[go: up one dir, main page]

JP2009093944A - Fusible alloy type thermal fuse - Google Patents

Fusible alloy type thermal fuse Download PDF

Info

Publication number
JP2009093944A
JP2009093944A JP2007264205A JP2007264205A JP2009093944A JP 2009093944 A JP2009093944 A JP 2009093944A JP 2007264205 A JP2007264205 A JP 2007264205A JP 2007264205 A JP2007264205 A JP 2007264205A JP 2009093944 A JP2009093944 A JP 2009093944A
Authority
JP
Japan
Prior art keywords
fusible alloy
acid
wax
mass
thermal fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007264205A
Other languages
Japanese (ja)
Other versions
JP5234902B2 (en
Inventor
Eigo Kishi
栄吾 岸
Tokihiro Yoshikawa
時弘 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Schott Components Corp
Original Assignee
NEC Schott Components Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Schott Components Corp filed Critical NEC Schott Components Corp
Priority to JP2007264205A priority Critical patent/JP5234902B2/en
Publication of JP2009093944A publication Critical patent/JP2009093944A/en
Application granted granted Critical
Publication of JP5234902B2 publication Critical patent/JP5234902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

【課題】 高温領域の動作温度が設定された可溶合金型温度ヒューズにおいて、高温での長期保管に耐えて安定動作させ、作業性を改善するフラックス被膜を用いた可溶合金型温度ヒューズを提供する。
【解決手段】 可溶合金型温度ヒューズは、一対のリ−ド部材1,2に低融点可溶合金3が接合され、低融点可溶合金3の表面にはフラックス被膜4が形成され、セラミック碍管の絶縁容器またはケース5に収容されて構成される。ここで、フラックス被膜に従来のパラフィンワックスに替えてポリオレフィン系ワックスを使用することで、耐熱特性が改善され、製造時の作業性が向上できる。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a fusible alloy type thermal fuse using a flux coating which is stable in a long-term storage at a high temperature and improves workability in a fusible alloy type thermal fuse in which an operating temperature in a high temperature region is set. To do.
A fusible alloy type thermal fuse has a low melting point fusible alloy 3 bonded to a pair of lead members 1 and 2, a flux coating 4 is formed on the surface of the low melting point fusible alloy 3, and a ceramic. It is configured to be accommodated in a soot tube insulating container or case 5. Here, by using a polyolefin wax in place of the conventional paraffin wax for the flux coating, the heat resistance is improved, and the workability during production can be improved.
[Selection] Figure 1

Description

本発明は、低融点可溶合金を感温材に用い周囲温度に感応して電気機器の損傷を防ぐ温度ヒューズに関し、特に、所定温度で溶融する有害金属を含まない低融点可溶合金の表面にフラックス被膜を設ける可溶合金型温度ヒュ−ズに関する。   The present invention relates to a thermal fuse that uses a low-melting-point fusible alloy as a temperature-sensitive material to prevent damage to electrical equipment in response to ambient temperature, and in particular, the surface of a low-melting-point fusible alloy that does not contain harmful metals that melt at a predetermined temperature The present invention relates to a fusible alloy type temperature fuse provided with a flux coating.

電気・電子機器等を過熱損傷から保護する保護素子として、特定温度で動作して回路を遮断する温度ヒューズが知られている。このうち、感温材として低融点可溶合金を用いる可溶合金型温度ヒューズは、周囲温度が所定の動作温度に過昇した際に、通電回路に設けた低融点可溶合金の溶融により溶断して回路遮断するものである。通常、低融点可溶合金は溶断を確実にするために、フラックス被膜を表面に設けている。こうした可溶合金型温度ヒューズには発熱抵抗体と併設して抵抗体の通電加熱により低融点可溶合金を強制的に溶断させる抵抗内蔵型温度ヒューズも知られており、保温コタツ、炊飯器等の家電製品、液晶テレビや複写機器等のOA機器、照明機器など機器の安全手段として広く普及されている。   As a protection element that protects electric and electronic devices from overheating damage, a thermal fuse that operates at a specific temperature and interrupts a circuit is known. Among these, a fusible alloy type thermal fuse using a low melting point fusible alloy as a temperature sensitive material is blown by melting of the low melting point fusible alloy provided in the energizing circuit when the ambient temperature is excessively increased to a predetermined operating temperature. The circuit is cut off. Usually, a low melting point soluble alloy is provided with a flux coating on the surface in order to ensure fusing. Such fusible alloy type thermal fuses are also known to have a built-in resistor type fuse that forcibly blows off a low melting point fusible alloy by energizing and heating the resistor together with a heating resistor. It is widely used as a safety means for equipment such as home appliances, OA equipment such as liquid crystal televisions and copying machines, and lighting equipment.

一方、低融点可溶合金に共晶はんだ62Sn−38Pb(質量%)を用いて動作温度を183±2℃の可溶合金型温度ヒューズが知られていたが、組成物の鉛(Pb)が地下水に深刻な汚染をもたらすことから地球環境に対する汚染が問題となっていた。すなわち、温度ヒューズを搭載した電気・電子機器が廃棄された場合、雨水などの作用によりPbが溶出するなど長期にわたって有害金属を漏出させることによる。この問題回避には、たとえば、特許文献1、特許文献2および特許文献3が開示する鉛フリー可溶合金型温度ヒュ−ズが知られている。これらは適用温度範囲が190℃から400℃の動作温度であり、使用するフラックスについてそれぞれの適合物質を提案している。
特開2005−276577号公報 特開2007−113024号公報 特開2007−207558号公報
On the other hand, a fusible alloy type thermal fuse having an operating temperature of 183 ± 2 ° C. using eutectic solder 62Sn-38Pb (mass%) as a low melting point soluble alloy has been known. Contamination to the global environment has become a problem because it causes serious pollution in groundwater. That is, when an electrical / electronic device equipped with a thermal fuse is discarded, harmful metals are leaked over a long period of time, for example, Pb is eluted by the action of rainwater or the like. In order to avoid this problem, for example, lead-free soluble alloy type temperature fuses disclosed in Patent Document 1, Patent Document 2, and Patent Document 3 are known. These have an operating temperature range of 190 ° C. to 400 ° C., and propose compatible materials for the fluxes used.
JP 2005-276577 A JP 2007-1113024 A JP 2007-207558 A

可溶合金型温度ヒューズに所望される特性は、作動時に低融点可溶合金を確実に溶断することである。その場合に、使用する低融点可溶合金の融点とその表面に設けたフラックス被膜の作用効果により溶断の速さや精度が決定される。特に、溶断時に特定の温度で合金を球状化させる作用を得るには、低融点可溶合金表面に形成したフラックス被膜の構成物質が大きく影響することが判明している。たとえば、低融点可溶合金は単一の溶融点を持つ共晶合金組成が好ましいが、フラックス被膜は合金被覆として保持力、硬度、靭性等のバランスに優れるのが望まれる。また、所望する動作温度の温度帯で有効に作用効果を奏することが必要である。さらに、電源回路に直列に実装される温度ヒューズの特性上から、高温作動用低融点可溶合金では内部抵抗値が長期の高温保管によっても変化せず、省エネルギーや動作温度の安定面から所望する抵抗値(2.5×10−7Ω・m以下)に維持されることが望まれる。加えて、温度ヒューズ組み立て過程でのフラックス被膜の特性が劣化しないことが必要と考えられている。 A desirable characteristic for a fusible alloy type thermal fuse is to ensure that the low melting point fusible alloy is blown during operation. In that case, the fusing speed and accuracy are determined by the melting point of the low melting point soluble alloy to be used and the effect of the flux coating provided on the surface thereof. In particular, it has been found that the constituent material of the flux coating formed on the surface of the low-melting-point soluble alloy greatly affects the action of spheroidizing the alloy at a specific temperature at the time of fusing. For example, the low melting point soluble alloy preferably has a eutectic alloy composition having a single melting point, but the flux coating is desirably excellent in balance of holding power, hardness, toughness and the like as an alloy coating. In addition, it is necessary to exhibit an effect effectively in a desired operating temperature range. Furthermore, due to the characteristics of the thermal fuse mounted in series with the power supply circuit, the internal resistance value of the low melting point soluble alloy for high temperature operation does not change even after long-term high temperature storage, and is desirable from the viewpoint of energy saving and stable operation temperature. It is desirable to maintain the resistance value (2.5 × 10 −7 Ω · m or less). In addition, it is considered necessary that the properties of the flux coating during the thermal fuse assembly process do not deteriorate.

