[go: up one dir, main page]

JP2009104974A - Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same - Google Patents

Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same Download PDF

Info

Publication number
JP2009104974A
JP2009104974A JP2007277321A JP2007277321A JP2009104974A JP 2009104974 A JP2009104974 A JP 2009104974A JP 2007277321 A JP2007277321 A JP 2007277321A JP 2007277321 A JP2007277321 A JP 2007277321A JP 2009104974 A JP2009104974 A JP 2009104974A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007277321A
Other languages
Japanese (ja)
Inventor
Junichi Sugaya
純一 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007277321A priority Critical patent/JP2009104974A/en
Publication of JP2009104974A publication Critical patent/JP2009104974A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode active material having a large charge and discharge capacity and superior thermal stability of particles, and excellent mass-producibility, and a nonaqueous secondary battery. <P>SOLUTION: The cathode active material for the nonaqueous secondary battery is composed of a compound oxide of lithium, sodium, and nickel, and has an electron structure in which, when measured by using an X band and at temperatures 200-300 K, a primary differential absorption spectrum of electron spin resonance is observed, and the relations of the line width (ΔH<SB>pp</SB>) between the peaks and the measurement temperature (T), that is, dΔHpp/dT is less than 0.5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水系二次電池用正極活物質およびその製造方法ならびにそれを用いた非水系二次電池に関し、特に好適なリチウムとナトリウムとニッケルとの複合酸化物に関する。   The present invention relates to a positive electrode active material for a non-aqueous secondary battery, a method for producing the same, and a non-aqueous secondary battery using the same, and particularly relates to a suitable composite oxide of lithium, sodium, and nickel.

近年、電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として、小型かつ軽量で、高エネルギー密度を有する二次電池への要望も高まっている。また、小型民生用途のみならず、電力貯蔵用や電気自動車といった長期に渡る耐久性や安全性が要求される大型の二次電池に対する技術展開も加速してきている。   In recent years, electronic devices have become increasingly portable and cordless, and there is an increasing demand for secondary batteries that are small and lightweight and have a high energy density as power sources for driving these devices. In addition to small-sized consumer applications, technological developments for large-sized secondary batteries that require long-term durability and safety, such as power storage and electric vehicles, are also accelerating.

このような観点から、非水系二次電池、特に、リチウム二次電池が、高電圧であり、かつ高エネルギー密度を有するため、電子機器用、または電力貯蔵用、電気自動車の電源として期待されている。   From this point of view, non-aqueous secondary batteries, in particular lithium secondary batteries, are expected to be used as power sources for electronic devices, for power storage, and for electric vehicles because they have high voltage and high energy density. Yes.

非水系二次電池は、正極、負極およびそれらの間に介在するセパレータを具備し、セパレータには、主としてポリオレフィン製の微多孔膜が用いられている。非水電解質には、LiBF4、LiPF6等のリチウム塩を非プロトン性の有機溶媒に溶解した液状非水電解質(非水電解液)が用いられている。また正極活物質としては、リチウムに対する電位が高く、安全性に優れ、比較的合成が容易であるリチウムコバルト酸化物(例えばLiCoO2)を用い、負極活物質としては、黒鉛などの種々の炭素材料を用いた非水系二次電池が実用化されている。 A non-aqueous secondary battery includes a positive electrode, a negative electrode, and a separator interposed therebetween, and a polyolefin microporous film is mainly used as the separator. As the non-aqueous electrolyte, a liquid non-aqueous electrolyte (non-aqueous electrolyte) in which a lithium salt such as LiBF 4 or LiPF 6 is dissolved in an aprotic organic solvent is used. Further, as the positive electrode active material, lithium cobalt oxide (for example, LiCoO 2 ), which has a high potential with respect to lithium, is excellent in safety, and is relatively easy to synthesize, is used. As the negative electrode active material, various carbon materials such as graphite are used. A non-aqueous secondary battery using a battery has been put into practical use.

そのような中、リチウムコバルト酸化物よりさらなる高容量化を目指す観点から、リチウムニッケル酸化物(例えばLiNiO2)を実用化する試みも盛んである。しかしながら、リチウムニッケル酸化物は高容量を有するものの、結晶の安定性が低く、サイクル特性や熱安定性に課題を有している。そこで以下のような提案がなされている。 Under such circumstances, attempts to put lithium nickel oxide (for example, LiNiO 2 ) into practical use are also active from the viewpoint of further increasing the capacity compared to lithium cobalt oxide. However, although lithium nickel oxide has a high capacity, it has low crystal stability and has problems in cycle characteristics and thermal stability. Therefore, the following proposals have been made.

例えばサイクル特性を改良する目的で、活物質の粒子構造を適正化する方法が提案されている(例えば特許文献1参照)。   For example, for the purpose of improving cycle characteristics, a method for optimizing the particle structure of the active material has been proposed (see, for example, Patent Document 1).

この提案によれば、正極活物質の一次粒子径が大きくなるという理由でサイクル特性を向上することができると述べられている。   According to this proposal, it is stated that the cycle characteristics can be improved because the primary particle diameter of the positive electrode active material is increased.

また、高容量のリチウムニッケル複合酸化物を得るために、活物質の熱処理条件を適正化する方法が提案されている(例えば非特許文献1参照)。   Moreover, in order to obtain a high capacity lithium nickel composite oxide, a method of optimizing the heat treatment conditions of the active material has been proposed (see, for example, Non-Patent Document 1).

この提案によれば、リチウム層にあるリチウムと2価のニッケルとの交換反応(ディスオーダー)を抑制することで、高容量のリチウムニッケル複合酸化物が得られると述べられている。   According to this proposal, it is stated that a high-capacity lithium-nickel composite oxide can be obtained by suppressing the exchange reaction (disorder) between lithium and divalent nickel in the lithium layer.

さらに、リチウムニッケル複合酸化物にナトリウムを添加して、ディスオーダーの少ない活物質の合成方法が提案されている(例えば非特許文献2参照)。   Furthermore, a method for synthesizing an active material with less disorder by adding sodium to a lithium nickel composite oxide has been proposed (see, for example, Non-Patent Document 2).

この提案によれば、ナトリウムを0.85程度添加することで、ディスオーダーの少ない活物質を合成することができると述べられている。
特開2001−85006号公報 エイチ、アライ(H.Arai)他3名、 「過剰リチウム法により製造されたLi1-xNi1+xO2の解析とカソード特性(Characterization and cathode perfomance of Li1-xNi1+xO2 prepared with the excess lithium method)」、ソリッド ステイト イオニクス(Solid State Ionics)、イギリス、エルセヴィア サイエンス ビー、ブイ(Elsevier Science B.V.)、1995年、第80巻、p261−269 タダアキ マツムラ(Tadaaki Matsumura)他5名、 「Li1-xNa1+xNiO2の合成、構造および物理特性(Synthesis, structure and physical properties of Li1-xNa1+xNiO2)」、ソリッド ステイト イオニクス(Solid State Ionics)、イギリス、エルセヴィア サイエンス ビー、ブイ(Elsevier Science B.V.)、2002年、第152−153巻、p303−309 シー ジュリアン(C. Julien)他2名 「LiM1-yM’yO2(M=Ni,Co,;M’=Mg,Al,B)の電気化学特性(Electrichemical performances of LiM1-yM’yO2(M=Ni,Co,;M’=Mg,Al,B))」、ソリッド ステイト イオニクス(Solid State Ionics)、イギリス、エルセヴィア サイエンス ビー、ブイ(Elsevier Science B.V.)、2000年、第135巻、p121−130
According to this proposal, it is stated that an active material with less disorder can be synthesized by adding about 0.85 sodium.
JP 2001-85006 A H. Arai et al., “Characterization and cathode of performance of Li1-xNi1 + xO2 prepared with the ex- Solid State Ionics, UK, Elsevier Science BV, 1995, 80, p261-269 Tadaaki Matsumura and 5 others, “Synthesis, structure and physical properties of Li1-xNa1 + xNiO2”, Solid State Io (Sonic UK) Elsevier Science Bee, Elsevier Science BV, 2002, 152-153, p303-309 C. Julien et al., “LiM1-yM′yO2 (M = Ni, Co, M ′ = Mg, Al, B) Electrochemical properties of LiM1-yM′yO2 (M = Ni , Co,; M ′ = Mg, Al, B)) ”, Solid State Ionics, UK, Elsevier Science BV, 2000, Vol. 135, p121- 130

しかしながら、特許文献1に提案されているような技術を用いても、900℃の温度下で熱処理をしており、充放電容量が少ないという課題を有していた。   However, even if the technique proposed in Patent Document 1 is used, heat treatment is performed at a temperature of 900 ° C., and there is a problem that the charge / discharge capacity is small.

また、非特許文献1に提案されているような技術を用いても、700℃の温度下で熱処理をしているおり、一次粒子径が小さく、充電状態の正極活物質の熱安定性に課題を有していた。   Moreover, even if the technique proposed in Non-Patent Document 1 is used, heat treatment is performed at a temperature of 700 ° C., the primary particle size is small, and there is a problem with the thermal stability of the positive electrode active material in a charged state. Had.

さらに、非特許文献2に提案されているような技術を用いても、Li0.15Na0.85NiO2は大気中の水分などの影響を受けやすく、アルゴン雰囲気中で扱わなくてはいけなかった。つまり、合成した活物質を用いて、非水系二次電池を組み立てるには、大量のアルゴンガスを使用しなければならず、コストが掛かってしまうという課題を有していた。 Furthermore, even when the technique proposed in Non-Patent Document 2 is used, Li 0.15 Na 0.85 NiO 2 is easily affected by moisture in the atmosphere and must be handled in an argon atmosphere. That is, in order to assemble a non-aqueous secondary battery using the synthesized active material, a large amount of argon gas has to be used, which has a problem of increasing costs.

そこで本発明は、上記従来の課題を解決し、充放電容量が大きくかつ粒子の熱安定性、量産性に優れる正極活物質およびその製造方法、さらにその正極活物質を用いた非水系二次電池を提供することを目的とする。   Therefore, the present invention solves the above-mentioned conventional problems, a positive electrode active material having a large charge / discharge capacity and excellent particle thermal stability and mass productivity, a method for producing the same, and a non-aqueous secondary battery using the positive electrode active material The purpose is to provide.

従来の課題を解決するために、本発明はリチウムとナトリウムとニッケルの複合酸化物からなる非水系二次電池用正極活物質において、Xバンドを使用し、温度200〜300Kで電子スピン共鳴を測定したとき、電子スピン共鳴の一次微分吸収スペクトルが観測され、かつそのピーク間の線幅(ΔHpp)と測定温度(T)の関係であるdΔHpp/dTが0.5未満である電子構造を有することを特徴とした非水系二次電池用正極活物質というものである。 In order to solve the conventional problems, the present invention measures an electron spin resonance at a temperature of 200 to 300 K using an X band in a positive electrode active material for a non-aqueous secondary battery made of a composite oxide of lithium, sodium and nickel. The first-order absorption spectrum of electron spin resonance is observed, and the electronic structure in which dΔH pp / dT, which is the relationship between the line width (ΔH pp ) between the peaks and the measurement temperature (T), is less than 0.5 is obtained. This is a positive electrode active material for a non-aqueous secondary battery.

ここで、Xバンドとは、マイクロ波の一種で、周波数9.4GHz,波長3cm程度の電磁波である。   Here, the X band is a kind of microwave and is an electromagnetic wave having a frequency of 9.4 GHz and a wavelength of about 3 cm.

本発明の正極活物質を用いることによって、充放電容量の大きいリチウム二次電池の作製が可能となる。また、水分に対しても強くなるためアルゴンガスでなく、ドライ空気雰囲気内で扱うことができる。   By using the positive electrode active material of the present invention, a lithium secondary battery having a large charge / discharge capacity can be produced. Moreover, since it becomes strong against moisture, it can be handled in an atmosphere of dry air instead of argon gas.

本発明によると充放電容量が大きくかつ粒子の熱安定性、量産性に優れる正極活物質および非水系二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material and non-aqueous secondary battery which are large in charging / discharging capacity | capacitance and excellent in the thermal stability and mass productivity of particle | grains can be provided.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明は上記のように、Xバンドを使用し、温度200〜300Kで測定したとき、電子スピン共鳴の一次微分吸収スペクトルが観測され、かつそのピーク間の線幅(ΔHpp)と測定温度(T)の関係であるdΔHpp/dTが0.5以下である電子構造を有することを特徴としたリチウムニッケル複合酸化物を用いると、充放電容量の大きなリチウム二次電池が得られることを見出したものである。この理由は以下のように考えられる。 In the present invention, as described above, when the X band is used and measurement is performed at a temperature of 200 to 300 K, a first-order differential absorption spectrum of electron spin resonance is observed, and the line width (ΔH pp ) between the peaks and the measurement temperature ( It was found that a lithium secondary battery having a large charge / discharge capacity can be obtained by using a lithium nickel composite oxide characterized by having an electronic structure in which dΔH pp / dT, which is a relationship of T), is 0.5 or less. It is a thing. The reason is considered as follows.

リチウムニッケル複合酸化物の電子スピン共鳴測定において、室温以下の常磁性領域では、2価のニッケルによる磁気双極子作用の影響を受けて、冷却と共にピーク間の線幅が狭まる。つまり、リチウムニッケル複合酸化物の電子共鳴スペクトルのピーク間の線幅(ΔHpp)と測定温度(T)の関係であるdΔHpp/dTの値が小さいほど、リチウムニッケル複合酸化物に含まれる2価のニッケルの量が少ないことを示している。 In electron spin resonance measurement of lithium nickel composite oxide, in the paramagnetic region below room temperature, the line width between peaks narrows with cooling due to the influence of the magnetic dipole action of divalent nickel. In other words, the smaller the value of dΔH pp / dT, which is the relationship between the line width (ΔH pp ) between the peaks of the electron resonance spectrum of the lithium nickel composite oxide and the measurement temperature (T), is included in the lithium nickel composite oxide. This indicates that the amount of valent nickel is small.

2価のニッケルはリチウム層のリチウムとディスオーダーを起こし、リチウムイオンの電気化学的な反応を阻害する。そのため、充放電容量が大きく低下してしまうので、dΔHpp/dTの値が0.5より大きい値であることは好ましくない。 Divalent nickel causes a disorder with lithium in the lithium layer and inhibits the electrochemical reaction of lithium ions. For this reason, since the charge / discharge capacity is greatly reduced, it is not preferable that the value of dΔH pp / dT is larger than 0.5.

また、本発明の非水系二次電池用正極活物質の製造方法において、前駆体酸化物とリチウム化合物と過酸化ナトリウムとを混合して熱処理する工程を含む非水系二次電池用正極活物質の製造方法正極活物質を用いると、単相のリチウムニッケル複合酸化物が得られる点で好ましい。   Further, in the method for producing a positive electrode active material for a non-aqueous secondary battery according to the present invention, a positive electrode active material for a non-aqueous secondary battery comprising a step of mixing and heat-treating a precursor oxide, a lithium compound and sodium peroxide. Manufacturing Method Use of a positive electrode active material is preferable in that a single-phase lithium nickel composite oxide can be obtained.

本発明では、過酸化ナトリウムが、いわゆる焼結促進剤として作用している。他のナトリウム化合物では、このような作用効果は小さい。   In the present invention, sodium peroxide acts as a so-called sintering accelerator. With other sodium compounds, such effects are small.

一般的な焼結促進剤であるホウ素などでは、単相のリチウムニッケル複合酸化物が得られないことが知られている(非特許文献3)。   It is known that a single-phase lithium-nickel composite oxide cannot be obtained with boron or the like, which is a general sintering accelerator (Non-patent Document 3).

リチウムニッケル複合酸化物の一次粒子径は1μm以上であることが好ましい。一次粒子径が1μm以下になると、比表面積が大きくなり、充電時における正極活物質の熱安定性が低下するため好ましくない。また、4μm以上の一次粒子は、合成が困難であり、例え合成できたとしても電子スピン共鳴の結果が、0.5以上になりやすい。   The primary particle diameter of the lithium nickel composite oxide is preferably 1 μm or more. When the primary particle diameter is 1 μm or less, the specific surface area is increased, and the thermal stability of the positive electrode active material during charging is undesirably reduced. Further, primary particles of 4 μm or more are difficult to synthesize, and even if synthesized, the result of electron spin resonance tends to be 0.5 or more.

本発明の非水系二次電池用正極活物質の組成がLi1-xNaxNi1-yMey2(0≦x≦0.05、0≦y≦0.34、MeはCo、Fe、Cu、Al、Mg、Ti、Zr、Ce、Yよりなる群から選ばれる少なくとも1種類の元素)であることが好ましい。リチウムサイト中のナトリウムは充放電機構に関与しないため、xの値が0.05を超えると充放電容量が低下するために好ましくない。 The composition of the positive electrode active material for a nonaqueous secondary battery of the present invention is Li 1-x Na x Ni 1 -y Me y O 2 (0 ≦ x ≦ 0.05,0 ≦ y ≦ 0.34, Me is Co, Preferably, it is at least one element selected from the group consisting of Fe, Cu, Al, Mg, Ti, Zr, Ce, and Y). Since sodium in the lithium site does not participate in the charge / discharge mechanism, if the value of x exceeds 0.05, the charge / discharge capacity decreases, which is not preferable.

正極活物質の製造方法として、過酸化ナトリウムのナトリウム(Na)の添加量は、同
時に混合するリチウム化合物のリチウム(Li)に対しモル比で0<Na/(Li+Na)≦0.05であることが好ましい。つまり関係式Li1-xNax(ただし、0<x≦0.05)を満たすことが好ましい。
As a manufacturing method of the positive electrode active material, the amount of sodium peroxide (Na) added is 0 <Na / (Li + Na) ≦ 0.05 in terms of molar ratio with respect to lithium (Li) of the lithium compound to be mixed at the same time. Is preferred. That is, it is preferable to satisfy the relational expression Li 1-x Na x (where 0 <x ≦ 0.05).

この理由は、上記の添加量において、合成された正極活物質を−40℃のドライ空気中で扱うことができるためである。また、ナトリウムの添加量を増加させることにより、正極活物質の一次粒子径が増大していくが、モル比が0.05を超えると活物質の充放電容量が低下するため、好ましくない。   This is because the synthesized positive electrode active material can be handled in dry air at −40 ° C. with the above addition amount. Moreover, the primary particle diameter of the positive electrode active material increases by increasing the amount of sodium added. However, if the molar ratio exceeds 0.05, the charge / discharge capacity of the active material decreases, which is not preferable.

リチウムニッケル複合酸化物の合成時の熱処理温度は700℃から800℃が好ましい。熱処理温度が700℃より低い場合は、一次粒子の焼結が起こりにくくなり、また、熱処理温度が800℃より高くなると、Li/Ni比が減少するとともに、Li/Niのディスオーダーも増加する。熱処理時間は、合成温度にもよるが、3〜30時間が好ましい。そして、上記の熱処理は、酸素雰囲気下で行うことが好ましい。   The heat treatment temperature during the synthesis of the lithium nickel composite oxide is preferably 700 ° C. to 800 ° C. When the heat treatment temperature is lower than 700 ° C., the primary particles are hardly sintered. When the heat treatment temperature is higher than 800 ° C., the Li / Ni ratio decreases and the Li / Ni disorder increases. The heat treatment time is preferably 3 to 30 hours, although it depends on the synthesis temperature. And it is preferable to perform said heat processing in oxygen atmosphere.

本発明の非水系二次電池は、正極活物質に特徴を有し、他の構成要素は特に制限されない。   The non-aqueous secondary battery of the present invention is characterized by the positive electrode active material, and other components are not particularly limited.

正極は、通常、正極集電体およびそれに担持された正極合剤からなる。正極合剤は、正極活物質の他に、結着剤、導電剤などを含むことができる。正極は、例えば、正極活物質と任意成分からなる正極合剤を液状成分と混合して正極合剤スラリーを調製し、得られたスラリーを正極集電体に塗布し、乾燥させて作製する。負極も、同様に、負極活物質と任意成分からなる負極合剤を液状成分と混合して負極合剤スラリーを調製し、得られたスラリーを負極集電体に塗布し、乾燥させて作製する。   The positive electrode is usually composed of a positive electrode current collector and a positive electrode mixture supported thereon. The positive electrode mixture can contain a binder, a conductive agent and the like in addition to the positive electrode active material. The positive electrode is produced, for example, by mixing a positive electrode mixture composed of a positive electrode active material and an optional component with a liquid component to prepare a positive electrode mixture slurry, applying the obtained slurry to a positive electrode current collector, and drying. Similarly, the negative electrode is prepared by mixing a negative electrode mixture composed of a negative electrode active material and an optional component with a liquid component to prepare a negative electrode mixture slurry, applying the obtained slurry to a negative electrode current collector, and drying the mixture. .

本発明の非水系二次電池の負極活物質としては、例えば、金属、金属繊維、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、各種合金材料等を用いることができる。炭素材料としては、例えば各種天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、各種人造黒鉛、非晶質炭素などの炭素材料が用いられる。また、珪素(Si)や錫(Sn)などの単体、または合金、化合物、固溶体などの珪素化合物や錫化合物が容量密度の大きい点から好ましい。例えば珪素化合物としては、SiOx(0.05<x<1.95)、またはこれらのいずれかにB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、Snからなる群から選択される少なくとも1つ以上の元素でSiの一部を置換した合金や化合物、または固溶体などを用いることができる。錫化合物としてはNi2Sn4、Mg2Sn、SnOx(0<x<2)、SnO2、SnSiO3などが適用できる。負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the negative electrode active material of the non-aqueous secondary battery of the present invention, for example, metals, metal fibers, carbon materials, oxides, nitrides, tin compounds, silicon compounds, various alloy materials, and the like can be used. Examples of the carbon material include carbon materials such as various natural graphites, cokes, graphitized carbon, carbon fibers, spherical carbon, various artificial graphites, and amorphous carbon. In addition, a simple substance such as silicon (Si) or tin (Sn), or a silicon compound or tin compound such as an alloy, a compound, or a solid solution is preferable from the viewpoint of a large capacity density. For example, as a silicon compound, SiO x (0.05 <x <1.95), or any of these may be B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, An alloy, a compound, a solid solution, or the like in which a part of Si is substituted with at least one element selected from the group consisting of Ta, V, W, Zn, C, N, and Sn can be used. As the tin compound, Ni 2 Sn 4 , Mg 2 Sn, SnO x (0 <x <2), SnO 2 , SnSiO 3 or the like can be applied. A negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.

正極または負極の結着剤には、例えばPVDF、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが使用可能である。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体を用いてもよい。またこれらのうちから選択された2種以上を混合して用いてもよ
い。また電極に含ませる導電剤には、例えば、天然黒鉛や人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維や金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、フェニレン誘導体などの有機導電性材料などが用いられる。
Examples of the positive electrode or negative electrode binder include PVDF, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, and polyethyl acrylate. Ester, Polyacrylic acid hexyl ester, Polymethacrylic acid, Polymethacrylic acid methyl ester, Polymethacrylic acid ethyl ester, Polymethacrylic acid hexyl ester, Polyvinyl acetate, Polyvinylpyrrolidone, Polyether, Polyethersulfone, Hexafluoropolypropylene, Styrene Butadiene rubber, carboxymethyl cellulose, etc. can be used. Two types selected from tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and hexadiene A copolymer of the above materials may be used. Two or more selected from these may be mixed and used. Examples of the conductive agent contained in the electrode include natural graphite and artificial graphite graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and other carbon blacks, carbon fibers and metal fibers. Conductive fibers such as carbon fluoride, metal powders such as aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, organic conductive materials such as phenylene derivatives, etc. Is used.

正極活物質、導電剤および結着剤の配合割合は、それぞれ、正極活物質80〜97重量%、導電剤1〜20重量%、結着剤1〜10重量%の範囲とすることが望ましい。
また 負極活物質および結着剤の配合割合は、それぞれ、負極活物質93〜99重量%、結着剤1〜10重量%の範囲とすることが望ましい。
The blending ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 97% by weight of the positive electrode active material, 1 to 20% by weight of the conductive agent, and 1 to 10% by weight of the binder.
In addition, the mixing ratio of the negative electrode active material and the binder is desirably 93 to 99% by weight of the negative electrode active material and 1 to 10% by weight of the binder, respectively.

集電体には、長尺の多孔性構造の導電性基板か、あるいは無孔の導電性基板が使用される。導電性基板に用いられる材料としては、正極集電体としては、例えばステンレス鋼、アルミニウム、チタンなどが用いられる。また、負極集電体としては、例えばステンレス鋼、ニッケル、銅などが用いられる。これら集電体の厚さは、特に限定されないが、1〜500μmが好ましく、5〜20μmがより望ましい。集電体の厚さを上記範囲とすることにより、極板の強度を保持しつつ軽量化することができる。   For the current collector, a long porous conductive substrate or a nonporous conductive substrate is used. As a material used for the conductive substrate, as the positive electrode current collector, for example, stainless steel, aluminum, titanium, or the like is used. As the negative electrode current collector, for example, stainless steel, nickel, copper, or the like is used. Although the thickness of these electrical power collectors is not specifically limited, 1-500 micrometers is preferable and 5-20 micrometers is more desirable. By setting the thickness of the current collector within the above range, it is possible to reduce the weight while maintaining the strength of the electrode plate.

正極と負極との間に介在するセパレータとしては、大きなイオン透過度を持ち、所定の機械的強度と、絶縁性とを兼ね備えた微多孔薄膜、織布、不織布などが用いられる。セパレータの材質としては、例えば、ポリプロピレン、ポリエチレンなどのポリオレフィンが耐久性に優れ、かつシャットダウン機能を有しているため、非水系二次電池の安全性の観点から好ましい。セパレータの厚さは、一般的に10〜300μmであるが、40μm以下とすることが望ましい。また、15〜30μmの範囲とするのがより好ましく、さらに好ましいセパレータ厚さの範囲は10〜25μmである。さらに微多孔フィルムは、1種の材料からなる単層膜であってもよく、1種または2種以上の材料からなる複合膜または多層膜であってもよい。また、セパレータの空孔率は、30〜70%の範囲であることが好ましい。ここで空孔率とは、セパレータ体積に占める孔部の体積比を示す。セパレータの空孔率のより好ましい範囲は、35〜60%である。   As the separator interposed between the positive electrode and the negative electrode, a microporous thin film, a woven fabric, a non-woven fabric, etc. having a large ion permeability and having a predetermined mechanical strength and an insulating property are used. As the material of the separator, for example, polyolefin such as polypropylene and polyethylene is preferable from the viewpoint of safety of the non-aqueous secondary battery because it has excellent durability and has a shutdown function. The thickness of the separator is generally 10 to 300 μm, but is desirably 40 μm or less. Moreover, it is more preferable to set it as the range of 15-30 micrometers, and the range of the more preferable separator thickness is 10-25 micrometers. Furthermore, the microporous film may be a single layer film made of one kind of material, or a composite film or a multilayer film made of one kind or two or more kinds of materials. Further, the porosity of the separator is preferably in the range of 30 to 70%. Here, the porosity indicates the volume ratio of the pores to the separator volume. A more preferable range of the porosity of the separator is 35 to 60%.

非水電解質としては、液状、ゲル状または固体(高分子固体電解質)状の物質を使用することができる。   As the non-aqueous electrolyte, a liquid, gel, or solid (polymer solid electrolyte) substance can be used.

液状非水電解質(非水電解液)は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより得られる。また、ゲル状非水電解質は、非水電解質と、この非水電解質が保持される高分子材料とを含むものである。この高分子材料としては、例えば、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド、ポリ塩化ビニル、ポリアクリレート、ポリビニリデンフルオライドヘキサフルオロプロピレン等が好適に使用される。   A liquid non-aqueous electrolyte (non-aqueous electrolyte) is obtained by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent. The gel-like non-aqueous electrolyte includes a non-aqueous electrolyte and a polymer material that holds the non-aqueous electrolyte. As this polymer material, for example, polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, polyvinylidene fluoride hexafluoropropylene and the like are preferably used.

電解質を溶解する非水溶媒としては、公知の非水溶媒を使用することが可能である。この非水溶媒の種類は特に限定されないが、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)などが挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the non-aqueous solvent for dissolving the electrolyte, a known non-aqueous solvent can be used. Although the kind of this non-aqueous solvent is not specifically limited, For example, cyclic carbonate ester, chain | strand-shaped carbonate ester, cyclic carboxylic acid ester etc. are used. Examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). Examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). A non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.

非水溶媒に溶解させる電解質には、例えばLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類などを用いることができる。ホウ酸塩類としては、ビス(1,2−ベンゼンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,3−ナフタレンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,2’−ビフェニルジオレート(2−)−O,O’)ホウ酸リチウム、ビス(5−フルオロ−2−オレート−1−ベンゼンスルホン酸−O,O’)ホウ酸リチウム等が挙げられる。イミド塩類としては、ビストリフルオロメタンスルホン酸イミドリチウム((CF3SO22NLi)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CF3SO2)(C49SO2))、ビスペンタフルオロエタンスルホン酸イミドリチウム((C25SO22NLi)等が挙げられる。電解質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the electrolyte dissolved in the non-aqueous solvent include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , and lower aliphatic carboxylic acid. Lithium acid, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts, and the like can be used. Examples of borates include lithium bis (1,2-benzenediolate (2-)-O, O ') and bis (2,3-naphthalenedioleate (2-)-O, O') boric acid. Lithium, bis (2,2′-biphenyldiolate (2-)-O, O ′) lithium borate, bis (5-fluoro-2-olate-1-benzenesulfonic acid-O, O ′) lithium borate Etc. Examples of the imide salts include lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate (LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) ), Lithium bispentafluoroethanesulfonate imide ((C 2 F 5 SO 2 ) 2 NLi), and the like. One electrolyte may be used alone, or two or more electrolytes may be used in combination.

また非水電解液には、添加剤として負極上で分解してリチウムイオン伝導性の高い被膜を形成し、充放電効率を高くすることができる材料を含んでいてもよい。このような機能を持つ添加剤としては、例えば、ビニレンカーボネート(VC)、4−メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4−エチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、4−プロピルビニレンカーボネート、4,5−ジプロピルビニレンカーボネート、4−フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、ビニレンカーボネート、ビニルエチレンカーボネート、およびジビニルエチレンカーボネートよりなる群から選ばれる少なくとも1種が好ましい。なお、上記化合物は、その水素原子の一部がフッ素原子で置換されていてもよい。電解質の非水溶媒に対する溶解量は、0.5〜2モル/Lの範囲内とすることが望ましい。   In addition, the non-aqueous electrolyte may contain a material that can be decomposed on the negative electrode as an additive to form a film having high lithium ion conductivity and increase charge / discharge efficiency. Examples of the additive having such a function include vinylene carbonate (VC), 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4-ethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, 4-propyl. Examples include vinylene carbonate, 4,5-dipropyl vinylene carbonate, 4-phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), and divinyl ethylene carbonate. These may be used alone or in combination of two or more. Among these, at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate is preferable. In the above compound, part of the hydrogen atoms may be substituted with fluorine atoms. The amount of electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 to 2 mol / L.

さらに、非水電解液には、過充電時に分解して電極上に被膜を形成し、電池を不活性化する公知のベンゼン誘導体を含有させてもよい。前記ベンゼン誘導体としては、フェニル基および前記フェニル基に隣接する環状化合物基を有するものが好ましい。前記環状化合物基としては、フェニル基、環状エーテル基、環状エステル基、シクロアルキル基、フェノキシ基などが好ましい。ベンゼン誘導体の具体例としては、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ただし、ベンゼン誘導体の含有量は、非水溶媒全体の10体積%以下であることが好ましい。   Further, the non-aqueous electrolyte may contain a known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery. As the benzene derivative, those having a phenyl group and a cyclic compound group adjacent to the phenyl group are preferable. As the cyclic compound group, a phenyl group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, a phenoxy group, and the like are preferable. Specific examples of the benzene derivative include cyclohexylbenzene, biphenyl, diphenyl ether and the like. These may be used alone or in combination of two or more. However, the content of the benzene derivative is preferably 10% by volume or less of the entire non-aqueous solvent.

以下、本発明を、実施例に基づいて説明する。   Hereinafter, the present invention will be described based on examples.

(実施例1)
(I)正極活物質の作製
前駆体酸化物であるNi0.81Co0.16Al0.03O(以下NCAOと示す)とLiOH・H2O、Na22をモル比でNCAO:LiOH・H2O:Na22=1:1:0.005の割合で混合し、酸素雰囲気中750℃で5時間、熱処理を行った。その後、乳鉢で粉砕し活物質を合成した。ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=99:1:81:16:3であった。得られた活物質のSEM像を図1に示す。平均粒径が約1μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。合成された活物質の電子スピン共鳴をXバンドを使用し、温度300Kで測定したときの一次微分吸収スペクトルを図2に示す。得られたスペクトルの頂点から、ピーク間の線幅である1で示すΔHppを求めた。
(Example 1)
(I) Production of Positive Electrode Active Material Ni 0.81 Co 0.16 Al 0.03 O (hereinafter referred to as NCAO), which is a precursor oxide, and LiOH.H 2 O, Na 2 O 2 in a molar ratio of NCAO: LiOH.H 2 O: The mixture was mixed at a ratio of Na 2 O 2 = 1: 1: 0.005, and heat treatment was performed at 750 ° C. for 5 hours in an oxygen atmosphere. Thereafter, the active material was synthesized by grinding in a mortar. From the ICP analysis, the ratio of each element was Li: Na: Ni: Co: Al = 99: 1: 81: 16: 3. An SEM image of the obtained active material is shown in FIG. Secondary particles composed of primary particles having an average particle diameter of about 1 μm were obtained. The size of the obtained secondary particles was about 10 μm. FIG. 2 shows a first-order differential absorption spectrum when the electron spin resonance of the synthesized active material is measured at a temperature of 300 K using the X band. From the peak of the obtained spectrum, ΔH pp indicated by 1 which is the line width between peaks was obtained.

同様にして、温度200〜300Kで測定を行い、そのピーク間の線幅を求めた。ピーク間の線幅(ΔHpp)と測定温度(T)の関係であるdΔHpp/dTは図3の2に示すように直線関係が得られ、そのdΔHpp/dTは0.22mTK-1であった。 Similarly, measurement was performed at a temperature of 200 to 300 K, and the line width between the peaks was obtained. DΔH pp / dT, which is the relationship between the line width between peaks (ΔH pp ) and the measurement temperature (T), has a linear relationship as shown in 2 of FIG. 3, and the dΔH pp / dT is 0.22 mTK −1 . there were.

(II)正極板の作製
100重量部の上記正極活物質に、導電剤として4重量部のアセチレンブラックと、N−メチルピロリドン(NMP)の溶剤に結着剤として5重量部のポリフッ化ビニリデン(PVDF)を溶解した溶液とを混合し、正極合剤を含むペーストを得た。このペーストを、集電体となる厚さ15μmのアルミニウム箔の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、正極板を得た。
(II) Production of positive electrode plate 100 parts by weight of the positive electrode active material, 4 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of polyvinylidene fluoride as a binder in a solvent of N-methylpyrrolidone (NMP) ( PVDF) was mixed with a solution to obtain a paste containing a positive electrode mixture. This paste was applied on both sides of a 15 μm thick aluminum foil serving as a current collector, dried, rolled, and cut into a predetermined size to obtain a positive electrode plate.

(III)負極板の作製
人造黒鉛粉末75重量部に、導電剤であるアセチレンブラック20重量部と、結着剤のポリフッ化ビニリデン樹脂5重量部とを混合し、これらを脱水N−メチル−2−ピロリドンに分散させてスラリー状の負極合剤を調製した。この負極合剤を銅箔からなる負極集電体上の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、負極板を得た。
(III) Production of Negative Electrode Plate 75 parts by weight of artificial graphite powder was mixed with 20 parts by weight of acetylene black as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder, and these were dehydrated N-methyl-2 -A slurry-like negative electrode mixture was prepared by dispersing in pyrrolidone. This negative electrode mixture was applied to both surfaces of a negative electrode current collector made of copper foil, dried, rolled, and cut into predetermined dimensions to obtain a negative electrode plate.

(IV)非水電解液の調製
エチレンカーボネートとエチルメチルカーボネートとの体積比1:3の混合溶媒に1wt% のビニレンカーボネートを添加し、1.0mol/Lの濃度でLiPF6を溶解し、非水電解液を得た。
(IV) Preparation of non-aqueous electrolyte solution 1 wt% vinylene carbonate was added to a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3, and LiPF 6 was dissolved at a concentration of 1.0 mol / L. A water electrolyte was obtained.

(V)電池の組み立て
正極シートおよび負極シートを35mm×35mmの大きさに切りだし、それぞれ、リード付きのアルミ板および銅板に超音波溶接した。PP製微多孔膜セパレータを間に、各電極シートが対向するようにアルミ板および銅板をテープ固定して一体化した。次に、この一体化物を両端が空いている筒状のアルミラミネート袋に納め、リード部分において、袋の一方の開口部を溶着した。そして、他方の開口部から調製しておいた電解液を滴下した。
このようにして組み立てた電池を、0.1mAの電流で1時間充電した後、10mmHgで10秒間、脱気し、さらに、注液した開口部を溶着により封止した。そして、7mAの定電流で、上限電圧が4.2V、下限電圧が3.0Vの間で予備充放電を5回行った。これを実施例1の電池とする。
(V) Battery assembly The positive electrode sheet and the negative electrode sheet were cut into a size of 35 mm x 35 mm, and ultrasonically welded to an aluminum plate with a lead and a copper plate, respectively. The aluminum plate and the copper plate were taped and integrated so that each electrode sheet was opposed to the PP microporous membrane separator. Next, this integrated product was placed in a cylindrical aluminum laminated bag having both ends open, and one opening of the bag was welded at the lead portion. And the electrolyte solution prepared from the other opening part was dripped.
The battery assembled in this manner was charged with a current of 0.1 mA for 1 hour, then deaerated at 10 mmHg for 10 seconds, and the poured opening was sealed by welding. Then, preliminary charging / discharging was performed 5 times at a constant current of 7 mA while the upper limit voltage was 4.2 V and the lower limit voltage was 3.0 V. This is referred to as the battery of Example 1.

(実施例2)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2O、Na22をモル比でNCAO:LiOH・H2O:Na22=1:1:0.015の割合で混合したこと以外、実施例1と同様にして作製した電池を実施例2とした。なお、ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=97:3:81:16:3であった。平均粒径が約2μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.37mTK-1であった。
(Example 2)
The positive electrode active material is a precursor oxide of NCAO and LiOH.H 2 O, Na 2 O 2 in a molar ratio of NCAO: LiOH.H 2 O: Na 2 O 2 = 1: 1: 0.015. A battery produced in the same manner as in Example 1 except that it was mixed was designated as Example 2. From the ICP analysis, the respective element ratios were Li: Na: Ni: Co: Al = 97: 3: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 2 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.37 mTK −1 .

(実施例3)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2O、Na22をモル比でNCAO:LiOH・H2O:Na22=1:1:0.025の割合で混合したこと以外、実施例1と同様にして作製した電池を実施例3とした。なお、ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=95:5:81:16:3であった。平均粒径が約3μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさ
は10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.47mTK-1であった。
(Example 3)
The positive electrode active material is a precursor oxide of NCAO and LiOH.H 2 O, Na 2 O 2 in a molar ratio of NCAO: LiOH.H 2 O: Na 2 O 2 = 1: 1: 0.025. A battery produced in the same manner as in Example 1 except that it was mixed was designated as Example 3. From the ICP analysis, the respective element ratios were Li: Na: Ni: Co: Al = 95: 5: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 3 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.47 mTK −1 .

(実施例4)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2O、Na22をモル比でNCAO:LiOH・H2O:Na22=1:1:0.05の割合で混合したこと以外、実施例1と同様にして作製した電池を実施例4とした。なお、ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=90:10:81:16:3であった。平均粒径が約4μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.49mTK-1であった。
Example 4
The positive electrode active material is composed of the precursor oxides NCAO, LiOH.H 2 O, and Na 2 O 2 in a molar ratio of NCAO: LiOH.H 2 O: Na 2 O 2 = 1: 1: 0.05. A battery produced in the same manner as in Example 1 except for mixing was designated as Example 4. From the ICP analysis, the element ratio was Li: Na: Ni: Co: Al = 90: 10: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 4 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.49 mTK −1 .

(実施例5)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2O、Na22をモル比でNCAO:LiOH・H2O:Na22=1:1:0.015の割合で混合し、酸素雰囲気中で700℃、5時間焼成したこと以外、実施例1と同様にして作製した電池を実施例5とした。なお、ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=97:3:81:16:3であった。平均粒径が約1μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.34mTK-1であった。
(Example 5)
The positive electrode active material is a precursor oxide of NCAO and LiOH.H 2 O, Na 2 O 2 in a molar ratio of NCAO: LiOH.H 2 O: Na 2 O 2 = 1: 1: 0.015. A battery produced in the same manner as in Example 1 except that it was mixed and fired at 700 ° C. for 5 hours in an oxygen atmosphere was designated as Example 5. From the ICP analysis, the respective element ratios were Li: Na: Ni: Co: Al = 97: 3: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 1 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.34 mTK −1 .

(実施例6)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2O、Na22をモル比でNCAO:LiOH・H2O:Na22=1:1:0.015の割合で混合し、酸素雰囲気中で800℃、5時間焼成したこと以外、実施例1と同様にして作製した電池を実施例6とした。なお、ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=97:3:81:16:3であった。平均粒径が約3μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.41mTK-1であった。
(Example 6)
The positive electrode active material is a precursor oxide of NCAO and LiOH.H 2 O, Na 2 O 2 in a molar ratio of NCAO: LiOH.H 2 O: Na 2 O 2 = 1: 1: 0.015. A battery produced in the same manner as in Example 1 except that it was mixed and baked at 800 ° C. for 5 hours in an oxygen atmosphere was designated as Example 6. From the ICP analysis, the respective element ratios were Li: Na: Ni: Co: Al = 97: 3: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 3 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.41 mTK −1 .

(実施例7)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2O、Na22をモル比でNCAO:LiOH・H2O:Na22=1:1:0.015の割合で混合し、酸素雰囲気中で750℃、30時間焼成したこと以外、実施例1と同様にして作製した電池を実施例7とした。なお、ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=97:3:81:16:3であった。平均粒径が約2μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.39mTK-1であった。
(Example 7)
The positive electrode active material is a precursor oxide of NCAO and LiOH.H 2 O, Na 2 O 2 in a molar ratio of NCAO: LiOH.H 2 O: Na 2 O 2 = 1: 1: 0.015. A battery produced in the same manner as in Example 1 except that it was mixed and baked in an oxygen atmosphere at 750 ° C. for 30 hours was designated as Example 7. From the ICP analysis, the respective element ratios were Li: Na: Ni: Co: Al = 97: 3: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 2 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.39 mTK −1 .

(実施例8)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2O、Na22をモル比でNCAO:LiOH・H2O:Na22=1:1:0.001の割合で混合したこと以外、実施例1と同様にして作製した電池を実施例8とした。なお、ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=99.9:0.2:81:16:3であった。平均粒径が約0.4μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.21mTK-1であった。
(Example 8)
The positive electrode active material is a precursor oxide of NCAO and LiOH.H 2 O, Na 2 O 2 in a molar ratio of NCAO: LiOH.H 2 O: Na 2 O 2 = 1: 1: 0.001. A battery produced in the same manner as in Example 1 except for mixing was designated as Example 8. From the ICP analysis, the respective element ratios were Li: Na: Ni: Co: Al = 99.9: 0.2: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 0.4 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.21 mTK −1 .

(比較例1)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2Oをモル比でNCAO:LiOH・H2O=1:1の割合で混合し、酸素雰囲気中で900℃、5時間焼成したこと以外、実施例1と同様にして作製した電池を比較例1とした。なお、ICP分析より、それぞれの元素比はLi:Ni:Co:Al=100:81:16:3であった。平均粒径が約4μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.66mTK-1であった。図3においてこの比較例1の関係を3で示す。
(Comparative Example 1)
The positive electrode active material was mixed with the precursor oxide NCAO and LiOH.H 2 O at a molar ratio of NCAO: LiOH.H 2 O = 1: 1, and baked at 900 ° C. for 5 hours in an oxygen atmosphere. A battery manufactured in the same manner as in Example 1 was referred to as Comparative Example 1. From the ICP analysis, each element ratio was Li: Ni: Co: Al = 100: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 4 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.66 mTK −1 . In FIG. 3, the relationship of Comparative Example 1 is indicated by 3.

(比較例2)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2O、Na22をモル比でNCAO:LiOH・H2O:Na22=1:1:0.015の割合で混合し、酸素雰囲気中で900℃、5時間焼成したこと以外、実施例1と同様にして作製した電池を比較例2とした。なお、ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=97:3:81:16:3であった。平均粒径が約4μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.67mTK-1であった。
(Comparative Example 2)
The positive electrode active material is a precursor oxide of NCAO and LiOH.H 2 O, Na 2 O 2 in a molar ratio of NCAO: LiOH.H 2 O: Na 2 O 2 = 1: 1: 0.015. A battery produced in the same manner as in Example 1 except that it was mixed and fired in an oxygen atmosphere at 900 ° C. for 5 hours was designated as Comparative Example 2. From the ICP analysis, the respective element ratios were Li: Na: Ni: Co: Al = 97: 3: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 4 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.67 mTK −1 .

(比較例3)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2Oをモル比でNCAO:LiOH・H2O=1:1の割合で混合したこと以外、実施例1と同様にして作製した電池を比較例3とした。なお、ICP分析より、それぞれの元素比はLi:Ni:Co:Al=100:81:16:3であった。平均粒径が約0.2μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.21mTK-1であった。
(Comparative Example 3)
A positive electrode active material was prepared in the same manner as in Example 1 except that the precursor oxide NCAO and LiOH · H 2 O were mixed at a molar ratio of NCAO: LiOH · H 2 O = 1: 1. The battery was referred to as Comparative Example 3. From the ICP analysis, each element ratio was Li: Ni: Co: Al = 100: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 0.2 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.21 mTK −1 .

(比較例4)
正極活物質を、前駆体酸化物であるNCAOとLiOH・H2O、NaHCO3をモル比でNCAO:LiOH・H2O:NaHCO3=1:0.97:0.03の割合で混合したこと以外、実施例1と同様にして作製した電池を比較例3とした。なお、ICP分析より、それぞれの元素比はLi:Na:Ni:Co:Al=97:3:81:16:3であった。平均粒径が約0.2μm程度の一次粒子からなる二次粒子が得られた。得られた二次粒子の大きさは10μm程度であった。電子スピン共鳴を実施例1と同じ測定条件で測定したところ、電子スピン共鳴のdΔHpp/dTは0.39mTK-1であった。
(Comparative Example 4)
The positive electrode active material was mixed with the precursor oxide NCAO, LiOH.H 2 O, and NaHCO 3 in a molar ratio of NCAO: LiOH · H 2 O: NaHCO 3 = 1: 0.97: 0.03. A battery manufactured in the same manner as in Example 1 was referred to as Comparative Example 3. From the ICP analysis, the respective element ratios were Li: Na: Ni: Co: Al = 97: 3: 81: 16: 3. Secondary particles composed of primary particles having an average particle diameter of about 0.2 μm were obtained. The size of the obtained secondary particles was about 10 μm. When electron spin resonance was measured under the same measurement conditions as in Example 1, dΔH pp / dT of electron spin resonance was 0.39 mTK −1 .

(VI)電池の評価
実施例1から8及び比較例1から3について、環境温度25℃にて、およそ1時間率の定電流(12mA)で室温にて上限電圧が4.2V、下限電圧が3.0Vの間で充放電を繰り返した。1サイクル目の充放電容量を表1に示す。
(VI) Battery Evaluation For Examples 1 to 8 and Comparative Examples 1 to 3, the upper limit voltage is 4.2 V and the lower limit voltage is about 25 hours at ambient temperature and a constant current (12 mA) of about 1 hour at room temperature. Charging / discharging was repeated between 3.0V. The charge / discharge capacity at the first cycle is shown in Table 1.

(VII)熱安定性の評価
充電時の正極と電解液との共存下で示差熱量測定を行い、その発熱量を調べた。これは、本発明の正極活物質によれば、電解液との反応性が低減し、正極活物質の熱安定性を向上させることができることを確認するためのものである。この示差熱量測定の測定条件は、電池を4.2Vまで充電後、露点−40℃のドライエアー雰囲気下で電池を分解し、正極を取り出してエチルメチルカーボネートで洗浄し、減圧してエチルメチルカーボネート
を除去した後、所定の量(1mg)の正極合剤に、未使用の電解液を添加し、耐圧式の示差熱量分析用セルに成型した。そして、示差熱量測定は上記セルを室温から300℃まで昇温速度10Kmin-1で昇温させて、その際の示差熱量変化を調べ、ピークの形状を図4に示す。図4において、4が実施例1で、5が比較例3である。また、ピークの最大値を表1に示した。ピークの最大値は活物質の発熱の激しさを表しており、ピークの最大値が小さいほど、熱安定性に優れた活物質であると考えられる。
(VII) Evaluation of thermal stability Differential calorimetry was performed under the coexistence of the positive electrode and the electrolyte during charging, and the calorific value thereof was examined. This is for confirming that according to the positive electrode active material of the present invention, the reactivity with the electrolytic solution is reduced and the thermal stability of the positive electrode active material can be improved. The measurement conditions for this differential calorimetry are as follows: after charging the battery to 4.2 V, disassemble the battery in a dry air atmosphere with a dew point of −40 ° C., take out the positive electrode, wash it with ethyl methyl carbonate, depressurize the ethyl methyl carbonate. Then, an unused electrolytic solution was added to a predetermined amount (1 mg) of the positive electrode mixture, and molded into a pressure-type differential calorimetric analysis cell. In the differential calorimetry, the cell was heated from room temperature to 300 ° C. at a heating rate of 10 Kmin −1 , the change in differential calorific value at that time was examined, and the peak shape is shown in FIG. In FIG. 4, 4 is Example 1 and 5 is Comparative Example 3. The maximum peak value is shown in Table 1. The maximum value of the peak represents the intensity of heat generation of the active material, and it is considered that the smaller the maximum value of the peak, the better the active material is in thermal stability.

表1に示されるように、本発明の実施例1〜3および実施例5〜7は、いずれも充放電容量が170mAhg-1以上であり、充放電容量が大きかった。一方、実施例4は167mAhg-1と充放電容量が小さかった。これはナトリウムの添加量を増加することにより、充放電に関与するリチウム量が低下するために、充放電容量が減少したと考えられる。そこで、大きな充放電容量を得るためには、ナトリウムの添加量は0<Na/(Li+Na)≦0.05が望ましいと考えられる。そして、これら実施例1〜8のdΔHpp/dTは、0.5未満であった。 As shown in Table 1, in Examples 1 to 3 and Examples 5 to 7 of the present invention, the charge / discharge capacity was 170 mAhg −1 or more, and the charge / discharge capacity was large. On the other hand, Example 4 had a small charge / discharge capacity of 167 mAhg −1 . This is thought to be due to a decrease in charge / discharge capacity due to a decrease in the amount of lithium involved in charge / discharge by increasing the amount of sodium added. Therefore, in order to obtain a large charge / discharge capacity, the amount of sodium added is preferably 0 <Na / (Li + Na) ≦ 0.05. Then, dΔH pp / dT of Examples 1-8 was less than 0.5.

これに対し、比較例1、2は充放電容量がそれぞれ、140mAhg-1以下と小さかった。dΔHpp/dTはリチウムニッケル複合酸化物中の2価のニッケルの量を反映するものであり、比較例1、2のリチウムニッケル複合酸化物と実施例1〜7のリチウムニッケル複合酸化物中の2価のニッケルの量に違いがあり、充放電機構には適さないものであると考えられる。 On the other hand, Comparative Examples 1 and 2 each had a small charge and discharge capacity of 140 mAhg −1 or less. dΔH pp / dT reflects the amount of divalent nickel in the lithium-nickel composite oxide, and in the lithium-nickel composite oxides of Comparative Examples 1 and 2 and the lithium-nickel composite oxides of Examples 1 to 7. There is a difference in the amount of divalent nickel, which is considered unsuitable for the charge / discharge mechanism.

実施例1〜7と比較例3を比較すると、実施例1〜7の示差熱分析の値が大きく減少していることがわかる。これは、過酸化ナトリウムを添加することで、一次粒子径が増大し、比表面積が小さくなったために、電解液との反応が抑制されて、活物質の熱安定性が向上したと考えられる。一方、実施例8は、過酸化ナトリウムの添加量が十分ではなく、一次粒子径が増大せずに比表面積が大きいために、電解液との反応が抑制されなかったと考えられる。また、比較例4において、ナトリウム源に炭酸水素ナトリウムを用いても、一次粒子径は増大しないため電解液との反応が抑制されなかったと考えられ、活物質の熱安
定性が向上しなかった。つまり、リチウムニッケル複合酸化物の一次粒子径を増大させるためには、ナトリウム源として過酸化ナトリウムを添加する必要性があると考えられる。以上の結果より、過酸化ナトリウムを添加することにより、充放電容量を維持したまま、活物質の熱安定性を向上させることができた。
When Examples 1-7 are compared with Comparative Example 3, it can be seen that the differential thermal analysis values of Examples 1-7 are greatly reduced. This is thought to be because the addition of sodium peroxide increased the primary particle size and reduced the specific surface area, thereby suppressing the reaction with the electrolyte and improving the thermal stability of the active material. On the other hand, in Example 8, the amount of sodium peroxide added was not sufficient, the primary particle size did not increase, and the specific surface area was large, so the reaction with the electrolytic solution was not suppressed. In Comparative Example 4, it was considered that even when sodium hydrogen carbonate was used as the sodium source, the primary particle size did not increase, so that the reaction with the electrolytic solution was not suppressed, and the thermal stability of the active material was not improved. That is, in order to increase the primary particle diameter of the lithium nickel composite oxide, it is considered necessary to add sodium peroxide as a sodium source. From the above results, it was possible to improve the thermal stability of the active material while maintaining the charge / discharge capacity by adding sodium peroxide.

なお、上記実施例では筒状のアルミラミネート型の電池を用いたが、角型などの形状の異なる電池を用いても同様の効果が得られる。   In the above embodiment, a cylindrical aluminum laminate type battery is used, but the same effect can be obtained by using a battery having a different shape such as a square type.

本発明活物質のSEM写真SEM photograph of the active material of the present invention 本発明活物質の温度300Kにおける電子スピン共鳴の一次微分吸収スペクトルの図First-order differential absorption spectrum of electron spin resonance of the active material of the present invention at a temperature of 300K 本発明活物質の電子スピン共鳴の一次微分吸収スペクトルから得られるピーク間の線幅(ΔHpp)と測定温度(T)の関係を示す図Shows the relationship between the line width between peaks obtained from the primary differential absorption spectrum of electron spin resonance of the present invention the active material ([Delta] H pp) and measured temperature (T) 本発明活物質の示差熱量測定の図Diagram of differential calorimetry of the active material of the present invention

符号の説明Explanation of symbols

1 ピーク間の線幅(ΔHpp
2 実施例1のピーク間の線幅(ΔHpp)と測定温度(T)の関係
3 比較例1のピーク間の線幅(ΔHpp)と測定温度(T)の関係
4 実施例1の示差熱量測定結果
5 比較例3の示差熱量測定結果


1 Line width between peaks (ΔH pp )
The line width between the 2 Example 1 peak ([Delta] H pp) and differential relationship 4 Example 1 of line width between peaks of relations 3 Comparative Example 1 measured temperature (T) ([Delta] H pp) and measured temperature (T) Calorimetry results 5 Differential calorimetry results of Comparative Example 3


Claims (6)

リチウムとナトリウムとニッケルとの複合酸化物からなる非水系二次電池用正極活物質であって、前記複合酸化物に対し、Xバンドを使用し、温度200〜300Kで電子スピン共鳴を測定したとき、電子スピン共鳴の一次微分吸収スペクトルピークが観測され、かつ関係式(1)を満たす非水系二次電池用正極活物質。
dΔHpp/dT<0.5 (ただし、ΔHppは前記ピーク間の線幅、Tは測定温度)・・・(1)
A positive electrode active material for a non-aqueous secondary battery comprising a composite oxide of lithium, sodium, and nickel, when the electron spin resonance is measured at a temperature of 200 to 300 K using the X band for the composite oxide A positive electrode active material for a non-aqueous secondary battery in which a first-order differential absorption spectrum peak of electron spin resonance is observed and the relational expression (1) is satisfied.
dΔH pp /dT<0.5 (where ΔH pp is the line width between the peaks and T is the measured temperature) (1)
前記複合酸化物の一次粒子径が1μm以上から4μm以下であることを特徴とした請求項1記載の非水系二次電池用正極活物質。   2. The positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein the composite oxide has a primary particle size of 1 μm to 4 μm. 前記複合酸化物の組成が、一般式Li1-xNaxNi1-yMey2(ただし、0<x≦0.05、0≦y≦0.34、MeはCo、Fe、Cu、Al、Mg、Ti、Zr、Ce、Yよりなる群から選ばれる少なくとも1種類の元素)で表されることを特徴とする請求項1または、2記載の非水系二次電池用正極活物質。 The composite oxide has a general formula Li 1-x Na x Ni 1-y Me y O 2 (where 0 <x ≦ 0.05, 0 ≦ y ≦ 0.34, Me represents Co, Fe, Cu Or at least one element selected from the group consisting of Al, Mg, Ti, Zr, Ce, and Y). The positive electrode active material for a non-aqueous secondary battery according to claim 1, . 請求項1記載の非水系二次電池用正極活物質を製造する非水系二次電池用正極活物質の製造方法において、前駆体酸化物とリチウム化合物と過酸化ナトリウムとを混合して熱処理する工程を含む非水系二次電池用正極活物質の製造方法。   A method for producing a positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein the precursor oxide, the lithium compound, and sodium peroxide are mixed and heat-treated. The manufacturing method of the positive electrode active material for non-aqueous secondary batteries containing. 前記リチウム化合物のリチウム量と、前記過酸化ナトリウムのナトリウムの量とは、関係式(2)を満たし、前記熱処理する工程の熱処理温度を700℃以上、800℃以下とする請求項4記載の非水系二次電池用正極活物質の製造方法。
Li1-xNax(ただし、0<x≦0.05)・・・(2)
The amount of lithium in the lithium compound and the amount of sodium in the sodium peroxide satisfy the relational expression (2), and a heat treatment temperature in the heat treatment step is set to 700 ° C or more and 800 ° C or less. A method for producing a positive electrode active material for an aqueous secondary battery.
Li 1-x Na x (where 0 <x ≦ 0.05) (2)
請求項1から3のいずれかに記載の正極活物質を用いた正極板とリチウムを吸蔵放出可能な負極活物質を用いた負極板と、セパレータとで構成される電極群を非水電解質とともに電池ケースに封入してなる非水系二次電池。   A battery comprising a positive electrode plate using the positive electrode active material according to any one of claims 1 to 3, a negative electrode plate using a negative electrode active material capable of occluding and releasing lithium, and a separator together with a non-aqueous electrolyte. A non-aqueous secondary battery enclosed in a case.
JP2007277321A 2007-10-25 2007-10-25 Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same Pending JP2009104974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277321A JP2009104974A (en) 2007-10-25 2007-10-25 Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277321A JP2009104974A (en) 2007-10-25 2007-10-25 Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2009104974A true JP2009104974A (en) 2009-05-14

Family

ID=40706434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277321A Pending JP2009104974A (en) 2007-10-25 2007-10-25 Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2009104974A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054564A (en) * 2009-08-07 2011-03-17 Semiconductor Energy Lab Co Ltd Method of manufacturing positive electrode active material
WO2013039133A1 (en) * 2011-09-16 2013-03-21 日本碍子株式会社 Positive electrode active material precursor particles and method for manufacturing same, and method for manufacturing positive electrode active material for lithium secondary cell
JP2020123440A (en) * 2019-01-29 2020-08-13 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
KR20200100474A (en) * 2019-02-18 2020-08-26 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230069A (en) * 1987-11-20 1990-01-31 Showa Denko Kk Secondary battery
JPH06310143A (en) * 1993-04-28 1994-11-04 Fuji Photo Film Co Ltd Nonaqueous electrolytic secondary battery
JPH10255795A (en) * 1997-03-10 1998-09-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2000012022A (en) * 1998-06-23 2000-01-14 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2000277117A (en) * 1999-03-25 2000-10-06 Sony Corp Nonaqueous electrolyte battery
JP2002358963A (en) * 2001-06-01 2002-12-13 Nippon Chem Ind Co Ltd Lithium cobalt-based composite oxide, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2003229130A (en) * 2001-11-27 2003-08-15 Nec Corp Positive active material for secondary battery and positive electrode for secondary battery using the same and secondary battery
JP2006179473A (en) * 2004-11-26 2006-07-06 Kyushu Univ Cathode active material for non-aqueous electrolyte secondary battery
JP2007257885A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery and battery using this

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230069A (en) * 1987-11-20 1990-01-31 Showa Denko Kk Secondary battery
JPH06310143A (en) * 1993-04-28 1994-11-04 Fuji Photo Film Co Ltd Nonaqueous electrolytic secondary battery
JPH10255795A (en) * 1997-03-10 1998-09-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2000012022A (en) * 1998-06-23 2000-01-14 Seimi Chem Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2000277117A (en) * 1999-03-25 2000-10-06 Sony Corp Nonaqueous electrolyte battery
JP2002358963A (en) * 2001-06-01 2002-12-13 Nippon Chem Ind Co Ltd Lithium cobalt-based composite oxide, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2003229130A (en) * 2001-11-27 2003-08-15 Nec Corp Positive active material for secondary battery and positive electrode for secondary battery using the same and secondary battery
JP2006179473A (en) * 2004-11-26 2006-07-06 Kyushu Univ Cathode active material for non-aqueous electrolyte secondary battery
JP2007257885A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery and battery using this

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809456B2 (en) 2009-08-07 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for positive electrode active material
JP2011054564A (en) * 2009-08-07 2011-03-17 Semiconductor Energy Lab Co Ltd Method of manufacturing positive electrode active material
WO2013039133A1 (en) * 2011-09-16 2013-03-21 日本碍子株式会社 Positive electrode active material precursor particles and method for manufacturing same, and method for manufacturing positive electrode active material for lithium secondary cell
JPWO2013039133A1 (en) * 2011-09-16 2015-03-26 日本碍子株式会社 Positive electrode active material precursor particles, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
US9115005B2 (en) 2011-09-16 2015-08-25 Ngk Insulators, Ltd. Cathode active material precursor particle, method for producing thereof and method for producing cathode active material for lithium secondary battery
JP7528416B2 (en) 2019-01-29 2024-08-06 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JP2020123440A (en) * 2019-01-29 2020-08-13 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
KR20200100474A (en) * 2019-02-18 2020-08-26 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
KR102195186B1 (en) * 2019-02-18 2020-12-28 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
CN113366669A (en) * 2019-02-18 2021-09-07 Sm研究所股份有限公司 Anode active material, method of preparing the same, and lithium secondary battery having anode including the anode active material
WO2020171366A1 (en) * 2019-02-18 2020-08-27 주식회사 에스엠랩 Cathode active material, method for manufacturing same, and lithium secondary battery comprising cathode including same
CN113366669B (en) * 2019-02-18 2024-11-26 Sm研究所股份有限公司 Anode active material, preparation method thereof, and lithium secondary battery having an anode including the anode active material
US12155069B2 (en) 2019-02-18 2024-11-26 Sm Lab Co., Ltd. Cathode active material, method of preparing the same, and lithium secondary battery including cathode including the same

Similar Documents

Publication Publication Date Title
US7892677B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery having the same
CN104835950B (en) Positive electrode active material, preparation method thereof, and rechargeable lithium battery
JP5489723B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US8178238B2 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
JP5385111B2 (en) Lithium secondary battery and manufacturing method thereof
JP5899442B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
JP2007194202A (en) Lithium ion secondary battery
JP2008152923A (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2014225324A (en) Nonaqueous electrolyte secondary cell
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2009026514A (en) Nonaqueous electrolyte secondary battery
US20110189518A1 (en) Nonaqueous electrolyte secondary battery
JP2016154137A (en) Battery positive electrode material and lithium ion battery
JPWO2015015883A1 (en) Lithium secondary battery and electrolyte for lithium secondary battery
KR101646994B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2008159560A (en) Method of manufacturing positive electrode active material
JP2013131427A (en) Laminated battery
JP2017033928A (en) Battery positive electrode material and lithium ion battery
JP7523591B2 (en) All-solid-state battery containing silicon (Si) as the negative electrode active material
JP2008305688A (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2009104974A (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP2013062114A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery manufactured using the same
JP2009059656A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514