll shape through a separator (made by Tonen Tarpis, PE 25 μm thickness, width 58 mm), inserted into a 18650 battery can, and an electrolytic solution (manufactured by Toyama Pharmaceutical Co., Ltd.) After injecting 1M LiPF6 EC + DEC (solvent: 3/7 vol ratio)), the top cap was caulked and sealed.
[0038]
<Lithium ion secondary battery of comparative example>
As a comparative example, a lithium secondary battery using spherical artificial graphite (MCMB25-28 manufactured by Osaka Gas Chemical Co., Ltd., specific surface area 1.0 m 2 / g) as a negative electrode active material was produced. The negative electrode sheet size was 56 mm × 500 mm, and the packing density of the negative electrode active material was changed from 1.1 g / cm 3 to 1.4 g / cm 3 .
[0039]
<Battery performance evaluation>
Battery performance evaluation was performed about each lithium ion secondary battery of the said Example and comparative example. The battery performance was evaluated by measuring the potential drop when a predetermined current was passed for a certain time at -30 ° C.
The measurement method was as follows: each lithium ion secondary battery of Examples and Comparative Examples in which the packing density of the negative electrode active material was 1.3 g / cm 3 was adjusted to a charge rate of 50% in a 20 ° C. environment, and then at −30 ° C. A predetermined current (0.12A, 0.4A, 1.2A, 1.8A, 2.4A, 4.8A) is energized for 10 seconds, and the relationship between the 10th voltage at that time and the energized current value is plotted. did. The results are shown in FIG.
[0040]
From FIG. 1, it can be seen that even in the case of the same current value in the example, the potential drop is small and the resistance is reduced. Further, the output W (= 2.5 V × [current value at 2.5 V]) is 5.5 W due to the low resistance.
The output W of the comparative example is 3.2 W, and an output that is about 70% larger can be obtained in the embodiment.
[0041]
<Evaluation of low density>
The relationship between the packing density of the negative electrode active material and the output per unit volume as lithium ion secondary electricity was evaluated.
The evaluation method is as follows. In the lithium secondary battery of each example, the packing density of the negative electrode active material was 0.8 g / m 3 , 1.0 g / m 3 , 1.3 g / m 3 , and 1.5 g / m 3 . Measurements similar to the above (battery performance evaluation) were performed. The results are shown in FIG. In FIG. 2, the comparative example of FIG. 1 is also plotted.
FIG. 3 shows the relationship between the packing density of the negative electrode active material and the output W (= 2.5 V × [current value at 2.5 V]) in each example.
[0042]
From this result, it was confirmed that when the packing density of the negative electrode active material was lowered, the output value was increased, and a large electric power could be taken out even in a low temperature environment.
However, when the packing density of the negative electrode active material is lowered, it is necessary to increase the size of the lithium ion secondary battery for taking out a necessary output. So based on the results of FIG. 3, the output value per unit volume of winding electrodes when the lithium-ion secondary batteries (W / mm 3) was calculated, Fig. 4 the relationship between the packing density of the negative electrode active material It was shown to.
[0043]
As shown in FIG. 4, when the packing density of the negative electrode active material is lowered from 1.6 g / m 3 , the output per unit volume increases and shows a maximum point around 1.0 g / m 3 . However, the output value per unit volume decreases as the packing density of the negative electrode active material further decreases.
[0044]
As in the example, the “current—voltage at 10 seconds” at −30 ° C. when the packing density of the negative electrode active material was changed was also measured for the comparative example. The results are shown in FIG.
In the comparative example, unlike the example, it was found that the current value that can be taken out decreases as the packing density of the negative electrode active material decreases, and the output value obtained decreases.
[0045]
<Characteristic improvement analysis>
As described above, in the example, the output value under the low temperature environment could be greatly improved. Here, in order to analyze the factor of the characteristic improvement, the complex impedance analysis of the lithium ion secondary battery was implemented.
[0046]
FIG. 6 schematically shows a resistance component of the lithium secondary battery. Details of each component are as follows.