可溶合金型温度ヒューズに使用するフラックスはロジン、ワックスと共に活性剤およびチクソ剤や酸化防止剤等の添加物からなる。しかし、製造工程や正常動作中における高温環境下等においてはフラックス被膜の劣化に問題があった。そのため、劣化度合いを遅らせたり、熱劣化の時間を延ばしたりすることが望まれる。たとえば、フラックス材料として精製ロジン、ウッドロジン、トールオイルロジンなどの天然ロジンをそのまま使用すると、高温時に主成分のアビエチン酸を代表とする樹脂酸分子の炭素二重結合(C=C)に酸素が反応し開裂して脂肪酸の分子同士が互いに重合し、その結果、急激に粘度低下を起こして合金表面に塗布したフラックスの流動性を損なって可溶合金の溶断を妨げる。こうした場合、耐熱面での信頼性が欠如するため、最高動作温度190℃を超えて動作させる可溶合金型温度ヒューズではフラックス材料の選択が重要であり、熱環境状態で長期保管に耐えて安定動作させることができるフラックス材料の選定が望まれる。また、製造工程において合金表面に塗布したフラックスにべたつきがあると作業性が悪化することから、被膜の硬度が高いフラックス材料の選定が望まれる。   The flux used for the fusible alloy type thermal fuse is composed of an additive such as an activator and a thixotropic agent and an antioxidant together with rosin and wax. However, there has been a problem with the deterioration of the flux coating in a high temperature environment during the manufacturing process or normal operation. Therefore, it is desired to delay the degree of deterioration or extend the time for heat deterioration. For example, when natural rosin such as refined rosin, wood rosin, tall oil rosin is used as a flux material, oxygen reacts with the carbon double bond (C = C) of the resin acid molecule represented by the main component abietic acid at high temperatures. Then, the fatty acid molecules are polymerized with each other by cleavage, and as a result, the viscosity is rapidly lowered to impair the fluidity of the flux applied to the alloy surface and prevent the melting of the soluble alloy. In such a case, since reliability in heat resistance is lacking, selection of the flux material is important for fusible alloy type thermal fuses that operate at temperatures exceeding the maximum operating temperature of 190 ° C, and they can withstand long-term storage and be stable in a thermal environment. Selection of a flux material that can be operated is desired. In addition, if the flux applied to the alloy surface in the manufacturing process is sticky, the workability deteriorates. Therefore, it is desired to select a flux material having a high coating hardness.

本発明者等は、フラックスの流動性を損なう要因がフラックス材料の熱分解性に依存することからフラックス材料の熱重量変化および常温での硬度に着目した。先ず、空気中で融点近くの温度で所定時間放置した場合の重量変化に着目した。そして使用可能なワックス各種材料に関し、5%の重量減少を生ずる温度を測定した。次に、そのワックス材料について、常温での硬度を調べた。これらの結果は、表1に示されるように、5%重量減少温度では温度値が高いほど熱重量変化が小さくて変質が少なく、温度ヒューズの作動を阻害しないと推定された。一方、常温での硬度が高いほどべたつきがなく取り扱いが容易であることが分かった。ここで常温での硬度を調査するに際しての硬度測定は、日本工業規格JIS K 2207に基づく針入度により測定した。すなわち、常温でのワックス硬度が高いものは、針入度が小さくなり、フラックスとしてのべたつきが改善され、常温での扱いが容易であることが判明した。   The present inventors paid attention to the thermogravimetric change of the flux material and the hardness at room temperature because the factor that impairs the fluidity of the flux depends on the thermal decomposability of the flux material. First, attention was paid to a change in weight when left in air at a temperature near the melting point for a predetermined time. The temperature at which a 5% weight loss was observed was measured for the various wax materials that could be used. Next, the hardness of the wax material at room temperature was examined. These results, as shown in Table 1, were estimated that at a 5% weight loss temperature, the higher the temperature value, the smaller the thermogravimetric change and the less the alteration, and the thermal fuse operation was not hindered. On the other hand, it was found that the higher the hardness at normal temperature, the easier the handling without stickiness. Here, the hardness at the time of investigating the hardness at normal temperature was measured by the penetration according to Japanese Industrial Standard JIS K 2207. That is, it has been found that those having a high wax hardness at room temperature have a low penetration, improved stickiness as a flux, and are easy to handle at room temperature.

Figure 2009093944
Figure 2009093944

したがって、本発明は上述する問題欠陥を排除するために、本発明者等の知見からワックス材料の選択に着目し、フラックス材料として通常使用されるパラフィンワックスなどの石油系ワックスに代えて耐熱性と高硬度の特性を備えるワックスを使用して、新規かつ改良された可溶合金型温度ヒューズの提供を目的とする。具体的に新規組成物のワックスとしてポリオレフィン系ワックスを選定すると共にPbやCd等の有害物質を含まない低融点可溶合金を使用して所定の融点の動作温度で正確かつ素早く作動しかつ耐熱面と精度面での信頼性を向上できる新規かつ改良された可溶合金型温度ヒューズの提供を目的とするものである。   Therefore, in order to eliminate the above-mentioned problem defects, the present invention pays attention to the selection of the wax material from the knowledge of the present inventors and the like, and has heat resistance instead of petroleum wax such as paraffin wax usually used as a flux material. It is an object of the present invention to provide a new and improved fusible alloy type thermal fuse using a wax having a characteristic of high hardness. Specifically, a polyolefin-based wax is selected as the wax of the new composition, and a low-melting-point soluble alloy that does not contain harmful substances such as Pb and Cd is used to operate accurately and quickly at an operating temperature of a predetermined melting point. It is an object of the present invention to provide a new and improved fusible alloy type thermal fuse capable of improving reliability in terms of accuracy.

本発明によれば、ロジン、ワックスおよび添加物を含むフラックス被膜を一対のリ−ド部材間に接続した低融点可溶合金の表面に設け、絶縁製容器に収容配置して構成した可溶合金型温度ヒューズにおいて、前記ワックスとしてポリエチレン、ポリプロピレンおよびポリアルファオレフィンのいずれかから選択したポリオレフィン系ワックスを使用したことを特徴とする可溶合金型温度ヒューズが提供される。このようなワックスは、従来のパラフィンワックスなどの石油系ワックスに比べて熱分解温度が高く、さらに溶融時に高い流動性を有するものであり、フラックスの熱劣化に対して効果的である。また、従来のパラフィンワックスなどの石油系ワックスに比べて高い硬度を有しており、製造工程での取り扱いを容易にする効果がある。特に、カルボキシル基を有するポリオレフィン系ワックスは、ロジンとの相溶性が良く、合金表面の酸化膜除去作用の効果も期待できると共に、フラックス被膜として保持力および硬度、靭性のバランス向上に効果を奏する。   According to the present invention, a fusible alloy comprising a flux coating containing rosin, wax and additives provided on the surface of a low melting point fusible alloy connected between a pair of lead members and accommodated in an insulating container. In the mold temperature fuse, there is provided a fusible alloy type temperature fuse characterized in that a polyolefin wax selected from polyethylene, polypropylene and polyalphaolefin is used as the wax. Such a wax has a higher thermal decomposition temperature than petroleum-based waxes such as conventional paraffin wax, and has high fluidity when melted, and is effective for heat deterioration of the flux. In addition, it has a higher hardness than conventional waxes such as paraffin wax, and has the effect of facilitating handling in the manufacturing process. In particular, a polyolefin-based wax having a carboxyl group has good compatibility with rosin, can be expected to have an effect of removing an oxide film on the surface of the alloy, and has an effect of improving the balance of holding power, hardness and toughness as a flux coating.

一方、ロジンは水添ロジン、不均化ロジン、重合ロジン、酸変性水添ロジン、酸変性不均化ロジンおよび酸変性重合ロジン等のロジン誘導体からなるグループから選択される物質であり、これにパルミチン酸アミド、オレイン酸アミド、ステアリン酸アミド、12−ヒドロキシステアリン酸アミド、エルカ酸アミド、ベヘニン酸アミド、N、N’―ジオレイルアジピン酸アミド、N、N’―ジステアリルアジピン酸アミド、N、N’―ジオレイルセバシン酸アミド、N、N’―ジステアリルセバシン酸アミド、N、N’―ジステアリルパラフタル酸アミド、N、N’―ジステアリルイソフタル酸アミド、N、N’―エチレンビスラウリン酸アミド、N、N’―エチレンビスステアリン酸アミド、N、N’―メチレンビスステアリン酸アミド、N、N’―エチレンビスオレイン酸アミド、N、N’―エチレンビスベヘニン酸アミド、N、N’―エチレンビス−12−ヒドロキシステアリン酸アミド、N、N’―ブチレンビスステアリン酸アミド、N、N’―ヘキサメチレンビスステアリン酸アミド、N、N’―ヘキサメチレンビスオレイン酸アミドおよびN、N’―キシリレンビスステアリン酸からなる群から選択される有機酸アミド誘導体を添加する。その添加量は、ポリオレフィン系ワックスが1〜60質量%、ロジン30〜90質量%に対し、残部として有機酸アミド誘導体を配合調整する。さらに、前記フラックス被膜の添加物がパルミチン酸、ステアリン酸、ベへニン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸からなる群から選ばれるいずれかの脂肪酸または脂肪族二塩基酸であり、フラックス被膜の100質量部に対して、1〜50質量部の範囲内で添加する。このフラックス被膜の添加物により、合金表面の酸化膜除去作用が促進され、ヒューズの動作特性に対して効果を発揮する。   On the other hand, rosin is a substance selected from the group consisting of rosin derivatives such as hydrogenated rosin, disproportionated rosin, polymerized rosin, acid-modified hydrogenated rosin, acid-modified disproportionated rosin and acid-modified polymerized rosin. Palmitic acid amide, oleic acid amide, stearic acid amide, 12-hydroxystearic acid amide, erucic acid amide, behenic acid amide, N, N′-dioleoyl adipic acid amide, N, N′-distearyl adipic acid amide, N N'-dioleoyl sebacic acid amide, N, N'-distearyl sebacic acid amide, N, N'-distearyl paraphthalic acid amide, N, N'-distearyl isophthalic acid amide, N, N'-ethylene Bislauric acid amide, N, N′-ethylenebisstearic acid amide, N, N′-methylenebisstearic acid amide, N′-ethylenebisoleic acid amide, N, N′-ethylenebisbehenic acid amide, N, N′-ethylenebis-12-hydroxystearic acid amide, N, N′-butylene bisstearic acid amide, N An organic acid amide derivative selected from the group consisting of N, N'-hexamethylenebisstearic acid amide, N, N'-hexamethylenebisoleic acid amide and N, N'-xylylene bisstearic acid is added. The amount of addition is adjusted by blending the organic acid amide derivative as the balance with respect to 1 to 60% by mass of the polyolefin wax and 30 to 90% by mass of rosin. Further, the flux coating additive is any one selected from the group consisting of palmitic acid, stearic acid, behenic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid And is added within a range of 1 to 50 parts by mass with respect to 100 parts by mass of the flux coating. This flux coating additive promotes the action of removing the oxide film on the alloy surface and exerts an effect on the operating characteristics of the fuse.

また、フラックス被膜には、添加物として、酸化防止剤、金属不活性化剤が配合調製される。添加物としての酸化防止剤は好ましくはフェノール系、リン系または硫黄系から選ばれる。例えば、フェノール系酸化防止剤としては、テトラキス〔3−(3´,5´−ジ−t−ブチル−4´−ヒドロキシフェニル)プロピオン酸〕ペンタエリトリトール、リン系酸化防止剤としては、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、硫黄系酸化防止剤としては、3,3´−チオジプロピオン酸ジ−n−ドデシルがある。また、添加物となる金属不活性化剤は、例えば、2´,3−ビス〔〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕〕プロピオノヒドラジドがある。ここで、酸化防止剤や金属不活性化剤は、本発明にかかるワックスの熱劣化、酸化、金属イオンによる劣化に対して効果を発揮する。   Moreover, an antioxidant and a metal deactivator are blended and prepared as additives in the flux coating. The antioxidant as an additive is preferably selected from phenol, phosphorus or sulfur. For example, tetrakis [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionic acid] pentaerythritol is used as a phenolic antioxidant, and tris (2 , 4-di-t-butylphenyl) phosphite and sulfur-based antioxidant include di-n-dodecyl 3,3′-thiodipropionate. Moreover, the metal deactivator used as an additive includes, for example, 2 ′, 3-bis [[3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl]] propionohydrazide. Here, the antioxidant and the metal deactivator are effective for the thermal degradation, oxidation, and degradation due to metal ions of the wax according to the present invention.

本発明の可溶合金型温度ヒューズはフラックス被膜にポリオレフィン系ワックスが使用される。そのために、低融点可溶合金表面の形成被覆は保持力および硬度が高まり、靭性のバランスに優れた被膜として温度ヒューズの耐熱特性を改善する。特に、所望する動作温度に近い温度帯での経時変化を抑止しフラックス機能を効果的に発揮する粘り強さを向上する。たとえば、従来のパラフィンワックスなどの石油系ワックスに比べて保持力・硬度・靭性等で優れ、被膜がべたつかず取り扱いや組立中の作業が容易になる。また、熱分解温度の高いワックスもあり、動作温度が190℃以上の比較的高い温度領域でも使用でき、かつ高温保管後でも動作温度の信頼性が高く安定性を確保する。一方、カルボキシル基を有するポリオレフィン系ワックスの使用は、ロジンとの相溶性が良く、被膜として保持力および硬度、靭性のバランス向上に役立ち、カルボキシル基があることにより、合金表面の酸化膜除去作用の効果も期待され、所定の動作温度で安定した溶断を確保するなど耐熱性安定化で信頼性を向上させる。   The fusible alloy type thermal fuse of the present invention uses a polyolefin wax for the flux coating. For this reason, the formation coating on the surface of the low-melting-point soluble alloy increases the holding power and hardness, and improves the heat resistance characteristics of the thermal fuse as a coating with an excellent balance of toughness. In particular, the tenacity that effectively exhibits the flux function is improved by suppressing the change over time in the temperature range close to the desired operating temperature. For example, it is superior in holding power, hardness, toughness and the like as compared with conventional petroleum waxes such as paraffin wax, and the coating is not sticky and handling and assembly operations are facilitated. In addition, there is a wax having a high thermal decomposition temperature, which can be used even in a relatively high temperature range where the operating temperature is 190 ° C. or higher, and the operating temperature is reliable and stable even after high temperature storage. On the other hand, the use of a polyolefin wax having a carboxyl group has good compatibility with rosin and helps to improve the balance of holding power, hardness and toughness as a coating. The effect is also expected, and reliability is improved by stabilizing heat resistance such as ensuring stable fusing at a predetermined operating temperature.

本発明は低融点可溶合金の表面にフラックス被膜を設けた可溶合金型温度ヒューズである。この種の温度ヒューズにはアキシャルタイプ、ラジアルタイプ、小型・薄型タイプ、および抵抗内蔵型タイプなどがあるが、特定の型式タイプに限定されるものではない。以下、実施形態の一例としてはアキシャルタイプの可溶合金型温度ヒューズについて説明するが、本発明の特徴はフラックス被膜にポリオレフィン系ワックスを配合したことにある。すなわち、フラックスには耐酸化性、耐熱性、耐候性を増した水添ロジン、不均化ロジン、重合ロジン、酸変性水添ロジン、酸変性不均化ロジン、酸変性重合ロジンのいずれかのロジン誘導体に有機酸アミド誘導体を添加し、さらにポリオレフィン系ワックスおよび必要な添加物を配合する。配合としてはポリオレフィン系ワックスを1〜60質量%、ロジンを30〜90質量%とし、残部として有機酸アミド誘導体を配合調整する。ここで、ポリオレフィン系ワックスが1質量%未満である場合、フラックスの熱劣化および酸化劣化に対して効果が無く、さらにフラックスの塗布被膜のべたつきを無くす効果も見られなくなる。また、ポリオレフィン系ワックスが60質量%を超えると、フラックス被覆の靭性が小さくなり製造時の組み立て作業が困難となる。ここで特にカルボキシル基を有するポリオレフィン系ワックスを使用した場合、ロジンとの相溶性が良く、被膜として保持力および硬度、靭性のバランス向上に効果を発揮する。また、カルボキシル基があることにより、合金表面の酸化膜除去作用の効果も期待される。また、上記フラックス100質量部に対して、必要に応じて、パルミチン酸、ステアリン酸、ベへニン酸等の脂肪酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸の脂肪族二塩基酸を1〜50質量部の範囲で配合することもできる。ここで、上記添加剤が1質量部未満である場合、ヒューズの動作特性に対する効果が見られなくなる。また、上記添加剤が50質量部を超えると、フラックス被覆の靭性が小さくなり製造時の組み立て作業が困難となる。次に、添加物としての酸化防止剤は好ましくはフェノール系、リン系または硫黄系から選ばれる。この添加量は、フラックス100質量部に対して0.01〜5質量%の範囲で配合する。ここで、酸化防止剤の添加量が0.01質量%未満である場合、添加による酸化防止効果が見られなくなる。また、酸化防止剤の添加量が5質量%を超えると、合金表面の酸化膜除去作用が阻害される。また、添加物としての金属不活性化剤の添加量は、フラックス100質量部に対して0.01〜1質量%の範囲で配合する。ここで、金属不活性化剤の添加量が0.01質量%未満である場合、金属イオンによる劣化に対する防止効果が見られなくなる。また、金属不活性化剤の添加量が1質量%を超えると、合金表面の酸化膜除去作用が阻害される。   The present invention is a fusible alloy type thermal fuse in which a flux coating is provided on the surface of a low melting point fusible alloy. This type of thermal fuse includes an axial type, a radial type, a small and thin type, and a built-in resistor type, but is not limited to a specific type. Hereinafter, an axial type fusible alloy type thermal fuse will be described as an example of an embodiment. The feature of the present invention is that a polyolefin-based wax is blended in a flux coating. That is, the flux includes any of hydrogenated rosin, disproportionated rosin, polymerized rosin, acid-modified hydrogenated rosin, acid-modified disproportionated rosin, and acid-modified polymerized rosin with increased oxidation resistance, heat resistance, and weather resistance. An organic acid amide derivative is added to the rosin derivative, and a polyolefin wax and necessary additives are blended. As the blending, the polyolefin wax is 1 to 60% by mass, the rosin is 30 to 90% by mass, and the organic acid amide derivative is blended and adjusted as the balance. Here, when the polyolefin wax is less than 1% by mass, there is no effect on heat deterioration and oxidation deterioration of the flux, and furthermore, the effect of eliminating stickiness of the coating film of the flux is not seen. On the other hand, if the polyolefin wax exceeds 60% by mass, the toughness of the flux coating becomes small and the assembling work at the time of manufacture becomes difficult. In particular, when a polyolefin wax having a carboxyl group is used, the compatibility with rosin is good, and the coating film is effective in improving the balance of holding power, hardness and toughness. Further, due to the presence of the carboxyl group, an effect of removing the oxide film on the alloy surface is also expected. In addition, with respect to 100 parts by mass of the flux, fatty acids such as palmitic acid, stearic acid, and behenic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecane, as necessary. The diacid aliphatic dibasic acid can be blended in the range of 1 to 50 parts by mass. Here, when the said additive is less than 1 mass part, the effect with respect to the operating characteristic of a fuse will not be seen. Moreover, when the said additive exceeds 50 mass parts, the toughness of flux coating | cover will become small and the assembly operation at the time of manufacture will become difficult. Next, the antioxidant as an additive is preferably selected from phenol, phosphorus or sulfur. This addition amount is blended in the range of 0.01 to 5 mass% with respect to 100 mass parts of the flux. Here, when the addition amount of antioxidant is less than 0.01 mass%, the antioxidant effect by addition will not be seen. Moreover, when the addition amount of antioxidant exceeds 5 mass%, the oxide film removal effect | action on the alloy surface will be inhibited. Moreover, the addition amount of the metal deactivator as an additive is mix | blended in 0.01-1 mass% with respect to 100 mass parts of fluxes. Here, when the addition amount of a metal deactivator is less than 0.01 mass%, the prevention effect with respect to deterioration by a metal ion is not seen. Moreover, when the addition amount of a metal deactivator exceeds 1 mass%, the oxide film removal effect | action on the alloy surface will be inhibited.

次に、本発明のフラックスが適用される可溶合金型温度ヒューズの低融点可溶合金としては、例えば、Zn−Al系合金、Zn−Al−Ge系合金およびZn−Al−Mg系合金から選択されるいずれかの合金を使用し、溶融動作温度を260℃〜400℃の範囲内で設定したことを特徴とする合金が挙げられる。ここで、前記低融点可溶合金には、Alが1.5〜7.0質量%の範囲内で含まれることを特徴とする。さらにこの低融点可溶合金には、Snが5〜20質量%の範囲で、またGaが2〜10質量%の範囲で添加されていてもよい。また、本発明のフラックスが適用される可溶合金型温度ヒューズの低融点可溶合金として、Sn−Ag系合金、Sn−Ag−Cu系合金およびSn−Ag−Cu−In系合金から選択されるいずれかの合金を使用し、溶融動作温度を214℃〜222℃の範囲内で設定したことを特徴とする合金が挙げられる。ここで、前記低融点可溶合金には、Agが2.0〜4.0質量%、Cuが0.2〜2.5質量%、Inが0.5〜3.0質量%の範囲内で含まれることを特徴とする。さらに、本発明のフラックスが適用される可溶合金型温度ヒューズの低融点可溶合金として、Sn−In−Ag系合金およびSn−In−Ag−Bi系合金から選択されるいずれかの合金を使用し、溶融動作温度を190℃〜210℃の範囲内で設定したことを特徴とする合金が挙げられる。ここで、前記低融点可溶合金には、Inが6.0〜10.0質量%、Agが3.0〜4.0質量%、Biが0.2〜1.0質量%の範囲内で含まれることを特徴とする。なお、ポリオレフィン系ワックスを配合したフラックスは、上記の温度帯に限らず、溶融動作温度を190℃未満の範囲内で設定した合金に対しても、耐熱性安定化で信頼性を向上させることができる。   Next, examples of the low melting point fusible alloy of the fusible alloy type thermal fuse to which the flux of the present invention is applied include, for example, Zn-Al alloy, Zn-Al-Ge alloy, and Zn-Al-Mg alloy. An alloy characterized by using any selected alloy and setting a melting operation temperature within a range of 260 ° C to 400 ° C. Here, the low-melting-point soluble alloy contains Al in the range of 1.5 to 7.0% by mass. Furthermore, Sn may be added to the low melting point soluble alloy in a range of Sn to 5 to 20% by mass and Ga in a range of 2 to 10% by mass. Further, the low melting point fusible alloy of the fusible alloy type thermal fuse to which the flux of the present invention is applied is selected from an Sn—Ag alloy, an Sn—Ag—Cu alloy, and an Sn—Ag—Cu—In alloy. And an alloy characterized in that the melting operating temperature is set in the range of 214 ° C to 222 ° C. Here, in the low melting point soluble alloy, Ag is in the range of 2.0 to 4.0% by mass, Cu is in the range of 0.2 to 2.5% by mass, and In is in the range of 0.5 to 3.0% by mass. It is included in. Furthermore, as a low melting point fusible alloy of the fusible alloy type thermal fuse to which the flux of the present invention is applied, any alloy selected from Sn—In—Ag alloy and Sn—In—Ag—Bi alloy is used. And an alloy characterized in that the melting operating temperature is set within a range of 190 ° C to 210 ° C. Here, in the low melting point soluble alloy, In is in the range of 6.0 to 10.0% by mass, Ag is in the range of 3.0 to 4.0% by mass, and Bi is in the range of 0.2 to 1.0% by mass. It is included in. It should be noted that the flux containing the polyolefin wax is not limited to the above temperature range, and can improve the reliability by stabilizing the heat resistance even for an alloy whose melting operating temperature is set within a range of less than 190 ° C. it can.

以下、本発明の実施例であるアキシャルタイプ可溶合金型温度ヒューズについて図面を参照しつつ説明する。この可溶合金型温度ヒューズは、図1に示すように、めっき銅線からなる一対のリ−ド部材1,2に、低融点可溶合金3が抵抗溶接により接合され、低融点可溶合金3の表面には本発明の特徴とするフラックス被膜4が形成され、アルミナ等のセラミック碍管の絶縁容器またはケース5に収容され、耐熱封着材6,7によりリード部材1,2の導出部を残して絶縁ケース5の両端部を封着して構成される。なお、アキシャルタイプ以外のラジアルタイプ、小型・薄型のチップタイプ、抵抗内蔵タイプ、絶縁容器使用のパッケージタイプなど各種タイプの可溶合金型温度ヒューズに対しても、上述する可溶合金とフラックスを適用できるのは勿論である。ここで、リ−ド部材1,2はSn−Cuめっき銅線を使用した。変形例として、Agめっき銅線、Snめっき銅線、Niめっき銅線をリード部材に使用できる。低融点可溶合金3の組成は後述する3種類を使用した。形状については、φ0.3〜0.7mm線を使用するが、断面円形のほかに必要に応じて同一の断面積を有するテープ状合金の平角片も使用できる。必要に応じてφ0.3mm以下またはφ0.7mm以上に変更することもできる。線材加工は合金鋳塊の押出し加工及び引抜き加工により処理し、必要に応じてテープ状に圧延加工することもできる。次に、耐熱封着材6,7は、樹脂材としてエポキシ樹脂を用い、また無機物添加材としてBET法による比表面積300m/gで平均粒径7nmのヒュームドシリカ(SiO)を用い、樹脂材である2液常温硬化型エポキシ樹脂の硬化前主剤100質量部に対して無機物添加材2.5質量部を均一に混ぜ合わせて準備した。 Hereinafter, an axial type fusible alloy type thermal fuse which is an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, this fusible alloy type thermal fuse has a low melting point fusible alloy 3 bonded to a pair of lead members 1 and 2 made of plated copper wire by resistance welding. 3 is formed with a flux coating 4 which is a feature of the present invention, and is accommodated in an insulating container or case 5 of a ceramic soot tube made of alumina or the like, and the lead members 1 and 2 are led out by heat-resistant sealing materials 6 and 7. The insulating case 5 is left and sealed at both ends. The above fusible alloy and flux are also applied to various types of fusible alloy type thermal fuses such as radial type other than axial type, small and thin chip type, built-in resistor type, package type using insulation container. Of course you can. Here, the lead members 1 and 2 used Sn-Cu plated copper wires. As a modification, an Ag plated copper wire, an Sn plated copper wire, or an Ni plated copper wire can be used for the lead member. As the composition of the low melting point soluble alloy 3, the following three types were used. As for the shape, a φ0.3 to 0.7 mm line is used, but a rectangular piece of a tape-like alloy having the same cross-sectional area can be used as necessary in addition to a circular cross section. If necessary, it can be changed to φ0.3 mm or less or φ0.7 mm or more. The wire processing can be performed by extruding and drawing an alloy ingot, and can be rolled into a tape as necessary. Next, the heat-resistant sealing materials 6 and 7 use an epoxy resin as a resin material, and use fumed silica (SiO 2 ) having a specific surface area of 300 m 2 / g and an average particle diameter of 7 nm as an inorganic additive, Prepared by uniformly mixing 2.5 parts by mass of the inorganic additive with 100 parts by mass of the main agent before curing of the two-component room temperature curable epoxy resin as the resin material.

上述する実施例構造の可溶合金型温度ヒューズにおいて、低融点可溶合金3は、Zn86.9質量%、Al4質量%、Mg3.2質量%、Sn5.9質量%の初期動作温度333℃用合金(実施1〜3)、Sn96質量%、Al3.5質量%、Cu0.5質量%の初期動作温度219℃用合金(実施4〜6)およびSn88.5質量%、In8質量%、Ag3.5質量%の初期動作温度204℃用合金(実施7〜9)の3種類を、いずれも線径φ0.7mmとして使用した。また、酸変性ロジン55.5質量%、ワックス34質量%、アジピン酸8.7質量%、フェノール系酸化防止剤1.5質量%および金属不活性化剤0.3質量%の配合によりフラックスが調製され、前述の低融点可溶合金3の表面にコーティングしてフラックス被膜4を作製した。本発明が注目のワックスは、ポリオレフィン系ワックスとして3種類を選び使用した。すなわち、実施例の試作品として、ポリエチレンワックス(実施1,4および7)、ポリプロピレンワックス(実施2,5および8)、およびポリアルファオレフィンワックス(実施3,6および9)の3種類が使用された。これら実施例の9種類の試作品と同様に、比較例として従来のパラフィンワックスを使用した試作品(比較1ないし3)が用意された。試作品はそれぞれの初期特性および高温処理後の負荷特性を測定するために、各10個の試作用温度ヒューズを作製した。製品完成後の温度ヒューズは、初期の動作温度および500時間高温保管(負荷)後の動作温度を各10個全ての温度ヒューズについて測定した。これらの測定結果は表2に示される。
In the above-described fusible alloy type thermal fuse of the structure of the embodiment, the low melting point fusible alloy 3 is for an initial operating temperature of 333 ° C. of Zn 86.9 mass%, Al 4 mass%, Mg 3.2 mass%, Sn 5.9 mass%. Alloys (Examples 1 to 3), Sn 96 mass%, Al 3.5 mass%, Cu 0.5 mass% initial operating temperature 219 ° C. alloy (Examples 4 to 6) and Sn 88.5 mass%, In 8 mass%, Ag3. Three types of 5 mass% alloys for initial operating temperature of 204 ° C. (Examples 7 to 9) were used with a wire diameter of φ0.7 mm. Further, the flux is obtained by blending 55.5% by mass of acid-modified rosin, 34% by mass of wax, 8.7% by mass of adipic acid, 1.5% by mass of phenolic antioxidant and 0.3% by mass of metal deactivator. A flux coating 4 was prepared by coating the surface of the low melting point soluble alloy 3 prepared as described above. Three types of waxes of the present invention were selected and used as polyolefin waxes. That is, as a prototype of the example, three types of polyethylene wax (Examples 1, 4 and 7), polypropylene wax (Examples 2, 5 and 8), and polyalphaolefin wax (Examples 3, 6 and 9) are used. It was. Similar to the nine types of prototypes in these examples, prototypes using conventional paraffin wax (Comparative 1 to 3) were prepared as comparative examples. In order to measure the initial characteristics and the load characteristics after high-temperature treatment, the prototypes were made with 10 prototype thermal fuses. As for the temperature fuses after completion of the product, the initial operating temperature and the operating temperature after high temperature storage (load) for 500 hours were measured for all ten temperature fuses. These measurement results are shown in Table 2.

Figure 2009093944
Figure 2009093944

表2に示す測定結果については、実施1〜3(Zn86.9質量%、Al4質量%、Mg3.2質量%、Sn5.9質量%合金)の温度ヒューズは、負荷試験として320℃で500時間高温保管し、測定値はヒューズ動作温度とし、この測定値を初期の動作温度(平均値)と比較して最大の温度差(ばらつき)を確認した。本発明のフラックス被膜に使用したポリエチレンワックスおよびポリアルファオレフィンワックスの場合、動作温度は333±10℃の範囲内で作動し、ポリプロピレンワックスの場合、動作温度は333±20℃の範囲で作動し、いずれも動作温度として満足な結果を得た。一方、比較例である従来のパラフィンワックスを使用した場合の比較1の温度ヒューズは、500時間の保管で動作しなくなった。次に、実施4〜6のSn96質量%、Al3.5質量%、Cu0.5質量%の合金を使用した温度ヒューズの実施3〜6について、210℃で高温保管して動作温度を測定した。その結果、本発明のポリエチレンワックス、ポリプロピレンワックスおよびポリアルファオレフィンワックスを使用した場合、いずれも500時間後219±5℃の範囲内で作動し、良好な結果を得た。これに対し、比較2の従来のパラフィンワックスを使用した場合、500時間保管後219±10℃の範囲で作動したが、動作精度を悪化させた。さらに、実施7〜9のSn88.5質量%、In8質量%、Ag3.5質量%の合金を使用した温度ヒューズについては195℃で高温保管した後、動作温度を測定した結果、ポリエチレンワックス、ポリプロピレンワックスおよびポリアルファオレフィンワックスを使用した本発明品の場合、500時間後204±10℃の範囲内で動作し、良好な結果を得た。しかし、比較3として示す従来のパラフィンワックスを使用した場合、500時間保管後では動作範囲が204±20℃の範囲内になり、動作精度を悪化させた。これらのことから、ワックス材料としてポリエチレン、ポリプロピレンおよびポリアルファオレフィンのいずれかから選択したポリオレフィン系ワックスを使用することにより、温度ヒューズの耐熱性を改善し信頼性を向上させることが判明した。ここで注目すべきは、温度ヒューズの組み立て作業において、ワックス材料として従来のパラフィンワックス使用ではべたつきが目立ち取り扱いが難しかったが、本発明のポリエチレン、ポリプロピレンおよびポリアルファオレフィンのいずれかから選択したポリオレフィン系ワックスの使用では、フラックスとしてのべたつきがなくて取り扱いが容易となり作業性の向上となることが分った。特にポリアルファオレフィンワックスは耐熱性の改善と作業性の向上に対してより有効な結果を得たが、ポリアルファオレフィンワックスが他のポリオレフィン系ワックスに比べて5%重量減少温度が高く、また針入度がもっとも小さいことから、これらの性質が耐熱性の改善と作業性の向上に対してより優れた効果を発揮させたものと考えられる。 Regarding the measurement results shown in Table 2, the thermal fuses of Examples 1 to 3 (Zn 86.9 mass%, Al 4 mass%, Mg 3.2 mass%, Sn 5.9 mass% alloy) were subjected to a load test at 320 ° C. for 500 hours. The temperature was stored at a high temperature, and the measured value was the fuse operating temperature. The measured value was compared with the initial operating temperature (average value), and the maximum temperature difference (variation) was confirmed. In the case of polyethylene wax and polyalphaolefin wax used in the flux coating of the present invention, the operating temperature operates within a range of 333 ± 10 ° C., and in the case of polypropylene wax, the operating temperature operates within a range of 333 ± 20 ° C. All obtained satisfactory results as the operating temperature. On the other hand, the thermal fuse of Comparative Example 1 using a conventional paraffin wax as a comparative example did not operate after storage for 500 hours. Next, with respect to Examples 3 to 6 of the thermal fuse using the alloys of Sn 96% by mass, Al 3.5% by mass, and Cu 0.5% by mass of Examples 4 to 6, the operating temperature was measured by storing at 210 ° C. at a high temperature. As a result, when the polyethylene wax, polypropylene wax and polyalphaolefin wax of the present invention were used, all of them operated within a range of 219 ± 5 ° C. after 500 hours, and good results were obtained. On the other hand, when the conventional paraffin wax of Comparative 2 was used, it operated in the range of 219 ± 10 ° C. after storage for 500 hours, but the operation accuracy deteriorated. Further, the thermal fuses using the alloys of Sn 88.5% by mass, In 8% by mass, and Ag 3.5% by mass in Examples 7 to 9 were stored at a high temperature at 195 ° C., and the operating temperature was measured. In the case of the product of the present invention using a wax and a polyalphaolefin wax, it operated within a range of 204 ± 10 ° C. after 500 hours, and good results were obtained. However, when the conventional paraffin wax shown as Comparative 3 was used, the operating range became 204 ± 20 ° C. after 500 hours storage, and the operating accuracy was deteriorated. From these facts, it was found that the use of a polyolefin-based wax selected from polyethylene, polypropylene, and polyalphaolefin as the wax material improves the heat resistance and reliability of the thermal fuse. It should be noted here that in the assembly operation of the thermal fuse, the use of the conventional paraffin wax as the wax material was noticeably sticky and difficult to handle, but the polyolefin system selected from one of the polyethylene, polypropylene and polyalphaolefin of the present invention It has been found that when wax is used, there is no stickiness as a flux, handling becomes easy and workability is improved. In particular, polyalphaolefin wax obtained more effective results in improving heat resistance and workability, but polyalphaolefin wax has a 5% weight loss temperature higher than other polyolefin waxes, and needles Since the penetration is the smallest, it is considered that these properties exerted more excellent effects on the improvement of heat resistance and workability.

本発明の別の実施例は、共通の低融点可溶合金3としてSn88.1質量%、In8質量%、Ag3.2質量%、Bi0.7質量%で初期動作温度204℃の合金を線径φ0.7mmにして使用し、上述した構造のアキシャルタイプ可溶合金型温度ヒューズを作製した。その際、フラックス被膜4は酸変性ロジン55.5質量%、ワックス34質量%、アジピン酸8.7質量%、フェノール系酸化防止剤1.5質量%、および金属不活性化剤0.3質量%の配合により調製したものを用いた。そして、実施10にはワックスにはカルボキシル基を持つポリエチレンワックス(酸価60mg−KOH/g)を使用し、実施11にはカルボキシル基を持たないポリエチレンワックス(酸価0mg−KOH/g)を使用してそれぞれ10個の温度ヒューズを常温状態の初期と高温負荷後との動作温度測定用として用意した。完成後の温度ヒューズは耐熱試験として195℃の所定の保管温度で500時間保管し負荷後の動作温度を測定した。この測定結果は表3に示される。   In another embodiment of the present invention, an alloy having an initial operating temperature of 204 ° C. with Sn 88.1 mass%, In 8 mass%, Ag 3.2 mass%, Bi 0.7 mass% as the common low melting point soluble alloy 3 is obtained. An axial type fusible alloy type thermal fuse having the above-described structure was prepared using a diameter of 0.7 mm. At that time, the flux coating 4 is 55.5% by mass of acid-modified rosin, 34% by mass of wax, 8.7% by mass of adipic acid, 1.5% by mass of phenolic antioxidant, and 0.3% by mass of metal deactivator. What was prepared with the formulation of% was used. In Example 10, polyethylene wax having a carboxyl group (acid value 60 mg-KOH / g) was used as the wax, and in Example 11, polyethylene wax having no carboxyl group (acid value 0 mg-KOH / g) was used. Thus, ten temperature fuses were prepared for measuring the operating temperature at the beginning of the normal temperature state and after the high temperature load. The completed temperature fuse was stored at a predetermined storage temperature of 195 ° C. for 500 hours as a heat resistance test, and the operating temperature after load was measured. The measurement results are shown in Table 3.

Figure 2009093944
Figure 2009093944

上記のカルボキシル基を有無による試作結果から、実施10のカルボキシル基を有するポリエチレンワックスを使用した場合、500時間後に204±5℃の範囲で動作した。これに対して、実施11のカルボキシル基を持たないポリエチレンワックスを使用して同様な配合のフラックス膜の場合、500時間保管後の動作温度は204±10℃の範囲内で作動した。このことから、ワックス材料としてカルボキシル基を持つポリエチレンワックスを使用することにより、温度ヒューズの耐熱性がより改善され、信頼性の向上に役立つことが判明した。さらにポリエチレンワックスにおけるカルボキシル基の有無は、カルボキシル基の存在がフラックス被膜として保持力および硬度、靭性のバランスを向上させることも判明した。   When the polyethylene wax having a carboxyl group of Example 10 was used from the result of the trial production based on the presence or absence of the carboxyl group, the operation was performed in a range of 204 ± 5 ° C. after 500 hours. On the other hand, in the case of the flux film having the same composition using the polyethylene wax having no carboxyl group of Example 11, the operation temperature after storage for 500 hours was operated within the range of 204 ± 10 ° C. From this, it has been found that the use of polyethylene wax having a carboxyl group as the wax material further improves the heat resistance of the thermal fuse and helps improve reliability. Furthermore, it was also found that the presence or absence of carboxyl groups in polyethylene wax improves the balance of holding power, hardness and toughness as a flux coating.

上述するように本発明のポリオレフィン系ワックスを含むフラックス膜を有する可溶合金型温度ヒューズは家庭用および産業用電気機器類で安全性を保証するための保護素子として耐熱性の改善と信頼性の向上および取り扱い作業性の向上が得られるなど工業的価値が評価されることが判明した。
As described above, the fusible alloy type thermal fuse having a flux film containing the polyolefin-based wax of the present invention has improved heat resistance and reliability as a protective element for guaranteeing safety in household and industrial electrical equipment. It has been found that industrial value is evaluated such as improvement and improvement in handling workability.

本発明に係る実施例の低融点可溶合金を使用した合金型温度ヒューズの断面図である。1 is a cross-sectional view of an alloy type thermal fuse using a low melting point fusible alloy according to an embodiment of the present invention.

符号の説明Explanation of symbols

1,2;リード部材
3;低融点可溶合金
4;フラックス被膜
5;絶縁ケ−ス(容器)
6,7;耐熱封着材
1, 2; Lead member 3; Low melting point soluble alloy 4; Flux coating 5; Insulation case (container)
6, 7; heat-resistant sealing material

Claims (7)

