JP2009146906A - 燃料電池発電システムおよびその運転方法 - Google Patents
燃料電池発電システムおよびその運転方法 Download PDFInfo
- Publication number
- JP2009146906A JP2009146906A JP2009026751A JP2009026751A JP2009146906A JP 2009146906 A JP2009146906 A JP 2009146906A JP 2009026751 A JP2009026751 A JP 2009026751A JP 2009026751 A JP2009026751 A JP 2009026751A JP 2009146906 A JP2009146906 A JP 2009146906A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- heat exchange
- heat
- exchange medium
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
【課題】システム効率を高く維持しつつ燃料電池冷媒の凍結を防止する。
【解決手段】燃料電池発電システム10では、燃料電池40の運転停止中に冷却水循環経路48内の冷却水が凍結するおそれがあるときには、第1バルブ46を閉じ第2バルブ47を開き、冷却水ポンプ43及び貯湯ポンプ45を駆動させる。すると、冷却水は冷却水循環経路48を循環し、貯湯槽44に貯留された水は貯湯槽44の上層部から第2経路52を循環して貯湯槽44の上層部へ戻る。このとき、貯湯槽44に貯留された水は燃料電池40が運転中のときに燃料電池40の冷却水の熱を回収してお湯になっているため、熱交換器42にて貯湯槽44から流通してきた水により冷却水が暖められる。この結果、冷却水温が上昇して冷却水の凍結が防止される。
【選択図】図1
【解決手段】燃料電池発電システム10では、燃料電池40の運転停止中に冷却水循環経路48内の冷却水が凍結するおそれがあるときには、第1バルブ46を閉じ第2バルブ47を開き、冷却水ポンプ43及び貯湯ポンプ45を駆動させる。すると、冷却水は冷却水循環経路48を循環し、貯湯槽44に貯留された水は貯湯槽44の上層部から第2経路52を循環して貯湯槽44の上層部へ戻る。このとき、貯湯槽44に貯留された水は燃料電池40が運転中のときに燃料電池40の冷却水の熱を回収してお湯になっているため、熱交換器42にて貯湯槽44から流通してきた水により冷却水が暖められる。この結果、冷却水温が上昇して冷却水の凍結が防止される。
【選択図】図1
Description
本発明は、燃料電池発電システムおよびその運転方法に関する。
近年、コージェネレーションシステムとして、環境問題を考慮して燃料電池を組み入れた発電システムが提案されている。また、燃料電池としては、電解質膜とこの電解質膜を狭持するアノード電極およびカソード電極とこのアノード電極およびカソード電極に燃料ガスと空気とを供給すると共にセル間の隔壁をなすセパレータとからなる単セルを複数積層してなる固体高分子電解質型の燃料電池が知られている。
ところで、燃料電池における電気化学反応が発熱反応であることから、燃料電池の温度を適温に保つために燃料電池に冷却水を循環させる冷却水循環経路が設けられているが、外気温が下がるとこの冷却水が凍結してしまい、燃料電池発電システムの運転に支障が生じるおそれがある。特にこのおそれは低温且つ燃料電池の停止時(例えば長期放置時など)に顕著になる。この点を考慮して、例えば特開平7−169476号公報には、外気温が低いとき原燃料を燃焼させて燃料電池を保温することが提案され、特開平11−214025号公報には、外気温が低いとき燃料電池を駆動させその電気化学反応で発生する熱により冷却水循環経路内の冷却水を暖めて凍結を防止することが提案されている。
しかしながら、これらの公報では、発電する必要がないのに原燃料を燃焼させたり燃料電池を駆動させたりするため、長期的にみたときにシステム効率が低下するという問題がある。
本発明は、上述の課題に鑑みなされたものであり、システム効率を高く維持しつつ燃料電池冷媒の凍結を防止することができる燃料電池発電システムおよびその運転方法を提供することを目的とする。
上述した目的を達成するために、本発明の第1は、燃料電池発電システムであって、
燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池と、
熱交換媒体を貯留する熱交換媒体貯留手段と、
前記燃料電池を冷却する燃料電池冷媒と前記熱交換媒体貯留手段に貯留された熱交換媒体との間で熱交換を行い前記燃料電池の発電時には前記熱交換媒体により前記燃料電池冷媒の熱を回収する熱交換手段と、
前記燃料電池冷媒の凍結のおそれがあるときには前記熱を回収した熱交換媒体により前記熱交換手段にて前記燃料電池冷媒を暖める凍結防止手段と
を備えたものである。
燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池と、
熱交換媒体を貯留する熱交換媒体貯留手段と、
前記燃料電池を冷却する燃料電池冷媒と前記熱交換媒体貯留手段に貯留された熱交換媒体との間で熱交換を行い前記燃料電池の発電時には前記熱交換媒体により前記燃料電池冷媒の熱を回収する熱交換手段と、
前記燃料電池冷媒の凍結のおそれがあるときには前記熱を回収した熱交換媒体により前記熱交換手段にて前記燃料電池冷媒を暖める凍結防止手段と
を備えたものである。
この燃料電池発電システムでは、燃料電池が発電しているときには、発熱反応である電気化学反応によって熱を帯びる燃料電池を燃料電池冷媒が冷却し、この燃料電池冷媒の熱を熱交換媒体が回収する。一方、燃料電池冷媒が凍結するおそれがあるとき(例えば低温で燃料電池の停止時(長期放置時)など)には、燃料電池の発電中に熱を回収した熱交換媒体により燃料電池冷媒を暖めて凍結を防止する。このように燃料電池発電システムで発生した熱を利用して燃料電池冷媒の凍結を防止するため、システム効率を高く維持できる。
本発明の第1の燃料電池発電システムにおいて、前記凍結防止手段は、前記燃料電池冷媒を暖める熱交換媒体として前記熱交換媒体貯留手段の中層部以上に貯留する熱交換媒体を用いてもよい。熱交換媒体貯留手段に貯留されている熱交換媒体は中層部以下よりも中層部以上の方が温度勾配からみて高温になりやすいので、中層部以上に貯留する熱交換媒体により燃料電池冷媒を暖めるのが凍結防止するうえで有利である。特に、熱交換手段で熱交換したあとの熱交換媒体を熱交換貯留手段の上層部に戻す場合には、中層部以上の方が高温になりやすい傾向が高いので、中層部以上に貯留する熱交換媒体を利用することが好ましい。
本発明の第1の燃料電池発電システムは、前記熱交換媒体貯留手段の下層部の熱交換媒体を前記熱交換手段へ送り込み前記燃料電池冷媒と熱交換させたあと前記熱交換媒体貯留手段へ戻す第1経路と、前記熱交換媒体貯留手段の中層部以上に貯留する熱交換媒体を前記熱交換手段へ送り込み前記燃料電池冷媒と熱交換させたあと前記熱交換媒体貯留手段へ戻す第2経路とを備え、前記凍結防止手段は、前記燃料電池の発電時には前記第1経路を開き前記第2経路を閉じて前記熱交換手段にて熱交換を行うことにより前記燃料電池冷媒の熱を前記熱交換媒体で回収し、前記燃料電池冷媒の凍結のおそれがあるときには前記第2経路を開き前記第1経路を閉じて前記熱交換手段にて熱交換を行うことにより前記燃料電池冷媒を前記熱交換媒体で暖めるようにしてもよい。こうすれば、比較的低温の熱交換媒体で燃料電池冷媒の熱を回収するため熱回収効率がよく、また、比較的高温の熱交換媒体で凍結のおそれのある燃料電池冷媒を暖めるため早期に凍結のおそれが解消する。
本発明の第1の燃料電池発電システムは、前記熱交換媒体貯留手段に貯められた前記熱交換媒体に熱量を付与する熱量付与手段を備え、前記凍結防止手段は、前記燃料電池冷媒の凍結のおそれがあり且つ前記熱交換媒体貯留手段に貯留された熱交換媒体の熱量が前記燃料電池冷媒を暖めるのに不足しているときには、前記熱量付与手段が熱量を付与したあとの熱交換媒体で前記燃料電池冷媒を暖めるようにしてもよい。こうすれば、燃料電池発電システムで発生した熱だけでは燃料電池冷媒の凍結防止を賄いきれなかったとしても、熱交換媒体に熱量を付与することにより燃料電池冷媒の凍結を防止することができる。
このとき、前記熱交換媒体貯留手段に貯められた前記熱交換媒体の熱量を検出する熱量検出手段を備えていてもよく、前記熱交換媒体貯留手段に貯留された熱交換媒体の熱量が前記燃料電池冷媒を暖めるのに不足しているときとは、前記熱量検出手段によって検出された熱量が予め前記燃料電池冷媒を暖めるのに必要な所定の熱量範囲でないときとしてもよい。こうすれば、凍結防止手段は熱交換媒体の熱量が燃料電池冷媒の凍結を防止するのに不足しているか否かを適切に判定することができる。
本発明の第1の燃料電池発電システムは、
燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池と、
前記燃料電池を冷却する燃料電池冷媒との熱交換により前記燃料電池冷媒の熱回収を行う熱回収手段と、
前記熱回収手段の熱を蓄える蓄熱手段と、
前記燃料電池冷媒の凍結のおそれがあるときには前記蓄熱手段の熱エネルギにより前記燃料電池冷媒を暖める凍結防止手段と
を備えて構成してもよい。
燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池と、
前記燃料電池を冷却する燃料電池冷媒との熱交換により前記燃料電池冷媒の熱回収を行う熱回収手段と、
前記熱回収手段の熱を蓄える蓄熱手段と、
前記燃料電池冷媒の凍結のおそれがあるときには前記蓄熱手段の熱エネルギにより前記燃料電池冷媒を暖める凍結防止手段と
を備えて構成してもよい。
この燃料電池発電システムでは、熱回収手段が燃料電池を冷却する燃料電池冷媒との熱交換により燃料電池冷媒の熱を回収し、蓄熱手段が熱回収手段の熱を蓄える。そして、燃料電池冷媒の凍結のおそれがあるときには蓄熱手段の熱エネルギにより燃料電池冷媒を暖めて凍結を防止する。このように燃料電池発電システムで発生した熱を利用して燃料電池冷媒の凍結を防止するため、システム効率を高く維持できる。ここで、熱回収手段としては、例えば熱交換媒体が挙げられる。
本発明の第1の燃料電池発電システムにおいて、前記熱交換媒体は水又は湯であってもよい。こうすれば、燃料電池の発電時に燃料電池からの熱を湯水で回収することができるので給湯が可能となる。
本発明の第1の燃料電池発電システムにおいて、前記燃料電池冷媒は閉じた系内を循環するように構成してもよい。こうすれば、通常は燃料電池冷媒を抜いたり補充したりする必要がない。
本発明の第1の燃料電池発電システムは、外気温を検出する外気温検出手段を備え、前記燃料電池冷媒の凍結のおそれがあるときとは、前記外気温検出手段によって検出された外気温が予め前記燃料電池冷媒の凍結のおそれがあると定められた所定の外気温範囲のときとしてもよい。こうすれば、凍結防止手段は燃料電池冷媒が凍結するおそれがあるか否かを外気温に基づいて適切に判定することができる。
本発明の第1の燃料電池発電システムは、燃料電池冷媒の温度を検出する冷媒温度検出手段を備え、前記燃料電池冷媒の凍結のおそれがあるときとは、前記冷媒温度検出手段によって検出された温度が予め前記燃料電池冷媒の凍結のおそれがあると定められた所定の冷媒温度範囲のときとしてもよい。こうすれば、凍結防止手段は燃料電池冷媒が凍結するおそれがあるか否かを燃料電池冷媒の温度に基づいて適切に判定することができる。
本発明の第1の燃料電池発電システムは、前記燃料電池の運転状態を検出する運転状態検出手段を備え、前記凍結防止手段は、前記運転状態検出手段により前記燃料電池が運転停止中であると検出されたときに前記燃料電池冷媒の凍結のおそれがあるか否かを判定してもよい。燃料電池冷媒の凍結のおそれは燃料電池が運転停止中のときに特に発生しやすいため、燃料電池の運転停止時に燃料電池冷媒の凍結のおそれがあるか否かを判定することが好ましい。なお、燃料電池冷媒が凍結するおそれがあるか否かについては、外気温と燃料電池冷媒の温度の両方に基づいて判定することが好ましく、外気温と燃料電池冷媒の温度のいずれか一方又は両方と燃料電池の運転状態(運転中、運転停止中など)との組合せに基づいて判定することが特に好ましい。
本発明の第2は、燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池を冷却する燃料電池冷媒と熱交換媒体貯留手段に貯留された熱交換媒体との間で熱交換を行う燃料電池発電システムを運転する方法であって、前記燃料電池の発電時には前記燃料電池冷媒の熱を前記熱交換媒体で回収し、前記燃料電池冷媒の凍結のおそれがあるときには前記燃料電池の発電時に熱を回収した熱交換媒体により前記燃料電池冷媒を暖めるものである。こうすれば、燃料電池発電システムで発生した熱を利用して燃料電池冷媒の凍結を防止するため、システム効率を高く維持できる。
本発明の第2の燃料電池発電システムの運転方法において、前記燃料電池冷媒の凍結のおそれがあり且つ前記熱交換媒体貯留手段に貯留された熱交換媒体の熱量が前記燃料電池冷媒を暖めるのに不足しているときには、前記熱交換媒体に熱量を付与したあと該熱交換媒体で前記燃料電池冷媒を暖めてもよい。こうすれば、燃料電池発電システムで発生した熱だけでは燃料電池冷媒の凍結防止を賄いきれなかったとしても、熱交換媒体に熱量を付与することにより燃料電池冷媒の凍結を防止することができる。
本発明の第2は、燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池を冷却する燃料電池冷媒との熱交換により前記燃料電池冷媒の熱回収を行う燃料電池発電システムを運転する方法であって、前記燃料電池冷媒の凍結のおそれがあるときには前記燃料電池冷媒の熱回収によって得た熱エネルギにより前記燃料電池冷媒を暖めてもよい。この場合も、燃料電池発電システムで発生した熱を利用して燃料電池冷媒の凍結を防止するため、システム効率を高く維持できる。
次に、本発明の好適な一実施形態を図面に基づいて説明する。図1は、燃料電池発電システム10の概略を示す構成図である。この燃料電池発電システム10は、図示するように、ガス配管22から都市ガス(13A)の供給を受けて都市ガスを水素リッチな改質ガスに改質する改質器30と、改質ガス中の一酸化炭素を低減して燃料ガスとするCO選択酸化部34と、燃料ガスと酸化ガス(ここでは空気)の供給を受けて電気化学反応により発電する燃料電池40と、燃料電池40の冷媒である冷却水と貯湯槽44に貯留される熱交換媒体である水との熱交換を行う熱交換器42と、熱交換器42にて燃料電池40の熱を回収して加温された水を貯留する貯湯槽44と、燃料電池40からの直流電力を交流電力に変換して外部に供給する系統連係パッケージ70と、システム全体をコントロールする電子制御ユニット60とを備えている。なお、貯湯槽44に貯留される水とは、冷水の場合もあるし温水の場合もある。
改質器30は、ガス配管22から調節弁24と昇圧ポンプ26と硫黄分を除く脱硫器27とを介して供給される都市ガスと図示しない配管により供給される水蒸気とによる次式(1)および次式(2)の水蒸気改質反応およびシフト反応により水素リッチな改質ガスを生成する。改質器30には、こうした反応に必要な熱を供給する燃焼部32が設けられており、燃焼部32にはガス配管22から調節弁24と昇圧ポンプ28とを介して都市ガスが供給されるようになっている。また、燃焼部32には、燃料電池40のアノード側の排出ガス(アノードオフガス)が供給され、アノードオフガス中の未反応の水素を燃料として用いることができるようになっている。
[数1]
CH4+H2O→CO+3H2 (1)
CO+H2O→CO2+H2 (2)
CH4+H2O→CO+3H2 (1)
CO+H2O→CO2+H2 (2)
CO選択酸化部34は、図示しない配管による空気の供給を受けて水素の存在下で一酸化炭素を選択して酸化する一酸化炭素選択酸化触媒(例えば白金とルテニウムの合金による触媒)により、改質ガス中の一酸化炭素を選択酸化して一酸化炭素濃度が極めて低い(本実施形態では数ppm程度)水素リッチな燃料ガスとする。
燃料電池40は、電解質膜とこの電解質膜を狭持するアノード電極およびカソード電極とこのアノード電極およびカソード電極に燃料ガスと空気とを供給すると共にセル間の隔壁をなすセパレータとからなる単セルを複数積層してなる固体高分子型の燃料電池として構成されており、CO選択酸化部34からの燃料ガス中の水素とブロア41からの空気中の酸素とによる電気化学反応(発熱反応)によって発電する。
燃料電池40と熱交換器42との間には、発熱反応によって高温化する燃料電池40を適温に保持するための冷却水循環経路48が形成されている。この冷却水循環経路48の途中には、所定量の冷却水を蓄えておく図示しないリザーバタンクと、リザーバタンク内の冷却水を循環させる冷却水ポンプ43と、冷却水循環経路48内の冷却水の温度を検出する冷却水温センサ49とが設けられている。また、冷却水循環経路48は閉じた系であり、通常、冷却水循環経路48内の水を抜いたり足したりすることは行われない。この冷却水循環経路48に冷却水を循環させることにより、燃料電池40は適温(本実施形態では、80〜90℃程度)に保持される。
熱交換器42は、燃料電池40の冷却水と貯湯槽44に貯留される水との熱交換を行うものである。システム運転時つまり燃料電池40の発電時には燃料電池40の熱を冷却水循環経路48を循環する冷却水が奪い、その冷却水の熱を貯湯槽44に貯留される水が熱交換器42にて回収し、温水となって貯湯槽44に貯湯されるようになっている。つまり、貯湯槽44は燃料電池40を冷却する冷却水から回収した熱を蓄える役割を果たす。この貯湯槽44は、所定容量のタンクであり、下方内部から熱交換器42を経て上方内部に通じる第1経路51と、上方内部から熱交換器42を経て上方内部へと通じる第2経路52と、絶えずタンク内に水道水が満たされるように補給する図示しない補給路とを備えている。第1経路51には、熱交換器42に至る手前に貯湯ポンプ45が配置され、貯湯槽44から貯湯ポンプ45へ至る途中にソレノイドバルブである第1バルブ46が配置されている。また、第2経路52には、熱交換器42に至る手前に貯湯ポンプ45が配置され、貯湯槽44から貯湯ポンプ45へ至る途中にソレノイドバルブである第2バルブ47が配置されている。したがって、貯湯ポンプ45は、第1バルブ46が開き第2バルブ47が閉じているときには貯湯槽44に貯留されている水を第1経路51に循環させる役割を果たし、第1バルブ46が閉じ第2バルブ47が開いているときには貯湯槽44に貯留されている水を第2経路52に循環させる役割を果たす。
外気温センサ61は、外気の温度を検出するセンサであり、改質器30、CO選択酸化部34、燃料電池40、熱交換器42、電子制御ユニット60等を収納する図示しない本体パッケージの筐体外側に取り付けられている。なお、本実施形態の燃料電池発電システム10は、本体パッケージのほか、貯湯槽44を収納する貯湯パッケージや、系統連係パッケージ70を備えている。
電子制御ユニット60は、周知のCPU、ROM、RAMを中心とするマイクロプロセッサとして構成されている。この電子制御ユニット60には、系統連係パッケージ70内の図示しないインバータの電流センサからの出力電圧や、同インバータの電圧センサからの出力電流や、冷却水温センサ49からの冷却水の水温や、外気温センサ61からの外気温などが入力される。また、電子制御ユニット60からは、調節弁24、第1バルブ46及び第2バルブ47のソレノイドへの駆動信号や、昇圧ポンプ26,28,ブロア41,冷却水ポンプ43,貯湯ポンプ45などへの駆動信号や、燃焼部32への点火信号や、系統連係パッケージ70内の図示しないインバータへのスイッチング制御信号などが出力される。
この電子制御ユニット60は、ハイ、ミドル、ローのいずれかの運転モードが決まると、その運転モードに応じて定められた電力を目標出力電力として、燃料電池40からの直流電力を系統連係パッケージ70内の図示しないインバータで変換した交流電力が目標出力電力となるように、燃料電池40の発電量を制御する。ここで、燃料電池40の発電量の制御とは、例えば都市ガスの調節弁24や昇圧ポンプ26を制御することにより燃料電池40への燃料ガスの供給量を制御したり、ブロア41を制御することにより酸化ガスの供給量を制御したりすることをいう。
次に、こうして構成された燃料電池発電システム10の動作について説明する。図2は熱交換制御プログラムの一例を示すフローチャートであり、このプログラムは電子制御ユニット60の図示しないROMに記録され、所定タイミング毎に電子制御ユニット60の図示しないCPUにより読み出され実行される。また、熱交換制御は凍結防止制御を含む。このプログラムが開始されると、電子制御ユニット60は、まず燃料電池40が運転中か運転停止中かを判定し(ステップS100)、燃料電池40が運転中のときには、第1バルブ46を開き第2バルブ47を閉じることにより第1経路51を開き第2経路52を閉じ(ステップS110)、冷却水ポンプ43及び貯湯ポンプ45を駆動させ(ステップS120)、このプログラムを終了する。すると、冷却水は冷却水循環経路48を循環し、貯湯槽44に貯留された水は貯湯槽44の下層部から第1経路51を循環して貯湯槽44の上層部へ戻る。このとき、冷却水は電気化学反応(発熱反応)によって熱を帯びた燃料電池40を冷却して自らの温度が上昇し、熱交換器42にて貯湯槽44から流通してきた水により熱を回収される。この結果、燃料電池40は適温に保持されると共に貯湯槽44にはお湯が貯められる。
一方、燃料電池40が運転停止中のときには、電子制御ユニット60は外気温センサ61から外気温を読み込み(ステップS130)、その外気温が予め定められた所定温度Ta以下か否かを判定する(ステップS140)。ここで、所定温度Taは、予め冷却水の凍結温度(凝固点)に基づいて冷却水が凍結するおそれのある外気温に定められており、例えばTaは冷却水凍結温度と一致するように定められていてもよい。そして、外気温が所定温度Taを越えているときには、冷却水循環経路48内の冷却水が凍結するおそれはないため、このプログラムを終了する。一方、外気温が所定温度Ta以下のときには、続いて冷却水温センサ49から冷却水温を読み込み(ステップS150)、その冷却水温が予め定められた所定温度Tw1以下か否かを判定する(ステップS160)。ここで、所定温度Tw1は、冷却水の凍結温度に基づいて冷却水が凍結するおそれがある水温に定められており、例えばTw1は冷却水凍結温度より僅かに高い温度と定めてもよい。そして、冷却水温が所定温度Tw1を越えているときには、外気温が低くても直ぐに冷却水循環経路48内の冷却水が凍結するおそれはないため、このプログラムを終了する。一方、冷却水温が所定温度Tw1以下のときには、外気温及び冷却水温の両方からみて冷却水が凍結するおそれがあるため、第1バルブ46を閉じ第2バルブ47を開くことにより第1経路51を閉じ第2経路52を開き(ステップS170)、冷却水ポンプ43及び貯湯ポンプ45を駆動させる(ステップS180)。すると、冷却水は冷却水循環経路48を循環し、貯湯槽44に貯留された水は貯湯槽44の上層部から第2経路52を循環して貯湯槽44の上層部へ戻る。このとき、貯湯槽44に貯留された水は燃料電池40が運転中のときに燃料電池40の冷却水の熱を回収してお湯になっているため、熱交換器42にて貯湯槽44から流通してきた水により冷却水が暖められる。この結果、冷却水温が上昇する。
その後、冷却水温センサ49から冷却水温を読み込み(ステップS190)、その冷却水温が予め定められた所定温度Tw2を越えたか否かを判定する(ステップS200)。ここで、所定温度Tw2は所定温度Tw1よりも高い値に設定されており、一旦冷却水温が所定温度Tw2を越えたあとは直ちに所定温度Tw1以下に戻らないような値に設定されている。また、所定温度Tw2を必要以上に高い値に設定すると貯湯槽44に貯留されたお湯が冷めてしまうため、その点も考慮して設定されている。なお、この所定温度Tw2は外気温に応じて異なる値を採用してもよい。そして、冷却水温が所定温度Tw2を越えていないときには、再びステップS190に戻り、冷却水温が所定温度Tw2を越えたときには、冷却水ポンプ43及び貯湯ポンプ45を停止させ(ステップS210)、このプログラムを終了する。この結果、冷却水温が所定温度Tw2を越えるまで貯湯槽44から流通してきたお湯が冷却水を暖め続ける。
以上詳述した本実施形態によれば、冷却水循環経路48内の冷却水が凍結するおそれがあるときには、燃料電池40の発電中に熱を回収した貯湯槽44の水(お湯)により冷却水を暖めて凍結を防止しており、換言すれば燃料電池発電システム10で発生した熱を利用して燃料電池40の冷却水の凍結を防止しているため、システム効率を高く維持したまま冷却水の凍結を防止できる。
また、外気温と冷却水温の両方に基づいて冷却水が凍結するおそれがあるか否かを適切に判定することができる。なお、上述した実施形態では、外気温が所定温度Ta以下で冷却水温が所定温度Tw1以下という温度範囲が、予め冷却水の凍結のおそれがあると定められた所定の温度範囲に相当する。
更に、貯湯槽44に貯留されている水(お湯)は中層部以上の方が温度勾配からみて高温になりやすいことから、その中層部以上の水を用いて冷却水を暖めているため、冷却水の凍結を防止するうえで有利である。
更にまた、燃料電池40の発電時には第1経路51を利用して貯湯槽44のうち下層部にある比較的低温の水で燃料電池40の冷却水の熱を回収するため熱回収効率がよく、また、冷却水の凍結のおそれがあるときには第2経路52を利用して貯湯槽44のうち中層部以上にある比較的高温の水で冷却水を暖めるため早期に凍結のおそれが解消する。
なお、本発明は上述した実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する範囲内において、種々なる形態で実施し得ることは勿論である。
例えば、上述した実施形態では、燃料電池40の運転停止中のときにステップS130以下の処理を行ったが、燃料電池発電システム10に凍結防止モードを設定するモード設定ボタンを設け、凍結防止モードに設定されているときにステップS130以下の処理を行ってもよい。
また、上述した実施形態において、貯湯槽44に貯留された水は、燃料電池40の運転中に、燃料電池40のアノードから排出されるアノードオフガスの熱や、カソードから排出されるカソードオフガスの熱や、燃焼部32から排出される燃焼排ガスの熱などを回収してもよい。こうすれば、燃料電池発電システム10で発生した熱をより有効に回収することができるし、冷却水の凍結を防止するうえでも有効である。
更に、上述した実施形態において、電子制御ユニット60は、図3に示すように、ステップS100で燃料電池40の運転停止中のときには、外気温を読み込み(ステップS130)、その外気温と所定温度Taとを比較し(ステップS140)、その外気温が所定温度Ta以下のときには、第1バルブ46を閉じ第2バルブ47を開いたうえで冷却水ポンプ43及び貯湯ポンプ45を駆動させ(ステップS170、S180)、貯湯槽44に貯留されているお湯で凍結するおそれのある冷却水を暖め、その後所定時間経過したか否かを判定し(ステップS205)、所定時間経過したあと両ポンプ43,45を停止する(ステップS210)ようにしてもよい。つまり、外気温のみに基づいて冷却水が凍結するおそれがあるか否かを判定してもよい。なお、図3のフローチャートのうち図2のフローチャートと共通する部分については、同じステップで表示した。
あるいは、上述した実施形態において、電子制御ユニット60は、図4に示すように、ステップS100で燃料電池40の運転停止中のときには、冷却水温を読み込み(ステップS150)、その冷却水温と所定温度Tw1とを比較し(ステップS160)、その冷却水温が所定温度Tw1以下のときには、第1バルブ46を閉じ第2バルブ47を開いたうえで冷却水ポンプ43及び貯湯ポンプ45を駆動させ(ステップS170、S180)、貯湯槽44に貯留されているお湯で凍結するおそれのある冷却水を暖め、その後冷却水温を読み込み(ステップS190)、その冷却水温と所定温度Tw2とを比較し(ステップS200)、その冷却水温が所定温度Tw2を越えたときには両ポンプ43,45を停止する(ステップS210)ようにしてもよい。つまり、冷却水温のみに基づいて冷却水が凍結するおそれがあるか否かを判定してもよい。なお、図4のフローチャートのうち図2のフローチャートと共通する部分については、同じステップで表示した。
更に、上述した実施形態において、図5に示すように、貯湯槽44の取水口に追焚き給湯器55を取り付け、電子制御ユニット60は貯湯槽44の水の温度(貯湯温)を貯湯温センサ44aから読み込み、その貯湯温が低下した場合には追焚き給湯器55を作動させて追焚きにより貯湯温を上げて給湯するようにし、また、貯湯槽44から追焚き給湯器55、第3バルブ54、貯留ポンプ45及び熱交換器42を経て貯湯槽44へ戻る第3経路53を設け、電子制御ユニット60が図6に示す熱交換制御プログラムのフローチャートに基づいて処理を実行してもよい。この図6のフローチャートのうち図2のフローチャートと共通する部分については、同じステップで表示する。電子制御ユニット60は、燃料電池40が運転中のときには、第1バルブ46を開き第2バルブ47と第3バルブ54とを閉じ(ステップS115)、冷却水ポンプ43及び貯湯ポンプ45を駆動させる(ステップS120)。これにより、燃料電池40の運転時には第1経路51を利用して貯湯槽44のうち下層部にある比較的低温の水で燃料電池40の冷却水の熱を回収する。一方、燃料電池40の運転停止中で外気温が所定温度Ta以下で冷却水温が所定温度Tw1以下のときには、貯湯槽44に貯留された水が冷却水の凍結を防止できるかどうかを判定する(ステップS165)。この判定は、貯湯温センサ44aから読み込んだ貯湯温(熱量)が、予め定められた所定水温(凍結するおそれのある冷却水を凍結するおそれのない状態にすることのできる温度)以上か否かによって行われる。そして、貯湯槽44に貯留された水が冷却水の凍結を防止できるときには、第1バルブ46と第3バルブ54とを閉じ第2バルブ47を開き(ステップS166)、冷却水ポンプ43及び貯湯ポンプ45を駆動させ(ステップS180)、冷却水温が所定温度Tw2を越えたあと両ポンプ43,45の駆動を停止させる(ステップS190,S200,S210)。これにより、冷却水が凍結するおそれがあるときには第2経路52を利用して貯湯槽44のうち中層部以上にある比較的高温の水で冷却水を暖めて凍結するおそれのない状態にする。一方、ステップS165で貯湯槽44に貯留された水が冷却水の凍結を防止できないとき、つまり貯湯槽44の水の熱量が冷却水を暖めるのに不足しているときには、第1バルブ46と第2バルブ47とを閉じ第3バルブ54を開き(ステップS167)、追焚き給湯器55を作動させ(ステップS168)、冷却水ポンプ43及び貯湯ポンプ45を駆動させ(ステップS180)、冷却水温が所定温度Tw2を越えたあと両ポンプ43,45を停止させる(ステップS190,S200,S210)。なお、このときステップS210では追焚き給湯器55も停止させる。これにより、貯湯槽44に貯留された水は追焚き給湯器55にて熱量を付与されて高温になったあと第3経路53を循環し、その第3経路53に配置されている熱交換器42にて冷却水を暖め、冷却水の凍結を防止する。こうすれば、燃料電池発電システム10で発生した熱だけでは冷却水の凍結防止を賄いきれなかったとしても、貯湯槽44の水に熱量を付与することにより冷却水の凍結を防止することができる。
このとき、貯湯槽44が追焚き給湯機能を有していてもよく、この場合には第3経路53や第3バルブ54や追焚き給湯器55は不要であり、図2のフローチャートで燃料電池40の運転停止中で外気温が所定温度Ta以下で冷却水温が所定温度Tw1以下のときに、貯湯槽44に貯留された水で冷却水の凍結を防止できるか否かを判定し、防止できるときにはステップS180以下に進み、防止できないときには追焚き機能を作動させたあとステップS180以下に進めばよい。但し、追焚き機能を作動させたときにはステップS210で追焚き機能を停止させる。
10…燃料電池発電システム、22…ガス配管、24…調節弁、26…昇圧ポンプ、27…脱硫器、28…昇圧ポンプ、30…改質器、32…燃焼部、34…CO選択酸化部、40…燃料電池、41…ブロア、42…熱交換器、43…冷却水ポンプ、44…貯湯槽、45…貯湯ポンプ、46…第1バルブ、47…第2バルブ、48…冷却水循環経路、49…冷却水温センサ、51…第1経路、52…第2経路、53…第3経路、54…第3バルブ、55…追焚き給湯器、60…電子制御ユニット、61…外気温センサ、70…系統連係パッケージ。
Claims (15)
- 燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池と、
熱交換媒体を貯留する熱交換媒体貯留手段と、
前記燃料電池を冷却する燃料電池冷媒と前記熱交換媒体貯留手段に貯留された熱交換媒体との間で熱交換を行い前記燃料電池の発電時には前記熱交換媒体により前記燃料電池冷媒の熱を回収する熱交換手段と、
前記燃料電池冷媒の凍結のおそれがあるときには前記熱を回収した熱交換媒体により前記熱交換手段にて前記燃料電池冷媒を暖める凍結防止手段と
を備えた燃料電池発電システム。 - 前記凍結防止手段は、前記燃料電池冷媒を暖める熱交換媒体として前記熱交換媒体貯留手段の中層部以上に貯留する熱交換媒体を用いる
請求項1記載の燃料電池発電システム。 - 請求項1又は2記載の燃料電池発電システムであって、
前記熱交換媒体貯留手段の下層部の熱交換媒体を前記熱交換手段へ送り込み前記燃料電池冷媒と熱交換させたあと前記熱交換媒体貯留手段へ戻す第1経路と、
前記熱交換媒体貯留手段の中層部以上に貯留する熱交換媒体を前記熱交換手段へ送り込み前記燃料電池冷媒と熱交換させたあと前記熱交換媒体貯留手段へ戻す第2経路と
を備え、
前記凍結防止手段は、前記燃料電池の発電時には前記第1経路を開き前記第2経路を閉じて前記熱交換手段にて熱交換を行うことにより前記燃料電池冷媒の熱を前記熱交換媒体で回収し、前記燃料電池冷媒の凍結のおそれがあるときには前記第2経路を開き前記第1経路を閉じて前記熱交換手段にて熱交換を行うことにより前記燃料電池冷媒を前記熱交換媒体で暖める
燃料電池発電システム。 - 請求項1〜3のいずれかに記載の燃料電池発電システムであって、
前記熱交換媒体貯留手段に貯められた前記熱交換媒体に熱量を付与する熱量付与手段