R sol : Liquid resistance Resistance component related to electron transfer C dl : Electric double layer capacity Electric double layer capacity formed at the electrolyte-electrode interface R ct : Reaction resistance Generated when exchanging charges at the electrolyte-electrode interface Resistance D: Diffusion resistance Resistance due to material diffusion for supplying oxidant / reductant to the electrolyte-electrode interface
An example of complex impedance analysis of negative electrode active materials in Examples and Comparative Examples is shown in FIG. An example at this time is a graphite-added carbon fiber material (filling density 0.87 g / cm 3 ), and a comparative example is spherical artificial graphite (filling density 1.3 g / cm 3 ).
[0048]
Note the general formula of the impedance Z, which means the resistance in the AC Z = Z re + Z im Shimesaru with (Z re:: real component Z im imaginary component). In FIG. 7, the horizontal axis represents Z re and the vertical axis represents Z im , indicating the frequency dependence of the complex impedance plot of the battery reaction.
[0049]
A semicircle similar to a parallel circuit of a resistor and a capacitor appears on the high frequency side, and a straight line with a 45 ° slope appears on the low frequency side. Arc-starting part is the R SOL, the diameter of the arc corresponds to the R ct. In FIG. 7, the diameter of the arc indicating the reaction resistance Rct is small. Table 1 shows details of each component in FIG.
[0050]
Compared with the negative electrode active material of the comparative example, the negative electrode active material of the example can reduce the reaction resistance Rct of the negative electrode even when the packing density is substantially the same. However, since the electric double layer capacity C dl is hardly changed, it is considered that the reaction itself at the interface between the negative electrode active material and the electrolytic solution easily occurs.
[0051]
In the embodiment it has been able to reduce the reaction resistance R ct of the anode by reducing the packing density of the negative electrode active material. At the same time, the electric double layer capacity C dl is increasing, and therefore the effective area of the reaction at the interface between the negative electrode active material and the electrolytic solution is increased by reducing the packing density of the negative electrode active material. It is done.
However, in the comparative example, as shown in FIG. 5, the output is reduced due to the low packing density of the negative electrode active material. This is considered as follows.
[0052]
FIG. 8 is a schematic cross-sectional view of the negative electrode sheet of the example (graphite-added carbon fiber material) and the comparative example (spherical artificial graphite).
During the electrode reaction, movement of electrons (e ) occurs through the collector foil W as Li ions are inserted into and released from the electrolytic solution. In the comparative material, when the density is high, the contact property between the negative electrode active materials is secured, and the electron conductivity is kept good. However, when the packing density is low, the contact property between the negative electrode active materials is deteriorated, and the conductivity in the electrode sheet is lowered.
Therefore, it is considered that the output of the comparative material cannot be improved even if the reaction effective area at the interface between the negative electrode active material and the electrolytic solution is increased by reducing the packing density.
[0053]
On the other hand, the negative electrode active material in the example has the effect that the plate-like graphite as the subcomponent ensures the electronic conductivity between the carbon fibers as the main components, and even if the packing density is lowered as shown in FIG. The conductivity in the electrode sheet does not decrease. Therefore, it is considered that the output of the lithium secondary battery can be improved.
[0054]
[Table 1]
Figure 0004120439
[0055]
【The invention's effect】
The present invention can obtain good characteristics particularly in a low temperature environment by optimizing the specific surface area and packing density of the negative electrode active material in a lithium secondary battery.