ロジン、ワックスおよび添加物を含むフラックス被膜を一対のリ−ド部材間に接続した低融点可溶合金の表面に設け、この低融点可溶合金を絶縁製容器内に収容配置した可溶合金型温度ヒューズにおいて、前記ワックスはポリオレフィン系ワックスを使用したことを特徴とする可溶合金型温度ヒューズ。   A fusible alloy type in which a flux coating containing rosin, wax and additives is provided on the surface of a low melting point soluble alloy connected between a pair of lead members, and this low melting point fusible alloy is accommodated in an insulating container. In the thermal fuse, a fusible alloy type thermal fuse, wherein the wax is a polyolefin wax. 前記フラックス被膜は前記ポリオレフィン系ワックスがポリエチレンワックス、ポリプロピレンワックスおよびポリアルファオレフィンワックスのいずれかから選択されることを特徴とする請求項1に記載の可溶合金型温度ヒュ−ズ。   2. The fusible alloy type temperature fuse according to claim 1, wherein the polyolefin-based wax is selected from polyethylene wax, polypropylene wax and polyalphaolefin wax. 前記ポリオレフィン系ワックスがカルボキシル基を持つことを特徴とする請求項2に記載の可溶合金型温度ヒュ−ズ。   The fusible alloy type temperature fuse according to claim 2, wherein the polyolefin wax has a carboxyl group. 前記フラックス被膜は前記ロジンがロジン誘導体、前記添加物が有機酸アミド誘導体であり、所定の配合割合で調製されることを特徴とする請求項2または3に記載の可溶合金型温度ヒューズ。   4. The fusible alloy type thermal fuse according to claim 2, wherein the flux coating is prepared at a predetermined blending ratio, wherein the rosin is a rosin derivative and the additive is an organic acid amide derivative. 5. 前記フラックス被膜の添加物がパルミチン酸、ステアリン酸、ベへニン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸からなる群から選ばれるいずれかの脂肪酸または脂肪族二塩基酸であり、前記フラックス被膜の100質量部に対して、1〜50質量部の範囲内で添加したことを特徴とする請求項4に記載の可溶合金型温度ヒューズ。   Any fatty acid selected from the group consisting of palmitic acid, stearic acid, behenic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid The fusible alloy type thermal fuse according to claim 4, wherein the fusible alloy type thermal fuse is an aliphatic dibasic acid and is added within a range of 1 to 50 parts by mass with respect to 100 parts by mass of the flux coating. 前記フラックス被膜の添加物がフェノール系、リン系または硫黄系の酸化防止剤であり、前記フラックス被膜の100質量部に対して、0.01〜5質量部の範囲内で添加したことを特徴とする請求項1〜5に記載の可溶合金型温度ヒューズ。   The additive of the flux coating is a phenol-based, phosphorus-based or sulfur-based antioxidant, and is added within a range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the flux coating. The fusible alloy type thermal fuse according to claim 1. 前記フラックス被膜の添加物が金属不活性化剤であり、前記フラックス被膜の100質量部に対して、0.01〜1質量部の範囲内で添加したことを特徴とする請求項6に記載の可溶合金型温度ヒューズ。
The additive of the said flux film is a metal deactivator, It added within the range of 0.01-1 mass part with respect to 100 mass parts of the said flux film, The Claim 6 characterized by the above-mentioned. Fusible alloy type thermal fuse.
JP2007264205A 2007-10-10 2007-10-10 Fusible alloy type thermal fuse Active JP5234902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264205A JP5234902B2 (en) 2007-10-10 2007-10-10 Fusible alloy type thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264205A JP5234902B2 (en) 2007-10-10 2007-10-10 Fusible alloy type thermal fuse

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012086149A Division JP5382961B2 (en) 2012-04-05 2012-04-05 Fusible alloy type thermal fuse

Publications (2)

Publication Number Publication Date
JP2009093944A true JP2009093944A (en) 2009-04-30
JP5234902B2 JP5234902B2 (en) 2013-07-10

Family

ID=40665729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264205A Active JP5234902B2 (en) 2007-10-10 2007-10-10 Fusible alloy type thermal fuse

Country Status (1)

Country Link
JP (1) JP5234902B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139570A (en) * 2015-01-29 2016-08-04 三菱マテリアル株式会社 Power fuse
WO2020209330A1 (en) * 2019-04-09 2020-10-15 石川技研株式会社 Method for manufacturing solder product, solder, soldered component, solder product, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, electronic component, method for manufacturing tin molded article, method for manufacturing tin intermediate product, tin molded article, tin intermediate product, and conductive member
JP2021164947A (en) * 2020-04-08 2021-10-14 石川技研株式会社 Solder products, manufacturing methods of solder products, printed wiring boards, printed circuit boards, wire rods, soldered products, flexible printed circuit boards and electronic components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207733A (en) * 1990-01-08 1991-09-11 Sumitomo Chem Co Ltd Polyolefin resin composition containing carbon black
JPH07108397A (en) * 1993-10-08 1995-04-25 Nippon Arumitsuto Kk Flux for soldering
JPH07164183A (en) * 1993-12-17 1995-06-27 Nippon Genma:Kk Flux composition
JP2001334394A (en) * 2000-05-23 2001-12-04 Nec Schott Components Corp Flux, flux-filled low melting point alloy and protective element using the same
JP2006269209A (en) * 2005-03-23 2006-10-05 Uchihashi Estec Co Ltd Mounting method of alloy type thermal fuse
JP2007113024A (en) * 2005-10-18 2007-05-10 Nec Schott Components Corp Fusible alloy type thermal fuse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207733A (en) * 1990-01-08 1991-09-11 Sumitomo Chem Co Ltd Polyolefin resin composition containing carbon black
JPH07108397A (en) * 1993-10-08 1995-04-25 Nippon Arumitsuto Kk Flux for soldering
JPH07164183A (en) * 1993-12-17 1995-06-27 Nippon Genma:Kk Flux composition
JP2001334394A (en) * 2000-05-23 2001-12-04 Nec Schott Components Corp Flux, flux-filled low melting point alloy and protective element using the same
JP2006269209A (en) * 2005-03-23 2006-10-05 Uchihashi Estec Co Ltd Mounting method of alloy type thermal fuse
JP2007113024A (en) * 2005-10-18 2007-05-10 Nec Schott Components Corp Fusible alloy type thermal fuse

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139570A (en) * 2015-01-29 2016-08-04 三菱マテリアル株式会社 Power fuse
WO2020209330A1 (en) * 2019-04-09 2020-10-15 石川技研株式会社 Method for manufacturing solder product, solder, soldered component, solder product, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, electronic component, method for manufacturing tin molded article, method for manufacturing tin intermediate product, tin molded article, tin intermediate product, and conductive member
US11802322B2 (en) 2019-04-09 2023-10-31 Ishikawa Technology Laboratory Co., Ltd. Method for manufacturing solder product, solder, soldered component, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, electronic component, method for manufacturing tin article, method for manufacturing tin intermediate product, tin intermediate product, and conductive member
JP2021164947A (en) * 2020-04-08 2021-10-14 石川技研株式会社 Solder products, manufacturing methods of solder products, printed wiring boards, printed circuit boards, wire rods, soldered products, flexible printed circuit boards and electronic components
JP7026907B2 (en) 2020-04-08 2022-03-01 石川技研株式会社 Manufacturing method of solder products, printed circuit boards, wire rods, flexible printed boards and electronic components

Also Published As

Publication number Publication date
JP5234902B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
EP3593937A1 (en) Lead-free solder alloy, solder paste, and electronic circuit board
CN100364711C (en) lead-free solder
TW201711785A (en) Solder alloy, solder paste, and electronic circuit board
JP5234902B2 (en) Fusible alloy type thermal fuse
TWI816282B (en) Low temperature soldering solutions for polymer substrates, printed circuit boards and other joining applications
JP5423688B2 (en) Flux composition for lead-free solder, lead-free solder composition and flux cored solder
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP7287606B2 (en) Lead-free solder alloy
JP5382961B2 (en) Fusible alloy type thermal fuse
JP2001291459A (en) Alloy temperature fuse
JP2007207558A (en) Fusible alloy type thermal fuse and circuit protection element
JP6015571B2 (en) Pb-free Zn-Al alloy fuse
JP2007207558A5 (en)
JP4488586B2 (en) Flux, fluxed low melting point alloy and protective element using the same
JP3885995B2 (en) Thermal fuse
JP4409747B2 (en) Alloy type thermal fuse
JP7355542B2 (en) solder paste
JP2516469B2 (en) Alloy type temperature fuse
JP4307666B2 (en) Filled solder and soldering method
JP2007113024A (en) Fusible alloy type thermal fuse
JP2001334394A5 (en)
JP4946419B2 (en) Thermal fuse and manufacturing method thereof
JP4223307B2 (en) Flux for flux cored solder and lead-free solder containing it
JP2005276577A (en) Fusible alloy type thermal fuse
JP2001195963A (en) Alloy temperature fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250