以下、図面を参照して本発明の実施形態について詳細に説明する。
<表示装置の全体概要>
図1は、本発明に係る表示装置の一実施形態であるアクティブマトリクス型表示装置の構成の概略を示すブロック図である。本実施形態では、たとえば画素の表示素子(電気光学素子、発光素子)として有機EL素子を、能動素子としてポリシリコン薄膜トランジスタ(TFT;Thin Film Transistor)をそれぞれ用い、薄膜トランジスタを形成した半導体基板上に有機EL素子を形成してなるアクティブマトリクス型有機ELディスプレイ(以下「有機EL表示装置」と称する)に適用した場合を例に採って説明する。
なお、以下においては、画素の表示素子として有機EL素子を例に具体的に説明するが、これは一例であって、対象となる表示素子は有機EL素子に限らない。一般的に電流駆動で発光する表示素子の全てに、後述する全ての実施形態が同様に適用できる。
図1に示すように、有機EL表示装置1は、複数の表示素子としての有機EL素子(図示せず)を持った画素回路(画素とも称される)Pが表示アスペクト比である縦横比がX:Y(たとえば9:16)の有効映像領域を構成するように配置された表示パネル部100と、この表示パネル部100を駆動制御する種々のパルス信号を発するパネル制御部の一例である駆動信号生成部200と、映像信号処理部300を備えている。駆動信号生成部200と映像信号処理部300とは、1チップのIC(Integrated Circuit;半導体集積回路)に内蔵されている。
製品形態としては、図示のように、表示パネル部100、駆動信号生成部200、および映像信号処理部300の全てを備えたモジュール(複合部品)形態の有機EL表示装置1として提供されることに限らず、たとえば、表示パネル部100のみで有機EL表示装置1として提供することも可能である。また、このような有機EL表示装置1は、半導体メモリやミニディスク(MD)やカセットテープなどの記録媒体を利用した携帯型の音楽プレイヤーやその他の電子機器の表示部に利用される。
表示パネル部100は、基板101の上に、画素回路Pがn行×m列のマトリクス状に配列された画素アレイ部102と、画素回路Pを垂直方向に走査する垂直駆動部103と、画素回路Pを水平方向に走査する水平駆動部(水平セレクタあるいはデータ線駆動部とも称される)106と、外部接続用の端子部(パッド部)108などが集積形成されている。すなわち、垂直駆動部103や水平駆動部106などの周辺駆動回路が、画素アレイ部102と同一の基板101上に形成された構成となっている。
垂直駆動部103としては、たとえば、書込走査部(ライトスキャナWS;Write Scan)104や電源供給能力を有する電源スキャナとして機能する駆動走査部(ドライブスキャナDS;Drive Scan)105を有する。
垂直駆動部103と水平駆動部106とで、信号電位の保持容量への書込みや、閾値補正動作や、移動度補正動作や、ブートストラップ動作を制御する制御部109が構成される。
図示した垂直駆動部103および対応する走査線の構成は、画素回路Pが後述する本実施形態の2TR構成の場合に適合させて示したものであるが、画素回路Pの構成によっては、その他の走査部が設けられることもある。
画素アレイ部102は、一例として、図示する左右方向の一方側もしくは両側から書込走査部104および駆動走査部105で駆動され、かつ図示する上下方向の一方側もしくは両側から水平駆動部106で駆動されるようになっている。
端子部108には、有機EL表示装置1の外部に配された駆動信号生成部200から、種々のパルス信号が供給されるようになっている。また同様に、映像信号処理部300から映像信号Vsig が供給されるようになっている。
一例としては、垂直駆動用のパルス信号として、垂直方向の書込み開始パルスの一例であるシフトスタートパルスSPDS,SPWSや垂直走査クロックCKDS,CKWSなど必要なパルス信号が供給される。また、水平駆動用のパルス信号として、水平方向の書込み開始パルスの一例である水平スタートパルスSPH や水平走査クロックCKH など必要なパルス信号が供給される。
端子部108の各端子は、配線199を介して、垂直駆動部103や水平駆動部106に接続されるようになっている。たとえば、端子部108に供給された各パルスは、必要に応じて図示を割愛したレベルシフタ部で電圧レベルを内部的に調整した後、バッファを介して垂直駆動部103の各部や水平駆動部106に供給される。
画素アレイ部102は、図示を割愛するが(詳細は後述する)、表示素子としての有機EL素子に対して画素トランジスタが設けられた画素回路Pが行列状に2次元配置され、この画素配列に対して行ごとに走査線が配線されるとともに、列ごとに信号線が配線された構成となっている。
たとえば、画素アレイ部102には、走査線(ゲート線)104WS、電源供給線105DSL 、および映像信号線(データ線)106HSが形成されている。両者の交差部分には図示を割愛した有機EL素子とこれを駆動する薄膜トランジスタ(TFT;Thin Film Transistor)が形成される。有機EL素子と薄膜トランジスタの組み合わせで画素回路Pを構成する。
具体的には、マトリクス状に配列された各画素回路Pに対しては、書込走査部104によって書込駆動パルスWSで駆動されるn行分の書込走査線104WS_1〜104WS_nおよび駆動走査部105によって電源駆動パルスDSL で駆動されるn行分の電源供給線105DSL_1 〜105DSL_n が画素行ごとに配線される。
書込走査部104および駆動走査部105は、駆動信号生成部200から供給される垂直駆動系のパルス信号に基づき、書込走査線104WSおよび電源供給線105DSL を介して各画素回路Pを順次選択する。水平駆動部106は、駆動信号生成部200から供給される水平駆動系のパルス信号に基づき、選択された画素回路Pに対し映像信号線106HSを介して映像信号Vsig の内の所定電位をサンプリングして保持容量に書き込ませる。
本実施形態の有機EL表示装置1においては、一例として線順次駆動について考えており、垂直駆動部103の書込走査部104および駆動走査部105は線順次で(つまり行単位で)画素アレイ部102を走査するとともに、これに同期して水平駆動部106が、画像信号を、1水平ライン分を同時に、画素アレイ部102に書き込む。
たとえば、水平駆動部106は、線順次駆動に対応するため、全列の映像信号線106HS上に設けられた図示を割愛したスイッチを一斉にオンさせるドライバ回路を備えて構成され、映像信号処理部300から入力される画素信号を、垂直駆動部103によって選択された行の1ライン分の全ての画素回路Pに同時に書き込むべく、全列の映像信号線106HS上に設けられた図示を割愛したスイッチを一斉にオンさせる。
垂直駆動部103の各部は、線順次駆動に対応するため、論理ゲートの組合せ(ラッチも含む)によって構成され、画素アレイ部102の各画素回路Pを行単位で選択する。なお、図1では、画素アレイ部102の一方側にのみ垂直駆動部103を配置する構成を示しているが、画素アレイ部102を挟んで左右両側に垂直駆動部103を配置する構成を採ることも可能である。
同様に、図1では、画素アレイ部102の一方側にのみ水平駆動部106を配置する構成を示しているが、画素アレイ部102を挟んで上下両側に水平駆動部106を配置する構成を採ることも可能である。
<画素回路>
図2は、図1に示した有機EL表示装置1を構成する本実施形態の画素回路Pに対する第1比較例を示す図である。なお、表示パネル部100の基板101上において画素回路Pの周辺部に設けられた垂直駆動部103と水平駆動部106も合わせて示している。
図3は、本実施形態の画素回路Pに対する第2比較例を示す図である。なお、表示パネル部100の基板101上において画素回路Pの周辺部に設けられた垂直駆動部103と水平駆動部106も合わせて示している。
図4は有機EL素子や駆動トランジスタの動作点を説明する図である。図4Aは、有機EL素子や駆動トランジスタの特性ばらつきが駆動電流Idsに与える影響を説明する図である。
図5は、本実施形態の画素回路Pの構成例を示す図である。なお、表示パネル部100の基板101上において画素回路Pの周辺部に設けられた垂直駆動部103と水平駆動部106も合わせて示している。
<比較例の画素回路:第1例>
図2に示すように、第1比較例の画素回路Pは、基本的にpチャネル型の薄膜電界効果トランジスタ(TFT)でドライブトランジスタが構成されている点に特徴を有する。また、ドライブトランジスタの他に走査用に2つのトランジスタを使用した3Tr駆動の構成を採っている。
具体的には、第1比較例の画素回路Pは、pチャネル型の駆動トランジスタ121、アクティブLの駆動パルスが供給されるpチャネル型の発光制御トランジスタ122、アクティブHの駆動パルスが供給されるnチャネル型のサンプリングトランジスタ125、電流が流れることで発光する電気光学素子(発光素子)の一例である有機EL素子127、および保持容量(画素容量とも称される)120を有する。駆動トランジスタ121は、制御入力端子であるゲート端Gに供給される電位に応じた駆動電流を有機EL素子127に供給するようになっている。
なお、一般的には、サンプリングトランジスタ125はアクティブLの駆動パルスが供給されるpチャネル型に置き換えることもできる。発光制御トランジスタ122はアクティブHの駆動パルスが供給されるnチャネル型に置き換えることもできる。
サンプリングトランジスタ125は、駆動トランジスタ121のゲート端G(制御入力端子)側に設けられたスイッチングトランジスタであり、また、発光制御トランジスタ122もスイッチングトランジスタである。
一般に、有機EL素子127は整流性があるためダイオードの記号で表わしている。なお、有機EL素子127には、寄生容量Celが存在する。図では、この寄生容量Celを有機EL素子127と並列に示す。
画素回路Pは、垂直走査側の各走査線104WS,105DSと水平走査側の走査線である映像信号線106HSの交差部に配されている。書込走査部104からの書込走査線104WSは、サンプリングトランジスタ125のゲート端Gに接続され、駆動走査部105からの駆動走査線105DSは発光制御トランジスタ122のゲート端Gに接続されている。
サンプリングトランジスタ125は、ソース端Sを信号入力端として映像信号線106HSに接続され、ドレイン端Dを信号出力端として駆動トランジスタ121のゲート端Gに接続され、その接続点と第2電源電位Vc2(たとえば正電源電圧、第1電源電位Vc1と同じでもよい)との間に保持容量120が設けられている。括弧書きで示すように、サンプリングトランジスタ125は、ソース端Sとドレイン端Dとを逆転させ、ドレイン端Dを信号入力端として映像信号線106HSに接続し、ソース端Sを信号出力端として駆動トランジスタ121のゲート端Gに接続することもできる。
駆動トランジスタ121、発光制御トランジスタ122、および有機EL素子127は、第1電源電位Vc1(たとえば正電源電圧)と基準電位の一例である接地電位GND の間で、この順に直列に接続されている。具体的には、駆動トランジスタ121は、ソース端Sが第1電源電位Vc1に接続され、ドレイン端Dが発光制御トランジスタ122のソース端Sに接続されている。発光制御トランジスタ122のドレイン端Dが、有機EL素子127のアノード端Aに接続され、有機EL素子127のカソード端Kが接地電位GND に接続されている。
なお、より簡易な構成としては、図2に示した画素回路Pの構成においては、最も単純な回路として、発光制御トランジスタ122を取り外した2Tr駆動の構成を採ることもできる。この場合、有機EL表示装置1としては駆動走査部105を取り外した構成を採ることになる。
図2に示した3Tr駆動や図示を割愛した2Tr駆動の何れにおいても、有機EL素子127は電流発光素子のため、有機EL素子127に流れる電流量をコントロールすることで発色の諧調を得る。このため、駆動トランジスタ121のゲート端Gへの印加電圧を変化させることで、有機EL素子127に流れる電流値をコントロールする。
具体的には、まず書込走査部104からアクティブHの書込駆動パルスWSを供給して書込走査線104WSを選択状態とし、水平駆動部106から信号線106HSに画素信号Vsig を印加すると、nチャネル型のサンプリングトランジスタ125が導通して画素信号Vsig が保持容量120に書き込まれる。
保持容量120に書き込まれた信号電位が駆動トランジスタ121のゲート端Gの電位となる。続いて、書込駆動パルスWSをインアクティブ(本例ではLレベル)にして書込走査線104WSを非選択状態とすると、信号線106HSと駆動トランジスタ121とは電気的に切り離されるが、駆動トランジスタ121のゲート・ソース間電圧Vgsは保持容量120によって、原理的には、安定に保持される。
続いて、駆動走査部105からアクティブLの走査駆動パルスDSを供給して駆動走査線105DSを選択状態にすると、pチャネル型の発光制御トランジスタ122が導通し、第1電源電位Vc1から接地電位GND に向かって駆動電流が駆動トランジスタ121、発光制御トランジスタ122、および有機EL素子127を流れる。
次に、走査駆動パルスDSをインアクティブ(本例ではHレベル)にして駆動走査線105DSを非選択状態とすると、発光制御トランジスタ122がオフし、駆動電流は流れなくなる。
発光制御トランジスタ122は、1フィールド期間に占める有機EL素子127の発光時間(デューティ)を制御するために挿入されたものであり、先にも述べたことから推測されるように、画素回路Pとしては、当該発光制御トランジスタ122を備えていることは必須ではない。
駆動トランジスタ121および有機EL素子127に流れる電流は、駆動トランジスタ121のゲート・ソース間電圧Vgsに応じた値となり、有機EL素子127はその電流値に応じた輝度で発光し続ける。
このように、書込走査線104WSを選択して信号線106HSに与えられた画素信号Vsig を画素回路Pの内部に伝える動作を、以下「書込み」と呼ぶ。このように、一度信号の書込みを行なえば、次に書き換えられるまでの間、有機EL素子127は一定の輝度で発光を続ける。
このように、第1比較例の画素回路Pでは、駆動トランジスタ121のゲート端Gに供給する印加電圧を入力信号(画素信号Vsig )に応じて変化させることで、EL有機EL素子127に流れる電流値を制御している。このとき、pチャネル型の駆動トランジスタ121のソース端Sは第1電源電位Vc1に接続されており、この駆動トランジスタ121は常に飽和領域で動作している。
<比較例の画素回路:第2例>
次に、本実施形態の画素回路Pの特徴を説明する上での比較例として、図3に示す第2比較例の画素回路Pについて説明する。画素アレイ部102に第2比較例の画素回路Pを備える有機EL表示装置1を第2比較例の有機EL表示装置1と称する。
第2比較例および本実施形態の画素回路Pは、基本的にnチャネル型の薄膜電界効果トランジスタでドライブトランジスタが構成されている点に特徴を有する。
pチャネル型のトランジスタではなく、nチャネル型のトランジスタで駆動トランジスタを構成することができれば、トランジスタ作成において従来のアモルファスシリコン(a−Si)プロセスを用いることが可能になる。これにより、トランジスタ基板の低コスト化が可能となり、このような構成の画素回路Pの開発が期待される。
第2比較例の画素回路Pは、基本的にnチャネル型の薄膜電界効果トランジスタでドライブトランジスタが構成されている点で本実施形態と同じであるが、有機EL素子127の経時劣化による駆動電流Idsに与える影響を防ぐための駆動信号一定化回路が設けられていない。
具体的には、第2比較例の画素回路Pは、それぞれnチャネル型の駆動トランジスタ121、発光制御トランジスタ122、およびサンプリングトランジスタ125と、電流が流れることで発光する電気光学素子の一例である有機EL素子127とを有する。
駆動トランジスタ121は、ドレイン端Dが第1電源電位Vc1に接続され、ソース端Sが発光制御トランジスタ122のドレイン端Dに接続されている。発光制御トランジスタ122のソース端Sが、有機EL素子127のアノード端Aに接続され、有機EL素子127のカソード端Kが接地電位GND に接続されている。このような画素回路Pでは、駆動トランジスタ121のドレイン端D側が第1電源電位Vc1に接続され、ソース端Sが有機EL素子127のアノード端A側に接続されることで、全体としてソースフォロワ回路を形成するようになっている。
サンプリングトランジスタ125は、ソース端Sが映像信号線HSに接続され、ドレイン端Dは駆動トランジスタ121のゲート端(制御入力端)Gに接続され、その接続点と第2電源電位Vc2(たとえば正電源電圧、第1電源電位Vc1と同じでもよい)を供給する基準線との間に保持容量120が設けられている。括弧書きで示すように、サンプリングトランジスタ125は、ソース端Sとドレイン端Dとを逆転させた接続態様とすることもできる。
このような画素回路Pでは、発光制御トランジスタを設けるか否かに関わらず、有機EL素子127を駆動するときには、駆動トランジスタ121のドレイン端D側が第1電源電位Vc1に接続され、ソース端Sが有機EL素子127のアノード端A側に接続されることで、全体としてソースフォロワ回路を形成するようになっている。
なお、より簡易な構成としては、図3に示した画素回路Pの構成においても、最も単純な回路として、発光制御トランジスタ122を取り外した2Tr駆動の構成を採ることもできる。この場合、有機EL表示装置1としては駆動走査部105を取り外した構成を採ることになる。
次に、図3に示す第2比較例の画素回路Pの動作を説明する。ここでは、発光制御トランジスタ122の動作を割愛して説明する。先ず、信号線HSから供給される映像信号Vsig の電位(以下、映像信号線電位とも称する)の内の有効期間の電位(信号電位と称する)をサンプリングし、発光素子の一例である有機EL素子127を発光状態にする。
具体的には、映像信号線106HSが映像信号Vsig の有効期間である信号電位にある時間帯に、書込走査線WSの電位が高レベルに遷移することで、nチャネル型のサンプリングトランジスタ125はオン状態となり、信号線HSから供給される映像信号線電位を保持容量120に充電する。これにより駆動トランジスタ121のゲート端Gの電位(ゲート電位Vg)は上昇を開始し、ドレイン電流を流し始める。そのため、有機EL素子127のアノード電位は上昇し発光を開始する。
この後、書込駆動パルスWSが低レベルに遷移すると、保持容量120にその時点の映像信号線電位、つまり、映像信号Vsig の電位の内の有効期間の電位(信号電位)が保持される。これによって、駆動トランジスタ121のゲート電位Vgが一定となり、発光輝度が次のフレーム(またはフィールド)まで一定に維持される。書込走査線WSの電位が高レベルにある期間が映像信号Vsig のサンプリング期間となり、書込駆動パルスWSが低レベルに遷移した以降が保持期間となる。
<発光素子のIel−Vel特性と駆動トランジスタのI−V特性>
一般的に、図4に示すように、駆動トランジスタ121はドレイン・ソース間電圧に関わらず駆動電流Idsが一定となる飽和領域で駆動される。よって、飽和領域で動作するトランジスタのドレイン端−ソース間に流れる電流をIds、移動度をμ、チャネル幅(ゲート幅)をW、チャネル長(ゲート長)をL、ゲート容量(単位面積当たりのゲート酸化膜容量)をCox、トランジスタの閾値電圧をVthとすると、駆動トランジスタ121は下記の式(1)に示した値を持つ定電流源となっている。なお、“^”はべき乗を示す。式(1)から明らかなように、飽和領域ではトランジスタのドレイン電流Idsはゲート・ソース間電圧Vgsによって制御され定電流源として動作する。
ところが、一般的に有機EL素子を始めとする電流駆動型の発光素子のI−V特性は、図4A(1)に示すように時間が経過すると劣化する。図4A(1)に示す有機EL素子で代表される電流駆動型の発光素子の電流−電圧(Iel−Vel)特性において、実線で示す曲線が初期状態時の特性を示し、破線で示す曲線が経時変化後の特性を示している。
たとえば、発光素子の一例である有機EL素子127に発光電流Ielが流れるとき、そのアノード・カソード間電圧Velは一意的に決定される。ところが、図4A(1)に示すように、発光期間中では、有機EL素子127のアノード端Aは駆動トランジスタ121のドレイン・ソース間電流Ids(=駆動電流Ids)で決定される発光電流Ielが流れ、それによって有機EL素子127のアノード・カソード間電圧Vel分だけ上昇する。
図2に示した第1比較例の画素回路Pは、この有機EL素子127のアノード・カソード間電圧Vel分の上昇の影響は駆動トランジスタ121のドレイン端D側に現れるが、駆動トランジスタ121が飽和領域で動作する定電流駆動であるため、有機EL素子127には定電流Idsが流れ続け、有機EL素子127のIel−Vel特性が劣化してもその発光輝度が経時劣化することはない。
駆動トランジスタ121と発光制御トランジスタ122と保持容量120とサンプリングトランジスタ125とを備え、図2に示した接続態様とされた画素回路Pの構成にて、電気光学素子の一例である有機EL素子127の電流−電圧特性の変化を補正して駆動電流を一定に維持する駆動信号一定化回路が構成されるようになっているのである。
つまり、画素回路Pを映像信号Vsig で駆動するとき、pチャネル型の駆動トランジスタ121のソース端Sは第1電源電位Vc1に接続されており、常に飽和領域で動作するように設計されているので、式(1)に示した値を持つ定電流源となる。
また、第1比較例の画素回路Pにおいては、有機EL素子127のIel−Vel特性の経時変化(図4A(1))とともに、駆動トランジスタ121のドレイン端Dの電圧が変化してゆくが、駆動トランジスタ121は、保持容量120のブートストラップ機能によってゲート・ソース間電圧Vgsが原理的には一定に保持されるため、駆動トランジスタ121は定電流源として動作し、その結果、有機EL素子127には一定量の電流が流れ、有機EL素子127を一定の輝度で発光させることができ、発光輝度は変化しない。
第2比較例の画素回路Pでも、駆動トランジスタ121のソース端Sの電位(ソース電位Vs)は、駆動トランジスタ121と有機EL素子127との動作点で決まるし、駆動トランジスタ121は飽和領域で駆動されるので、動作点のソース電圧に対応したゲート・ソース間電圧Vgsに関し、前述の式(1)に規定された電流値の駆動電流Idsを流す。
ところが、第1比較例の画素回路Pのpチャネル型の駆動トランジスタ121をnチャネル型に変更した単純な回路(第2比較例の画素回路P)では、ソース端Sが有機EL素子127側に接続されてしまう。その結果、前述の図4A(1)に示したように経時劣化する有機EL素子127のIel−Vel特性により、同じ発光電流Ielに対するアノード・カソード間電圧VelがVel1 からVel2 へと変化することで、駆動トランジスタ121の動作点が変化してしまい、同じゲート電位Vgを印加しても駆動トランジスタ121のソース電位Vsは変化してしまう。これにより、駆動トランジスタ121のゲート・ソース間電圧Vgsは変化してしまう。
特性式(1)から明らかなように、ゲート・ソース間電圧Vgsが変動すると、たとえゲート電位Vgが一定であっても駆動電流Idsが変動し、同時に有機EL素子127に流れる電流値(発光電流Iel)が変化し、発光輝度は変化してしまうことになる。
このように第2比較例の画素回路Pでは、発光素子の一例である有機EL素子127のIel−Vel特性の経時変動による有機EL素子127のアノード電位変動が、駆動トランジスタ121のゲート・ソース間電圧Vgsの変動となって現れ、ドレイン電流(駆動電流Ids)の変動を引き起こす。この原因による駆動電流Idsの変動は画素回路Pごとの発光輝度のばらつきや経時変動となって現れ、画質の劣化が起きる。
これに対して、詳細は後述するが、nチャネル型の駆動トランジスタ121を使用する場合においても、駆動トランジスタ121のソース端Sの電位Vsの変動にゲート端Gの電位Vgが連動するようにするブートストラップ機能を実現する回路構成および駆動タイミングとすることで、有機EL素子127の特性の経時変動による有機EL素子127のアノード電位変動(つまり駆動トランジスタ121のソース電位変動)があっても、その変動を相殺するようにゲート電位Vgを変動させる。これにより、画面輝度の均一性(ユニフォーミティ)を確保できる。ブートストラップ機能により、有機EL素子を代表とする電流駆動型の発光素子の経時変動補正能力を向上させることができる。
もちろん、このブートストラップ機能は、発光開始時点で、有機EL素子127に発光電流Ielが流れ始め、それによってアノード・カソード間電圧Velが安定となるまで上昇していく過程で、そのアノード・カソード間電圧Velの変動に伴って駆動トランジスタ121のソース電位Vsが変動する際にも機能する。
<駆動トランジスタのVgs−Ids特性>
また、第1および第2比較例では、駆動トランジスタ121の特性については特に問題視していなかったが、画素ごとに駆動トランジスタ121の特性が異なると、その影響が駆動トランジスタ121に流れる駆動電流Idsに影響を及ぼす。一例としては、式(1)から分かるように、移動度μや閾値電圧Vthが画素によってばらついた場合や経時的に変化した場合、ゲート・ソース間電圧Vgsが同じであっても、駆動トランジスタ121に流れる駆動電流Idsにばらつきや経時変化が生じ、有機EL素子127の発光輝度も画素ごとに変化してしまうことになる。
たとえば、駆動トランジスタ121の製造プロセスのばらつきにより、画素回路Pごとに閾値電圧Vthや移動度μなどの特性変動がある。駆動トランジスタ121を飽和領域で駆動する場合においても、この特性変動により、駆動トランジスタ121に同一のゲート電位を与えても、画素回路Pごとにドレイン電流(駆動電流Ids)が変動し、発光輝度のばらつきになって現れる。
たとえば、図4A(2)は、駆動トランジスタ121の閾値ばらつきに着目した電圧電流(Vgs−Ids)特性を示す図である。閾値電圧がVth1とVth2で異なる2個の駆動トランジスタ121について、それぞれ特性カーブを挙げてある。
前述のように、駆動トランジスタ121が飽和領域で動作しているときのドレイン電流Idsは、特性式(1)で表される。特性式(1)から明らかなように、閾値電圧Vthが変動すると、ゲート・ソース間電圧Vgsが一定であってもドレイン電流Idsが変動する。つまり、閾値電圧Vthのばらつきに対して何ら対策を施さないと、図4A(2)に示すように、閾値電圧がVth1のときVgsに対応する駆動電流がIds1となるのに対して、閾値電圧がVth2のときの同じゲート電圧Vgsに対応する駆動電流Ids2はIds1と異なってしまう。
また、図4A(3)は、駆動トランジスタ121の移動度ばらつきに着目した電圧電流(Vgs−Ids)特性を示す図である。移動度がμ1とμ2で異なる2個の駆動トランジスタ121について、それぞれ特性カーブを挙げてある。
特性式(1)から明らかなように、移動度μが変動すると、ゲート・ソース間電圧Vgsが一定であってもドレイン電流Idsが変動する。つまり、移動度μのばらつきに対して何ら対策を施さないと、図4A(3)に示すように、移動度がμ1のときVgsに対応する駆動電流がIds1となるのに対して、移動度がμ2のときの同じゲート電圧Vgsに対応する駆動電流がIds2となり、Ids1と異なってしまう。
図4A(2)や図4A(3)に示すように、閾値電圧Vthや移動度μの違いでVin−Ids特性に大きな違いが出てしまうと、同じ信号振幅Vinを与えても、駆動電流Idsすなわち発光輝度が異なってしまい、画面輝度の均一性(ユニフォーミティ)が得られない。
<閾値補正および移動度補正の概念>
これに対して、閾値補正機能および移動度補正機能を実現する駆動タイミング(詳細は後述する)とすることで、それらの変動の影響を抑制でき、画面輝度の均一性(ユニフォーミティ)を確保できる。
本実施形態の閾値補正動作および移動度補正動作では、詳細は後述するが、書込みゲインが1(理想値)であると仮定した場合、発光時のゲート・ソース間電圧Vgsが“Vin+Vth−ΔV”で表されるようにすることで、ドレイン・ソース間電流Idsが、閾値電圧Vthのばらつきや変動に依存しないようにするとともに、移動度μのばらつきや変動に依存しないようにする。結果として、閾値電圧Vthや移動度μが製造プロセスや経時により変動しても、駆動電流Idsは変動せず、有機EL素子127の発光輝度も変動しない。
移動度補正時には、大きな移動度μ1に対しては移動度補正パラメータΔV1が大きくなるようにする一方、小さい移動度μ2に対しては移動度補正パラメータΔV2も小さくなるように負帰還をかけることになる。こう言った意味で、移動度補正パラメータΔVを負帰還量ΔVとも称する。
<本実施形態の画素回路>
図3に示す第2比較例の画素回路Pにおける有機EL素子127の経時劣化による駆動電流変動を防ぐ回路(ブートストラップ回路)を搭載し、また駆動トランジスタ121の特性変動(閾値電圧ばらつきや移動度ばらつき)による駆動電流変動を防ぐ駆動方式を採用したのが図5に示す本実施形態の画素回路Pである。本実施形態の画素回路Pを画素アレイ部102に備える有機EL表示装置1を本実施形態の有機EL表示装置1と称する。
本実施形態の画素回路Pは、第2比較例の画素回路Pと同様に、nチャネル型の駆動トランジスタ121を使用する。加えて、有機EL素子の経時劣化による当該有機EL素子への駆動電流Idsの変動を抑制するための回路、すなわち電気光学素子の一例である有機EL素子の電流−電圧特性の変化を補正して駆動電流Idsを一定に維持する駆動信号一定化回路を備えた点に特徴を有する。さらに、有機EL素子の電流−電圧特性に経時変化があった場合でも駆動電流を一定にする機能を備えた点に特徴を有する。
すなわち、駆動トランジスタ121の他に走査用に1つのスイッチングトランジスタ(サンプリングトランジスタ125)を使用する2TR駆動の構成を採るとともに、各スイッチングトランジスタを制御する電源駆動パルスDSL および書込駆動パルスWSのオン/オフタイミングの設定により、有機EL素子127の経時劣化や駆動トランジスタ121の特性変動(たとえば閾値電圧や移動度などのばらつきや変動)による駆動電流Idsに与える影響を防ぐ点に特徴を有する。
2TR駆動の構成であり、素子数や配線数が少ないため、高精細化が可能であることに加えて、映像信号Vsig の劣化なくサンプリングできるため、良好な画質を得ることができる。
図3に示した第2比較例に対しての構成上の大きな違いは、保持容量120の接続態様を変形して、有機EL素子127の経時劣化による駆動電流変動を防ぐ回路として、駆動信号一定化回路の一例であるブートストラップ回路を構成する点にある。駆動トランジスタ121の特性変動(たとえば閾値電圧や移動度などのばらつきや変動)による駆動電流Idsに与える影響を抑制する方法としては、各トランジスタ121,125の駆動タイミングを工夫することで対処する。
具体的には、本実施形態の画素回路Pは、保持容量120、nチャネル型の駆動トランジスタ121、およびアクティブH(ハイ)の書込駆動パルスWSが供給されるnチャネル型のサンプリングトランジスタ125、電流が流れることで発光する電気光学素子(発光素子)の一例である有機EL素子127を有する。
駆動トランジスタ121のゲート端G(ノードND122)とソース端Sとの間に保持容量120が接続され、駆動トランジスタ121のソース端Sが直接に有機EL素子127のアノード端Aに接続されている。保持容量120は、ブートストラップ容量としても機能するようになっている。有機EL素子127のカソード端Kは基準電位としてのカソード電位Vcathとされる。好ましくはこのカソード電位Vcathは、図3に示した第2比較例と同様に基準電位を供給する全画素共通の配線Vcath(好ましくはGND )に接続されている。
駆動トランジスタ121のドレイン端Dは、電源スキャナとして機能する駆動走査部105からの電源供給線105DSL に接続されている。電源供給線105DSL は、この電源供給線105DSL そのものが、駆動トランジスタ121に対しての電源供給能力を備える点に特徴を有する。
具体的には、駆動走査部105は、駆動トランジスタ121のドレイン端Dに対して、それぞれ電源電圧に相当する高電圧側の第1電位Vccと低電圧側の第2電位Vssとを切り替えて供給する電源電圧切替回路を具備している。
第2電位Vssとしては、映像信号線106HSにおける映像信号Vsig の基準電位Vo(オフセット電位Vofs とも称する)より十分低い電位とする。具体的には、駆動トランジスタ121のゲート・ソース間電圧Vgs(ゲート電位Vgとソース電位Vsの差)が駆動トランジスタ121の閾値電圧Vthより大きくなるように、電源供給線105DSL の低電位側の第2電位Vssを設定する。なお、オフセット電位Vofs は、閾値補正動作に先立つ初期化動作に利用するとともに映像信号線106HSを予めプリチャージにしておくためにも利用する。
サンプリングトランジスタ125は、ゲート端Gが書込走査部104からの書込走査線104WSに接続され、ドレイン端Dが映像信号線106HSに接続され、ソース端Sが駆動トランジスタ121のゲート端G(ノードND122)に接続されている。そのゲート端Gには、書込走査部104からアクティブHの書込駆動パルスWSが供給される。
サンプリングトランジスタ125は、ソース端Sとドレイン端Dとを逆転させた接続態様とすることもできる。また、サンプリングトランジスタ125としては、ディプレション型およびエンハンスメント型の何れをも使用できる。
<本実施形態の画素回路の動作>
図6は、図5に示した本実施形態の画素回路Pに関する本実施形態の駆動タイミングの基本例を説明するタイミングチャートである。図6B〜図6Lは、図6に示したタイミングチャートの各期間における等価回路と動作状態を説明する図である。図7は、閾値補正動作時における駆動トランジスタ121のソース電位Vsの変化を示す図である。図7Aは、移動度補正動作時における駆動トランジスタ121のソース電位Vsの変化を示す図である。
以下では、説明や理解を容易にするため、特段の断りのない限り、書込みゲインが1(理想値)であると仮定して、保持容量120に信号振幅Vinの情報を、書き込む、保持する、あるいはサンプリングするなどと簡潔に記して説明する。書込みゲインが1未満の場合、保持容量120には信号振幅Vinの大きさそのものではなく、信号振幅Vinの大きさに対応するゲイン倍された情報が保持されることになる。
因みに、信号振幅Vinに対応する保持容量120に書き込まれる情報の大きさの割合を、書込みゲインGinput と称する。ここで、書込みゲインGinput は、具体的には、電気回路的に保持容量120と並列に配置される寄生容量を含めた全容量C1と、電気回路的に保持容量120と直列に配置される全容量C2との容量直列回路において、信号振幅Vinを容量直列回路に供給したときに容量C1に配分される電荷量に関係する。式で表せば、g=C1/(C1+C2)とすると、書込みゲインGinput =C2/(C1+C2)=1−C1/(C1+C2)=1−gとなる。以下の説明において、“g”が登場する記載は書込みゲインを考慮したものである。
また、説明や理解を容易にするため、特段の断りのない限り、ブートストラップゲインが1(理想値)であると仮定して簡潔に記して説明する。因みに、駆動トランジスタ121のゲート・ソース間に保持容量120が設けられている場合に、ソース電位Vsの上昇に対するゲート電位Vgの上昇率をブートストラップゲイン(ブートストラップ動作能力)Gbst と称する。ここで、ブートストラップゲインGbst は、具体的には、保持容量120の容量値Cs、駆動トランジスタ121のゲート・ソース間に形成される寄生容量C121gsの容量値Cgs、ゲート・ドレイン間に形成される寄生容量C121gdの容量値Cgd、およびサンプリングトランジスタ125のゲート・ソース間に形成される寄生容量C125gsの容量値Cwsに関係する。式で表せば、ブートストラップゲインGbst =(Cs+Cgs)/(Cs+Cgs+Cgd+Cws)となる。
図6においては、時間軸を共通にして、書込走査線104WSの電位変化、電源供給線105DSL の電位変化、および映像信号線106HSの電位変化を表してある。また、これらの電位変化と並行に、1行分(図では1行目)について駆動トランジスタ121のゲート電位Vgおよびソース電位Vsの変化も表してある。
基本的には、書込走査線104WSや電源供給線105DSL の1行ごとに、1水平走査期間だけ遅れて同じような駆動を行なう。図6における各タイミングや信号は、処理対象行を問わず、第1行目のタイミングや信号と同じタイミングや信号で示す。そして、説明中において区別が必要とされるときには、そのタイミングや信号に、処理対象行を“_ ”付きの参照子で示すことで区別する。
また、本実施形態の駆動タイミングでは、映像信号Vsig が非有効期間であるオフセット電位Vofs にある期間を1水平期間の前半部とし、有効期間である信号電位(Vofs +Vin)にある期間を1水平期間の後半部とする。また、映像信号Vsig の有効期間と非有効期間を合わせた1水平期間ごとに、閾値補正動作を3回に亘って繰り返すようにする。その各回の映像信号Vsig の有効期間と非有効期間の切替タイミング(t13V,t15V)、および書込駆動パルスWSのアクティブとインアクティブの切替タイミング(t13W,t15W)については、そのタイミングに、各回を“_ ”なしの参照子で示すことで区別する。
本実施形態では、1水平期間を処理サイクルとして、閾値補正動作を3回に亘って繰り返すようにしているが、この繰り返し動作は必須ではなく、1水平期間を処理サイクルとして、1回のみの閾値補正動作を実行するようにしてもよい。
1水平期間が閾値補正動作の処理サイクルとなるのは、行ごとに、サンプリングトランジスタ125が信号振幅Vinの情報を保持容量120にサンプリングする前に、閾値補正動作に先立って、電源供給線105DSL の電位を第2電位Vssにセットし、また駆動トランジスタ121のゲートをオフセット電位Vofs にセットし、さらにソース電位を第2電位Vssにセットする初期化動作を経てから、電源供給線105DSL の電位が第1電位Vccにある状態でかつ映像信号線106HSがオフセット電位Vofs にある時間帯でサンプリングトランジスタ125を導通させて駆動トランジスタ121の閾値電圧Vthに対応する電圧を保持容量120に保持させようとする閾値補正動作を行なうからである。
必然的に、閾値補正期間は、1水平期間よりも短くなってしまう。したがって、保持容量120の容量Csや第2電位Vssの大きさ関係やその他の要因で、この短い1回分の閾値補正動作期間では、閾値電圧Vthに対応する正確な電圧を保持容量120に保持仕切れないケースも起こり得る。本実施形態において、閾値補正動作を複数回実行するのは、この対処のためである。すなわち、信号振幅Vinの情報の保持容量120へのサンプリング(信号書込み)に先行する複数の水平周期で、閾値補正動作を繰り返し実行することで、確実に駆動トランジスタ121の閾値電圧Vthに相当する電圧を保持容量120に保持させるのである。
ある行(ここでは第1行目とする)について、タイミングt11以前の前フィールドの発光期間Bでは、書込駆動パルスWSがインアクティブLでありサンプリングトランジスタ125が非導通状態である一方、電源駆動パルスDSL は高電位の電源電圧側である第1電位Vccにある。
したがって、図6Bに示すように、映像信号線106HSの電位に関わらず、前フィールドの動作によって保持容量120に保持されている電圧状態(駆動トランジスタ121のゲート・ソース間電圧Vgs)に応じて有機EL素子127に駆動トランジスタ121から駆動電流Idsが供給され、全画素共通の配線Vcath(好ましくはGND )に流れ込むことで、有機EL素子127が発光状態にある。このとき、駆動トランジスタ121は飽和領域で動作するように設定されているため、有機EL素子127に流れる駆動電流Idsは保持容量120に保持されている駆動トランジスタ121のゲート・ソース間電圧Vgsに応じて式(1)に示される値をとる。
この後、線順次走査の新しいフィールドに入って、先ず、駆動走査部105は、書込駆動パルスWSがインアクティブLにある状態で、1行目の電源供給線105DSL_1 に与える電源駆動パルスDSL_1 を高低電位側の第1電位Vccから低電位側の第2電位Vssに切り替える(t11_1:図6Cを参照)。このタイミング(t11_1)は、図6に示すように、映像信号Vsig が有効期間の信号電位(Vofs +Vin)にある期間内としている。しかし、t11_1は、必ずしもこのタイミングで遷移させる必要はない。
次に、書込走査部104は、電源供給線105DSL_1 が第2電位Vssにある状態のままで、書込駆動パルスWSをアクティブHに切り替える(t13W0)。このタイミング(t13W0)は、直前の水平期間における映像信号Vsig が非有効期間であるオフセット電位Vofs から有効期間の信号電位(Vofs +Vin)に切り替わり、その後に、オフセット電位Vofs に切り替わるタイミング(t13V0)と同じかそれよりも少し遅れたタイミングにする。この後に書込駆動パルスWSをインアクティブLに切り替えるタイミング(t15W0)は、オフセット電位Vofs から信号電位(Vofs +Vin)に切り替わるタイミング(t15V0)と同じかそれよりも少し前のタイミングにする。
つまり、好ましくは、書込駆動パルスWSをアクティブHにする期間(t13W〜t15W)は、映像信号Vsig が非有効期間であるオフセット電位Vofs にある時間帯(t13V〜t15V)内とする。これは、電源供給線105DSL が第1電位Vccにある状態のときで映像信号Vsig が信号電位(Vofs +Vin)にあるときに書込駆動パルスWSをアクティブHにすると信号振幅Vinの情報の保持容量120へのサンプリング動作(信号電位の書込み動作)がなされてしまい、閾値補正動作としては不都合が生じるからである。
タイミングt11_1〜t13W0(放電期間Cと称する)では、電源供給線105DSL の電位は第2電位Vssまで放電され、さらに駆動トランジスタ121のソース電位Vsは第2電位Vssに近い電位まで遷移する。さらに、駆動トランジスタ121のゲート端Gとソース端Sとの間には保持容量120が接続されており、その保持容量120による効果によって、駆動トランジスタ121のソース電位Vsの変動にゲート電位Vgが連動する。
電源駆動パルスDSL を低電位側の第2電位Vssにしたままで、書込駆動パルスWSをアクティブHに切り替えると(t13W0)、図6Dに示すように、サンプリングトランジスタ125が導通状態になる。
このとき、映像信号線106HSはオフセット電位Vofs にある。したがって、駆動トランジスタ121のゲート電位Vgは導通したサンプリングトランジスタ125を通じて映像信号線106HSのオフセット電位Vofs となる。これと同時に、駆動トランジスタ121がオンすることで、駆動トランジスタ121のソース電位Vsは低電位側の第2電位Vssに固定される。
つまり、電源供給線105DSL の電位が高電位側の第1電位Vccから映像信号線106HSのオフセット電位Vofs より十分低い第2電位Vssにあることで、駆動トランジスタ121のソース電位Vsが映像信号線106HSのオフセット電位Vofs より十分低い第2電位Vssに初期化(リセット)される。このようにして、駆動トランジスタ121のゲート電位Vgおよびソース電位Vsを初期化することで、閾値補正動作の準備が完了する。次に電源駆動パルスDSL を高電位側の第1電位Vccにするまでの期間(t13W0〜t14_1)が、初期化期間Dとなる。なお、放電期間Cと初期化期間Dとを合わせて、駆動トランジスタ121のゲート電位Vgとソース電位Vsを初期化する閾値補正準備期間とも称する。
電源供給線105DSL の配線容量が大きい場合は比較的早いタイミングで電源供給線105DSL を高電位Vccから低電位Vssに切り替えるとよい。この放電期間Cおよび初期化期間D(t11_1〜t14_1)を十分に確保することで、配線容量やその他の画素寄生容量の影響を受けないようにしておく。このため、本実施形態では、初期化処理を2回行なうようにしている。すなわち、電源供給線105DSL_1 が第2電位Vssにある状態のままで、書込駆動パルスWSをインアクティブLに切り替えた後(t15W0)、映像信号Vsig を信号電位(Vofs +Vin)に切り替える(t15V0)。さらに、映像信号Vsig をオフセット電位Vofs に切り替えた後(t13V1)、書込駆動パルスWSをアクティブHに切り替える(t13W1)。
放電期間Cにおいて、第2電位Vssが有機EL素子127の閾値電圧VthELとカソード電位Vcathの和よりも小さいとき、つまり“Vss<VthEL+Vcath”であれば有機EL素子127は消光する。また、駆動トランジスタ121のソース端とドレイン端が事実上逆転して電源供給線105DSL が駆動トランジスタ121のソース側となり、有機EL素子127のアノード端Aは第2電位Vssに充電される(図6Cを参照)。
さらに、初期化期間Dにおいては、駆動トランジスタ121のゲート・ソース間電圧Vgsは“Vofs −Vss”という値をとる(図6Dを参照)。この“Vofs −Vss”が駆動トランジスタ121の閾値電圧Vthよりも大きくないと閾値補正動作を行なうことができないために、“Vofs −Vss>Vth”とする。
次に、書込駆動パルスWSをアクティブHにしたままで、電源供給線105DSL に与える電源駆動パルスDSL を第1電位Vccに切り替える(t14_1)。駆動走査部105は、それ以降は、次のフレーム(あるいはフィールド)の処理まで、電源供給線105DSL の電位を第1電位Vccに保持しておく。
電源供給線105DSL を第1電位Vccに切り替えると(t14_1)、駆動トランジスタ121のソース端とドレイン端が再度逆転して電源供給線105DSL が駆動トランジスタ121のドレイン側となる(図6Eを参照)。これにより、駆動電流Idsが保持容量120に流れ込み、駆動トランジスタ121の閾値電圧Vthを補正(キャンセル)する第1回目の閾値補正期間(第1閾値補正期間Eと称する)に入る。この第1閾値補正期間Eは、書込駆動パルスWSがインアクティブLにされるタイミング(t15W1)まで継続する。
ここで、本実施形態の駆動走査部105は、電源供給線105DSL の電位を、低電位側である第2電位Vssから高電位側である第1電位Vccに遷移させるタイミング(t14_1)を、映像信号線106HSが映像信号Vsig の非有効期間であるオフセット電位Vofs にある時間帯(t13V1〜t15V1)、さらに好ましくは書込駆動パルスWSがアクティブである時間帯(t13W1〜t15W1)とする。
ところで、タイミング(t14_1)以降の第1閾値補正期間Eでは、図6Eに示すように、電源供給線105DSL の電位が低電位側の第2電位Vssから高電位側の第1電位Vccに遷移することで、駆動トランジスタ121のソース電位Vsが上昇を開始する。
すなわち、駆動トランジスタ121のゲート端Gは映像信号Vsig のオフセット電位Vofs に保持されており、駆動トランジスタ121のソース端Sの電位Vsが上昇して駆動トランジスタ121がカットオフするまで駆動電流Idsが流れようとする。カットオフすると駆動トランジスタ121のソース電位Vsは“Vofs −Vth”となる。
すなわち、有機EL素子127の等価回路はダイオードと寄生容量Celの並列回路で表されるため、“Vel≦Vcath+VthEL”である限り、つまり、有機EL素子127のリーク電流が駆動トランジスタ121に流れる電流よりもかなり小さい限り、駆動トランジスタ121の駆動電流Idsは保持容量120と寄生容量Celを充電するために使われる。
この結果、駆動トランジスタ121に駆動電流Idsが流れると、有機EL素子127のアノード端Aの電圧VelつまりノードND121の電位は、図7に示すように、時間とともに上昇してゆく。そして、ノードND121の電位(ソース電位Vs)とノードND122の電圧(ゲート電位Vg)との電位差がちょうど閾値電圧Vthとなったところで閾値補正期間を終了させる。つまり、一定時間経過後、駆動トランジスタ121のゲート・ソース間電圧Vgsは閾値電圧Vthという値をとる。
ゲート・ソース間電圧Vgsが閾値電圧Vthとなるまでは、駆動トランジスタ121のゲート・ソース間電圧Vgsは閾値電圧Vthよりも大きいため、図6Eに示すように駆動電流Idsが流れる。このとき、有機EL素子127には逆バイアスがかかっているため有機EL素子127が発光することはない。
ここで、実際には、閾値電圧Vthに相当する電圧が、駆動トランジスタ121のゲート端Gとソース端Sとの間に接続された保持容量120に書き込まれることになる。しかしながら、第1閾値補正期間Eは、書込駆動パルスWSをアクティブHにしたタイミング(t13W1)(詳しくはその後に電源駆動パルスDSL を第1電位Vccに戻した時点t14)からインアクティブLに戻すタイミング(t15W1)までであり、この期間が十分に確保されていないときには、それ以前に終了してしまうこととなる。
具体的には、ゲート・ソース間電圧VgsがVx1(>Vth)になったとき、つまり、駆動トランジスタ121のソース電位Vsが低電位側の第2電位Vssから“Vofs −Vx1”になったときに終わってしまう。このため、第1閾値補正期間Eが完了した時点(t15W1)では、Vx1が保持容量120に書き込まれる。
次に、駆動走査部105は、1水平期間の後半部で、書込駆動パルスWSをインアクティブLに切り替え(t15W1)、さらに水平駆動部106は、映像信号線106HSをオフセット電位Vofs から信号電位(Vofs +Vin)に切り替える(t15V1)。これにより、図6Fに示すように、映像信号線106HSが信号電位(Vofs +Vin)に変化する一方、書込走査線104WSの電位(書込駆動パルスWS)はローレベルになる。
このときには、サンプリングトランジスタ125は非導通(オフ)状態にあり、それ以前に保持容量120に保持されたVx1に応じたドレイン電流が有機EL素子127に流れることで、ソース電位Vsが僅かに上昇する。この上昇分をVa1とすると、ソース電位Vsは“Vofs −Vx1+Va1”となる。さらに、駆動トランジスタ121のゲート端Gとソース端Sとの間には保持容量120が接続されており、その保持容量120による効果によって、駆動トランジスタ121のソース電位Vsの変動にゲート電位Vgが連動することで、ゲート電位Vgが“Vofs +Va1”となる。
第1閾値補正期間E後の、水平駆動部106が映像信号線106HSを信号電位(Vofs +Vin)からオフセット電位Vofs に切り替え(t13V2)、駆動走査部105が書込駆動パルスWSをアクティブHに切り替える(t13W2)までの期間(他行書込み期間と称する)Fは、他の行の画素に対する信号振幅Vinの情報のサンプリング期間となり、この処理対象行のサンプリングトランジスタ125はオフ状態にする必要がある。これで、1回目の1水平期間の処理が完結する。
次の1水平周期(1H)の前半になると、水平駆動部106が映像信号線106HSを信号電位(Vofs +Vin)からオフセット電位Vofs に切り替え(t13V2)、駆動走査部105が書込駆動パルスWSをアクティブHに切り替える(t13W2)。これにより、ドレイン電流が保持容量120に流れ込み、駆動トランジスタ121の閾値電圧Vthを補正(キャンセル)する第2回目の閾値補正期間(第2閾値補正期間Gと称する)に入る。この第2閾値補正期間Gは、書込駆動パルスWSがインアクティブLにされるタイミング(t15W2)まで継続する。
第2閾値補正期間Gでは、第1閾値補正期間Eと同様の動作をする。具体的には、図6Gに示すように、駆動トランジスタ121のゲート端Gは映像信号Vsig のオフセット電位Vofs に保持されることとなり、ゲート電位が直前の“Vg=オフセット電位Vofs +Va1”からオフセット電位Vofs に切り替わる。このときの駆動トランジスタのゲート端Gの電位変動量Va1の情報が、保持容量120、駆動トランジスタのゲートソース間の寄生容量Cgsを介して駆動トランジスタのソース端Sに入力される。このときのソース端Sへの入力量はgVa1と表され、ソース電位Vsは、直前の“Vofs −Vx1+Va1”からgVa1だけ低下するので、“Vofs −Vx1+(1−g)Va1”となる。
ここで、駆動トランジスタ121のゲート・ソース間電圧Vx1−(1−g)Va1が駆動トランジスタ121の閾値電圧Vthよりも大きいならば、この後、駆動トランジスタ121のソース端Sの電位Vsが上昇して駆動トランジスタ121がカットオフするまでドレイン電流が流れようとする。カットオフすると駆動トランジスタ121のソース電位Vsは“Vofs −Vth”となる。
しかしながら、第2閾値補正期間Gは、書込駆動パルスWSをアクティブHにしたタイミング(t13W2)からインアクティブLに戻すタイミング(t15W2)までであり、この期間が十分に確保されていないときには、それ以前に終了してしまうこととなる。この点は、第1閾値補正期間Eと同じであり、ゲート・ソース間電圧VgsがVx2(<Vx1、かつ>Vth)になったとき、つまり、駆動トランジスタ121のソース電位Vsが“Vofs −Vx1”から“Vofs −Vx2”になったときに終わってしまう。このため、第2閾値補正期間Gが完了した時点(t15W2)ではVx2が保持容量120に書き込まれる。
次に、駆動走査部105は、1水平期間の後半部で、他の行の画素に対する信号電位のサンプリングを行なうため、書込駆動パルスWSをインアクティブLに切り替え(t15W2)、さらに水平駆動部106は、映像信号線106HSをオフセット電位Vofs から信号電位(Vofs +Vin)に切り替える(t15V2)。これにより、図6Hに示すように、映像信号線106HSが信号電位(Vofs +Vin)に変化する一方、書込走査線104WSの電位(書込駆動パルスWS)はローレベルになる。
このときには、サンプリングトランジスタ125は非導通(オフ)状態にあり、それ以前に保持容量120に保持されたVx2に応じたドレイン電流が有機EL素子127に流れることで、ソース電位Vsが僅かに上昇する。この上昇分をVa2とすると、ソース電位Vsは“Vofs −Vx2+Va2”となる。さらに、駆動トランジスタ121のゲート端Gとソース端Sとの間には保持容量120が接続されており、その保持容量120による効果によって、駆動トランジスタ121のソース電位Vsの変動にゲート電位Vgが連動することで、ゲート電位Vgが“Vofs +Va2”となる。
第2閾値補正期間G後の、水平駆動部106が映像信号線106HSを信号電位(Vofs +Vin)からオフセット電位Vofs に切り替え(t13V3)、駆動走査部105が書込駆動パルスWSをアクティブHに切り替える(t13W3)までの期間(他行書込み期間と称する)Hは、他の行の画素に対する信号振幅Vinの情報のサンプリング期間となり、この処理対象行のサンプリングトランジスタ125はオフ状態にする必要がある。これで、2回目の1水平期間の処理が完結する。
さらに、次の1水平周期(1H)の前半になると、水平駆動部106が映像信号線106HSを信号電位(Vofs +Vin)からオフセット電位Vofs に切り替え(t13V3)、駆動走査部105が書込駆動パルスWSをアクティブHに切り替える(t13W3)。これにより、ドレイン電流が保持容量120に流れ込み、駆動トランジスタ121の閾値電圧Vthを補正(キャンセル)する第3回目の閾値補正期間(第3閾値補正期間Iと称する)に入る。この第3閾値補正期間Iは、書込駆動パルスWSがインアクティブLにされるタイミング(t15W3)まで継続する。
この第3閾値補正期間Iでは、第1閾値補正期間Eや第2閾値補正期間Gと同様の動作をする。具体的には、図6Iに示すように、駆動トランジスタ121のゲート端Gは映像信号Vsig のオフセット電位Vofs に保持されることとなり、ゲート電位が直前の“Vg=オフセット電位Vofs +Va2”からオフセット電位Vofs に切り替わる。このときの駆動トランジスタのゲート端Gの電位変動量Va2の情報が、保持容量120、駆動トランジスタのゲートソース間の寄生容量Cgsを介して駆動トランジスタのソース端Sに入力される。このときのソース端Sへの入力量はgVa2と表され、ソース電位Vsは、直前の“Vofs −Vx2+Va2”からgVa2だけ低下するので、“Vofs −Vx1+(1−g)Va2”となる。
この後、駆動トランジスタ121のソース端Sの電位Vsが上昇して駆動トランジスタ121がカットオフするまでドレイン電流が流れようとする。ゲート・ソース間電圧Vgsがちょうど閾値電圧Vthとなったところでドレイン電流がカットオフする。カットオフすると駆動トランジスタ121のソース電位Vsは“Vofs −Vth”となる。
つまり、複数回(本例では3回)に亘る閾値補正期間での処理によって、駆動トランジスタ121のゲート・ソース間電圧Vgsは閾値電圧Vthという値をとる。ここで、実際には、閾値電圧Vthに相当する電圧が、駆動トランジスタ121のゲート端Gとソース端Sとの間に接続された保持容量120に書き込まれることになる。
なお、3回に亘る閾値補正期間E,G,Iでは、何れもドレイン電流が専ら保持容量120側や有機EL素子127の寄生容量Cel側に流れ、カソード電位Vcath側には流れないようにするため、有機EL素子127がカットオフとなるように共通接地配線cathの電位Vcathを設定しておく。
この後、水平駆動部106により信号線106HSに信号電位(Vofs +Vin)を実際に供給して、書込駆動パルスWSをアクティブHにする期間を、保持容量120への信号振幅Vinの情報の書込み期間(サンプリング期間とも称する)とする。この信号振幅Vinの情報は駆動トランジスタ121の閾値電圧Vthに足し込む形で保持される。詳しくは、書込みゲインGinputを考慮したとき、前述の比率gが関与する。
この結果、駆動トランジスタ121の閾値電圧Vthの変動は常にキャンセルされる形となるので、閾値補正を行なっていることになる。この閾値補正によって、保持容量120に保持されるゲート・ソース間電圧Vgsは“Vin+Vth”となる。書込みゲインGinputを考慮したときには、(1−g)Vin+Vth=Ginput・Vin+Vthとなる。また、同時に、このサンプリング期間で移動度補正を実行する。すなわち、本実施形態の駆動タイミングにおいて、サンプリング期間は移動度補正期間を兼ねることとなる。信号振幅Vinは階調に応じた電圧である。
具体的には、先ず、書込駆動パルスWSをインアクティブLに切り替え(t15W3)、さらに水平駆動部106は、映像信号線106HSをオフセット電位Vofs から信号電位(Vofs +Vin)に切り替える(t15V3)ことで、最後(本例では3回目)の閾値補正期間を完了させる。こうすることで、図6Jに示すように、サンプリングトランジスタ125が非導通(オフ)状態とされ、次のサンプリング動作および移動度補正動作の準備が完了する。次に書込駆動パルスWSをアクティブHにするタイミング(t16_1)まで期間を書込み&移動度補正準備期間Jと称する。
次に、映像信号線106HSを信号電位(Vofs +Vin)に保持したままで、書込走査部104は、書込駆動パルスWSをアクティブHに切り替え(t16_1)、水平駆動部106が映像信号線106HSを信号電位(Vofs +Vin)からオフセット電位Vofs に切り替えるタイミング(t18_1)までの間での適当なタイミングで、つまり、映像信号線106HSが信号電位(Vofs +Vin)にある時間帯での適当なとき、インアクティブLに切り替える(t17_1)。この書込駆動パルスWSがアクティブHにある期間(t16_1〜t17_1)を、サンプリング期間&移動度補正期間Kと称する。
これにより、図6Kに示すように、サンプリングトランジスタ125が導通(オン)状態となり、駆動トランジスタ121のゲート電位Vgは信号電位(Vofs +Vin)となる。したがって、サンプリング期間&移動度補正期間Kでは、駆動トランジスタ121のゲート端Gが信号電位(Vofs +Vin)に固定された状態で、駆動トランジスタ121に駆動電流Idsが流れる。
駆動トランジスタ121のゲート電位Vgはサンプリングトランジスタ125をオンしているために信号電位(Vofs +Vin)となるが、電源供給線105DSL から電流が流れるためソース電位Vsは時間とともに上昇してゆく。
後述するが、有機EL素子127の閾値電圧をVthELとしたとき、書込みゲインを考慮したときは“Vofs −Vth+gVin+ΔV<VthEL+Vcath”と設定しておくことで、有機EL素子127は、逆バイアス状態におかれ、カットオフ状態(ハイインピーダンス状態)にあるため、発光することはなく、また、ダイオード特性ではなく単純な容量特性を示すようになる。このときのソース電位Vsが有機EL素子127の閾値電圧VthELとカソード電位Vcathの和を越えなければ、駆動トランジスタ121に流れるドレイン電流(駆動電流Ids)は保持容量120の容量値Csと有機EL素子127の寄生容量(等価容量)Celの容量値Celの両者を結合した容量“C=Cs+Cel”に書き込まれていく。これにより、駆動トランジスタ121のソース電位Vsは上昇していく。このとき、駆動トランジスタ121の閾値補正動作は完了しているため、駆動トランジスタ121が流す駆動電流Idsは移動度μを反映したものとなる。
図6のタイミングチャートでは、この上昇分をΔVで表してある。書込みゲインを考慮したときは、この上昇分、すなわち移動度補正パラメータである負帰還量ΔVは、閾値補正によって保持容量120に保持されるゲート・ソース間電圧“Vgs=(1−g)Vin+Vth”から差し引かれることになり、“Vgs=(1−g)Vin+Vth−ΔV”となるので、負帰還をかけたことになる。このとき、駆動トランジスタ121のソース電位Vsは、ゲート電位Vg(=Vofs +Vin)から保持容量に保持される電圧“Vgs=(1−g)Vin+Vth−ΔV”を差し引いた値“(1−g)Vofs +g(Vofs +Vin)−Vth+ΔV”=“Vofs +gVin−Vth+ΔV”となる。
このようにして、本実施形態の駆動タイミングでは、サンプリング期間&移動度補正期間K(t16〜t17)において、映像信号Vsig における信号振幅Vinの情報のサンプリングと移動度μを補正する負帰還量(移動度補正パラメータ)ΔVの調整が行なわれる。負帰還量ΔVはΔV=Ids・(Cel+Cgs+Cs)/tである。
書込走査部104は、サンプリング期間&移動度補正期間Kの時間幅を調整可能であり、これにより保持容量120に対する駆動電流Idsの負帰還量を最適化することができる。ここで「負帰還量を最適化する」とは、映像信号電位の黒レベルから白レベルまでの範囲で、どのレベルにおいても適切に移動度補正を行なうことができるようにすることを意味する。
負帰還量ΔVはΔV=Ids・(Cel+Cgs+Cs)/tであるから、ゲート・ソース間電圧Vgsにかける負帰還量ΔVは、ドレイン電流Idsの取り出し時間すなわちサンプリング期間&移動度補正期間Kに依存しており、この期間を長くとるほど、負帰還量が大きくなる。その際、移動度補正期間tは必ずしも一定である必要はなく、逆に駆動電流Idsに応じて調整することが好ましい場合がある。たとえば、駆動電流Idsが大きい場合、移動度補正期間tは短めにし、逆に駆動電流Idsが小さくなると、移動度補正期間tは長めに設定することがよい。
また、負帰還量ΔVはΔV=Ids・(Cel+Cgs+Cs)/tであるから、駆動トランジスタ121のドレイン・ソース間電流である駆動電流Idsが大きいほど、負帰還量ΔVは大きくなる。逆に、駆動トランジスタ121の駆動電流Idsが小さいとき、負帰還量ΔVは小さくなる。このように、負帰還量ΔVは駆動電流Idsに応じて決まる。
また、信号振幅Vinが大きいほど駆動電流Idsは大きくなり、負帰還量ΔVの絶対値も大きくなる。したがって、発光輝度レベルに応じた移動度補正を実現できる。その際、サンプリング期間&移動度補正期間Kは必ずしも一定である必要はなく、逆に駆動電流Idsに応じて調整することが好ましい場合がある。たとえば、駆動電流Idsが大きい場合、移動度補正期間tは短めにし、逆に駆動電流Idsが小さくなると、サンプリング期間&移動度補正期間Kは長めに設定するのがよい。
たとえば、映像信号線電位(信号線106HSの電位)の立上りもしくは書込走査線104WSの書込駆動パルスWSの遷移特性に傾斜をつけることで、移動度補正期間を映像線信号電位に自動的に追従させて、その最適化を図る。信号線106HSの電位が高いとき(駆動電流Idsが大きいとき)補正期間が短くなり、信号線106HSの電位が低いとき(駆動電流Idsが小さいとき)補正期間は長くなるように、自動的に調整する。こうすることで、映像信号電位(映像信号Vsig )に追従して、適切な補正期間を自動的に設定できるため、画像の輝度や絵柄によらず最適な移動度補正が可能となる。
また、負帰還量ΔVは、Ids・(Cel+Cgs+Cs)/tであり、画素回路Pごとに移動度μのばらつきに起因して駆動電流Idsがばらつく場合でも、それぞれに応じた負帰還量ΔVとなるので、画素回路Pごとの移動度μのばらつきを補正することができる。つまり、信号振幅Vinを一定とした場合、図7Aに示すように、駆動トランジスタ121の移動度μが大きいほど駆動電流Idsが大きく、ソース電位Vsの上昇が早く、負帰還量ΔVの絶対値が大きくなる。逆に移動度μが小さいものは駆動電流Idsが小さく、ソース電位Vsの上昇は遅くく、負帰還量ΔVの絶対値が小さくなる。換言すると、移動度μが大きいほど負帰還量ΔVが大きくなるので、駆動トランジスタ121のゲート・ソース間電圧Vgsは移動度μを反映して小さくなり、一定時間経過後に完全に移動度μを補正するゲート・ソース間電圧Vgsとなるので、画素回路Pごとの移動度μのばらつきを取り除くことができる。
このようにして、本実施形態の駆動タイミングでは、サンプリング期間&移動度補正期間Kにて、信号振幅Vinの情報のサンプリングと移動度μのばらつきを補正するための負帰還量ΔVの調整が同時に行なわれる。もちろん、負帰還量ΔVはサンプリング期間&移動度補正期間Kの時間幅を調整することで最適化可能である。
次に、書込走査部104は、映像信号線106HSが信号電位(Vofs +Vin)にある状態で、書込駆動パルスWSをインアクティブLに切り替える(t17_1)。これにより、図6Lに示すように、サンプリングトランジスタ125が非導通(オフ)状態となり発光期間Lに進む。水平駆動部106は、その後の適当な時点で映像信号線106HSへの信号電位(Vofs +Vin)の供給を停止してオフセット電位Vofs に戻す(t18_1)。この後、次のフレーム(もしくはフィールド)に移って、再び、閾値補正準備動作、閾値補正動作、移動度補正動作、および発光動作が繰り返される。
この結果、駆動トランジスタ121のゲート端Gは映像信号線106HSから切り離される。駆動トランジスタ121のゲート端Gへの信号電位(Vofs +Vin)の印加が解除されるので、駆動トランジスタ121のゲート電位Vgは上昇可能となる。
このとき、駆動トランジスタ121に流れる駆動電流Idsは有機EL素子127に流れ、有機EL素子127のアノード電位は駆動電流Idsに応じて上昇する。この上昇分をVelとする。やがて、ソース電位Vsの上昇に伴い、有機EL素子127の逆バイアス状態は解消されるので、駆動電流Idsの流入により有機EL素子127は実際に発光を開始する。このときの有機EL素子127のアノード電位の上昇(Vel)は、駆動トランジスタ121のソース電位Vsの上昇に他ならず、駆動トランジスタ121のソース電位Vsは、“(1−g)Vofs +g(Vofs +Vin)−Vth+ΔV+Vel”=“Vofs +gVin−Vth+ΔV+Vel”となる。
駆動電流Ids対ゲート電圧Vgsの関係は、先のトランジスタ特性を表した式(1)のVgsに“Vin−ΔV+Vth”を代入することで、式(2−1)のように表すことができる。書込みゲインを考慮したときには、式(1)のVgsに“(1−g)Vin−ΔV+Vth”を代入することで、式(2−2)のように表すことができる。式(2−1)や式(2−2)(纏めて式(2)と称する)において、k=(1/2)(W/L)Coxである。
この式(2)から、閾値電圧Vthの項がキャンセルされており、有機EL素子127に供給される駆動電流Idsは駆動トランジスタ121の閾値電圧Vthに依存しないことが分かる。基本的に駆動電流Idsは信号振幅Vinによって決まる。換言すると、有機EL素子127は信号振幅Vinに応じた輝度で発光することになる。
その際、保持容量120に保持される情報は帰還量ΔVで補正されている。この補正量ΔVはちょうど式(2)の係数部に位置する移動度μの効果を打ち消すように働く。したがって、駆動電流Idsは実質的に信号振幅Vinのみに依存することになる。駆動電流Idsは閾値電圧Vthに依存しないので、閾値電圧Vthが製造プロセスにより変動しても、ドレイン・ソース間の駆動電流Idsは変動せず、有機EL素子127の発光輝度も変動しない。
また、駆動トランジスタ121のゲート端Gとソース端Sとの間には保持容量120が接続されており、その保持容量120による効果により、発光期間の最初でブートストラップ動作が行なわれ、駆動トランジスタ121のゲート・ソース間電圧Vgsを一定に維持したまま、駆動トランジスタ121のゲート電位Vgおよびソース電位Vsが上昇する。駆動トランジスタ121のソース電位Vsが“Vofs +gVin−Vth+ΔV+Vel”となることで、ゲート電位Vgは“Vofs +Vin+Vel”となる。
このとき、駆動トランジスタ121のゲート・ソース間電圧Vgsは一定であるので、駆動トランジスタ121は、一定電流(駆動電流Ids)を有機EL素子127に流す。その結果、有機EL素子127のアノード端Aの電位(=ノードND121の電位)は、有機EL素子127に飽和状態での駆動電流Idsという電流が流れ得る電圧まで上昇する。
ここで、有機EL素子127は、発光時間が長くなるとそのI−V特性が変化してしまう。そのため、時間の経過とともに、ノードND121の電位も変化する。しかしながら、このような有機EL素子127の経時劣化によりそのアノード電位が変動しても、保持容量120に保持されたゲート・ソース間電圧Vgsは常に一定に維持される。
駆動トランジスタ121が定電流源として動作することから、有機EL素子127のI−V特性が経時変化し、これに伴って駆動トランジスタ121のソース電位Vsが変化したとしても、保持容量120によって駆動トランジスタ121のゲート・ソース間電位Vgsが一定(≒Vin−ΔV+Vthもしくは≒(1−g)Vin−ΔV+Vth)に保たれているため、有機EL素子127に流れる電流は変わらず、したがって有機EL素子127の発光輝度も一定に保たれる。
このような、有機EL素子127の特性変動に拘らず、駆動トランジスタ121のゲート・ソース間電圧を一定に維持し輝度を一定に維持する補正のための動作(保持容量120の効果による動作)をブートストラップ動作と呼ぶ。このブートストラップ動作により、有機EL素子127のI−V特性が経時的に変化しても、それに伴う輝度劣化のない画像表示が可能になる。
つまり、本実施形態の画素回路Pとそれを駆動する本実施形態の駆動タイミングでは、電気光学素子の一例である有機EL素子127の電流−電圧特性の変化を補正して駆動電流を一定に維持する駆動信号一定化回路の一例であるブートストラップ回路が構成され、ブートストラップ動作が機能するようになっているのである。よって、有機EL素子127のI−V特性が劣化しても一定電流Idsが常に流れ続けるため、有機EL素子127は画素信号Vsig に応じた輝度で発光を続けることになり輝度が変化することはない。
また、本実施形態の画素回路Pとそれを駆動する本実施形態の駆動タイミングでは、駆動トランジスタ121の閾値電圧Vthを補正して駆動電流を一定に維持する駆動信号一定化回路の一例である閾値補正回路が構成され閾値補正動作が機能するようになっている。駆動トランジスタ121の閾値電圧Vthを反映させたゲート・ソース間電位Vgsとして、当該閾値電圧Vthのばらつきの影響を受けない一定電流Idsを流すことができる。
特に、本実施形態の駆動タイミングでは、1回の閾値補正動作の処理サイクルを1水平期間とし、複数回に亘って閾値補正動作を繰り返すようにしており、確実に閾値電圧Vthを保持容量120に保持させるようにしている。このため、閾値電圧Vthの画素間差が確実に除去され、階調に拘らず、閾値電圧Vthのばらつきに起因する輝度ムラを抑制できる。
これに対して、閾値補正動作を1回にするなど閾値電圧Vthの補正が不十分な場合は、つまり閾値電圧Vthが保持容量120に保持されていない場合には、異なる画素回路Pの間で、低階調の領域では輝度(駆動電流Ids)に差が出てしまう。よって閾値電圧の補正が不十分な場合は、低階調で輝度のムラが現れ画質を損なうことになる。
加えて、本実施形態の駆動タイミングでは、サンプリングトランジスタ125による信号振幅Vinの情報の保持容量120への書込み動作と連動して駆動トランジスタ121の移動度μを補正して駆動電流を一定に維持する駆動信号一定化回路の一例である移動度補正回路が構成され移動度補正動作が機能するようになっている。駆動トランジスタ121のキャリア移動度μを反映させたゲート・ソース間電位Vgsとして、当該キャリア移動度μのばらつきの影響を受けない一定電流Idsを流すことができる。
つまり、本実施形態の画素回路Pは、駆動タイミングを工夫することで、閾値補正回路や移動度補正回路が自動的に構成され、駆動トランジスタ121の特性ばらつき(本例では閾値電圧Vthおよびキャリア移動度μのばらつき)による駆動電流Idsに与える影響を防ぐために、閾値電圧Vthおよびキャリア移動度μによる影響を補正して駆動電流を一定に維持する駆動信号一定化回路として機能するようになっているのである。
ブートストラップ動作だけでなく、閾値補正動作と移動度補正動作とを実行しているため、ブートストラップ動作で維持されるゲート・ソース間電圧Vgsは、閾値電圧Vthに相当する電圧と移動度補正用の電圧ΔVとによって調整されているため、有機EL素子127の発光輝度は駆動トランジスタ121の閾値電圧Vthや移動度μのばらつきの影響を受けることがないし、有機EL素子127の経時劣化の影響も受けない。入力される信号振幅Vinに対応する安定した階調で表示でき、高画質の画像を得ることができる。
また、本実施形態の画素回路Pは、nチャネル型の駆動トランジスタ121を用いたソースフォロア回路によって構成することができるために、現状のアノード・カソード電極の有機EL素子をそのまま用いても、有機EL素子127の駆動が可能になる。
また、駆動トランジスタ121およびその周辺部のサンプリングトランジスタ125をも含めてnチャネル型のみのトランジスタを用いて画素回路Pを構成することができ、TFT作成においてもアモルファスシリコン(a−Si)プロセスを用いることができるようになるため、TFT基板の低コスト化が図れることになる。
<<垂直配線と水平配線について>>
図8および図8Aは、画素アレイ部102の垂直配線と水平配線の配線形態(レイアウト)の比較例を説明する図である。図8は、1画素分の走査配線のレイアウトを示しており、図8Aは、垂直方向に隣接する2行分の画素回路Pの走査配線のレイアウトを示している。
図5に示した画素回路Pの場合、画素アレイ部102においては、少なくとも垂直走査系統に関わる書込走査線104WSおよび電源供給線105DSL が縦/横の一方の配線(たとえば横配線とする)となり、これに対して水平走査系統に関わる映像信号線106HSが縦/横の他方の配線(たとえば縦配線とする)となる。また、有機EL素子127のカソード電位Vcathをベタ配線ではなく通常の配線とする場合であれば、カソード電位Vcath用の配線(以下カソード配線Wcathと称する)が横配線もしくは縦配線となる。
ここで、前述の各配線(書込走査線104WS、電源供給線105DSL 、映像信号線106HS)は、横方向または縦方向に延び、画素アレイ部102の周辺に設けられた対応する走査部(書込走査部104、駆動走査部105、水平駆動部106)と接続される。
画面の左右方向について考察した場合、詳細説明図は割愛するが、1行内の全ての画素回路Pに対して書込駆動パルスWSは書込走査部104から共通に供給されるので、書込駆動パルスWSの波形が配線容量や配線抵抗の影響で、書込走査部104から遠い画素回路P(遠側画素と称する)の方が書込走査部104から近い画素回路P(近側画素と称する)よりも、その波形鈍りが大きくなってしまう。そのため、配線容量や配線抵抗の分布特性が、閾値補正や移動度補正の動作に影響を与えることがある。
同様のことは、電源供給線105DSL や映像信号線106HS(あるいはカソード配線Wcath)についても言えることであり、配線容量や配線抵抗の分布特性が、閾値補正や移動度補正の動作に影響を与えることがある。
これらの点を考慮して、各配線は、一般的に、低抵抗にするべく、アルミニウムAlやモリブデンMoなどによる光透過性を有しない金属配線を使用して配線される。前述のように、縦配線と横配線が必要であるから、基本的には、縦配線と横配線の交差部でのオーバーラップのために、最低でも2層の金属配線が必要になる。
たとえば、図8(A)に示す第1比較例では、サンプリングトランジスタ125のゲート端を駆動するための書込走査線104WSと、駆動トランジスタ121のドレイン端の電源電圧を第1電位Vccと第2電位Vssとでスイッチングさせるための電源供給線105DSL とを上層側および下層側の一方(ここでは上層側とする)の金属配線にしている。
また、サンプリングトランジスタ125のソース端に映像信号Vsig を供給するための映像信号線106HSに関しては、画素回路P部分では上層側および下層側の一方(ここでは上層側とする)の金属配線にしているのに対して、同層の(上層側の金属配線である)書込走査線104WSや電源供給線105DSL と交差する部分はオーバーラップさせる必要があるので、上層側および下層側の他方(ここでは下層側とする)の金属配線にしている。
また、図8(B)に示す第2比較例では、サンプリングトランジスタ125のゲート端を駆動するための書込走査線104WSと、駆動トランジスタ121のドレイン端の電源電圧を第1電位Vccと第2電位Vssとでスイッチングさせるための電源供給線105DSL とを上層側および下層側の一方(ここでは下層側とする)の金属配線にしている。
また、サンプリングトランジスタ125のソース端に映像信号Vsig を供給するための映像信号線106HSに関しては、全体を上層側および下層側の他方(ここでは上層側とする)の金属配線にしている。こうすることで、図8(A)に示す第1比較例のような下層側の金属配線とのブリッジ(異なる層の金属配線を繋ぐこと)を避けている。
図8(A)に示す第1比較例および図8(B)に示す第2比較例の何れにおいても、書込走査線104WSと電源供給線105DSL は同層の金属配線でレイアウトされており、1画素内では離して(画素回路Pの上端と下端にて)並走させたとしても、図8Aに示すように、隣接する画素回路Pとの関係においては同層(同じレイヤ)でごく近くを並走(隣接)することになる。また、前述のように、書込走査線104WSおよび電源供給線105DSL は、画素アレイ部102周辺(パネル端)の対応する書込走査部104、駆動走査部105までレイアウトされるため、非常に長い。したがって、配線間スペースが狭いと、導電性を有するダストなどの異物によって同層の配線間が接続(ショート)する可能性が高くなり、歩留まり低下の原因となる。
そこで、本実施形態では、同層で並走する金属配線がダストなどによって接続(ショート)する可能性を低減することのできる仕組みを採る。以下、具体的に説明する。
<垂直配線と水平配線の改善手法:第1例>
図9は、本実施形態で採用する画素アレイ部102の垂直配線と水平配線の配線形態(レイアウト)の第1例を説明する図である。図9(A)は、1画素分の走査配線のレイアウトを示しており、図9(B)は、垂直方向に隣接する2行分の画素回路Pの走査配線のレイアウトを示している。
第1例のレイアウトは、1画素内の並走配線(同方向に並走する各走査線)が偶数の場合に、画素回路P内では、各並走配線の全体を上層配線と下層配線で交互にレイアウトすることで、隣接配線を異なる層の金属配線でレイアウトする点に特徴を有する。縦配線と交差する部分は、横配線に対しての交差配線である縦配線を上層配線と下層配線で繋ぐことでオーバーラップさせる。オーバーラップ部分は、上層配線と下層配線とが電気的に接触することがないように、絶縁層を挟んで積層するのは言うまでもない(以下同様である)。こうすることで、画素回路P内および画素回路P外の何れにおいても、隣接配線の全体を異なる層の金属配線でレイアウトすることができ、ダストなどによる配線間ショート数を軽減することができる。
具体的には、第1例のレイアウトにおいては特に1画素内の横配線が2本の場合で示している。駆動トランジスタ121のドレイン端の電源電圧を第1電位Vccと第2電位Vssとでスイッチングさせるための電源供給線105DSL と、サンプリングトランジスタ125のソース端に映像信号Vsig を供給するための映像信号線106HSの画素回路Pの内側(画素回路Pが配置される画素ピッチ内における縦方向の中央部を意味する:以下同様)を、それぞれ上層側および下層側の一方(ここでは上層側とする)の金属配線にしている。また、サンプリングトランジスタ125のゲート端を駆動するための書込走査線104WSを上層側および下層側の他方(ここでは下層側とする)の金属配線にしている。
映像信号線106HSは、同層の(上層側の金属配線である)電源供給線105DSL と交差する部分をオーバーラップさせる必要があるので下層側の金属配線にしている。加えて、映像信号線106HSの上層側の金属配線を隣接する次行の画素回路Pの境界まで延在させ、次行の同層の(上層側の金属配線である)電源供給線105DSL と交差する部分でオーバーラップさせるようにしている。
図9(A)に示すように、1画素内では書込走査線104WSと電源供給線105DSL を離して(画素回路Pの上端と下端にて)並走させている。このとき、図9(B)に示すように、隣接する画素回路Pとの関係においては、異なる層でごく近くを並走(隣接)することになる。
このように、ごく近くを並走(隣接)することになる横方向の金属配線を異なる配線層にレイアウトすれば、上層側で導電性を有するダストなどの異物があっても上層レイヤと下層レイヤは接続(ショート)されることはないため、隣接配線間のショート対策を実現でき、高い歩留まりが実現できる。ダストなどによる隣接配線間の同層ショートが起こり難いレイアウトにでき、高歩留まりが実現可能となる。
画素回路P内および隣接する2つの画素回路Pの間において、隣接配線を異なる層の金属配線でレイアウトすることで、導電性を有する異物による配線間ショート数を軽減することができ、高歩留まりが実現できるのである。
また、図8(A)に示す第1比較例との対比においては、縦配線である映像信号線106HSと横配線との下層側の金属配線とのブリッジ(異なる層の金属配線を繋ぐこと)間の距離を少なくできるので、映像信号線106HSの負荷を軽減することができる。
<垂直配線と水平配線の改善手法:第2例>
図9Aは、本実施形態で採用する画素アレイ部102の垂直配線と水平配線の配線形態(レイアウト)の第2例を説明する図であり、垂直方向に隣接する2行分の画素回路Pの走査配線のレイアウトを示している。
第2例のレイアウトは、第1例のレイアウト手法を採用しつつ、ある行の最下端の上層側および下層側の一方の配線と、次行の最上端の上層側および下層側の他方の配線とを積層させることで、垂直方向の画素ピッチの狭小化を図るようにした点に特徴を有する。積層部分はオーバーラップ部分と同様に、上層配線と下層配線とが電気的に接触することがないように、絶縁層を挟んで積層するのは言うまでもない。
図示した例では、図9に示したレイアウトをベースとして、ある行の下層側の書込走査線104WSと、次行の上層側の電源供給線105DSL とを積層させることで、垂直方向の画素ピッチの狭小化を図る。
ここで、書込走査線104WSと映像信号線106HSとが交差する部分については、電源供給線105DSL と映像信号線106HSとを交差させる下層側の金属配線を避けるように、書込走査線104WS用の下層側の金属配線を自列の画素回路P側に迂回させて映像信号線106HSとオーバーラップさせる。
第1例のレイアウトでは、各行の画素幅が画素ピッチと一致するのに対して、第2例のレイアウトでは、各行(図ではN行目とN+1行目)の画素幅が画素ピットと一致せず、N行目の下層側の書込走査線104WSとN+1行目の上層側の電源供給線105DSL とを積層させたことで、垂直方向の画素ピッチを画素の積層分の1/2だけ狭くすることができる。
このような垂直方向の画素ピッチの狭小化を図るようにした第2例のレイアウトであっても、ごく近くを並走(隣接)することになる横方向の金属配線を異なる配線層にレイアウトしているので、横方向の金属配線同士に関しては、上層側で導電性の異物があっても上層レイヤと下層レイヤは接続(ショート)されることはないため、高い歩留まりが実現できる。すなわち、縦配線である映像信号線106HSと横配線である書込走査線104WSのオーバーラップする部分以外は、隣接配線は異なる層の金属配線であるので、隣接配線間のショート対策の効果はある。
加えて、第1例と同様に、図8(A)に示す第1比較例との対比においては、縦配線である映像信号線106HSと横配線との下層側の金属配線とのブリッジ間距離を短くできるので、映像信号線106HSの負荷を軽減することができる。
<垂直配線と水平配線の改善手法:第3例>
図9Bは、本実施形態で採用する画素アレイ部102の垂直配線と水平配線の配線形態(レイアウト)の第3例を説明する図である。図9B(A)は、1画素分の走査配線のレイアウトを示しており、図9B(B)は、垂直方向に隣接する2行分の画素回路Pの走査配線のレイアウトを示している。
第3例のレイアウトは、1画素内の並走配線(同方向に並走する各走査線)が奇数の場合に、その内の1本の走査線を画素回路Pが配置される画素ピッチ内の一方の最端部において上層配線と下層配線の何れか一方に形成し、他の1本の走査線を画素回路Pが配置される画素ピッチ内の他方(一方に対しての反対側)の最端部において上層配線と下層配線の他方に形成する点に特徴を有する。残りの内の偶数分は、好ましくは、第1例のレイアウトを適用して上層配線と下層配線を交互にレイアウトする。それでも残る最後の1本を上層側および下層側の何れか一方にレイアウトする。
つまり、画素回路Pの内側では、上層配線と下層配線の何れかを両側の最端部にレイアウトし、残りの内の偶数分は第1例のレイアウトを適用して上層配線と下層配線を交互にレイアウトし、最後の1本を上層側および下層側の何れか一方にレイアウトすることで、画素間の隣接配線の全体を異なる層の金属配線でレイアウトする。もちろん、縦配線と交差する部分は、横配線に対しての交差配線である縦配線を上層配線と下層配線で繋ぐことでオーバーラップさせる。こうすることで、少なくとも隣接する2つの画素回路Pの間においては、隣接配線の全体を異なる層の金属配線でレイアウトすることができ、ダストなどによる配線間ショート数を軽減することができる。
具体的には、第3例のレイアウトは、カソード配線Wcathを横方向の走査線として取り扱い、このカソード配線Wcathを画素回路P内で横方向の走査線である書込走査線104WSと近接して並走させるようにした例である。図示のように、駆動トランジスタ121のドレイン端の電源電圧を第1電位Vccと第2電位Vssとでスイッチングさせるための電源供給線105DSL と、サンプリングトランジスタ125のゲート端を駆動するための書込走査線104WSと、サンプリングトランジスタ125のソース端に映像信号Vsig を供給するための映像信号線106HSの画素回路P部分およびカソード配線Wcathと交差する部分を、それぞれ上層側および下層側の一方(ここでは上層側とする)の金属配線にしている。また、有機EL素子127のカソード配線Wcathを上層側および下層側の他方(ここでは下層側とする)の金属配線にしている。
映像信号線106HSは、同層の(上層側の金属配線である)電源供給線105DSL や書込走査線104WSと交差する部分をオーバーラップさせる必要があるので下層側の金属配線にしている。加えて、カソード配線Wcathと交差する映像信号線106HSの上層側の金属配線を隣接する次行の画素回路Pまで延在させ、次行の同層の(上層側の金属配線である)電源供給線105DSL と交差する部分でオーバーラップさせるようにしている。
図9B(A)に示すように、1画素内では電源供給線105DSL を上端にレイアウトし書込走査線104WSおよびカソード配線Wcathを下端にレイアウトすることで、電源供給線105DSL と書込走査線104WSおよびカソード配線Wcathを離して並走させている。このとき、カソード配線Wcathと書込走査線104WSは、異なる層でごく近くを並走(隣接)することになる。
また、図9B(B)に示すように、隣接する画素回路Pとの関係においては、前行のカソード配線Wcathと次行の電源供給線105DSL とは、異なる層でごく近くを並走(隣接)することになる。
このように、ごく近くを並走(隣接)することになる横方向の金属配線を異なる配線層にレイアウトすれば、上層レイヤである上層側でダストなどがあっても上層レイヤと下層レイヤは接続(ショート)されることはないため、隣接配線間のショート対策を実現でき、高い歩留まりが実現できる。
画素回路P内でも隣接配線を異なる層の金属配線でできるだけレイアウトし、また隣接する2つの画素回路Pの間においても隣接配線を異なる層の金属配線でレイアウトすることで、ダストなどによる配線間ショート数を軽減することができ、高歩留まりが実現できるのである。
加えて、画素の境界では同層配線間を広くできるので、つまり、画素の境界(カソード配線Wcathも)を挟んで同層でレイアウトすることになる前行の書込走査線104WSと次行の電源供給線105DSL の関係においては、その配線間隔を大きくすることができるので、導電性を有する異物の径がその大きな配線間隔以上でなければ接続(ショート)されることはないため、高い歩留まりが実現できる。
詳細説明は割愛するが、この第3例のレイアウトを採用しつつ、第2例のレイアウト手法と同様に、ある行の下層側のカソード配線Wcathと、次行の上層側の電源供給線105DSL とを積層させることで、垂直方向の画素ピッチの狭小化を図ることもできる。
<垂直配線と水平配線の改善手法:第4例>
図9Cは、本実施形態で採用する画素アレイ部102の垂直配線と水平配線の配線形態(レイアウト)の第4例を説明する図である。図9C(A)は、1画素分の走査配線のレイアウトを示しており、図9C(B)は、垂直方向に隣接する2行分の画素回路Pの走査配線のレイアウトを示している。
第4例のレイアウトは、隣接配線のそれぞれについて全体を異なる配線層にレイアウトするのではなく、何れかの配線については、一部分を隣接配線と同層にレイアウトする点に特徴を有する。縦配線と交差する部分は、縦配線を上層配線と下層配線で繋ぐことでオーバーラップさせる。こうすることで、一部分を隣接配線と同層にした所では、隣接配線間のショートが起こる可能性が生じるものの、縦配線による横配線とのブリッジ(異なる層の金属配線を繋ぐこと)の回数を少なくでき、縦配線の負荷を軽減することができる。もちろん、一部分を隣接配線と同層にした所以外では、隣接配線は異なる配線層にレイアウトされるので隣接配線間のショート対策の効果が得られる。
図示する例は、図9Bに示した第3例のレイアウト手法をベースとして、カソード配線Wcathに関して第4例の手法を適用したものである。図示のように、駆動トランジスタ121のドレイン端の電源電圧を第1電位Vccと第2電位Vssとでスイッチングさせるための電源供給線105DSL と、サンプリングトランジスタ125のゲート端を駆動するための書込走査線104WSと、サンプリングトランジスタ125のソース端に映像信号Vsig を供給するための映像信号線106HSの画素回路Pの内側を、それぞれ上層側および下層側の一方(ここでは上層側とする)の金属配線にしている。
有機EL素子127のカソード配線Wcathは、映像信号線106HSと交差する部分は上層側および下層側の一方(ここでは上層側とする)の金属配線にし、映像信号線106HSと交差する部分以外は上層側および下層側の他方(ここでは下層側とする)の金属配線にしている。
映像信号線106HSは、同層の(上層側の金属配線である)電源供給線105DSL や書込走査線104WSやカソード配線Wcathと交差する部分をオーバーラップさせる必要があるので下層側の金属配線にしている。加えて、書込走査線104WSやカソード配線Wcathと交差する映像信号線106HSの下層側の金属配線を隣接する次行の画素回路Pまで延在させ、次行の同層の(上層側の金属配線である)電源供給線105DSL と同層としている。
図9C(A)に示すように、1画素内では電源供給線105DSL を上端にレイアウトし書込走査線104WSおよびカソード配線Wcathを下端にレイアウトすることで、電源供給線105DSL と書込走査線104WSおよびカソード配線Wcathを離して並走させている。このとき、カソード配線Wcathと書込走査線104WSは、映像信号線106HSと交差する部分以外では異なる層でごく近くを並走(隣接)することになる。隣接する書込走査線104WSとカソード配線Wcathとは全体が異なる層の配線ではなく、映像信号線106HSとオーバーラップする部分は同層の配線となっている。
また、図9C(B)に示すように、隣接する画素回路Pとの関係においては、前行のカソード配線Wcathと次行の電源供給線105DSL とは、映像信号線106HSと交差する部分以外では異なる層でごく近くを並走(隣接)することになる。隣接する前行のカソード配線Wcathと次号の電源供給線105DSL は全体が異なる層の配線ではなく、映像信号線106HSとオーバーラップする部分は同層の配線となっている。
このように、第4例のレイアウトでは、カソード配線Wcathと映像信号線106HSとが交差する部分以外では、第3例のレイアウト手法と同様のレイアウトであるから、第3例のレイアウト手法と同様の効果を享受できる。すなわち、映像信号線106HSとカソード配線Wcathとがオーバーラップする部分以外については、近接する隣接配線は異なる配線層にレイアウトされるので隣接配線間のショート対策の効果はある。
加えて、横配線であるカソード配線Wcathと、横配線に対しての交差配線である縦配線としての映像信号線106HSとが交差する部分では、それぞれが異なる配線層にレイアウトされるので、映像信号線106HSを上層配線と下層配線で繋ぐことでオーバーラップさせるという処理が不要になる。映像信号線106HSのブリッジの回数を少なくすることができるため、映像信号線106HSの負荷を軽減することができる。
近接する横方向の隣接配線は、映像信号線106HS(縦配線)とオーバーラップする部分のみ同じ層にレイアウトし、その他の部分は異なる配線層にレイアウトすることで、映像信号線106HSの負荷を小さくしつつ高歩留まりが実現可能となる。
以上、本発明について実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができ、そのような変更または改良を加えた形態も本発明の技術的範囲に含まれる。
また、上記の実施形態は、クレーム(請求項)に係る発明を限定するものではなく、また実施形態の中で説明されている特徴の組合せの全てが発明の解決手段に必須であるとは限らない。前述した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜の組合せにより種々の発明を抽出できる。実施形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出され得る。
<駆動タイミングの変形例>
駆動タイミングの側面では、電源供給線105DSL の電位が第2電位Vssから第1電位Vccに遷移するタイミングを映像信号Vsig の非有効期間であるオフセット電位Vofs の期間としつつ、様々な変形が可能である。
たとえば、第1の変形例として、図示を割愛するが、図6に示した駆動タイミングに対して、サンプリング期間&移動度補正期間Kの設定方法を変形することができる。具体的には、先ず映像信号Vsig がオフセット電位Vofs から信号電位(Vofs +Vin)に遷移するタイミングt15Vを図6に示した駆動タイミングよりも1水平期間の後半側にシフトさせて、信号電位(Vofs +Vin)の期間を狭くする。
また、閾値補正動作の完了時(閾値補正期間Iの完了時)には、先ず、書込駆動パルスWSをアクティブHにしたままで、水平駆動部106により映像信号線106HSに信号電位(Vofs +Vin)を供給して(t15)、書込駆動パルスWSをインアクティブLにするまで(t17)の間を、保持容量120への信号振幅Vinの情報の書き込み期間とする。この信号振幅Vinの情報は駆動トランジスタ121の閾値電圧Vthに足し込む形で保持される。この結果、駆動トランジスタ121の閾値電圧Vthの変動は常にキャンセルされる形となるので、閾値補正を行なっていることになる。この閾値補正動作によって、保持容量120に保持されるゲート・ソース間電圧Vgsは“(1−g)Vin+Vth”となる。また、同時に、信号書込期間t15〜t17で移動度補正を実行する。すなわち、タイミングt15〜t17は、信号書込期間と移動度補正期間の双方を兼ねることとなる。
なお、この移動度補正を実行する期間t15〜t17では、有機EL素子127は実際には逆バイアス状態にあるので発光することはない。この移動度補正期間t15〜t17では、駆動トランジスタ121のゲート端Gが映像信号Vsig のレベルに固定された状態で、駆動トランジスタ121に駆動電流Idsが流れる。以下、図6に示した駆動タイミングと同様である。
各駆動部(104,105,106)は、水平駆動部106が映像信号線106HSに供給する映像信号Vsig と書込走査部104が供給する書込駆動パルスWSとの相対的な位相差を調整して、移動度補正期間を最適化することができる。
ただし、書込み&移動度補正準備期間Jが存在せずに、タイミングt15V3〜t17がサンプリング期間&移動度補正期間Kとなる。このため、書込走査線104WSや映像信号線106HSの配線抵抗や配線容量の距離依存の影響に起因する波形特性の相違がサンプリング期間&移動度補正期間Kに影響を与えてしまう可能性がある。画面の書込走査部104に近い側と遠い側(すなわち画面の左右)でサンプリング電位や移動度補正時間が異なることになるので、画面の左右で輝度差が生じ、シェーディングとして視認される難点が懸念される。
また、第2の変形例として、電源供給のオフタイミング(第2電位Vss側への遷移タイミング)に変更を加えることもできる。具体的には、当該行のオフタイミングとオンタイミングの双方を同じ水平期間にすることができる。
この第2の変形例の駆動タイミングでは、ともに映像信号Vsig のオフセット電位Vofs の期間に電源スイッチング動作をさせており、またこのときにはサンプリングトランジスタ125をオンさせて駆動トランジスタ121のゲート端Gをオフセット電位Vofs に固定してローインピーダンス化しており電源パルス(電源駆動パルスDSL )に起因するカップリングノイズに対する耐性が向上する。
<画素回路の変形例>
画素回路の側面では、駆動電流を一定に維持する駆動信号一定化回路の一例であるブートストラップ回路や閾値&移動度補正回路の構成例として、駆動トランジスタ121としてnチャネル型を用いた2TR構成としつつ駆動タイミングを工夫する例を示したが、これは有機EL素子127を駆動するための駆動信号を一定に維持する駆動信号一定化回路および駆動タイミングの一例に過ぎず、有機EL素子127の経時劣化やnチャネル型の駆動トランジスタ121の特性変動(たとえば閾値電圧や移動度などのばらつきや変動)による駆動電流Idsに与える影響を防ぐための駆動信号一定化回路としては、その他の様々な回路を適用することができる。
たとえば、回路理論上は「双対の理」が成立するので、画素回路Pに対しては、この観点からの変形を加えることができる。この場合、図示を割愛するが、先ず、図5に示した2TR構成の画素回路Pがnチャネル型の駆動トランジスタ121を用いて構成しているのに対し、pチャネル型の駆動トランジスタ(以下p型駆動トランジスタ121pと称する)を用いて画素回路Pを構成する。これに合わせて、映像信号Vsig の信号振幅Vin(信号電位(Vofs +Vin))の極性や電源電圧の大小関係を逆転させるなど、双対の理に従った変更を加える。
なお、ここで説明した変形例は、図5に示した2TR構成に対して「双対の理」に従った変更を加えたものであるが、回路変更の手法はこれに限定されるものではなく、サンプリングトランジスタ(スイッチングトランジスタの一例)および駆動トランジスタ以外に、駆動電流を一定に維持する制御を行なうための他のスイッチングトランジスタが設けられた、2TR構成以外であってもよい。ただし、高精細の表示が求められる小型の表示装置を実現する点では、2TR構成にて駆動信号一定化機能を実現するのが最適である。
ここで、各種の変形例においても、近接した隣接配線をできるだけ異なる配線層にレイアウトする本実施形態の仕組みを適用することで、導電性を有する異物による配線間ショートを軽減することができる。
この際、画素回路P内にて縦方向もしくは横方向に並走する配線数が、偶数の場合には第1例(あるいはその変形例である第2例)のレイアウト手法を適用し、奇数の場合には第3例(あるいはその変形例である第2例)のレイアウト手法を適用すればよい。また、何れについても、第4例のレイアウト手法を適用することもできる。
1…有機EL表示装置、100…表示パネル部、101…基板、102…画素アレイ部、103…垂直駆動部、104…書込走査部、105…駆動走査部、106…水平駆動部、109…制御部、120…保持容量、121…駆動トランジスタ、122…発光制御トランジスタ、125…サンプリングトランジスタ、127…有機EL素子(電気光学素子の一例)、200…駆動信号生成部、300…映像信号処理部、Cel…寄生容量、P…画素回路