[Brief description of the drawings]
FIG. 1 shows the relationship between current and 10-second voltage in Examples and Comparative Examples. FIG. 2 shows the relationship between current and 10-second voltage at the packing density of each negative electrode active material in Examples. FIG. 4 shows the relationship between the output per unit volume and the packing density of the negative electrode active material in the examples. FIG. 5 shows the current at the packing density of each negative electrode active material in the comparative example. Fig. 6 Schematic diagram of resistance component accompanying electrode reaction Fig. 7 Complex impedance analysis diagram Fig. 8 Schematic sectional view of electrode sheet in negative electrode of Example and Comparative Example

Claims (2)

炭素材料からなる負極活物質の比表面積が1.8m/g以上4.2m/g以下であり、該負極活物質を負極電極シートに0.9g/cm以上1.1g/cm以下の充填密度で設けたことを特徴とするリチウムイオン2次電池。The specific surface area of the negative electrode active material composed of a carbon material is not more than 1.8 m 2 / g or more 4.2m 2 / g, 0.9g / cm the negative electrode active material in the negative electrode sheet 3 to 1.1 g / cm 3 A lithium ion secondary battery provided with the following packing density. 前記炭素材料は粒状グラファイトを含有することを特徴とする請求項1に記載のリチウムイオン2次電池。The lithium ion secondary battery according to claim 1, wherein the carbon material contains granular graphite.
JP2003088097A 2003-03-27 2003-03-27 Lithium ion secondary battery Expired - Fee Related JP4120439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088097A JP4120439B2 (en) 2003-03-27 2003-03-27 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088097A JP4120439B2 (en) 2003-03-27 2003-03-27 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2004296305A JP2004296305A (en) 2004-10-21
JP4120439B2 true JP4120439B2 (en) 2008-07-16

Family

ID=33402318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088097A Expired - Fee Related JP4120439B2 (en) 2003-03-27 2003-03-27 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4120439B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841814B2 (en) * 2004-07-14 2011-12-21 株式会社Kri Non-aqueous secondary battery
JP2010009948A (en) * 2008-06-27 2010-01-14 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP5547591B2 (en) * 2010-09-15 2014-07-16 株式会社豊田中央研究所 Selection method
JP5662746B2 (en) * 2010-09-15 2015-02-04 株式会社豊田中央研究所 Lithium ion secondary battery
JP2012169160A (en) * 2011-02-15 2012-09-06 Sumitomo Chemical Co Ltd Electrode for sodium secondary battery and sodium secondary battery
JP5633747B2 (en) * 2011-03-17 2014-12-03 トヨタ自動車株式会社 Lithium ion secondary battery
KR101569297B1 (en) 2011-06-08 2015-11-13 도요타지도샤가부시키가이샤 Lithium ion secondary cell
CN105103364B (en) * 2013-03-26 2018-07-13 日产自动车株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189052A (en) * 1996-12-24 1998-07-21 Nikkiso Co Ltd Non-aqueous electrolyte secondary battery
JP2000251890A (en) * 1999-02-26 2000-09-14 Osaka Gas Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
JP2001196095A (en) * 2000-01-07 2001-07-19 At Battery:Kk Manufacturing method of non-aqueous electrolyte secondary battery
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP3579340B2 (en) * 2000-09-29 2004-10-20 株式会社東芝 Non-aqueous electrolyte secondary battery
JP3635044B2 (en) * 2001-06-08 2005-03-30 三井鉱山株式会社 Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4183472B2 (en) * 2002-10-10 2008-11-19 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2004296305A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
JP6841971B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
US20100159334A1 (en) Lithium secondary battery
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
CN101379653A (en) Lithium secondary battery using ionic liquid
JP2009245808A (en) Lithium ion secondary battery, and power source for electric vehicle
CN106537665A (en) Cathode for lithium batteries
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2016119180A (en) Non-aqueous lithium secondary battery
JP5380826B2 (en) Lithium ion secondary battery
JP5169181B2 (en) Non-aqueous electrolyte secondary battery
JP2009200043A (en) Battery
JP2010225366A (en) Nonaqueous electrolyte secondary battery
JP2013134921A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4120439B2 (en) Lithium ion secondary battery
CN115411227A (en) Lithium-ion secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2009004357A (en) Non-aqueous electrolyte lithium ion secondary battery
JP2012216500A (en) Lithium secondary battery
JP5668667B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2019169346A (en) Lithium ion secondary battery
JP2005293960A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2011119072A (en) Method of using lithium secondary battery
JP6668848B2 (en) Lithium ion secondary battery
JP2012226963A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees