[go: up one dir, main page]

JP2009133613A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2009133613A
JP2009133613A JP2009021920A JP2009021920A JP2009133613A JP 2009133613 A JP2009133613 A JP 2009133613A JP 2009021920 A JP2009021920 A JP 2009021920A JP 2009021920 A JP2009021920 A JP 2009021920A JP 2009133613 A JP2009133613 A JP 2009133613A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
indoor
air
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009021920A
Other languages
English (en)
Inventor
Atsuhiko Yokozeki
敦彦 横関
Kenji Matsumura
賢治 松村
Yoshihiko Mochizuki
佳彦 望月
Susumu Nakayama
進 中山
Kenichi Nakamura
憲一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009021920A priority Critical patent/JP2009133613A/ja
Publication of JP2009133613A publication Critical patent/JP2009133613A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】接続配管が長くなることによる不具合を抑制すること。
【解決手段】圧縮機と室外熱交換器と室外側減圧手段を含む室外機33と、室内側減圧手段と室内熱交換器を含む室内機35とを備え、1台の前記室外機に対し複数の室内機を冷媒配管で接続して冷凍サイクルを形成した多室型の空気調和装置であり、室外側減圧手段7と室内側減圧手段(17,19)との間の配管部分1を通流する液冷媒を冷却する過冷却器11と、配管部分から液冷媒を抜き出して過冷却減圧装置27を介して減圧した冷媒により過冷却器の液冷媒を冷却して圧縮機の吸入側に導く過冷却管路25とを備えてなり、室内機が冷房運転をするとき、過冷却減圧装置を開くように制御する。
【選択図】図1

Description

本発明は、空気調和装置に係り、特に、室内側熱交換器が再熱用熱交換器を有して再熱除湿を行う空気調和装置に関する。
空気調和装置における除湿運転では、冷房運転と同様の運転を行い、室内熱交換器で吸込んだ空気と冷媒との間で熱交換を行うことにより空気中の水分を凝縮させて除湿を行っている。このため、室内温度下げる必要がないにも関わらず、除湿運転を行うことによって室内熱交換器から吹き出される空気の温度が下がり、利用者の快適性が低下してしまうという問題がある。
これに対して、室内熱交換器を含む室内機に、吸込んだ空気が室内熱交換器を通流する主通路と、室内熱交換器を通らずにバイパスする側通路とを設け、これら各々の通路を通過した空気を室内機内で混合させて室内に吹き出すことにより、空気温度の低下を低減することが提案されている(例えば、特許文献1参照)。
ところが、特許文献1に提案されているような構成の空気調和装置では、主通路を通過して室内熱交換器で冷却された空気と、側通路を通過する室内からの冷却や除湿されていない高温高湿の空気とが混合された場合、この側通路からの高温高湿の空気が主通路からの冷却された空気で冷やされて飽和曲線を超えてしまい、主通路と側通路の混合部で結露が生じ、室内に霧が飛散してしまう場合がある。また、特許文献1に提案されているような構成の空気調和装置では、吹き出し空気の温度を下げる通常の冷房運転を行ないたい場合、側通路を閉鎖する必要があり、そのためのダンパが必要となる。このため、構成の複雑化によるコストの増大や装置の大型化を招いてしまう。
このような特許文献1に提案されているような構成の空気調和装置での問題を解決する空気調和装置として、室内熱交換器が、吸込んだ空気を冷却する冷却用熱交換器と、除湿の際に、冷却用熱交換器で冷却された空気を加熱して吹き出し空気温度の低下を低減する再熱用熱交換器を有する構成が提案されている(例えば、特許文献2参照)。このような空気調和装置では、顕熱比SHFを小さくして除湿量を大きくすると共に、吹き出し空気温度の低下を低減することが可能になる。さらに、特許文献2では、圧縮機から吐出されたガス冷媒を、室外熱交換器から室内熱交換器の再熱用熱交換器へ通流する液冷媒に合流させる吐出ガスバイパス管路を設けることにより、再熱除湿方式による除湿運転のときに、再熱用熱交換器に冷媒が溜まり込むことを防ぎ、再熱用熱交換器の小型化や、省エネルギー化することが提案されている。
特開昭61−59143号公報(第2頁、第1図、第2図) 特開2003−28535号公報(第4−6頁、第1図)
ところで、特許文献2のような構成の空気調和装置では、圧縮機から吐出されたガス冷媒が、吐出ガスバイパス管路を介して室外熱交換器から室内熱交換器の再熱用熱交換器へ通流する液冷媒に合流されることにより、再熱用熱交換器に送られる冷媒が気液二相状態となる。ここで、室外熱交換器から室内熱交換器の再熱用熱交換器への接続配管が長くなるに連れて圧力損失が増大するが、再熱用熱交換器に送られる冷媒が気液二相状態であると、この接続配管が長くなるにことによる圧力損失の増大の影響により、再熱用熱交換器に吸込まれた空気を加熱できない程度まで、再熱用熱交換器に入る冷媒の温度と圧力が低下してしまう場合が生じ、吹き出し空気温度の低下を低減できなくなる場合がある。
このとき、接続配管が長配管になることによる圧力損失の影響を減少させるため、吐出ガスバイパス管路から合流してくるガス冷媒の量を減少させるか、または、室内機に送る冷媒を液単相とすることが考えられる。しかし、吐出ガスバイパス管路から合流してくるガス冷媒の量を減少させるか、または、室内機に送る冷媒を液単相とすると、再熱用熱交換器での熱交換量が減少するため、圧力損失の影響を減少させることはできても、やはり、吹き出し空気温度の低下を低減できなくなってしまう場合がある。
本発明の課題は、接続配管が長くなることによる不具合を抑制することにある。
本発明の空気調和装置は、圧縮機と室外熱交換器と室外側減圧手段を含む室外機と、室内側減圧手段と室内熱交換器を含む室内機とを備え、1台の前記室外機に対し複数の室内機を冷媒配管で接続して冷凍サイクルを形成した多室型の空気調和装置であり、室外側減圧手段と室内側減圧手段との間の配管部分を通流する液冷媒を冷却する過冷却器と、配管部分から液冷媒を抜き出して過冷却減圧装置を介して減圧した冷媒により過冷却器の液冷媒を冷却して圧縮機の吸入側に導く過冷却管路とを備えてなり、室内機が冷房運転をするとき、過冷却減圧装置を開くように制御する構成とすることにより上記課題を解決する。
このような構成とすれば、冷房運転時において、室外側減圧弁を出た液冷媒は、過冷却器により過冷却されることにより、液冷媒のエンタルピが小さくなり、室内熱交換器に送られる冷媒循環量が少なくても済むようになるため、接続配管が長くても室内熱交換器での圧力損失を小さくすることが可能となり、冷房能力を向上させることができる。
この場合において、室内熱交換器は、吸込んだ空気を冷却する冷却用熱交換器と、吸込んだ空気を加熱する再熱用熱交換器とで構成され、室内機が除湿運転のときは、冷却用熱交換器と再熱用熱交換器とが、再熱用熱交換器、冷却用熱交換器の順で直列に接続された状態となり、室内機が冷房運転のときは、冷却用熱交換器と再熱用熱交換器とが並列に接続された状態となるように、冷却用熱交換器と再熱用熱交換器の接続状態を切り替える切替手段を備えた構成とする。
さらに、圧縮機から吐出したガス冷媒を配管部分に導く吐出ガスバイパス管路と、この吐出ガスバイパス管路に設けられて吐出ガスバイパス管路を通流する冷媒の流量を調整する吐出ガス減圧装置とを備え、室内機が除湿運転をするときは、吐出ガス減圧装置が開、過冷却減圧装置が閉となり、室内機が冷房運転をするときは、吐出ガス減圧装置が閉、過冷却減圧装置が開となるように、吐出ガス減圧装置と過冷却減圧装置の開度を制御する構成とする。
また、室内熱交換器は、吸込んだ空気を冷却する冷却用熱交換器と吸込んだ空気を加熱する再熱用熱交換器とで構成され、冷却用熱交換器と再熱用熱交換器は、室内側減圧手段の下流側を分岐した冷媒管路に並列で接続されるとともに、再熱用熱交換器の下流側と冷却用熱交換器の上流側とが連結管路で連結され、この連結管路には除湿用減圧手段が設けられてなり、再熱用熱交換器の出側に接続される冷媒管路における連結管路の連結部よりも下流側に第1開閉弁が設けられ、冷却用熱交換器の入り側に接続される冷媒管路における連結管路の連結部よりも上流側に第2開閉弁が設けられてなり、室内機が除湿運転をするときは、冷却用熱交換器と再熱用熱交換器とが直列に接続された状態となり、室内機が冷房運転をするときは、冷却用熱交換器と再熱用熱交換器とが並列に接続された状態となるように、第1開閉弁と第2開閉弁の開閉を制御してなる構成とする。
また、圧縮機から吐出したガス冷媒を前記配管部分に導く吐出ガスバイパス管路と、この吐出ガスバイパス管路に設けられて吐出ガスバイパス管路を通流する冷媒の流量を調整する吐出ガス減圧装置と、再熱用熱交換器の入口部分の冷媒温度を検出する冷媒温度検出手段とを備え、室内機が除湿運転をするとき、冷媒温度検出手段により検出された冷媒温度に応じて吐出ガス減圧装置の開度を制御してなる構成とする。
本発明によれば、接続配管が長くなることによる不具合を抑制することができる。
本発明を適用してなる空気調和装置の一実施形態の冷凍サイクルの概略を示す系統図である。 本発明を適用してなる空気調和装置の一実施形態が備える室内機の概略構成を示す断面図である。 本発明を適用してなる空気調和装置の一実施形態が備える室内機の室内熱交換器における冷却用熱交換器と再熱用熱交換器の配置、及び冷媒流路の状態を示す模式図であり、3列の熱交換器の場合を示す図である。 本発明を適用してなる空気調和装置の変形例が備える室内機の室内熱交換器における冷却用熱交換器と再熱用熱交換器の配置、及び冷媒流路の状態を示す模式図であり、2列の熱交換器の場合を示す図である。 本発明を適用してなる空気調和装置の除湿運転時における空気線図である。 本発明を適用してなる空気調和装置の除湿運転時における運転特性を示す図であり、(a)は第2経路に在る熱交換器の空気流量の割合に対する室内機からの吹き出し温度の関係を、(b)は第2経路に在る熱交換器の空気流量の割合に対する除湿量の関係を、(c)は第2経路に在る熱交換器の空気流量の割合に対する吹き出し温度の上昇量と除湿量の増加量との積の関係を示す図である。 従来の空気調和装置の除湿運転時における空気線図である。 従来の空気調和装置の除湿運転時における空気線図である。
以下、本発明を適用してなる空気調和装置の一実施形態について図1乃至図6を参照して説明する。図1は、本発明を適用してなる空気調和装置の冷凍サイクルの概略を示す系統図である。図2は、本発明を適用してなる空気調和装置が備える室内機の概略構成を示す断面図である。図3及び図4は、本発明を適用してなる空気調和装置が備える室内機の室内熱交換器における冷却用熱交換器と再熱用熱交換器の配置、及び冷媒流路の状態を示す模式図である。図5は、本発明を適用してなる空気調和装置の除湿運転時における空気線図である。図6は、本発明を適用してなる空気調和装置の除湿運転時における運転特性を示す図であり、(a)は第2経路に在る熱交換器の空気流量の割合に対する室内機からの吹き出し温度の関係を、(b)は第2経路に在る熱交換器の空気流量の割合に対する除湿量の関係を、(c)は第2経路に在る熱交換器の空気流量の割合に対する吹き出し温度の上昇量と除湿量の増加量との積の関係を示す図である。
本実施形態の空気調和装置は、図1に示すように、冷媒が循環するように配管された冷媒循環管路1、冷媒循環管路1に順に設けられた圧縮機3、室外熱交換器5、室外側減圧手段となる室外膨張弁7、レシーバ9、過冷却器11、液阻止弁13、室内側減圧手段となる室内膨張弁15、室内熱交換器を構成する冷却用熱交換器17及び再熱用熱交換器19、そしてガス阻止弁21などで主冷媒回路を形成し、冷凍サイクルを構成している。
室外熱交換器5と圧縮機3、そして冷却用熱交換器17及び再熱用熱交換器19と圧縮機3との間の冷媒循環管路1には四方弁23が設けられている。そして、冷媒循環管路1は、四方弁23の切り換えによって、冷房運転や除湿運転時には、冷却用熱交換器17及び再熱用熱交換器19からの冷媒を圧縮機3が吸込み、圧縮機3から室外熱交換器5に向けて圧縮された冷媒を吐出し、暖房運転時には、室外熱交換器5からの冷媒を圧縮機3が吸込み、圧縮機3から冷却用熱交換器17及び再熱用熱交換器19に向けて圧縮された冷媒を吐出する状態に配管されている。室外熱交換器5や室内熱交換器を構成する冷却用熱交換器17及び再熱用熱交換器19には、各々、電動機により駆動される送風機5a、24が各々付設されている。送風機5a、24が、各々、室外熱交換器5や室内熱交換器を構成する冷却用熱交換器17及び再熱用熱交換器19へ空気を送ることにより、冷媒と空気との熱交換が行われる。
また、本実施形態の空気調和装置は、余剰冷媒を貯留するレシーバ9の出口からの液冷媒を、冷媒循環管路1のレシーバ9よりも冷媒の流れに対して下流側に設けられた過冷却器11に導き、さらに、この過冷却器11で冷媒循環管路1を通流する液冷媒と熱交換させることで蒸発させた冷媒を圧縮機3の吸込み側に導く過冷却器バイパス管路25を有している。過冷却器バイパス管路25には、過冷却器バイパス管路25の冷媒の流れに対して過冷却器11よりも上流側に、過冷却器バイパス管路25に流れる冷媒の流量を調整するための過冷却器用減圧装置27が設けられている。
また、本実施形態の空気調和装置は、圧縮機3からの吐出ガスをレシーバ9の出口側に連結された冷媒循環管路1の部分に導く吐出ガスバイパス管路29を有している。吐出ガスバイパス管路29は、レシーバ9の出口側に連結された冷媒循環管路1の部分で、過冷却器バイパス管路25の分岐部よりも冷媒循環管路1の冷媒の流れに対して下流側で液阻止弁13よりも上流側の部分に合流している。さらに、吐出ガスバイパス管路29には、吐出ガスバイパス管路29に流れる冷媒の流量を調整するための吐出ガスバイパス用減圧装置31が設けられている。
なお、圧縮機3、室外熱交換器5、室外膨張弁7、レシーバ9、過冷却器11、四方弁23、そしてこれらが設けられた液阻止弁13とガス阻止弁21で分割される冷媒循環管路1の部分、さらに、過冷却器バイパス管路25、吐出ガスバイパス管路29などは、室外機33に収められている。一方、室内膨張弁15、室内熱交換器を構成する冷却用熱交換器17及び再熱用熱交換器19、そしてこれらが設けられた液阻止弁13とガス阻止弁21で分割される冷媒循環管路1の部分の一部は、室内機35に収められている。室外機33と室内機35とは、冷媒循環管路1の液阻止弁13が設けられた側の部分である液側接続配管1aと、冷媒循環管路1のガス阻止弁21が設けられた側の部分であるガス側接続配管1bとで接続されており、必要量の冷媒が封入されている。本実施形態では、室内機35を室外機33に対して2台備えた構成を例としているが、室内機35を室外機33に対して1台または3台以上備えた構成とすることもできる。
本実施形態の室内機35に設けられた室内熱交換器を構成する冷却用熱交換器17及び再熱用熱交換器19は、冷媒循環管路1に対して並列そして直列に接続された状態に切り換えられるようになっている。つまり、本実施形態では、内熱交換器を構成する冷却用熱交換器17及び再熱用熱交換器19は、分岐した冷媒循環管路1によって並列に接続されると共に、分岐した冷媒循環管路1の、一方の熱交換器の冷媒の流れに対して下流側と、他方の熱交換器の上流側とを連結する連結管路37を備えている。さらに、分岐した冷媒循環管路1の、連結管路37の連結部よりも上流側または下流側には、各々、電磁弁39、41が設けられている。また、連結管路37には、除湿用減圧手段としてキャピラリ43が設けられている。なお、除湿用減圧手段となるキャピラリ43は、膨張弁などに代えることもできる。
したがって、本実施形態の室内機35では、冷房運転時などには、冷却用熱交換器17側に設けられた電磁弁39と、再熱用熱交換器側19側に設けられた電磁弁41とを開くことにより、冷却用熱交換器17と再熱用熱交換器側19とが冷媒循環管路1に対して並列に接続された状態となり、再熱用熱交換器側19を冷却用熱交換器として用いることができる。一方、除湿運転時には、冷却用熱交換器17側に設けられた電磁弁39と、再熱用熱交換器側19側に設けられた電磁弁41とを閉じることにより、冷媒が連結管路37を通流するため、冷却用熱交換器17と再熱用熱交換器側19とが、再熱用熱交換器側19そして冷却用熱交換器17の順に冷媒循環管路1に対して直列に接続された状態となり、再熱除湿方式による除湿運転が行われる。
ここで、天井埋め込み型室内機を一例として室内機35の室内熱交換器の構成について説明する。なお、室内機としては、天井埋め込み型に限らず、天井吊下げ型や、壁掛け型、床置き型など他の様々な形態のものを用いることができる。
本実施形態の室内機35は、図2に示すように、箱状の室内機本体外郭45、室内機本体外郭45の下面周囲に設けられた化粧パネル47、室内機本体外郭45の下面中央部に設けられた吸込み口49、室内機本体外郭45の下面周縁部に設けられた吹き出し口51、吹き出し口51に設けられて吹き出し方向を変える風向ルーバー53などを備えている。さらに、室内機35の室内機本体外郭45内には、吸込み口49の上方に室内送風機24及びその電動機24aが設けられ、室内送風機24を囲んだ状態で、室内熱交換器を構成する冷却用熱交換器17及び再熱用熱交換器19が設けられている。本実施形態では、冷却用熱交換器17及び再熱用熱交換器19は、一体の熱交換器として形成されており、この一体の熱交換器として形成された冷却用熱交換器17及び再熱用熱交換器19が、室内機本体外郭45内に、上下方向にほぼ垂直に立てた状態で設けられており、冷却用熱交換器17及び再熱用熱交換器19の下端側には、冷却用熱交換器17での凝縮水を受けるドレンパン55が設けられている。
本実施形態の一体の熱交換器として形成された冷却用熱交換器17及び再熱用熱交換器19は、図2及び図3に示すように、室内送風機24側から吹き出し口51にかけて3列に設けられた冷媒流路57、59と、それらの冷媒流路57、59に連結されたフィンなどで形成されている。そして、室内送風機24側から1列目と2列目では、下側には、冷却用熱交換器17を構成する冷媒流路57が配管され、上側には、再熱用熱交換器19を構成する冷媒流路59が配管されている。室内送風機24側から3列目では、3列目全体に再熱用熱交換器19を構成する冷媒流路59が配管されている。これにより、一体に形成された室内熱交換器の室内送風機24側から1列目と2列目の下側部分が冷却用熱交換器17に、室内送風機24側から1列目と2列目の上側部分と3列目全体とが再熱用熱交換器19になっている。
このように、冷却用熱交換器17と再熱用熱交換器19とを室内熱交換機として一体に形成する場合、例えば、図3において、室内熱交換器を構成する冷却用熱交換器17及び再熱用熱交換器19の部分において示した実線のように熱交換器の手前側側面での各冷媒流路57、59を各々接続し、点線のように熱交換器の反対側側面での各冷媒流路57、59を各々接続する。これにより、冷却循環管路1の液側接続配管1aが接続された第1再熱用ヘッダ管61に流入した室外機33からの冷媒は、第1再熱用ヘッダ管61から分岐して熱交換器の室内送風機24側から1列目の上部に配管された冷媒流路59、2列目の上部に配管された冷媒流路59、そして3列目の上部に配管された冷媒流路59を通流し、第2再熱用ヘッダ管63に流入する。また、第1再熱用ヘッダ管61から分岐した別の冷媒は、熱交換器の3列目の上部以外に配管された冷媒流路59を通流し、第2再熱用ヘッダ管63に流入する。
第2再熱用ヘッダ管63に流入した冷媒は、連結管路37を通流してキャピラリ43で減圧された後、第1冷却用ヘッダ管65に流入する。第1冷却用ヘッダ管65に流入した冷媒は、第1冷却用ヘッダ管65から熱交換器の室内送風機24側から1列目の再熱用熱交換器19となる上部以外の部分に配管された冷媒流路57、そして2列目の再熱用熱交換器19となる上部以外の部分に配管された冷媒流路57を通流し、ガス側接続配管1bが連結された第2冷却用ヘッダ管67に流入し、室外機33へ戻る。したがって、このように冷却流路57、59を配管した室内熱交換機とすることによって、一体に形成した室内熱交換機に冷却用熱交換器17と再熱用熱交換器19とを設けることができる。
また、冷却用熱交換器17と再熱用熱交換器19とを一体の室内熱交換器として形成する場合、例示した3列の構成に限らず、図4に示すような2列の構成や、4列以上の構成などにもできる。
このような室内機35では、電動機24aで駆動された室内送風機24の送風作用により、室内の空気が吸込み口49から吸込まれ、冷却用熱交換器17及び再熱用熱交換器19で構成された室内熱交換器へと導かれると、この吸込まれた空気は、図2及び図3に矢印で示す、室内熱交換器の下側、つまり、冷却用熱交換器17から再熱用熱交換器19の順に通過する第1経路Aと、室内熱交換器の上側、つまり、再熱用熱交換器19のみを通過する第2経路Bとの2つの経路を有することとなる。
第1経路Aを通る空気は、冷却用熱交換器17を通過することによって冷却、除湿され、その後、再熱用熱交換器19を通過することによって加熱される。このとき、第1経路Aを通る空気が冷却用熱交換器17を通過する際に冷却用熱交換器17で生じた凝縮水は、下方に流下し、ドレンパン55に受けられ、排出される。一方、第2経路Bを通る空気は、再熱用熱交換器19のみを通過することで、加熱のみを受ける。そして、第1経路Aからと第2経路Bからとの温度と湿度のレベルの異なる空気は、吹き出し口51に至る間に混合され、風向ルーバー53にて任意の向きに吹き出される。
ここで、再熱用熱交換器19のみを通過する第2経路Bは、冷却用熱交換器17と再熱用熱交換器19を通過する第1経路Aよりも上方に配置されることが望ましい。この理由としては、第2経路Bが下部に配置された場合、冷却用熱交換器で通過した空気が冷却、除湿された際に発生した結露水が重力で流れ落ち、下部に配置された再熱用熱交換器で再び加熱され、蒸発することとなる。したがって、第2経路Bが下部に配置された場合、除湿量の低下が生じることになるためである。
このような構成の空気調和装置の動作と本発明の特徴部について説明する。冷房運転時には、図1に示すように、圧縮機3で圧縮された高温高圧のガス冷媒は、四方弁23を介して室外熱交換器5に送られ、室外送風機5aによって送られる室外の空気により冷却されて凝縮し、高圧の液冷媒となり、全開状態の室外膨張弁7を通過してレシーバ9に入る。レシーバ9から出た高圧の液冷媒は、過冷却器11で、過冷却器バイパス管路25を流れる過冷却器用減圧装置27で減圧されて低温二相状態となった冷媒との熱交換により冷却されて、過冷却液冷媒となる。一方、過冷却器バイパス管路25を流れる過冷却器11から出た冷媒は、過熱ガス、または、かわき度の大きな二相冷媒となって圧縮機3に吸入される。
過冷却器11からの過冷却液冷媒は、室外機33から液側接続配管1aを介して、室内機35に送られる。室内機35に送られた過冷却液冷媒は、室内膨張弁15により減圧され、低温低圧二相冷媒となる。冷房運転時には、電磁弁39、41は開いているため、低温低圧二相冷媒は、冷却用熱交換器17と冷却用熱交換器として作用する再熱用熱交換器19の両方に送られる。冷却用熱交換器17と冷却用熱交換器として作用する再熱用熱交換器19に入った低温低圧二相冷媒は、冷却用熱交換器17と再熱用熱交換器19の両方で、室内送風機24によって送られた室内空気との間で熱交換を行なって室内空気を冷却する。そして、冷却された室内空気が室内機35から室内に吹き出されることで冷房される。
このとき、冷却用熱交換器17と再熱用熱交換器19内では。冷媒は、蒸発して低圧ガス、または、かわき度の大きな二相冷媒となり、ガス側接続配管1bを介して室外機33に戻り、再び四方弁23を通過して圧縮機3に吸入される。なお、冷媒循環中に発生した余剰冷媒はレシーバ9に貯留される。
このように、過冷却器11により、液冷媒が過冷却されることにより、液冷媒のエンタルピが小さくなるため、蒸発器となる室内機35の冷却用熱交換器17と再熱用熱交換器19に送られる冷媒循環量が少なくて済む。さらに、このため液側接続配管1a、ガス側接続配管1b、蒸発器として作用する冷却用熱交換器17と再熱用熱交換器19での圧力損失を小さくすることが可能であり、冷房能力を向上させることができる。
暖房運転時においては、四方弁23が、図1の四方弁23内の点線で示した流路の方に切り換えられるため、圧縮機3において圧縮された高温高圧の過熱ガス冷媒は、四方弁23を介してガス側接続管1bを介して室内機35に送られる。ここで、冷房運転時と同様に、電磁弁39、41は共に開放状態に設定されているため、高温高圧の過熱ガス冷媒は、共に加熱用熱交換器つまり凝縮器として作用する冷却用熱交換器17と再熱用熱交換器19の両方に送られ、冷却用熱交換器17と再熱用熱交換器19の両方で、室内送風機24によって吸込まれた室内空気との間で熱交換を行なって、室内空気を加熱、昇温する。そして、昇温された室内空気が室内機35から室内に吹き出されることで暖房される。
冷却用熱交換器17と再熱用熱交換器19で熱交換された冷媒は、高圧の液冷媒となり、液接続配管1aを介して室外機35へと戻る。室外機35に戻った高圧液冷媒は、過冷却器11を通過し、レシーバ9に送られるが、冷房運転時と異なり、過冷却器用減圧装置27は全閉状態としているため、過冷却作用は行われない。レシーバ9を出た液冷媒は、室外膨張弁7で減圧され、低温低圧の二相冷媒となって室外熱交換器5に入り、室外熱交換器5で室外送風機5aにより送られる空気により加熱、蒸発され、ガス化されて圧縮機3に吸入される。なお、冷房運転時と同様に、冷媒循環中に発生した余剰冷媒は、レシーバ9に貯留される。
除湿運転時には、四方弁23が冷房運転時と同じ位置に切り換えられるため、圧縮機3で圧縮された高温高圧のガス冷媒は、室外熱交換器5において、室外送風機5aにより送られる室外の空気により冷却、凝縮されて液冷媒となる。室外熱交換器5からの液冷媒は、室外膨張弁7が全開状態となっているため、ほとんど減圧されずにレシーバ9に入る。冷房運転時には過冷却器11において過冷却されるが、除湿運転時には、過冷却器用減圧装置27を全閉状態として運転するため、レシーバ9を出た液冷媒は、過冷却器11をそのまま通過する。過冷却器11を出た液冷媒は、吐出ガスバイパス管路29から流入してくる圧縮機3からの吐出ガスの一部が混合され、気液二相冷媒となる。これにより、室内機35に送られる冷媒のエンタルピが増加し、再熱用熱交換器19での再熱量を大きくすることが可能になる。
この室外機35からの気液二相冷媒は、液側接続配管1aを介して室内機35に送られる。このとき、電磁弁39、41は閉じられた状態にあり、さらに、室内膨張弁15は全開状態になっているため、気液二相冷媒は、ほとんど減圧されずに再熱用熱交換器19に入る。再熱用熱交換器19では、図2及び図3に示すように、気液二相冷媒は、室内送風機24により第1経路Aによって送られてくる冷却用熱交換器17で冷却された室内空気、または、第2経路Bによって送られてくる吸込んだ室内空気により冷却され、過冷却液冷媒となる。再熱用熱交換器19からの過冷却液冷媒は、図1に示すように、連結管路37を通過する際にキャピラリ43にて減圧され、低温低圧の二相冷媒となり、冷却用熱交換器17に入る。低温低圧の二相冷媒は、冷却用熱交換器17で、室内から吸込んだ空気と熱交換され、加熱、蒸発して低圧のガス冷媒になる。冷却用熱交換器17からの低圧のガス冷媒は、ガス側接続配管1bを介して室外機35へと戻り、四方弁23を再び通って圧縮機3に吸入される。なお、冷媒循環中に発生した余剰冷媒は、冷房運転及び暖房運転時と同様に、レシーバ9に貯留される。
ここで、除湿運転では、前述のように、液側接続配管1aを通流する液冷媒に、吐出ガスバイパス管路29を介して圧縮機3から吐出されたガス冷媒を混合させ、液側接続配管1aを介して室内機35に送られる冷媒を気液二相冷媒にすることにより、再熱用熱交換器19での熱交換量を増大させている。ところが、気液二相冷媒は、液接続配管1aの長さが長くなることにより圧力損失が増大したときの圧力の低下が飽和液冷媒に比べて大きい。このため、再熱用熱交換器19の圧力の低下により、飽和液冷媒に比べて再熱熱交換量が減少してしまう。したがって、吹き出し温度の低下による冷風感を防止することを目的とした再熱除湿の効果が低減してしまう。また、液接続配管1aの長さが長くなることにより圧力損失が増大すると、圧縮機3の吸入ガス圧力が低下して、真空運転による圧縮機運転範囲の逸脱による圧縮機の信頼性低下が生じる場合もある。
このような、室外機33と室内機35の間の距離などが長くなり、液接続配管1aの長さが長くなった長配管接続のときに生じる再熱用熱交換器19の圧力の低下を防止するため、例えば、再熱用熱交換器19の入口部分での冷媒温度を検出する図示していない冷媒温度出手段を設けている。そして、この図示していない冷媒温度出手段での検出温度によって、長配管接続としたことによる圧力損失の増加の影響による再熱用熱交換器19の入口部分での冷媒温度の低下を検出すると、その温度に応じて吐出ガスバイパス管路29に設けられた吐出ガスバイパス用減圧装置31の開度を小さくして行くか、または、全閉とし、室外機33から室内機35に送られる冷媒中のガス冷媒の量を少なくするか、または、室外機33から室内機35に送られる冷媒を飽和液冷媒とする。これによって、再熱用熱交換器19の圧力の低下が抑制される。
ところが、気液二相冷媒を室内機35に供給する場合に比較して、冷媒中のガス冷媒の量を少なくした冷媒や飽和液冷媒では、冷媒のエンタルピが小さくなるため、再熱用熱交換器19の圧力の低下を抑制したにもかかわらず、再熱用熱交換器19での再熱熱交換量がほとんど増大せず、吹き出し温度の低下を低減できない場合がある。
これに対して、本実施形態では、図2及び図3に示すように、室内機35が冷却用熱交換器17から再熱用熱交換器19の順に吸込んだ室内の空気が通流する第1経路Aと、再熱用熱交換器19のみを吸込んだ室内の空気が通流する第2経路Bを有し、第1経路Aからの空気と第2経路B空の空気とを一緒に室内に吹き出すことで、吹き出し空気温度の低下を低減することが可能となる。
すなわち、第1経路Aにおいては、図2及び図5に示すように、室内機35の吸込み口49より吸込まれる状態(I)の高温で絶対湿度の高い室内空気は、冷却器用熱交換器17にて冷却、除湿され、状態(II)となり、冷却器用熱交換器17によって吸込んだ空気の温度低下と絶対湿度の低下とが同時に生じる。次に、冷却器用熱交換器17を通過した空気は、再熱用熱交換器19により加熱され、絶対湿度が変わらずに温度が上昇して状態(III)となる。
第2経路Bにおいては、室内機35の吸込み口49より吸込まれる状態(I)の室内空気は、再熱用熱交換器19のみを通過して加熱され、状態(III)’の絶対湿度と温度の高い状態になる。そして、これら第1経路Aを通過した状態(III)の空気と、第2経路Bを通過した状態(III)’の空気という異なる状態の空気が、室内機35内において吹き出し口51にいたる過程で混合され、吹き出し口51より吹き出される。室内機35の吹き出し口51から吹き出す空気の状態は、第1経路Aを通過する風量つまり空気の量と第2経路Bを通過する風量つまり空気の量との割合により決まる状態(IV)の空気となる。
したがって、本実施形態では、室内機35の吹き出し口51から吹き出される空気は、除湿運転により、状態(I)から状態(IV)へと除湿されるが、空気温度は、ほとんど下がっていない。また、第1経路A通過した状態(III)の空気、そして第2経路Bを通過した状態(III)’の空気は、いずれも再熱用熱交換器19により加熱された後の空気のため相対湿度は低くなっている。このため、温度の異なる2つの経路を通過した空気が混合する際にも、過飽和状態になることが無いため、霧吹きや水たれが生じるのを防止できる。
ところで、熱交換器を通過する空気が速度分布を持たない場合は、全体の風量に対する第2経路Bの風量割合、つまり室内熱交換機を通過する全体の空気の流量に対する第2経路Bを通過する空気の流量の割合は、室内熱交換機全体の断面積に対する第2経路Bに在る熱交換器の断面積の割合と言い換えることができる。そこで、第2経路Bの風量割合に対する吹き出し空気温度Taoや除湿量Vdとの関係を検討した。吹き出し空気温度Taoは、図6(a)に示すように、全体の風量に対する第2経路Bの風量割合が大きくなるに連れて高くなる。一方、除湿量Vdは、図6(b)に示すように、第2経路Bの風量割合が10%で最大となり、さらに、第2経路Bの風量割合を増加させるに連れて減少し、第2経路Bの風量割合が50%を超えると、冷房運転における除湿量以下となる。
そこで、再熱用熱交換器19のみを通過する第2経路Bの風量割合を増加させることによる効果を、吹き出し空気温度の上昇と除湿量の増加で評価を行なうため、第2経路Bの風量割合と吹き出し空気温度の上昇量ΔTaoと除湿量の増加量ΔVdの積との関係を検討した。これによると、図6(c)に示すように、第2経路Bの風量割合が50%以下のとき、再熱用熱交換器19のみを通過させる第2経路Bを設けることにより、除湿運転の際、吹き出し空気温度の低下を低減できる効果が確実に得られることが分かり、さらに、20%以上40%以下の範囲で、吹き出し空気温度の低下を低減できる効果が一層確実に得られることが分かる。
以上の結果より、室内熱交換機を通過する全体の空気の流量に対する第2経路Bを通過する空気の流量の割合は、50%以下に設定することが望ましく、20%以上40%以下にすることがさらに望ましい。言い換えれば、室内熱交換機全体の断面積に対する第2経路Bに在る熱交換器の断面積の割合は、50%以下に設定することが望ましく、20%以上40%以下にすることがさらに望ましい。
なお、図6において、横軸は第2経路Bの風量割合を示し、図6(a)の縦軸は吹き出し空気温度Tao(℃)を、図6(b)の縦軸は除湿量Vd(L/h)を、そして図6(c)の縦軸は吹き出し空気温度の上昇量ΔTaoと除湿量の増加量ΔVdの積を各々示している。
ここで、従来の吐出ガスバイパス管路を有する空気調和装置で本実施形態と同様の除湿運転を行った場合の運転状態について説明する。まず、ダンパを開いて室内機内に取り込んだ室内空気を冷却用熱交換器で冷却した空気と混合して室内に吹き出す構成の従来の空気調和装置について説明する。この従来の空気調和装置は、図7に示すように、冷却用熱交換器を通る風路A、そして、ダンパを開放状態にすることで吸込まれた空気が通流する冷却用熱交換器を通らない空気の風路Bを有している。冷却用熱交換器を通る風路Aにおいては、室内機の吸込み口より吸込まれる状態(I)の高温で絶対湿度の高い室内空気が、冷却器用熱交換器にて冷却、除湿され、状態(III)となり、空気の温度低下と絶対湿度の低下が同時に生じる。この低温低湿の空気と風路Bを通してバイパスされる熱交換器を通さない状態(I)の吸込み空気は室内機内で混合され状態(IV)となり、吹き出し口より吹き出される。このとき、状態(I)と状態(III)の空気の混合過程においては、高温で相対湿度の高い状態(I)の空気が低温で相対湿度の高い状態(III)の空気により冷却されるため、状態(IV)が一時的に飽和線を超えてしまい、結露が生じ室内に霧が吹き出される場合がある。
次に、室内機内に取り込んだ室内空気を冷却用熱交換器から再熱用熱交換器の順に通過させる構成の従来の再熱除湿方式の空気調和装置について説明する。この従来の再熱除湿方式の空気調和装置は、図8に示すように、室内機の吸込み口より吸込まれる状態(i)の高温で絶対湿度の高い室内空気が、冷却器用熱交換器にて冷却、除湿され、状態(ii)となり、温度低下と絶対湿度の低下が同時に生じる。その後、再熱用熱交換器により加熱され、絶対湿度が変化せずに温度が上昇して状態(iii)となる。このように従来の再熱除湿方式の空気調和装置では、状態(iii)が飽和線を超え難く、室外機と室内機を連結する配管が比較的短い場合には、室内に霧が吹き出されることなく、吹き出し空気温度の低下を低減できる。
ところが、再熱用熱交換器の熱交換量によって決まる状態(ii)から状態(iii)への温度変化量は、長配管接続時には、圧力損失の増大により減少してしまう。そこで、圧力損失の増大を抑制するため、室内機に送られる冷媒中のガス冷媒の量を少なくするか、または、室内機に送られる冷媒を飽和液冷媒とすることになるが、従来の再熱除湿方式の空気調和装置では、冷媒中のガス冷媒の量を少なくした冷媒や飽和液冷媒では、冷媒のエンタルピが小さくなるため、再熱用熱交換器の圧力の低下を抑制したにもかかわらず、再熱用熱交換器での再熱熱交換量がほとんど増大せず、吹き出し温度の低下を低減できない場合がある。このため、吹き出し温度は、吸い込み温度に対して低下してしまい、空気調和装置の吹き出し口に近い場所に位置する人に対して冷風感を与えてしまうため、快適性を損なう場合がある。
これに対して本実施形態の空気調和装置では、再熱用熱交換器19のみを通流する第2経路Bでは、冷却用熱交換器17で冷却されていない空気との間で熱交換が行われるため、最熱用交換器19に流入する冷媒が冷媒中のガス冷媒の量を少なくした冷媒や飽和液冷媒であっても、再熱用熱交換器19での再熱熱交換量が増大する。一方、第1経路Aでは、冷却用熱交換器17で冷却、除湿された空気が、再熱用熱交換器19で加熱される。そして、冷却後加熱された第1経路Aからの空気と、再熱熱交換量が増大した第2経路Bからのより加熱のみを受けたより高い温度の空気とが一緒に室内機35から室内に吹き出される。したがって、除湿運転の際、吐出ガスバイパス管路から合流してくるガス冷媒の量を減少させるか、または、室内機に送る冷媒を液単相としても、吹き出し空気温度の低下を低減できる。
さらに、吹き出し空気温度の低下を低減できることにより、利用者に冷風感を与えずに湿度を下げる快適な空気調和を行なうことができる。加えて、除湿運転の際、吐出ガスバイパス管路から合流してくるガス冷媒の量を減少させるか、または、室内機に送る冷媒を液単相としても、吹き出し空気温度の低下を低減できることから、二相冷媒では再生熱交換器での圧力が低下してしまうような長配管接続となる場合でも、除湿運転の際に吹き出し空気温度の低下を低減できる。
さらに、本実施形態の空気調和装置では、図1に示された冷凍サイクル構成のように、1台の室外機33に対し複数の室内機35を接続する多室型空気調和装置で、冷房運転を行なう室内機と除湿運転を行なう室内機とを混合して運転する場合においても、液接続配管1a中の冷媒を飽和液とすることが可能である。このため、液接続配管1a内を流通する冷媒の圧力損失が抑えられることにより、冷房運転を行なう室内機の能力の低下を抑制できる。このときに、除湿運転を行なう室内機では、除湿能力の低下を抑制しながら、吹き出し温度の高温化が可能となる。
さらに、本実施形態では、室内機35において、電磁弁39、41の切り換えによる冷媒流路の切り換えのみで、冷房運転と、吹き出し温度の低下を抑えた除湿運転とを切り換えることが可能であるため、従来の吸込んだ空気を冷却用熱交換での冷却後の空気と混合させて吹き出す空気調和装置のように、ダンパのような空気の流路切り換え手段などを必要とせず、低コスト化、小型化、高信頼性化などを図ることができる。
さらに、本実施形態では、第2経路Bに在る再熱用熱交換器19が第1経路Aに在る冷却用熱交換器17及び再熱用熱交換器19よりも上方に配置されている。このため、第1経路Aに在る冷却用熱交換器17で生じた凝縮水が、下方に流下しても、再熱用熱交換器19に接触することがなく、冷却用熱交換器17での除湿により生じた水滴が再熱用熱交換器19に接触し蒸発することで除湿能力が低下するのを防ぐことができる。
また、本実施形態では、室内熱交換器を構成する冷却用熱交換器17と再熱用熱交換器19は、一体に形成されており、室内熱交換器が部分的に再熱用熱交換器19の作用を有する箇所と、冷却用熱交換器17と再熱用熱交換器19を順に配置した作用を有する箇所とに分かれた状態になっている。しかし、冷却用熱交換器17と再熱用熱交換器19は、一体に形成する必要がなく、また、第1経路Aと第2経路Bも一体に形成した室内熱交換器によって形成する必要はない。例えば、再熱用熱交換器の作用のみの熱交換器と、これとは別に冷却用熱交換器と再熱用熱交換器とを順に配置した状態の熱交換器とを設け、それぞれの熱交換器に隔離された空気の流路によって空気を導くことで第1経路Aと第2経路Bを形成することもできる。ただし、本実施形態のように、冷却用熱交換器17と再熱用熱交換器19とを一体の室内熱交換器として形成し、第1経路Aと第2経路Bを形成した方が、室内機を小型化できる。
また、本実施形態では、室内熱交換器を構成する冷却用熱交換器17と再熱用熱交換器19は、上下方向にほぼ垂直に立てた状態で設けられているが、室内熱交換器を構成する冷却用熱交換器17と再熱用熱交換器19は、上下方向にほぼ立てた状態になっていれば、垂直である必要はなく、斜めに傾斜した状態で設置することもできる。
また、本実施形態の空気調和装置は、圧縮機3から吐出したガス冷媒を室外膨張弁7と室内膨張弁15との間の冷媒循環管路1の液接続配管1aの部分に導く吐出ガスバイパス管路29などを備えた構成となっている。しかし、本発明を適用した空気調和装置では、液冷媒を再熱用熱交換器に送っても再熱熱交換量を増大できるため、吐出ガスバイパス管路を設けていない構成にすることもできる。ただし、吐出ガスバイパス管路などを設けた構成の方が、吐出ガスバイパス管路から合流してくるガス冷媒の量を調整できることで、吹き出し空気温度の低下を確実に低減できる。
このように、本発明は、本実施形態の構成の空気調和装置に限らず、再熱除湿方式の除湿運転を行う様々な構成の空気調和装置に適用できる。
17 冷却用熱交換器
19 再熱用熱交換器
24 送風機
35 室内機
49 吸込み口
51 吹き出し口
55 ドレンパン
A 第1経路
B 第2経路

Claims (5)

  1. 圧縮機と室外熱交換器と室外側減圧手段を含む室外機と、室内側減圧手段と室内熱交換器を含む室内機とを備え、1台の前記室外機に対し複数の前記室内機を冷媒配管で接続して冷凍サイクルを形成した多室型の空気調和装置であり、
    前記室外側減圧手段と前記室内側減圧手段との間の配管部分を通流する液冷媒を冷却する過冷却器と、前記配管部分から前記液冷媒を抜き出して過冷却減圧装置を介して減圧した冷媒により前記過冷却器の前記液冷媒を冷却して前記圧縮機の吸入側に導く過冷却管路とを備えてなり、
    前記室内機が冷房運転をするとき、前記過冷却減圧装置を開くように制御してなる空気調和装置。
  2. 前記室内熱交換器は、吸込んだ空気を冷却する冷却用熱交換器と、吸込んだ空気を加熱する再熱用熱交換器とで構成され、前記室内機が除湿運転のときは、前記冷却用熱交換器と前記再熱用熱交換器とが、前記再熱用熱交換器、前記冷却用熱交換器の順で直列に接続された状態となり、前記室内機が冷房運転のときは、前記冷却用熱交換器と前記再熱用熱交換器とが並列に接続された状態となるように、前記冷却用熱交換器と前記再熱用熱交換器の接続状態を切り替える切替手段を備えていることを特徴とする請求項1に記載の空気調和装置。
  3. 前記圧縮機から吐出したガス冷媒を前記配管部分に導く吐出ガスバイパス管路と、該吐出ガスバイパス管路に設けられて該吐出ガスバイパス管路を通流する冷媒の流量を調整する吐出ガス減圧装置とを備え、
    前記室内機が除湿運転をするときは、前記吐出ガス減圧装置が開、前記過冷却減圧装置が閉となり、前記室内機が冷房運転をするときは、前記吐出ガス減圧装置が閉、前記過冷却減圧装置が開となるように、前記吐出ガス減圧装置と前記過冷却減圧装置の開度を制御してなる請求項2に記載の空気調和装置。
  4. 前記室内熱交換器は、吸込んだ空気を冷却する冷却用熱交換器と吸込んだ空気を加熱する再熱用熱交換器とで構成され、
    前記冷却用熱交換器と前記再熱用熱交換器は、前記室内側減圧手段の下流側を分岐した冷媒管路に並列で接続されるとともに、前記再熱用熱交換器の下流側と前記冷却用熱交換器の上流側とが連結管路で連結され、該連結管路には除湿用減圧手段が設けられてなり、
    前記再熱用熱交換器の出側に接続される冷媒管路における前記連結管路の連結部よりも下流側に第1開閉弁が設けられ、前記冷却用熱交換器の入り側に接続される冷媒管路における前記連結管路の連結部よりも上流側に第2開閉弁が設けられてなり、
    前記室内機が除湿運転をするときは、前記冷却用熱交換器と前記再熱用熱交換器とが直列に接続された状態となり、前記室内機が冷房運転をするときは、前記冷却用熱交換器と前記再熱用熱交換器とが並列に接続された状態となるように、前記第1開閉弁と前記第2開閉弁の開閉を制御してなる請求項1に記載の空気調和装置。
  5. 前記圧縮機から吐出したガス冷媒を前記配管部分に導く吐出ガスバイパス管路と、該吐出ガスバイパス管路に設けられて該吐出ガスバイパス管路を通流する冷媒の流量を調整する吐出ガス減圧装置と、前記再熱用熱交換器の入口部分の冷媒温度を検出する冷媒温度検出手段とを備え、
    前記室内機が除湿運転をするとき、前記冷媒温度検出手段により検出された冷媒温度に応じて前記吐出ガス減圧装置の開度を制御してなる請求項1に記載の空気調和装置。
JP2009021920A 2009-02-02 2009-02-02 空気調和装置 Pending JP2009133613A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021920A JP2009133613A (ja) 2009-02-02 2009-02-02 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021920A JP2009133613A (ja) 2009-02-02 2009-02-02 空気調和装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003367429A Division JP2005133976A (ja) 2003-10-28 2003-10-28 空気調和装置

Publications (1)

Publication Number Publication Date
JP2009133613A true JP2009133613A (ja) 2009-06-18

Family

ID=40865645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021920A Pending JP2009133613A (ja) 2009-02-02 2009-02-02 空気調和装置

Country Status (1)

Country Link
JP (1) JP2009133613A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135876A1 (ja) * 2010-04-27 2011-11-03 三菱電機株式会社 冷凍サイクル装置及び冷媒循環方法
CN103245008A (zh) * 2012-02-07 2013-08-14 Lg电子株式会社 用于电动车的空调
JP2015111047A (ja) * 2015-03-27 2015-06-18 三菱電機株式会社 冷凍装置
JP2017198445A (ja) * 2017-06-29 2017-11-02 パナソニックIpマネジメント株式会社 冷凍機
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit
CN114111116A (zh) * 2021-12-25 2022-03-01 珠海格力电器股份有限公司 可变换换热组件、空调器、空调系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686413A (en) * 1979-12-17 1981-07-14 Sumitomo Electric Industries Method of manufacturing composite superconductive wire
JPH09152195A (ja) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd 冷凍装置
JP2002243301A (ja) * 2001-02-14 2002-08-28 Daikin Ind Ltd 熱交換ユニット及び空気調和装置
JP2003028535A (ja) * 2001-07-16 2003-01-29 Daikin Ind Ltd 空気調和装置
JP2003130492A (ja) * 2001-10-18 2003-05-08 Hitachi Ltd 空気調和機
JP2003139382A (ja) * 2001-10-31 2003-05-14 Mitsubishi Electric Corp 空気調和機
JP2003166772A (ja) * 2001-11-29 2003-06-13 Mitsubishi Electric Corp 空気調和機及び空気調和機の運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686413A (en) * 1979-12-17 1981-07-14 Sumitomo Electric Industries Method of manufacturing composite superconductive wire
JPH09152195A (ja) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd 冷凍装置
JP2002243301A (ja) * 2001-02-14 2002-08-28 Daikin Ind Ltd 熱交換ユニット及び空気調和装置
JP2003028535A (ja) * 2001-07-16 2003-01-29 Daikin Ind Ltd 空気調和装置
JP2003130492A (ja) * 2001-10-18 2003-05-08 Hitachi Ltd 空気調和機
JP2003139382A (ja) * 2001-10-31 2003-05-14 Mitsubishi Electric Corp 空気調和機
JP2003166772A (ja) * 2001-11-29 2003-06-13 Mitsubishi Electric Corp 空気調和機及び空気調和機の運転方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135876A1 (ja) * 2010-04-27 2011-11-03 三菱電機株式会社 冷凍サイクル装置及び冷媒循環方法
JP2011231966A (ja) * 2010-04-27 2011-11-17 Mitsubishi Electric Corp 冷凍サイクル装置
CN102869930A (zh) * 2010-04-27 2013-01-09 三菱电机株式会社 制冷循环装置及制冷剂循环方法
CN102869930B (zh) * 2010-04-27 2015-08-05 三菱电机株式会社 制冷循环装置及制冷剂循环方法
US9207004B2 (en) 2010-04-27 2015-12-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN103245008A (zh) * 2012-02-07 2013-08-14 Lg电子株式会社 用于电动车的空调
CN103245008B (zh) * 2012-02-07 2016-03-02 Lg电子株式会社 用于电动车的空调
JP2015111047A (ja) * 2015-03-27 2015-06-18 三菱電機株式会社 冷凍装置
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit
JP2017198445A (ja) * 2017-06-29 2017-11-02 パナソニックIpマネジメント株式会社 冷凍機
CN114111116A (zh) * 2021-12-25 2022-03-01 珠海格力电器股份有限公司 可变换换热组件、空调器、空调系统及其控制方法

Similar Documents

Publication Publication Date Title
JP6685409B2 (ja) 空気調和装置
CN103062851B (zh) 空调系统及其除湿方法
KR20170090290A (ko) 공기조화기
KR102139084B1 (ko) 공기 조화기
CN213395606U (zh) 一种空调器
JP2009133613A (ja) 空気調和装置
WO2013157403A1 (ja) 空気調和機
JP6285172B2 (ja) 空気調和機の室外機
CN100552313C (zh) 一拖多型空调装置
JP2005133976A (ja) 空気調和装置
JPWO2012085965A1 (ja) 空気調和機
JP5501094B2 (ja) 冷凍サイクル装置、ならびに本冷凍サイクル装置を用いた冷蔵庫、低温装置、および空調装置
JP2007232265A (ja) 冷凍装置
WO2021014520A1 (ja) 空気調和装置
JP2017142027A (ja) 空気調和装置
CN104913411B (zh) 一种空调机组
JP2004293904A (ja) 空気調和装置
JP5511897B2 (ja) 冷凍サイクル装置、ならびに本冷凍サイクル装置を用いた冷蔵庫、低温装置、および空調装置
JP4092919B2 (ja) 空気調和機
JP7473775B2 (ja) 熱源ユニット及び冷凍装置
JP2010071497A (ja) 空気調和機
JP4647399B2 (ja) 換気空調装置
JP2006317012A (ja) エアコン
JP2014126336A (ja) 空気調和機
JP2006194525A (ja) 多室型空気調和機

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Effective date: 20110303

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20110906

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A02