[go: up one dir, main page]

JP2009168148A - Rotary shaft coupling - Google Patents

Rotary shaft coupling Download PDF

Info

Publication number
JP2009168148A
JP2009168148A JP2008006874A JP2008006874A JP2009168148A JP 2009168148 A JP2009168148 A JP 2009168148A JP 2008006874 A JP2008006874 A JP 2008006874A JP 2008006874 A JP2008006874 A JP 2008006874A JP 2009168148 A JP2009168148 A JP 2009168148A
Authority
JP
Japan
Prior art keywords
rotary shaft
buffer member
shaft coupling
vibration
engagement portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008006874A
Other languages
Japanese (ja)
Inventor
Kazukiyo Kusuoka
一清 楠岡
Hiroyuki Nomura
浩之 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008006874A priority Critical patent/JP2009168148A/en
Publication of JP2009168148A publication Critical patent/JP2009168148A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary shaft coupling having a structure coping with vibrations in a peripheral direction in addition to an axial direction. <P>SOLUTION: This rotary shaft coupling RJ transmitting driving force is disposed in a portion where a rotating drive shaft and a driven shaft which are collinearly arranged are confronted with each other. The rotary shaft coupling includes a first rotary engagement portion set at the end of the rotating drive shaft, a second rotary engagement portion set at the end of the driven shaft, and an annular shock absorbing member 10 interposed between the first rotary engagement portion and the second rotary engagement portion. The shock absorbing member 10 is formed by laminating a plurality of annular plates 11. A plurality of vibration absorbing structures 20 absorbing vibration in the peripheral direction is equally spaced along the peripheral direction on the annular plate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、同一線上で対向して配置される2軸間に配置されて回転力(トルク)を伝達する回転軸継手に関する。より詳細には、回転駆動軸となる一方の回転力を、他方の被動軸へ伝達するのに好適な回転軸継手に関する。   The present invention relates to a rotary shaft joint that is disposed between two shafts that are opposed to each other on the same line and transmits a rotational force (torque). More specifically, the present invention relates to a rotary shaft joint suitable for transmitting one rotational force serving as a rotational drive shaft to the other driven shaft.

回転軸継手としては、例えば車両のプロペラシャフト部分に使用される車両用軸継手などがよく知られている。このような回転軸継手に対しては、回転力の伝達時に振動や騒音を発生せず、スムーズに伝達されることが一般に要求される。   As the rotary shaft joint, for example, a vehicle shaft joint used for a propeller shaft portion of a vehicle is well known. Such a rotary shaft joint is generally required to transmit smoothly without generating vibration or noise when transmitting the rotational force.

振動や衝撃を抑制するという観点から従前において、弾性を有するゴム材や樹脂材で形成した継手(ラバーカップリングなど)が知られていた。しかし、この種の弾性材料による継手は部品点数が多く大型化し易いこと、また高温環境下での使用が制限されてしまうなどの問題があった。そこで、近年にあっては、例えばプロペラシャフト部分の回転軸継手で変速機の入力軸にセットされる継手の一方側(第1の回転係合部)と、プロペラシャフトのシャフト本体にセットされる他方側(第2の回転係合部)との間に、振動や衝撃を抑制するため金属製の緩衝部材を更に配備した構造が提案されている。   Conventionally, from the viewpoint of suppressing vibrations and impacts, joints (rubber couplings, etc.) formed from elastic rubber materials or resin materials have been known. However, this type of joint made of an elastic material has a problem that the number of parts is large and the joint is easily increased in size, and use in a high temperature environment is restricted. Therefore, in recent years, for example, the rotary shaft joint of the propeller shaft portion is set on one side (first rotational engagement portion) of the joint set on the input shaft of the transmission and on the shaft body of the propeller shaft. A structure in which a metal buffer member is further provided between the other side (second rotational engagement portion) to suppress vibration and impact has been proposed.

例えば、特許文献1及び特許文献2は、緩衝部材として金属製の環状プレートを備えた車両用軸継手の構造を開示している。これら特許文献2では、環状プレートのボルト用挿通孔間の連結アーム部を所定形状に形成することで、振動吸収性能等を高める構造を提案している。また、特許文献3は曲げ剛性の大幅な増大を招くことなく周方向の剛性を高めることができる緩衝部材の例として、薄肉の環状プレートを複数枚積層してある構造を開示している。
特開2001−349337号公報 特開2001−349339号公報 特開2002−168266号公報
For example, Patent Literature 1 and Patent Literature 2 disclose a structure of a vehicle shaft joint including a metal annular plate as a buffer member. In these patent documents 2, the structure which improves vibration absorption performance etc. is proposed by forming the connection arm part between the bolt insertion holes of an annular plate in a predetermined shape. Patent Document 3 discloses a structure in which a plurality of thin annular plates are stacked as an example of a buffer member that can increase the rigidity in the circumferential direction without causing a significant increase in bending rigidity.
JP 2001-349337 A JP 2001-349339 A JP 2002-168266 A

上記のように、従来から金属製の環状プレートを介在した構造の回転軸継手について複数の提案がなされているが、上記特許文献はいずれも軸方向(回転駆動軸と被動軸が延在する方向)での振動を抑制するための構造や剛性の向上を図る提案に関するものであった。しかしながら、回転駆動軸と被動軸とを接続して、回転力を伝達する回転軸継手では周方向(回転方向)でも振動が発生する。この周方向での振動も、前述した軸方向の振動と同様に問題となる。しかし、上記特許文献1〜3は、このような振動については配慮していないので有効に対処できない。   As described above, conventionally, a plurality of proposals have been made for a rotary shaft joint having a structure in which a metal annular plate is interposed. However, all of the above patent documents are axial directions (directions in which a rotary drive shaft and a driven shaft extend). ) Related to the proposal to improve the structure and rigidity to suppress vibration. However, in the rotary shaft joint that connects the rotational drive shaft and the driven shaft and transmits the rotational force, vibration is generated in the circumferential direction (rotational direction). The vibration in the circumferential direction is also problematic as in the case of the axial vibration described above. However, since the above Patent Documents 1 to 3 do not consider such vibration, they cannot be effectively dealt with.

よって、本発明の目的は、上記従来の課題を解決し、軸方向だけでなく周方向の振動にも対処する構造を備えた回転軸継手を提案することである。   Accordingly, an object of the present invention is to solve the above-described conventional problems and to propose a rotary shaft coupling having a structure that can deal with vibrations in the circumferential direction as well as the axial direction.

上記目的のため、本発明に係る回転軸継手は、
同一線上に配置される回転駆動軸と被動軸との突合せ部分に配備され、駆動力を伝達するものであって、
前記回転軸継手は、前記回転駆動軸側の端部に設定される第1の回転係合部と、前記被動軸側の端部に設定される第2の回転係合部と、更に前記第1の回転係合部と前記第2の回転係合部との間に介挿した環状の緩衝部材とを含み、
前記緩衝部材は環状プレートを複数、積層して形成されていると共に、前記環状プレートには周方向への振動を吸収する複数の振動吸収構造が周方向に沿って等間隔に配備してあることにより、特徴付けされるものである。
For the above purpose, the rotary shaft joint according to the present invention is:
It is arranged at the abutting portion between the rotational drive shaft and the driven shaft arranged on the same line, and transmits the driving force,
The rotary shaft coupling includes a first rotation engagement portion set at an end portion on the rotation drive shaft side, a second rotation engagement portion set at an end portion on the driven shaft side, and the first An annular cushioning member interposed between the first rotation engagement portion and the second rotation engagement portion,
The buffer member is formed by stacking a plurality of annular plates, and a plurality of vibration absorbing structures for absorbing vibrations in the circumferential direction are arranged on the annular plate at equal intervals along the circumferential direction. Is characterized.

かかる本発明の回転軸継手によれば、第1の回転係合部と前記第2の回転係合部との間に緩衝部材を介挿してあるので、軸方向ADだけでなく周方向CDでの振動等にも対処できる。   According to the rotary shaft coupling of the present invention, since the buffer member is interposed between the first rotation engagement portion and the second rotation engagement portion, not only in the axial direction AD but also in the circumferential direction CD. It can cope with vibrations of

本発明に係る一実施形態を、図を参照して説明する。
図1は、本発明の一実施形態に係る回転軸継手(カップリング)の適用例となる車両プロペラシャフト1の部分断面図である。この図1で、2は図示しない変速機側から延びる入力軸、3はプロペラシャフトのシャフト本体である。図1では入力軸2と出力軸となるシャフト本体3とが、回転軸継手での両側に接続される回転駆動軸、被動軸のそれぞれに対応する。すなわち、ここでは本発明の回転軸継手RJが同一線上に配置した入力軸2とシャフト本体3との突合せ部分に配置されている。回転軸継手RJは、回転駆動軸(入力軸2)側の端部に設定される第1の回転係合部と、前記被動軸(シャフト本体3)側の端部に設定される第2の回転係合部と、これら係合部との間に介挿した環状の緩衝部材とを有している構造である。そして、この緩衝部材は後述するように薄肉の環状プレートを複数、積層してある構造を有している。
An embodiment according to the present invention will be described with reference to the drawings.
FIG. 1 is a partial cross-sectional view of a vehicle propeller shaft 1 as an application example of a rotary shaft coupling (coupling) according to an embodiment of the present invention. In FIG. 1, 2 is an input shaft extending from a transmission side (not shown), and 3 is a shaft body of a propeller shaft. In FIG. 1, the input shaft 2 and the shaft main body 3 serving as the output shaft correspond to the rotation drive shaft and the driven shaft connected to both sides of the rotary shaft joint. That is, here, the rotary shaft joint RJ of the present invention is arranged at the abutting portion between the input shaft 2 and the shaft body 3 arranged on the same line. The rotary shaft joint RJ has a first rotation engagement portion set at an end portion on the rotational drive shaft (input shaft 2) side and a second portion set at an end portion on the driven shaft (shaft body 3) side. This is a structure having a rotation engagement portion and an annular buffer member interposed between the engagement portions. The buffer member has a structure in which a plurality of thin annular plates are stacked as will be described later.

より具体的に説明すると、図1で例示している構造では、第1、第2の回転係合部となる両ヨーク4、5間に環状の緩衝部材10が介挿され、これにより回転軸継手RJが構成されている。すなわち、この緩衝部材10が一対の回転係合部となるヨーク4、5間に配置され、ボルト6およびナット7により締結されることで中央位置に挟持されている。このように回転軸継手RJが緩衝部材10を備えることにより、回転力を伝達するときに発生する振動や衝撃を確実に緩和する。特に、この緩衝部材10は軸方向ADでの振動等だけでなく、周方向CDでの振動にも対処する構成を備えている。この点について、以下、更に図を参照して説明する。   More specifically, in the structure illustrated in FIG. 1, an annular buffer member 10 is inserted between the yokes 4 and 5 serving as the first and second rotational engagement portions, thereby rotating the rotating shaft. A joint RJ is formed. That is, the buffer member 10 is disposed between the yokes 4 and 5 serving as a pair of rotation engaging portions, and is clamped at the center position by being fastened by the bolt 6 and the nut 7. As described above, when the rotary shaft joint RJ includes the buffer member 10, vibrations and impacts generated when the rotational force is transmitted are reliably mitigated. In particular, the buffer member 10 has a configuration that copes with not only vibration in the axial direction AD but also vibration in the circumferential direction CD. This point will be described below with reference to the drawings.

図2は、回転軸継手RJに好適に採用できる緩衝部材の一形態例を示した図である。図2(A)は緩衝部材10Aの正面図、図2(B)は緩衝部材10Aの外観斜視図である。この緩衝部材10Aは、金属製で肉薄の環状プレート11を複数枚(ここでの例示では4枚)、積層して形成してある。   FIG. 2 is a view showing an example of a buffer member that can be suitably used for the rotary shaft joint RJ. 2A is a front view of the buffer member 10A, and FIG. 2B is an external perspective view of the buffer member 10A. The buffer member 10A is formed by laminating a plurality of thin annular plates 11 made of metal (four in this example).

各環状プレート11には、例えば6つの挿通孔12が円周方向CDで等間隔に形成されている。上記ヨーク4、5を締結するボルト6及びナット7(図1参照)が、この挿通孔12に円周方向で交互に挿通されて、各環状プレート11は相互に対面接触するようにして連結される。   For example, six insertion holes 12 are formed in each annular plate 11 at equal intervals in the circumferential direction CD. Bolts 6 and nuts 7 (see FIG. 1) for fastening the yokes 4 and 5 are alternately inserted into the insertion holes 12 in the circumferential direction, and the annular plates 11 are connected to face each other. The

上記の各環状プレート1は外周を円形状とする一方、各挿通孔12は六角形状での頂点に位置するように設定されている。そして、隣接する挿通孔12間に略長方形状の肉抜き孔13が形成されている。このような肉抜き孔は、軽量化、剛性調整などの観点から必要に応じて適宜に形成する。図示する場合には、挿通孔12間の連結アーム部14が、肉抜き孔13によって幅の広い外側部14aと幅の狭い内側部14bとに分割形成してある。   Each of the annular plates 1 has a circular outer periphery, and each insertion hole 12 is set to be positioned at the apex of a hexagonal shape. A substantially rectangular lightening hole 13 is formed between the adjacent insertion holes 12. Such a lightening hole is appropriately formed as necessary from the viewpoint of weight reduction and rigidity adjustment. In the case shown in the drawing, the connecting arm portion 14 between the insertion holes 12 is divided into a wide outer portion 14 a and a narrow inner portion 14 b by the lightening holes 13.

回転軸継手RJは以上のような構成を備えるので、先ず入力軸2の駆動トルクがヨーク4を介して緩衝部材10Aに伝達され、更にこの緩衝部材10Aからヨーク5を介してシャフト本体3に伝達される。ここで、緩衝部材10Aが薄肉の環状プレート11を積層して形成され、また肉抜き孔13の構造などを備えるので適度に変形するので軸方向に作用する振動や衝撃などを確実に吸収できる。   Since the rotary shaft joint RJ has the above-described configuration, first, the driving torque of the input shaft 2 is transmitted to the buffer member 10A via the yoke 4, and further transmitted from the buffer member 10A to the shaft body 3 via the yoke 5. Is done. Here, since the buffer member 10A is formed by laminating the thin annular plate 11 and has the structure of the thin hole 13 or the like, the buffer member 10A is deformed appropriately, so that vibrations and impacts acting in the axial direction can be reliably absorbed.

そして、緩衝部材10Aが以下で説明するような新規な構成を更に備える。よって、回転軸継手RJは、軸方向ADだけでなく周方向CDでの振動にも対処可能となっている。前記環状プレート11には周方向CDの振動を吸収するため、その一部を変形させて振動吸収構造となる蛇腹部20が形成してある。この蛇腹部20は、環状プレート11の周方向CDに沿って等間隔に配備してある。各蛇腹部20は環状プレート11の一部分を山谷が繰り返す蛇腹状(横断面が波形状)に変形して形成されている。この蛇腹部20は周方向CDでの振動を受けたときに、腹幅を変化させて振動を吸収するようにして配設してある。具体的には、図2(B)により確認できるように、環状プレート11の中心点CPに対して、山谷が径方向RDと平行に配置してある。これは、蛇腹部20の配置を全体的に見ると中心点CPに対して放射形状となる。   The buffer member 10A further includes a novel configuration as described below. Therefore, the rotary shaft joint RJ can cope with vibrations in the circumferential direction CD as well as the axial direction AD. The annular plate 11 is formed with a bellows portion 20 which is partly deformed to form a vibration absorbing structure in order to absorb the vibration in the circumferential direction CD. The bellows portions 20 are arranged at equal intervals along the circumferential direction CD of the annular plate 11. Each bellows portion 20 is formed by deforming a part of the annular plate 11 into a bellows shape (a cross section is a wave shape) in which peaks and valleys are repeated. The bellows portion 20 is disposed so as to absorb vibration by changing the belly width when receiving vibration in the circumferential direction CD. Specifically, as can be confirmed from FIG. 2B, the peaks and valleys are arranged in parallel to the radial direction RD with respect to the center point CP of the annular plate 11. This is a radial shape with respect to the center point CP when the arrangement of the bellows portion 20 is viewed as a whole.

なお、ここで例示している蛇腹部20は前述した肉抜き孔13に係るように形成してあり、外側部20aと内側部20bとに分割されている。図3は、図2(B)での矢印ARでの蛇腹部20aの矢視図である。ここでは、より好ましい構造例として、環状プレート11を4枚(偶数枚)積層し、厚み方向TDでの中央部を境界として、山谷を逆に配置して前記蛇腹部20を設定してある。なお、前述のように、環状プレート11は薄肉の金属製であり、上記形状はプレス加工などで簡易に製造することができる。   In addition, the bellows part 20 illustrated here is formed so as to be related to the above-described hole 13 and is divided into an outer part 20a and an inner part 20b. FIG. 3 is an arrow view of the bellows portion 20a at the arrow AR in FIG. Here, as a more preferable structural example, four (even) annular plates 11 are stacked, and the bellows portion 20 is set by arranging the valleys in reverse with the central portion in the thickness direction TD as a boundary. As described above, the annular plate 11 is made of a thin metal, and the shape can be easily manufactured by pressing or the like.

図3は、緩衝部材10Aに周方向CDでの振動や衝撃が作用したときに、蛇腹部20の変化する様子を模式的に示している。蛇腹部20は、図示のように、周方向CDの振動等を受けたとき山谷の幅(腹幅)を変形させることでこれを吸収する。ここでは環状プレート11を偶数枚、積層して厚み方向TDでの中央部を境界として山谷を逆にしてあるので、厚み方向TDへの外力が更に加わるような場合でもこれに対処して、周方向CDの振動等に安定的に対処できるより望ましい構造となっている。
ただし、図2及び図3で示している構造は例示である。この構造に限らず、環状プレート11を奇数枚積層としてもよいし、蛇腹部20の山谷を同じ位相の繰り返しとしてもよい。環状プレート11の周方向に沿って等間隔で蛇腹部を配備することで、周方向CDでの振動や衝撃を抑制できる。また、蛇腹部20は前記肉抜き孔13の構造と協調して撓み変形するので、軸方向での振動等に対しての制振にも寄与できる。
FIG. 3 schematically shows how the bellows portion 20 changes when vibration or impact in the circumferential direction CD acts on the buffer member 10A. As shown in the figure, the bellows part 20 absorbs this by deforming the width (belly width) of the valley when receiving vibrations in the circumferential direction CD or the like. Here, an even number of the annular plates 11 are stacked and the peaks and valleys are reversed with the central portion in the thickness direction TD as a boundary. Therefore, even when an external force in the thickness direction TD is further applied, this is dealt with. It has a more desirable structure that can stably cope with vibrations in the direction CD.
However, the structure shown in FIGS. 2 and 3 is an example. Not limited to this structure, the annular plate 11 may be an odd-numbered stack, and the valleys of the bellows portion 20 may be repeated in the same phase. By arranging the bellows portions at equal intervals along the circumferential direction of the annular plate 11, vibrations and impacts in the circumferential direction CD can be suppressed. Further, since the bellows portion 20 bends and deforms in cooperation with the structure of the lightening hole 13, it can contribute to vibration suppression in the axial direction.

図4及び図5は、更に環状の緩衝部材に係る他の形態例を示した図である。図4(A)は緩衝部材10Bの正面図、同(B)は緩衝部材10Bの外観斜視図である。この緩衝部材10Bも金属製で肉薄の環状プレート21を複数枚積層して形成してある。環状プレート21には6つの挿通孔22、肉抜き孔23が形成されている。ここまでの構成は、前述した緩衝部材10Aとほぼ同様であるが次に説明する点が異なっている。   FIG. 4 and FIG. 5 are diagrams showing another embodiment relating to an annular buffer member. 4A is a front view of the buffer member 10B, and FIG. 4B is an external perspective view of the buffer member 10B. This buffer member 10B is also formed by laminating a plurality of thin annular plates 21 made of metal. Six insertion holes 22 and a lightening hole 23 are formed in the annular plate 21. The configuration so far is substantially the same as that of the buffer member 10A described above, but differs in the points described below.

緩衝部材10Bの場合は、環状プレート21に円周方向CDで等間隔に切欠部24が形成され、この切欠部24内に弾性部材25を装填してダンパー構造が形成されている。この環状プレート21は中心側に設けたリング状のかしめ部材26により厚み方向TDに移動規制され、円周方向CDにおいて回転可能に設定してある。上記弾性部材25として、弾性を有する樹脂材、ゴム材などを適宜に選択すればよい。このダンパー構造は、前述した環状プレート11の蛇腹部20と同様に機能する。   In the case of the buffer member 10B, notches 24 are formed in the annular plate 21 at equal intervals in the circumferential direction CD, and an elastic member 25 is loaded into the notches 24 to form a damper structure. The annular plate 21 is restricted in movement in the thickness direction TD by a ring-shaped caulking member 26 provided on the center side, and is set to be rotatable in the circumferential direction CD. As the elastic member 25, an elastic resin material, rubber material or the like may be appropriately selected. This damper structure functions similarly to the bellows portion 20 of the annular plate 11 described above.

図5は、更に他の緩衝部材10Cの正面図である。この緩衝部材10Cは、図4の緩衝部材10Bと近似したダンパー構造を備えている。なお、この図5では図4と対応する部位には同じ符号を付して、重複する説明を省略する。この緩衝部材10Cは、切欠部24内に弾性部材として金属製のスプリング30を装填してダンパー構造を構成してある。このように金属製のスプリング30を採用すると高温環境下での使用に適したより好ましい構造を実現できる。   FIG. 5 is a front view of still another cushioning member 10C. This buffer member 10C has a damper structure similar to the buffer member 10B of FIG. In FIG. 5, parts corresponding to those in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted. The shock absorbing member 10C has a damper structure in which a metal spring 30 is loaded as an elastic member in the notch 24. Thus, when the metal spring 30 is employed, a more preferable structure suitable for use in a high temperature environment can be realized.

以上で説明した緩衝部材10を、第1の回転係合部と前記第2の回転係合部との間に介挿した回転軸継手RJであれば、軸方向ADだけでなく周方向CDでの振動等にも対処できる。よって、このような回転軸継手RJを採用する車両のプロペラシャフト等は振動や衝撃、これらに基づく騒音を抑制してトルクをスムーズに伝達できる。   If the rotary shaft coupling RJ is configured such that the buffer member 10 described above is interposed between the first rotation engagement portion and the second rotation engagement portion, not only in the axial direction AD but also in the circumferential direction CD. It can cope with vibrations of Therefore, a propeller shaft or the like of a vehicle employing such a rotary shaft joint RJ can smoothly transmit torque while suppressing vibration, impact, and noise based on these.

以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

前述したように本発明によれば、第1の回転係合部と前記第2の回転係合部との間に振動吸収構造を備えた緩衝部材を介挿してあるので、軸方向ADだけでなく周方向CDでの振動等にも対処できる回転軸継手を提供できる。   As described above, according to the present invention, since the buffer member having the vibration absorbing structure is interposed between the first rotation engagement portion and the second rotation engagement portion, only in the axial direction AD. In addition, it is possible to provide a rotary shaft joint that can cope with vibrations in the circumferential direction CD.

また、前記振動吸収構造は前記環状プレートの一部を変形させて蛇腹部とした構造を含み、当該蛇腹部は周方向での振動を受けたときに腹幅を変化させて振動を吸収するように配設することができる。そして、前記緩衝部材は前記環状プレートを偶数枚積層した構造とされており、前記緩衝部材の厚み方向での中央部を境界として、山谷を逆に配置して前記蛇腹部が設定してあるようにしてもよい。   Further, the vibration absorbing structure includes a structure in which a part of the annular plate is deformed to form a bellows portion, and the bellows portion absorbs vibration by changing the belly width when receiving vibration in the circumferential direction. Can be arranged. The buffer member has a structure in which an even number of the annular plates are stacked, and the bellows portion is set by arranging the valleys in reverse with the central portion in the thickness direction of the buffer member as a boundary. It may be.

前記振動吸収構造は、積層されている前記環状プレートの周部に設けた切欠部と当該切欠部内に装填した弾性部材とによるダンパー構造を含むものとしてもよい。   The vibration absorbing structure may include a damper structure including a notch provided in a peripheral portion of the annular plates stacked and an elastic member loaded in the notch.

本発明の一実施形態に係る回転軸継手の適用例となる車両プロペラシャフトの部分断面図である。It is a fragmentary sectional view of the vehicle propeller shaft used as the example of application of the rotating shaft coupling concerning one embodiment of the present invention. 回転軸継手に好適に採用できる緩衝部材の一形態例を示した図であり、(A)は緩衝部材の正面図、(B)は同外観斜視図である。It is the figure which showed one example of the buffer member which can be employ | adopted suitably for a rotating shaft coupling, (A) is a front view of a buffer member, (B) is the external appearance perspective view. 緩衝部材に周方向での振動や衝撃が作用したときに、蛇腹部の変化する様子を模式的に示している図である。It is the figure which shows typically a mode that a bellows part will change when the vibration and impact in a circumferential direction act on a buffer member. 環状の緩衝部材に係る他の形態例について示した図である。It is the figure shown about the other form example which concerns on a cyclic | annular buffer member. 緩衝部材に係る更に他の形態例について示した図である。It is the figure shown about the other example of a form which concerns on a buffer member.

符号の説明Explanation of symbols

1 プロペラシャフト
2 入力軸(回転駆動軸)
3 プロペラシャフト本体(被動軸)
4 ヨーク(第1の回転係合部)
5 ヨーク(第2の回転係合部
10 緩衝部材
11 環状プレート
20 蛇腹部(振動吸収構造)
24 切欠部
25 弾性部材
RJ 回転軸継手
AD 軸方向
CD 周方向
RD 径方向
TD 厚さ方向
1 Propeller shaft 2 Input shaft (rotary drive shaft)
3 Propeller shaft body (driven shaft)
4 Yoke (first rotation engagement part)
5 Yoke (second rotational engagement portion 10 buffer member 11 annular plate 20 bellows portion (vibration absorbing structure)
24 Notch 25 Elastic member RJ Rotary shaft coupling AD Axial direction CD Circumferential direction RD Radial direction TD Thickness direction

Claims (4)

同一線上に配置される回転駆動軸と被動軸との突合せ部分に配備され、駆動力を伝達する回転軸継手であって、
前記回転軸継手は、前記回転駆動軸側の端部に設定される第1の回転係合部と、前記被動軸側の端部に設定される第2の回転係合部と、更に前記第1の回転係合部と前記第2の回転係合部との間に介挿した環状の緩衝部材とを含み、
前記緩衝部材は環状プレートを複数、積層して形成されていると共に、前記環状プレートには周方向への振動を吸収する複数の振動吸収構造が周方向に沿って等間隔に配備してある、ことを特徴とする回転軸継手。
A rotary shaft joint that is disposed at a butt portion between a rotational drive shaft and a driven shaft arranged on the same line, and transmits a driving force,
The rotary shaft coupling includes a first rotation engagement portion set at an end portion on the rotation drive shaft side, a second rotation engagement portion set at an end portion on the driven shaft side, and the first An annular cushioning member interposed between the first rotation engagement portion and the second rotation engagement portion,
The buffer member is formed by laminating a plurality of annular plates, and the annular plate is provided with a plurality of vibration absorbing structures that absorb vibrations in the circumferential direction at equal intervals along the circumferential direction. A rotary shaft coupling characterized in that.
前記振動吸収構造は前記環状プレートの一部を変形させて蛇腹部とした構造を含み、当該蛇腹部は周方向での振動を受けたときに腹幅を変化させて振動を吸収するように配設してある、ことを特徴とする請求項1に記載の回転軸継手。   The vibration absorbing structure includes a structure in which a part of the annular plate is deformed to form a bellows portion, and the bellows portion is arranged so as to change the belly width and absorb the vibration when subjected to vibration in the circumferential direction. The rotary shaft coupling according to claim 1, wherein the rotary shaft coupling is provided. 前記緩衝部材は前記環状プレートを偶数枚積層した構造とされており、
前記緩衝部材の厚み方向での中央部を境界として、山谷を逆に配置して前記蛇腹部が設定してある、ことを特徴とする請求項2に記載の回転軸継手。
The buffer member has a structure in which an even number of the annular plates are laminated,
The rotary shaft coupling according to claim 2, wherein the bellows part is set by arranging the valleys and valleys with the central part in the thickness direction of the buffer member as a boundary.
前記振動吸収構造は、積層されている前記環状プレートの周部に設けた切欠部と当該切欠部内に装填した弾性部材とによるダンパー構造を含む、ことを特徴とする請求項1に記載の回転軸継手。   2. The rotating shaft according to claim 1, wherein the vibration absorbing structure includes a damper structure including a cutout portion provided in a peripheral portion of the annular plates stacked and an elastic member loaded in the cutout portion. Fittings.
JP2008006874A 2008-01-16 2008-01-16 Rotary shaft coupling Withdrawn JP2009168148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006874A JP2009168148A (en) 2008-01-16 2008-01-16 Rotary shaft coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006874A JP2009168148A (en) 2008-01-16 2008-01-16 Rotary shaft coupling

Publications (1)

Publication Number Publication Date
JP2009168148A true JP2009168148A (en) 2009-07-30

Family

ID=40969551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006874A Withdrawn JP2009168148A (en) 2008-01-16 2008-01-16 Rotary shaft coupling

Country Status (1)

Country Link
JP (1) JP2009168148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6093960B1 (en) * 2016-07-22 2017-03-15 保男 平山 Torsion direction limit device, leaf spring type flexible coupling using the device, and mechanical device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6093960B1 (en) * 2016-07-22 2017-03-15 保男 平山 Torsion direction limit device, leaf spring type flexible coupling using the device, and mechanical device including the same

Similar Documents

Publication Publication Date Title
WO2011058710A1 (en) Shaft coupling mechanism
JP5972590B2 (en) Rotation transmission member, shaft direct coupling type coupling and shaft coupling mechanism
JP2009092121A (en) Rotary shaft coupling
JP5895679B2 (en) Torque transmission joint and electric power steering device
JP5662131B2 (en) Rotation transmission device and motor
JP5929451B2 (en) Torque transmission joint and electric power steering device
US20150099591A1 (en) Flywheel assembly
JP2010203469A (en) Flexible coupling
JP2009168148A (en) Rotary shaft coupling
JP6810562B2 (en) Damper device
KR20120078847A (en) Power transmitting motor coupling device
KR102196030B1 (en) Enlaged boss type disc coupling
JP6167839B2 (en) Damper device for vehicle
KR102101652B1 (en) Two Stage Coupling Structure of Moter Driven Steering Device
JP6102616B2 (en) Torque transmission joint and electric power steering device
JP5030846B2 (en) Torsional vibration reduction device
JP2015200374A (en) Torque transmission joint and electric power steering device
KR101803953B1 (en) Torque convertor for vehicle
JP2015031346A5 (en)
KR101379583B1 (en) A power train coupling
JP5915375B2 (en) Torque transmission joint and electric power steering device
JP2015215042A (en) Buffer member of torque transmission joint
JP2013228061A (en) Torque transmission joint and electric power steering apparatus
JP2015215052A (en) Reduction gear having torque transmission joint
JP4327103B2 (en) Plate torsion spring

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405