を備え、
前記凍結防止手段は、前記燃料電池冷媒の凍結のおそれがあり且つ前記熱交換媒体貯留手段に貯留された熱交換媒体の熱量が前記燃料電池冷媒を暖めるのに不足しているときには、前記熱量付与手段が熱量を付与したあとの熱交換媒体で前記燃料電池冷媒を暖める
燃料電池発電システム。 - 請求項4記載の燃料電池発電システムであって、
前記熱交換媒体貯留手段に貯められた前記熱交換媒体の熱量を検出する熱量検出手段
を備え、
前記熱交換媒体貯留手段に貯留された熱交換媒体の熱量が前記燃料電池冷媒を暖めるのに不足しているときとは、前記熱量検出手段によって検出された熱量が予め前記燃料電池冷媒を暖めるのに必要な所定の熱量範囲でないときである
燃料電池発電システム。 - 燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池と、
前記燃料電池を冷却する燃料電池冷媒との熱交換により前記燃料電池冷媒の熱回収を行う熱回収手段と、
前記熱回収手段の熱を蓄える蓄熱手段と、
前記燃料電池冷媒の凍結のおそれがあるときには前記蓄熱手段の熱エネルギにより前記燃料電池冷媒を暖める凍結防止手段と
を備えた燃料電池発電システム。 - 前記熱回収手段は熱交換媒体である
請求項6記載の燃料電池発電システム。 - 前記熱交換媒体は水又は湯である
請求項1〜5及び7のいずれかに記載の燃料電池発電システム。 - 前記燃料電池冷媒は閉じた系内を循環する
請求項1〜8のいずれかに記載の燃料電池発電システム。 - 請求項1〜9のいずれかに記載の燃料電池発電システムであって、
外気温を検出する外気温検出手段
を備え、
前記燃料電池冷媒の凍結のおそれがあるときとは、前記外気温検出手段によって検出された外気温が予め前記燃料電池冷媒の凍結のおそれがあると定められた所定の凍結温度範囲のときである
燃料電池発電システム。 - 請求項1〜10のいずれかに記載の燃料電池発電システムであって、
燃料電池冷媒の温度を検出する冷媒温度検出手段
を備え、
前記燃料電池冷媒の凍結のおそれがあるときとは、前記冷媒温度検出手段によって検出された温度が予め前記燃料電池冷媒の凍結のおそれがあると定められた所定の温度範囲のときである
燃料電池発電システム。 - 請求項1〜11のいずれかに記載の燃料電池発電システムであって、
前記燃料電池の運転状態を検出する運転状態検出手段
を備え、
前記凍結防止手段は、前記運転状態検出手段により前記燃料電池が運転停止中であると検出されたときに前記燃料電池冷媒の凍結のおそれがあるか否かを判定する
燃料電池発電システム。 - 燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池を冷却する燃料電池冷媒と熱交換媒体貯留手段に貯留された熱交換媒体との間で熱交換を行う燃料電池発電システムを運転する方法であって、
前記燃料電池の発電時には前記燃料電池冷媒の熱を前記熱交換媒体で回収し、前記燃料電池冷媒の凍結のおそれがあるときには前記燃料電池の発電時に熱を回収した熱交換媒体により前記燃料電池冷媒を暖める
燃料電池発電システムの運転方法。 - 前記燃料電池冷媒の凍結のおそれがあり且つ前記熱交換媒体貯留手段に貯留された熱交換媒体の熱量が前記燃料電池冷媒を暖めるのに不足しているときには、前記熱交換媒体に熱量を付与したあと該熱交換媒体で前記燃料電池冷媒を暖める
請求項13記載の燃料電池発電システムの運転方法。 - 燃料ガスと酸化ガスとの電気化学反応により発電する燃料電池を冷却する燃料電池冷媒との熱交換により前記燃料電池冷媒の熱回収を行う燃料電池発電システムを運転する方法であって、
前記燃料電池冷媒の凍結のおそれがあるときには前記燃料電池冷媒の熱回収によって得た熱エネルギにより前記燃料電池冷媒を暖める
燃料電池発電システムの運転方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009026751A JP4977151B2 (ja) | 2009-02-06 | 2009-02-06 | 燃料電池発電システムおよびその運転方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009026751A JP4977151B2 (ja) | 2009-02-06 | 2009-02-06 | 燃料電池発電システムおよびその運転方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007060388A Division JP4825704B2 (ja) | 2007-03-09 | 2007-03-09 | 燃料電池発電システムおよびその運転方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009146906A true JP2009146906A (ja) | 2009-07-02 |
JP4977151B2 JP4977151B2 (ja) | 2012-07-18 |
Family
ID=40917232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009026751A Expired - Fee Related JP4977151B2 (ja) | 2009-02-06 | 2009-02-06 | 燃料電池発電システムおよびその運転方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4977151B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013015244A (ja) * | 2011-07-01 | 2013-01-24 | Tokyo Gas Co Ltd | 配管凍結防止制御システム及びその凍結防止制御方法 |
KR101376531B1 (ko) | 2012-11-22 | 2014-03-19 | 주식회사 코헥스 | 천연가스 추진선박용 액화천연가스 기화 시스템 |
JP7565187B2 (ja) | 2020-10-26 | 2024-10-10 | 京セラ株式会社 | 燃料電池装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002042841A (ja) * | 2000-07-24 | 2002-02-08 | Matsushita Electric Ind Co Ltd | 高分子電解質型燃料電池コージェネレーションシステム |
JP2002216824A (ja) * | 2001-01-15 | 2002-08-02 | Sanyo Electric Co Ltd | 固体高分子形燃料電池発電装置 |
-
2009
- 2009-02-06 JP JP2009026751A patent/JP4977151B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002042841A (ja) * | 2000-07-24 | 2002-02-08 | Matsushita Electric Ind Co Ltd | 高分子電解質型燃料電池コージェネレーションシステム |
JP2002216824A (ja) * | 2001-01-15 | 2002-08-02 | Sanyo Electric Co Ltd | 固体高分子形燃料電池発電装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013015244A (ja) * | 2011-07-01 | 2013-01-24 | Tokyo Gas Co Ltd | 配管凍結防止制御システム及びその凍結防止制御方法 |
KR101376531B1 (ko) | 2012-11-22 | 2014-03-19 | 주식회사 코헥스 | 천연가스 추진선박용 액화천연가스 기화 시스템 |
WO2014081182A1 (en) * | 2012-11-22 | 2014-05-30 | Corhex Corp. | 3-d channel gas heat exchanger |
US10365045B2 (en) | 2012-11-22 | 2019-07-30 | Alfa Laval Corhex Ltd. | 3-D channel gas heat exchanger |
US11391518B2 (en) | 2012-11-22 | 2022-07-19 | Alfa Laval Corhex Ltd. | Method of operating a heat exchanger |
JP7565187B2 (ja) | 2020-10-26 | 2024-10-10 | 京セラ株式会社 | 燃料電池装置 |
Also Published As
Publication number | Publication date |
---|---|
JP4977151B2 (ja) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4284378B2 (ja) | 燃料電池システム | |
EP2215679B1 (en) | Fuel cell system | |
JP2003151601A (ja) | 燃料電池システム及びその停止方法 | |
JP3949460B2 (ja) | 燃料電池発電システムおよびその運転方法 | |
JP4825704B2 (ja) | 燃料電池発電システムおよびその運転方法 | |
JP4977151B2 (ja) | 燃料電池発電システムおよびその運転方法 | |
JP4845899B2 (ja) | 燃料電池システム | |
JP4106356B2 (ja) | 燃料電池システム | |
JP4087840B2 (ja) | 燃料電池システム | |
JP2002042840A (ja) | 燃料電池型コージェネレーションシステム | |
JP2002246052A (ja) | 燃料電池装置及びその起動方法 | |
JP2005116256A (ja) | 燃料電池コージェネレーションシステム | |
JP2005093117A (ja) | 燃料電池システム | |
JP2005116310A (ja) | 燃料電池システム | |
JP2007165130A (ja) | 燃料電池システム及び燃料電池システムの制御方法 | |
JP2005285648A (ja) | 燃料電池システム | |
JP3939333B2 (ja) | 給湯システム | |
JP2007311058A (ja) | 燃料電池システムと燃料電池の冷却方法 | |
JP2005011621A (ja) | 燃料電池システム | |
JP2004206950A (ja) | 燃料電池システム | |
JP2001183007A (ja) | 熱供給装置及び電・熱併給システム | |
JP2006093167A (ja) | 燃料電池システムおよび排熱回収システム | |
JP2006114264A (ja) | 固体高分子型燃料電池発電方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120327 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120413 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |