JP2009055748A - 電流検出ユニット及びモータ制御装置 - Google Patents
電流検出ユニット及びモータ制御装置 Download PDFInfo
- Publication number
- JP2009055748A JP2009055748A JP2007221981A JP2007221981A JP2009055748A JP 2009055748 A JP2009055748 A JP 2009055748A JP 2007221981 A JP2007221981 A JP 2007221981A JP 2007221981 A JP2007221981 A JP 2007221981A JP 2009055748 A JP2009055748 A JP 2009055748A
- Authority
- JP
- Japan
- Prior art keywords
- current
- phase
- motor
- period
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0046—Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
- G01R19/2506—Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
【課題】1シャント電流検出方式において、2相分の電流を検出可能な区間を最大限に利用する。
【解決手段】モータ制御装置は、三相式のインバータと直流電源との間に流れる母線電流(検出電流)からモータに流れるモータ電流を検出するモータ電流検出部と、着目時点が、母線電流からモータ電流を検出することのできる検出可能期間に属するか否かを判定する判定部と、を備え、前記判定部によって着目時点が検出可能期間に属すると判定された時、母線電流に基づくモータ電流によってモータをベクトル制御する。前記判定部は、母線電流(IDC2)の大きさ、母線電流の一次差分値、又は、母線電流の二次差分値に基づいて、現時点が検出可能期間に属するか否かを判断する。
【選択図】図9
【解決手段】モータ制御装置は、三相式のインバータと直流電源との間に流れる母線電流(検出電流)からモータに流れるモータ電流を検出するモータ電流検出部と、着目時点が、母線電流からモータ電流を検出することのできる検出可能期間に属するか否かを判定する判定部と、を備え、前記判定部によって着目時点が検出可能期間に属すると判定された時、母線電流に基づくモータ電流によってモータをベクトル制御する。前記判定部は、母線電流(IDC2)の大きさ、母線電流の一次差分値、又は、母線電流の二次差分値に基づいて、現時点が検出可能期間に属するか否かを判断する。
【選択図】図9
Description
本発明は、電流を検出するための電流検出ユニット及びモータを駆動制御するモータ制御装置に関し、特に、1シャント電流検出方式を採用したモータ制御装置に関する。
モータに三相交流電力を供給してモータをベクトル制御するためには、U相、V相及びW相の3相の内、2相分の電流(例えばU相電流及びV相電流)を検出する必要がある。2相分の電流を検出するために、通常、2つの電流センサ(カレントトランス等)が用いられるが、2つの電流センサの使用はモータを組み込んだシステム全体のコストアップを招く。
このため、従来より、インバータと直流電源間の母線電流(直流電流)を1つの電流センサにて検出し、その検出した母線電流から2相分の電流を検出する方式が提案されている。この方式は、1シャント電流検出方式(シングルシャント電流検出方式)とも呼ばれており、この方式の基本原理は、例えば下記特許文献1に記載されている。
図19に、1シャント電流検出方式を採用した従来のモータ駆動システムの全体ブロック図を示す。インバータ(PWMインバータ)902は、上アームと下アームを備えたハーフブリッジ回路を3相分備え、制御部903から与えられた三相電圧指令値に従って各アームをスイッチングさせることにより、直流電源904からの直流電圧を三相交流電圧に変換する。該三相交流電圧は三相永久磁石同期式のモータ901に供給され、モータ901が駆動制御される。
インバータ902内の各下アームと直流電源904とを結ぶ線路を母線913という。電流センサ905は、母線913に流れる母線電流を表す信号を制御部903に伝達する。制御部903は、電流センサ905の出力信号を適切なタイミングでサンプリングすることにより、電圧レベルが最大となる相(最大相)の相電流と最小となる相(最小相)の相電流、即ち、2相分の電流を検出する。2相分の電流が検出されれば、自動的に、インバータ902の三相電流、即ちモータ電流が求まる。
各相の電圧レベルが互いに十分離れている場合は、上述の処理によって2相分の電流を検出することができるのであるが、電圧の最大相と中間相が接近すると或いは電圧の最小相と中間相が接近すると2相分の電流が検出できなくなる。尚、この2相分の電流が検出できなくなることについての説明を含む1シャント電流検出方式の説明は、本発明の実施形態においても後述される。
これに鑑み、下記特許文献2では、1シャント電流検出方式において、任意の2つの相電圧の差が相対的に大きい時には現時点の母線電流情報を用いて現時点のモータ電流を検出し、その差が相対的に小さい時には、過去に検出した母線電流情報を用いて現時点のモータ電流を推定している。
特許文献2の手法では、電圧閾値を予め設定しておき、その電圧閾値と2つの相電圧の差とを比較することによって、その差が相対的に大きいのか或いは小さいのかを判断する。しかしながら、電圧閾値は、様々な要因を考慮しつつ余裕をもって定めておく必要があるため、この従来手法では、実際に2相分の電流を検出可能であるにも拘らず2相分の電流を検出できないと判断される場合が生じる。つまり、2相分の電流を検出可能な区間を最大限に利用することができない。また、最適な電圧閾値はモータの駆動条件に依存して変化するため、様々な駆動条件に適応した電圧閾値を駆動条件ごとに予め求めておく必要があり、設計に多大な手間がかかる。
そこで本発明は、三相電流を検出可能な区間を適切に利用することができる電流検出ユニット、モータ制御装置、モータ駆動システム及び系統連系システムを提供することを目的とする。
上記目的を達成するために本発明に係る電流検出ユニットは、三相式のインバータと直流電源との間に流れる電流を検出電流として検出する電流検出手段と、前記検出電流から前記インバータの三相電流を検出するための三相電流検出手段と、着目時点が前記三相電流を検出することのできる期間に属するか否かを、前記検出電流に基づいて判定する判定手段と、を備え、前記判定手段によって前記着目時点が前記期間に属すると判定されたときに、前記三相電流検出手段は前記三相電流を検出することを特徴とする。
これにより、三相電流を検出可能な区間を適切に利用することが可能となる。また、様々な駆動条件に適応した電圧閾値を駆動条件ごとに設定しておく必要もないため、設計の手間も簡素化される。
具体的には例えば、前記判定手段は、前記検出電流の大きさ、前記検出電流の一次差分値、または、前記検出電流の二次差分値に基づいて、前記着目時点が前記期間に属するか否かを判定する。
また具体的には例えば、前記判定手段は、前記検出電流の大きさ、前記検出電流の一次差分値、または、前記検出電流の二次差分値と、所定の判定閾値と、を比較することによって、前記着目時点が前記期間に属するか否かを判定し、前記判定閾値は、前記検出電流の最大値の半分以下の値とされる。
本発明に係るモータ制御装置は、前記電流検出ユニットを備え、前記インバータによって三相式のモータを駆動するモータ制御装置であって、前記電流検出ユニットによる前記三相電流の検出によって前記モータに流れるモータ電流を検出し、該モータ電流に基づいて前記インバータを介して前記モータを制御することを特徴とする。
また例えば、前記モータ制御装置は、前記判定手段によって前記着目時点が前記期間に属すると判定されたとき、前記着目時点に検出された前記検出電流に基づいて前記モータを制御し、前記判定手段によって前記着目時点が前記期間に属さないと判定されたとき、前記着目時点の過去に検出された前記検出電流に基づいて前記モータを制御する。
本発明に係るモータ駆動システムは、三相式のモータと、前記モータを駆動するインバータと、前記インバータを制御することにより前記モータを制御する前記モータ制御装置と、を備えたことを特徴とする。
本発明に係る系統連系システムは、前記電流検出ユニット及び三相式のインバータを備え、検出された前記三相電流に基づきつつ前記直流電源からの直流電圧を前記インバータによって三相交流電圧に変換し、外部の三相交流電力系統に連系しつつ前記三相交流電圧に基づく三相交流電力を負荷に供給することを特徴とする。
本発明によれば、三相電流を検出可能な区間を適切に利用することができる。
本発明の意義ないし効果は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下の実施の形態は、あくまでも本発明の一つの実施形態であって、本発明ないし各構成要件の用語の意義は、以下の実施の形態に記載されたものに制限されるものではない。
以下、本発明の実施の形態につき、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。後に第1〜第4実施例を説明するが、まず、各実施例に共通する事項又は各実施例にて参照される事項について説明する。
図1は、本発明の実施形態に係るモータ駆動システムのブロック構成図である。図1のモータ駆動システムは、三相永久磁石同期モータ1(以下、単に「モータ1」と記す)と、PWM(Pulse Width Modulation)インバータ2(以下、単に「インバータ2」という)と、制御部3と、直流電源4と、電流センサ5と、を備える。直流電源4は、負出力端子4bを低電圧側として、正出力端子4aと負出力端子4bとの間に直流電圧を出力する。図1のモータ駆動システムは、1シャント電流検出方式を採用している。
モータ1は、永久磁石が設けられた回転子6と、U相、V相及びW相の電機子巻線7u、7v及び7wが設けられた固定子7と、を備えている。電機子巻線7u、7v及び7wは、中性点14を中心にY結線されている。電機子巻線7u、7v及び7wにおいて、中性点14の反対側の非結線端は、夫々、端子12u、12v及び12wに接続されている。
インバータ2は、U相用のハーフブリッジ回路、V相用のハーフブリッジ回路及びW相用のハーフブリッジ回路を備える。各ハーフブリッジ回路は、一対のスイッチング素子を有する。各ハーフブリッジ回路において、一対のスイッチング素子は、直流電源4の正出力端子4aと負出力端子4bとの間に直列接続され、各ハーフブリッジ回路に直流電源4からの直流電圧が印加される。
U相用のハーフブリッジ回路は、高電圧側のスイッチング素子8u(以下、上アーム8uとも呼ぶ)及び低電圧側のスイッチング素子9u(以下、下アーム9uとも呼ぶ)から成る。V相用のハーフブリッジ回路は、高電圧側のスイッチング素子8v(以下、上アーム8vとも呼ぶ)及び低電圧側のスイッチング素子9v(以下、下アーム9vとも呼ぶ)から成る。W相用のハーフブリッジ回路は、高電圧側のスイッチング素子8w(以下、上アーム8wとも呼ぶ)及び低電圧側のスイッチング素子9w(以下、下アーム9wとも呼ぶ)から成る。また、スイッチング素子8u、8v、8w、9u、9v及び9wには、夫々、並列に、直流電源4の低電圧側から高電圧側に向かう方向を順方向としてダイオード10u、10v、10w、11u、11v及び11wが接続されている。各ダイオードは、フリーホイールダイオードとして機能する。
直列接続された上アーム8uと下アーム9uの接続点、直列接続された上アーム8vと下アーム9vの接続点、直列接続された上アーム8wと下アーム9wの接続点は、夫々、端子12u、12v及び12wに接続される。尚、図1では、各スイッチング素子として電界効果トランジスタが示されているが、それらをIGBT(絶縁ゲートバイポーラトランジスタ)などに置き換えることもできる。
インバータ2は、制御部3から与えられた三相電圧指令値に基づいて各相に対するPWM信号(パルス幅変調信号)を生成し、該PWM信号をインバータ2内の各スイッチング素子の制御端子(ベース又はゲート)に与えることで、各スイッチング素子をスイッチング動作させる。制御部3からインバータ2に供給される三相電圧指令値は、U相電圧指令値vu *、V相電圧指令値vv *及びW相電圧指令値vw *から構成され、vu *、vv *及びvw *によって、夫々、U相電圧vu、V相電圧vv及びW相電圧vwの電圧レベル(電圧値)が表される。U相電圧vu、V相電圧vv及びW相電圧vwは、図1の中性点14から見た端子12u、12v及び12wの電圧を表す。インバータ2は、vu *、vv *及びvw *に基づいて、各スイッチング素子のオン(導通)又はオフ(非導通)を制御する。
同一の相の上アームと下アームが同時にオンとなるのを防ぐためのデッドタイムを無視すると、各ハーフブリッジ回路において、上アームがオンである時は下アームはオフであり、上アームがオフである時は下アームはオンである。以下の説明は、上記デッドタイムを無視して行うものとする。
インバータ2に印加されている直流電源4からの直流電圧は、インバータ2内の各スイッチング素子のスイッチング動作によって、PWM変調(パルス幅変調)された三相交流電圧に変換される。該三相交流電圧がモータ1に印加されることによって、各電機子巻線(7u、7v及び7w)に、三相交流電圧に応じた電流が流れてモータ1が駆動される。
電流センサ5は、インバータ2の母線13に流れる電流(以下、「母線電流」という)を検出する。母線電流は直流成分を有するため、それを直流電流と解釈することもできる。インバータ2において、下アーム9u、9v及び9wの低電圧側は共通結線されて直流電源4の負出力端子4bに接続される。下アーム9u、9v及び9wの低電圧側が共通結線される配線が母線13であり、電流センサ5は、母線13に直列に介在している。電流センサ5は、検出した母線電流(検出電流)の電流値を表す信号を制御部3に伝達する。制御部3は、電流センサ5の出力信号等を参照しつつ上記三相電圧指令値を生成及び出力する。尚、電流センサ5は、例えば、シャント抵抗又はカレントトランス等である。また、下アーム9u、9v及び9wの低電圧側と負出力端子4bとを接続する配線(母線13)にではなく、上アーム8u、8v及び8wの高電圧側と正出力端子4aとを接続する配線に電流センサ5を設けるようにしてもよい。
ここで、図2〜図6を用いて、母線電流と各相の電機子巻線に流れる相電流との関係等について説明する。電機子巻線7u、7v及び7wに流れる電流を、夫々、U相電流、V相電流及びW相電流と呼び、それらの夫々を(或いはそれらを総称して)相電流と呼ぶ(図1参照)。また、相電流において、端子12u、12v又は12wから中性点14に流れ込む方向の電流の極性を正とし、中性点14から流れ出す方向の電流の極性を負とする。
図2は、モータ1に印加される三相交流電圧の典型的な例を示す。この三相交流電圧は、互いに位相が120°ずつ異なり且つ振幅が同一の、3つの正弦波状の交流電圧から形成される。図2において、100u、100v及び100wは、夫々、モータ1に印加されるべきU相電圧、V相電圧及びW相電圧の波形を表す。U相電圧、V相電圧及びW相電圧の夫々を(或いはそれらを総称して)相電圧と呼ぶ。モータ1に正弦波状の電流を流す場合、インバータ2の出力電圧は正弦波状とされる。
図2に示す如く、U相電圧、V相電圧及びW相電圧の間の電圧レベルの高低関係は、時間の経過と共に変化していく。この高低関係は三相電圧指令値によって定まり、インバータ2は三相電圧指令値に従って各相に対する通電パターンを決定する。図3に、この通電パターンを表として示す。図3の左側から第1列目〜第3列目に通電パターンを表す。第4列目については後述する。
通電パターンには、
U、V及びW相の下アームが全てオンの通電パターン「LLL」と、
W相の上アームがオン且つU及びV相の下アームがオンの通電パターン「LLH」と、
V相の上アームがオン且つU及びW相の下アームがオンの通電パターン「LHL」と、
V及びW相の上アームがオン且つU相の下アームがオンの通電パターン「LHH」と、
U相の上アームがオン且つV及びW相の下アームがオンの通電パターン「HLL」と、
U及びW相の上アームがオン且つV相の下アームがオンの通電パターン「HLH」と、
U及びV相の上アームがオン且つW相の下アームがオンの通電パターン「HHL」と、
U、V及びW相の上アームが全てオンの通電パターン「HHH」と、
がある(上アーム及び下アームの符号(8u等)を省略して記載)。
U、V及びW相の下アームが全てオンの通電パターン「LLL」と、
W相の上アームがオン且つU及びV相の下アームがオンの通電パターン「LLH」と、
V相の上アームがオン且つU及びW相の下アームがオンの通電パターン「LHL」と、
V及びW相の上アームがオン且つU相の下アームがオンの通電パターン「LHH」と、
U相の上アームがオン且つV及びW相の下アームがオンの通電パターン「HLL」と、
U及びW相の上アームがオン且つV相の下アームがオンの通電パターン「HLH」と、
U及びV相の上アームがオン且つW相の下アームがオンの通電パターン「HHL」と、
U、V及びW相の上アームが全てオンの通電パターン「HHH」と、
がある(上アーム及び下アームの符号(8u等)を省略して記載)。
図4に、3相変調を行う場合における、各相電圧の電圧レベルとキャリア信号との関係、並びに、その関係に応じたPWM信号及び母線電流の波形を示す。各相電圧の電圧レベルの高低関係は様々に変化するが、説明の具体化のため、図4は、図2に示す或るタイミング101に着目している。即ち、図4は、U相電圧の電圧レベルが最大であって且つW相電圧の電圧レベルが最小である場合を示している。電圧レベルが最大の相を「最大相」、電圧レベルが最小の相を「最小相」、電圧レベルが最大でも最小でもない相を「中間相」と呼ぶ。図4に示す状態では、最大相、中間相及び最小相は、夫々、U相、V相及びW相となっている。図4において、符号CSは各相電圧の電圧レベルと比較されるキャリア信号を表す。キャリア信号は周期的な三角波信号となっており、その信号の周期をキャリア周期という。尚、キャリア周期は、図2に示す三相交流電圧の周期よりも遥かに短い。
図5(a)〜(d)を更に参照して相電流と母線電流との関係について説明する。図5は、図4の各タイミングにおける、電機子巻線周辺の等価回路である。
各キャリア周期の開始タイミング、即ちキャリア信号が最低レベルにあるタイミングをT0と呼ぶ。タイミングT0において、各相の上アーム(8u、8v及び8w)はオンとされる。この場合、図5(a)に示す如く、短絡回路が形成されて直流電源4への電流の出入りがない状態となるため、母線電流はゼロとなる。
インバータ2は、vu *、vv *及びvw *を参照して各相電圧の電圧レベルとキャリア信号を比較する。そして、キャリア信号のレベル(電圧レベル)の上昇過程において、最小相の電圧レベルがキャリア信号と交差するタイミングT1に至ると、最小相の下アームがオンとされ、図5(b)に示す如く、最小相の電流が母線電流として流れる。図4に示す例の場合、タイミングT1から後述のタイミングT2に至るまでの間は、W相の下アーム9wがオンとなるため、W相電流(極性は負)が母線電流として流れる。
更にキャリア信号のレベルが上昇して中間相の電圧レベルがキャリア信号と交差するタイミングT2に至ると、最大相の上アームがオン且つ中間相及び最小相の下アームがオンとなって、図5(c)に示す如く、最大相の電流が母線電流として流れる。図4に示す例の場合、タイミングT2から後述のタイミングT3に至るまでの間は、U相の上アーム8uがオン且つV相及びW相の下アーム9v及び9wがオンとなるため、U相電流(極性は正)が母線電流として流れる。
更にキャリア信号のレベルが上昇して最大相の電圧レベルがキャリア信号と交差するタイミングT3に至ると、全ての相の下アームがオンとなって、図5(d)に示す如く、短絡回路が形成されて直流電源4への電流の出入りがない状態となるため、母線電流はゼロとなる。
タイミングT3と後述するタイミングT4の中間タイミングにおいて、キャリア信号が最大レベルに達した後、キャリア信号のレベルは下降していく。キャリア信号のレベルの下降過程では、図5(d)、(c)、(b)及び(a)に示す状態が、この順番で訪れる。即ち、キャリア信号のレベルの下降過程において、最大相の電圧レベルがキャリア信号と交差するタイミングをT4、中間相の電圧レベルがキャリア信号と交差するタイミングをT5、最小相の電圧レベルがキャリア信号と交差するタイミングをT6、次のキャリア周期の開始タイミングをT7とすると、タイミングT4−T5間、タイミングT5−T6間、タイミングT6−T7間は、夫々、タイミングT2−T3間、タイミングT1−T2間、タイミングT0−T1間と同じ通電パターンとなる。
従って例えば、タイミングT1−T2間或いはT5−T6間で母線電流を検出すれば、母線電流から最小相の電流を検出することができ、タイミングT2−T3間或いはT4−T5間で母線電流を検出すれば、母線電流から最大相の電流を検出することができる。そして、中間相の電流は、三相電流の総和が0になることを利用して計算で得ることができる。図3の表の第4列目には、各通電パターンにおいて母線電流として流れる電流の相を、電流極性付きで示している。例えば、図3の表の8行目に対応する通電パターン「HHL」においては、母線電流としてW相電流(極性は負)が流れる。
尚、キャリア周期からタイミングT1とT6との間の期間を除いた期間は最小相に対するPWM信号のパルス幅を表し、キャリア周期からタイミングT2とT5との間の期間を除いた期間は中間相に対するPWM信号のパルス幅を表し、キャリア周期からタイミングT3とT4との間の期間を除いた期間は最大相に対するPWM信号のパルス幅を表す。
U相が最大相且つW相が最小相の場合を例に挙げたが、最大相、中間相及び最小相の組み合わせは、6通りある。図6に、この組み合わせを表として示す。U相電圧、V相電圧及びW相電圧を、夫々、vu、vv及びvwで表した場合において、
vu>vv>vw、が成立する状態を第1モード、
vv>vu>vw、が成立する状態を第2モード、
vv>vw>vu、が成立する状態を第3モード、
vw>vv>vu、が成立する状態を第4モード、
vw>vu>vv、が成立する状態を第5モード、
vu>vw>vv、が成立する状態を第6モード、
と呼ぶ。図4及び図5に示した例は、第1モードに対応している。また、図6には、各モードにおいて検出される電流の相も示されている。
vu>vv>vw、が成立する状態を第1モード、
vv>vu>vw、が成立する状態を第2モード、
vv>vw>vu、が成立する状態を第3モード、
vw>vv>vu、が成立する状態を第4モード、
vw>vu>vv、が成立する状態を第5モード、
vu>vw>vv、が成立する状態を第6モード、
と呼ぶ。図4及び図5に示した例は、第1モードに対応している。また、図6には、各モードにおいて検出される電流の相も示されている。
U相電圧指令値vu *、V相電圧指令値vv *及びW相電圧指令値vw *は、具体的には、夫々、カウンタの設定値CntU、CntV及びCntWとして表される。相電圧が高いほど、大きな設定値が与えられる。例えば、第1モードにおいては、CntU>CntV>CntW、が成立する。
制御部3に設けられたカウンタ(不図示)は、キャリア周期ごとに、タイミングT0を基準としてカウント値を0からアップカウントする。そして、そのカウント値がCntWに達した時点でW相の上アーム8wがオンの状態から下アーム9wがオンの状態に切り替えられ、そのカウント値がCntVに達した時点でV相の上アーム8vがオンの状態から下アーム9vがオンの状態に切り替えられ、そのカウント値がCntUに達した時点でU相の上アーム8uがオンの状態から下アーム9uがオンの状態に切り替えられる。キャリア信号が最大レベルに達した後は、カウント値はダウンカウントされ、逆の切り替え動作が行われる。
従って、第1モードにおいては、カウンタ値がアップカウントされている状態においてカウンタ値がCntW、CntV及びCntUに達した時点が夫々タイミングT1、T2及びT3に対応し、カウンタ値がダウンカウントされている状態においてカウンタ値がCntU、CntV及びCntWに達した時点が夫々タイミングT4、T5及びT6に対応する。同様に考えて、第2モードにおいては、カウンタ値がアップカウントされている状態においてカウンタ値がCntW、CntU及びCntVに達した時点が夫々タイミングT1、T2及びT3に対応し、カウンタ値がダウンカウントされている状態においてカウンタ値がCntV、CntU及びCntWに達した時点が夫々タイミングT4、T5及びT6に対応する。第3〜第6モードについても同様である。
本実施形態では、タイミングT5−T6間において最小相の相電流を検出するものとし、タイミングT2−T3間において最大相の相電流を検出するものとする。最小相の相電流を検出するためのサンプリングタイミングをST1にて表し、最大相の相電流を検出するためのサンプリングタイミングをST2にて表す。
上述の原理に基づき母線電流から各相電流を検出することができるのであるが、図4を参照して理解されるように、例えば最大相と中間相の電圧レベルが接近するとタイミングT2−T3間及びT4−T5間の時間長さが短くなる。母線電流は図1の電流センサ5からのアナログ出力信号をデジタル信号に変換することによって検出されるが、この時間長さが極端に短いと、必要なA/D変換時間やリンギング(スイッチングに由来して生じる電流脈動)の収束時間を確保できなくなって、最大相の相電流を検出できなくなる。同様に、最小相と中間相の電圧レベルが接近すると、最小相の相電流を検出できなくなる。2相分の電流を検出できなければ、3相分の相電流を再現することはできず、モータ1を良好に制御することはできない。
3つの相電圧の内の任意の2つの相電圧の差が小さいことに起因して、2相分の電流を検出できなくなる期間を、以下「検出不可期間」と呼ぶ。また、検出不可期間以外の期間を、以下「検出可能期間」と呼ぶ。任意の時点は、検出可能期間と検出不可期間の何れかに属する。本実施形態は、この検出不可期間を判定する手法に特徴点を有する。
[検出不可期間の判定手法]
本実施形態に係る検出不可期間の判定手法について説明する。図7及び図8の夫々は、最小相の相電流を検出するためのサンプリングタイミングST1及び最大相の相電流を検出するためのサンプリングタイミングST2を、図4に付記した図である。以下、サンプリングタイミングST1及びST2を、夫々、単にST1及びST2と略記することもある。
本実施形態に係る検出不可期間の判定手法について説明する。図7及び図8の夫々は、最小相の相電流を検出するためのサンプリングタイミングST1及び最大相の相電流を検出するためのサンプリングタイミングST2を、図4に付記した図である。以下、サンプリングタイミングST1及びST2を、夫々、単にST1及びST2と略記することもある。
ST1は、タイミングT5から時間TAが経過した時点とされ、ST2は、タイミングT2から時間TAが経過した時点とされる。時間TAは、スイッチングに由来して生じる母線電流のリンギングが収束するまでの時間や電流センサ5のアナログ出力信号をA/D変換する際のサンプリング時間遅れ等を考慮して、モータ駆動システムの設計段階で予め設定しておくことができる。上述したように、三相電圧指令値(vu *、vv *及びvw *)はカウンタの設定値CntU、CntV及びCntWとして表現され、カウンタの設定値CntU、CntV及びCntWによってタイミングT2及びT5が定まる。そして、時間TAに相当するカウント値を定めておく。そうすると、制御部3は、三相電圧指令値に基づいて各キャリア周期におけるサンプリングタイミングST1及びST2を定めることができる。
図7は検出可能期間に対応しており、図7に対応する検出可能期間では、異なる2つの相電圧間の電圧レベル差が比較的大きいため母線電流を正確に検出することができる。図7において、符号102及び103は、夫々、ST1にて検出される最小相の相電流及びST2にて検出される最大相の相電流を表している。
一方、図8は、検出不可期間に対応しており、図8に対応する検出不可期間では、最大相と中間相の電圧レベルが接近しすぎていることに起因してST2にて最大相の相電流を検出することができない。図8において、符号104は、ST1にて検出される最小相の相電流を表しているが、符号105は、ST2にて検出される、最大相の相電流とは異なる電流を表している。
図9(a)に、各キャリア周期のサンプリングタイミングST2にて検出される母線電流の時間変化を示す。図9(b)に、各キャリア周期のサンプリングタイミングST2にて検出される母線電流の一次差分値の時間変化を示す。図9(c)に、各キャリア周期のサンプリングタイミングST2にて検出される母線電流の二次差分値の時間変化を示す。ここで、サンプリングタイミングST2にて検出される母線電流をIDC2にて表す。但し、図9(a)は、シミュレーションに基づく理想的な母線電流値をプロットしたものであり、図9(b)及び(c)は、その理想的な母線電流値から算出した一次差分値及び二次差分値をプロットしたものである。
図9(a)、(b)及び(c)の夫々において、横軸は時間を表し、縦軸は電流値を表している。母線電流IDC2の最大値は、図1の直流電源4が出力する直流電圧値などに依存して定まるが、その母線電流IDC2の最大値を1.0に正規化して考える。母線電流IDC2は、0から1.0の間の値をとる。今、互いに異なるタイミングt1、t2、t3、t4、t5及びt6を想定する。タイミングt1、t2、t3、t4、t5及びt6の順番で時間が経過するものとする。そして、タイミングt1−t2間、t3−t4間及びt5−t6間の各タイミングが、母線電流IDC2から最大相の相電流を検出することができない期間に属しているとする。
タイミングt2より後であってタイミングt3よりも前の期間は、母線電流IDC2から最大相の相電流を検出可能な期間に属し、その期間内の各サンプリングタイミングST2では最大相の相電流が検出される。タイミングt4より後であってタイミングt5よりも前の期間などについても同様である。
今、図10に示す如く、U相電圧が中間相から最大相に移り変わった直後がタイミングt2に相当し、且つ、U相電圧が最大相から中間相に移り変わる直前がタイミングt3に相当するものとする。加えて、V相電圧が中間相から最大相に移り変わった直後がタイミングt4に相当し、且つ、V相電圧が最大相から中間相に移り変わる直前がタイミングt5に相当するものとする。この場合、タイミングt2−t3間においてU相電流iuが母線電流IDC2として検出され、タイミングt4−t5間においてV相電流ivが母線電流IDC2として検出されることになる。
タイミングt2の直後から母線電流IDC2は増加してゆき、タイミングt2とt3の略中間のタイミングにおいて、母線電流IDC2は最大値1.0をとる。その中間のタイミングからタイミングt3に向かうにつれて母線電流IDC2は減少してゆき、タイミングt3の直前における母線電流IDC2は約0.6となる。そして、検出不可期間に属するタイミングt3において、母線電流IDC2はゼロとなる。タイミングt3におけるキャリア周期内のサンプリングタイミングST2は、図8のタイミングT3とT4との間の期間に属し、その期間内において母線電流IDC2はゼロとなるからである(図5(d)も参照)。検出される母線電流IDC2がゼロに維持される期間は、タイミングt4まで継続する。タイミングt4においてゼロであった母線電流IDC2は、タイミングt4の直後において約0.6まで急峻に立ち上がる。タイミングt4−t5間における母線電流IDC2の変化の様子は、タイミングt2−t3間におけるそれと同様である。
母線電流IDC2が上述のように変化するため、母線電流IDC2そのものの電流値を監視することによって、母線電流IDC2から最大相の相電流を検出可能な期間とそうでない期間とを区別することができる。また、タイミングt2等において、母線電流IDC2が急峻に変化するため、母線電流IDC2の一次微分又は二次微分を監視することによっても、この区別は可能である。
各キャリア周期のサンプリングタイミングST1にて検出される母線電流(以下、IDC1にて表す)に対しても、同様である。例えば、タイミングt2とt3の略中間のタイミングでは、V相電圧とW相電圧の電圧レベルが接近しすぎて、母線電流IDC1から最小相の相電流を検出することができなくなり、そのタイミング近辺において母線電流IDC1は急峻に変化するからである。従って、母線電流IDC1そのものの電流値、母線電流IDC1の一次微分又は二次微分を監視することによって、母線電流IDC1から最小相の相電流を検出可能な期間とそうでない期間とを区別することができる。母線電流IDC1の最大値も、母線電流IDC2におけるそれと同じ「1.0」であり、母線電流IDC1の値は、0から1.0の間の値をとる。
母線電流IDC1及びIDC2は、キャリア周期をサンプリング周期とする離散値であるため、母線電流IDC1の一次微分及び二次微分は、それぞれ母線電流IDC1の一次差分及び二次差分を算出することによって求められ、母線電流IDC2の一次微分及び二次微分は、それぞれ母線電流IDC2の一次差分及び二次差分を算出することによって求められる。
第1、第2、第3、・・・、第(n−1)及び第n番目のキャリア周期の順番で各キャリア周期が訪れるものとし(nは3以上の整数)、第n番目のキャリア周期内のサンプリングタイミングST1にて検出される母線電流IDC1の値をIDC1[n]にて表す。そうすると、第n番目のキャリア周期についての母線電流IDC1の一次差分値DA1[n]及び二次差分値DB1[n]は、下記式(1)及び(2)に従って算出される。
DA1[n]=IDC1[n]−IDC1[n−1] ・・・(1)
DB1[n]=(IDC1[n]−IDC1[n−1])
−(IDC1[n−1]−IDC1[n−2]) ・・・(2)
DA1[n]=IDC1[n]−IDC1[n−1] ・・・(1)
DB1[n]=(IDC1[n]−IDC1[n−1])
−(IDC1[n−1]−IDC1[n−2]) ・・・(2)
同様に、第n番目のキャリア周期内のサンプリングタイミングST2にて検出される母線電流IDC2の値をIDC2[n]にて表す。そうすると、第n番目のキャリア周期についての母線電流IDC2の一次差分値DA2[n]及び二次差分値DB2[n]は、下記式(3)及び(4)に従って算出される。
DA2[n]=IDC2[n]−IDC2[n−1] ・・・(3)
DB2[n]=(IDC2[n]−IDC2[n−1])
−(IDC2[n−1]−IDC2[n−2]) ・・・(4)
DA2[n]=IDC2[n]−IDC2[n−1] ・・・(3)
DB2[n]=(IDC2[n]−IDC2[n−1])
−(IDC2[n−1]−IDC2[n−2]) ・・・(4)
検出可能期間は、最小相の相電流と最大相の相電流の双方を検出可能な期間であるため、制御部3は、母線電流IDC1及び母線電流IDC2の双方に基づいて、現時点が検出可能期間と検出不可期間の何れに属するかを判断する。この判断を行うための処理を、以下、「期間判断処理」とも呼ぶ。また、説明の便宜上、以下、第n番目のキャリア周期内に属する時点が現時点であるとする。
[第1期間判断処理]
母線電流IDC1及びIDC2そのものの値に基づいて期間判断処理を行う場合は、逐次検出される母線電流IDC1及びIDC2の値と所定の判定閾値THDとを比較することによって、現時点が検出可能期間と検出不可期間の何れに属するかを判断する。即ち、下記式(5a)及び(5b)の双方が満たされる場合、現時点は検出可能期間に属すると判断し、下記式(5a)及び(5b)の何れか一方でも満たされない場合は、現時点は検出不可期間に属すると判断する。式(5a)及び(5b)に基づく期間判断処理を、第1期間判断処理と呼ぶ。尚、式(5a)及び(5b)における算術記号“>”を“≧”に置換することも可能である。
IDC1[n]>THD ・・・(5a)
IDC2[n]>THD ・・・(5b)
母線電流IDC1及びIDC2そのものの値に基づいて期間判断処理を行う場合は、逐次検出される母線電流IDC1及びIDC2の値と所定の判定閾値THDとを比較することによって、現時点が検出可能期間と検出不可期間の何れに属するかを判断する。即ち、下記式(5a)及び(5b)の双方が満たされる場合、現時点は検出可能期間に属すると判断し、下記式(5a)及び(5b)の何れか一方でも満たされない場合は、現時点は検出不可期間に属すると判断する。式(5a)及び(5b)に基づく期間判断処理を、第1期間判断処理と呼ぶ。尚、式(5a)及び(5b)における算術記号“>”を“≧”に置換することも可能である。
IDC1[n]>THD ・・・(5a)
IDC2[n]>THD ・・・(5b)
判定閾値THDは、0よりも大きな値に設定される。望ましくは、母線電流IDC1又はIDC2の最大値(1.0)の半分以下の値を基準として、判定閾値THDを設定する。つまり、THD≦0.5、とするとよい。
THD≦0.5とすることの根拠を、図11を参照して説明する。図11に、図10のタイミングt3近辺における電流状態を示す。上述したように、中性点14に流れ込む方向の電流の極性を正とし、中性点14から流れ出す方向の電流の極性を負とする。タイミングt2とt3の中間時点では、iu、iv及びiwは、夫々、1.0、−0.5及び−0.5となる。その後、タイミングt3に向かうにつれて、iuは1.0から0.5に向けて変化してゆく一方で、iwは−0.5から−1.0に向かって変化してゆく。また、タイミングt3に向かうにつれて、ivは、−0.5から0.5に向けて変化してゆく。そして、タイミングt3とt4の中間時点では、iu、iv及びiwは、夫々、0.5.0.5及び−1.0となる。タイミングt3とt4の中間時点では、U相電圧とV相電圧の電圧レベルが同じとなるため母線電流IDC2から相電流を検出することができなくなるが、タイミングt3においても、U相電圧とV相電圧の電圧レベル差が小さすぎるため母線電流IDC2から最大相のU相電流を検出することができず、タイミングt3において検出される母線電流IDC2は時間TAの存在により(図8参照)ゼロとなる。一方において、タイミングt3の直前にて検出される母線電流IDC2は、1.0から0.5の間であって且つ0.5に近い値をとる。
このように、母線電流IDC2が最大相の相電流を表しているなら母線電流IDC2は0.5以上となるはずであり、母線電流IDC2が最大相の相電流を検出できていないのなら母線電流IDC2はゼロ(或いは略ゼロ)となる。従って、判定閾値THDは0.5以下に設定すべきであり、そのように判定閾値THDを設定すれば、現時点が検出可能期間と検出不可期間の何れに属するかを良好に判断することができる。例えば、マージンを考慮して、THDを0.3とする。
[第2期間判断処理]
母線電流IDC1及びIDC2の各一次差分値に基づいて期間判断処理を行う場合は、母線電流IDC1及びIDC2の各一次差分値と所定の判定閾値THFとを比較することによって、現時点が検出可能期間と検出不可期間の何れに属するかを判断する。一次差分値に基づく期間判断処理を第2期間判断処理と呼ぶ。第2期間判断処理(及び後述の第3期間判断処理)の詳細については、後述の第1実施例の中で説明する。
母線電流IDC1及びIDC2の各一次差分値に基づいて期間判断処理を行う場合は、母線電流IDC1及びIDC2の各一次差分値と所定の判定閾値THFとを比較することによって、現時点が検出可能期間と検出不可期間の何れに属するかを判断する。一次差分値に基づく期間判断処理を第2期間判断処理と呼ぶ。第2期間判断処理(及び後述の第3期間判断処理)の詳細については、後述の第1実施例の中で説明する。
[第3期間判断処理]
母線電流IDC1及びIDC2の各二次差分値に基づいて期間判断処理を行う場合は、母線電流IDC1及びIDC2の各二次差分値と所定の判定閾値THFとを比較することによって、現時点が検出可能期間と検出不可期間の何れに属するかを判断する。二次差分値に基づく期間判断処理を第3期間判断処理と呼ぶ。
母線電流IDC1及びIDC2の各二次差分値に基づいて期間判断処理を行う場合は、母線電流IDC1及びIDC2の各二次差分値と所定の判定閾値THFとを比較することによって、現時点が検出可能期間と検出不可期間の何れに属するかを判断する。二次差分値に基づく期間判断処理を第3期間判断処理と呼ぶ。
上述の期間判断処理を適用した実施例として、以下に、第1〜第4実施例を例示する。或る実施例(特に第1実施例)に記載した事項は、矛盾なき限り、他の実施例にも適用される。
<<第1実施例>>
まず、第1実施例について説明する。図12は、第1実施例に係るモータ駆動システムのブロック図である。図12のモータ駆動システムは、図1に示したものと同じモータ1、インバータ2、直流電源4及び電流センサ5を備えると共に、制御部3aを備える。制御部3aは、図1の制御部3の一具体例であり、制御部3が有する機能を実現する。制御部3aには、符号21〜26にて参照される各部位が設けられる。モータ駆動システムを構成する各部位は、必要に応じてモータ駆動システム内で生成される値の全てを自由に利用可能となっている。
まず、第1実施例について説明する。図12は、第1実施例に係るモータ駆動システムのブロック図である。図12のモータ駆動システムは、図1に示したものと同じモータ1、インバータ2、直流電源4及び電流センサ5を備えると共に、制御部3aを備える。制御部3aは、図1の制御部3の一具体例であり、制御部3が有する機能を実現する。制御部3aには、符号21〜26にて参照される各部位が設けられる。モータ駆動システムを構成する各部位は、必要に応じてモータ駆動システム内で生成される値の全てを自由に利用可能となっている。
図12のモータ駆動システム内の各部位についての詳細な説明の前に、各種の状態量(状態変数)の説明及び定義等を行う。図13は、モータ1の解析モデル図である。図13には、U相、V相、W相の電機子巻線固定軸が示されている。6aは、モータ1の回転子6(図1参照)に設けられた永久磁石である。永久磁石6aが作る磁束と同じ速度で回転する回転座標系において、永久磁石6aが作る磁束の方向をd軸にとる。また、図示していないが、d軸から電気角で90度進んだ位相にq軸をとる。
また、モータ駆動システム内では、d軸に対応する制御上の軸としてγ軸が定義され、q軸に対応する制御上の軸としてδ軸が定義される。モータ1にベクトル制御を行うに際して回転子位置検出用の位置センサを用いない場合は、γ軸及びδ軸が制御上の推定軸として推定される。δ軸は、γ軸から電気角で90度進んだ軸である(図13において不図示)。通常、ベクトル制御は、γ軸及びδ軸がd軸及びq軸と一致するように実施される。d軸とq軸は、実軸の回転座標系の座標軸であり、それらを座標軸に選んだ座標をdq座標とよぶ。γ軸とδ軸は、制御上の回転座標系の座標軸であり、それらを座標軸に選んだ座標をγδ座標とよぶ。
d軸(及びq軸)は回転しており、その回転速度をωにて表す。γ軸(及びδ軸)も回転しており、その回転速度をωeにて表す。ω及びωeは、電気角における回転速度である。また、dq座標において、d軸の位相をU相の電機子巻線固定軸を基準としてθにより表す。同様に、γδ座標において、γ軸の位相をU相の電機子巻線固定軸を基準としてθeにより表す。そうすると、d軸とγ軸との軸誤差Δθは、Δθ=θ―θeで表される。U相の電機子巻線固定軸を基準としたd軸の位相及びγ軸の位相を、回転子位置と呼ぶ。
また、インバータ2からモータ1に印加される全体のモータ電圧をVaにて表し、インバータ2からモータ1に供給される全体のモータ電流をIaにて表す。そして、
モータ電圧Vaのγ軸成分及びδ軸成分を、夫々γ軸電圧vγ及びδ軸電圧vδで表し、
モータ電流Iaのγ軸成分及びδ軸成分を、夫々γ軸電流iγ及びδ軸電流iδで表す。
モータ電圧Vaのγ軸成分及びδ軸成分を、夫々γ軸電圧vγ及びδ軸電圧vδで表し、
モータ電流Iaのγ軸成分及びδ軸成分を、夫々γ軸電流iγ及びδ軸電流iδで表す。
γ軸電圧vγ及びδ軸電圧vδに対する指令値(電圧指令値)を、夫々、γ軸電圧指令値vγ*及びδ軸電圧指令値vδ*にて表す。vγ*及びvδ*は、夫々、vγ及びvδが追従すべき電圧(電圧値)を表す。
γ軸電流iγ及びδ軸電流iδに対する指令値(電流指令値)を、夫々、γ軸電流指令値iγ*及びδ軸電流指令値iδ*にて表す。iγ*及びiδ*は、夫々、iγ及びiδが追従すべき電流(電流値)を表す。
図12のモータ駆動システム内の各部位の動作について説明する。モータ電流検出部21は、座標変換器25から出力される三相電圧指令値(vu *、vv *及びvw *)に基づいてサンプリングタイミングST1及びST2を特定し、各サンプリングタイミングST1及びST2にて電流センサ5からのアナログ出力信号をサンプリングしてA/D変換することにより、母線電流IDC1及びIDC2を検出する。
モータ電流検出部21は、逐次与えられる母線電流IDC1及びIDC2に基づいて、上述の期間判断処理を実行する。即ち、現時点が検出可能期間と検出不可期間の何れに属するかを判断する。現時点が検出可能期間に属すると判断した場合、モータ電流検出部21は、三相電圧指令値に基づいて現時点が第1〜第6モードの内の何れのモードに属しているかを特定し(図6参照)、特定したモードと現時点にて検出した母線電流IDC1及びIDC2とに基づいてU相電流iu及びV相電流ivを算出する。算出値は、座標変換器22に出力される。この際、必要であれば、U相電流iu、V相電流iv及びW相電流iwの総和が0であることを利用する。本実施例に係る期間判断処理の手法と現時点が検出不可期間に属すると判断された場合の制御部3aの動作説明については後述するものとし、先に、制御部3a内の各部位の動作について説明する。
座標変換器22は、位置・速度推定器26(以下、単に推定器26という)から与えられる回転子位置θeに基づいてU相電流iu及びV相電流ivをγδ軸上に座標変換することによりγ軸電流iγ及びδ軸電流iδを算出して出力する。
速度制御部23は、制御部3aの内部又は外部に設けられた回転速度指令値発生部(不図示)から与えられる回転速度指令値ω*と推定器26から与えられる回転速度ωeを参照し、比例積分制御などを用いることによって、速度偏差(ω*−ωe)がゼロに収束するようにγ軸電流指令値iγ*及びδ軸電流指令値iδ*を算出して出力する。
電流制御部24は、速度制御部23にて算出されたiγ*及びiδ*と座標変換器22からのiγ及びiδを参照し、比例積分制御などを用いることによって、電流誤差(iγ*−iγ)及び(iδ*−iδ)が共にゼロに収束するようにγ軸電圧指令値vγ*及びδ軸電圧指令値vδ*を算出して出力する。
座標変換器25は、推定器26から出力される回転子位置θeに基づいて電流制御部24から与えられたvγ*及びvδ*を三相の固定座標軸上に座標変換することにより、三相電圧指令値(vu *、vv *及びvw *)を算出して出力する。
推定器26は、座標変換器22からのiγ及びiδ並びに電流制御部24からのvγ*及びvδ*の内の全部又は一部を用いて、比例積分制御などを行うことにより、d軸とγ軸との間の軸誤差Δθ(図13参照)がゼロに収束するように回転速度ωeを推定し、推定した回転速度ωeを積分することによって回転子位置θeを推定する。回転子位置θe及び回転速度ωeの推定手法として古くから様々な手法が提案されており、推定器26は公知の何れの手法をも採用可能である。例えば、本出願人が提案する特開2007−53829号公報に記載の手法を用いればよい。推定器26によって推定された回転子位置θeは座標変換器22及び25に出力され、推定器26によって推定された回転速度ωeは速度制御部23に出力される。
インバータ2は、座標変換器25からの三相電圧指令値に従ってインバータ2内の各アームのスイッチングを制御することにより、制御部3aで生成された指令値(iγ*及びiδ*等)に応じたモータ電流Iaをモータ1に供給してモータ1を駆動する。
[動作フローチャート]
図14を参照して、期間判断処理の手法と、その処理結果に従った制御部3aの動作について説明する。図14は、期間判断処理に特に着目した、図12の制御部3aの動作フローチャートである。図14は、一次差分値を利用する第2期間判断処理を採用する場合の動作フローチャートである。図14と共に、図15も参照する。図15において、波形110は、母線電流IDC1の一次差分値の時間変化を表しており、波形120は、母線電流IDC2の一次差分値の時間変化を表している。最小相の相電圧と中間相の相電圧との電圧レベル差が近接する時間領域において母線電流IDC1の一次差分値は大きく変動し、最大相の相電圧と中間相の相電圧との電圧レベル差が近接する時間領域において母線電流IDC2の一次差分値は大きく変動する。
図14を参照して、期間判断処理の手法と、その処理結果に従った制御部3aの動作について説明する。図14は、期間判断処理に特に着目した、図12の制御部3aの動作フローチャートである。図14は、一次差分値を利用する第2期間判断処理を採用する場合の動作フローチャートである。図14と共に、図15も参照する。図15において、波形110は、母線電流IDC1の一次差分値の時間変化を表しており、波形120は、母線電流IDC2の一次差分値の時間変化を表している。最小相の相電圧と中間相の相電圧との電圧レベル差が近接する時間領域において母線電流IDC1の一次差分値は大きく変動し、最大相の相電圧と中間相の相電圧との電圧レベル差が近接する時間領域において母線電流IDC2の一次差分値は大きく変動する。
図14に示されるステップS11〜S21及びS30の各処理は、図12のモータ電流検出部21によって実行される。ステップS31にて実行される電流補償処理は、モータ電流検出部21によって、或いは、モータ電流検出部21を含む制御部3a全体で行われる。ステップS11〜S21並びにS30及びS31から成るループ処理は、キャリア周期ごとに1回実行される。
モータ電流検出部21は、母線電流IDC1から最小相の相電流を検出可能か否かを表すフラグとしてFLAG1を導入し、母線電流IDC2から最大相の相電流を検出可能か否かを表すフラグとしてFLAG2を導入する。フラグにおける1は検出可能を意味し、フラグにおける0は検出不能を意味する。
検出可能期間においてFLAG1及びFLAG2に初期値1が代入されたものとする。その後、新たなキャリア周期が訪れるごとに、ステップS11に移行する。ステップS11では電流センサ5から母線電流IDC1及びIDC2が検出される。次に、ステップS12において、FLAG1の状態が確認され、FLAG1=1である時にはステップS13に移行する一方、FLAG1=0である時にはステップS18に移行する。ステップS13では、FLAG2の状態が確認され、FLAG2=1である時にはステップS14に移行する一方、FLAG2=0である時にはステップS20に移行する。
上述したように、第n番目のキャリア周期に属する時点を現時点とする。第(n−1)番目のキャリア周期が検出可能期間に属している場合、FLAG1及びFLAG2は共に1となっているため、ステップS14に移行する。ステップS14では、母線電流IDC1が急激に減少したか否かを判断する。これは、図15における負のスパイク111が検出されたか否かを判断していることに等しい。実際には、ステップS14において、下記式(6a)を満たすか否かが判断される(尚、上述したように、IDC1[n]は、第n番目のキャリア周期における母線電流IDC1の値を表す)。判定閾値THFは正の所定値とされるが、図11を参照して説明した内容から理解されるように、THF≦0.5、を満たすように判定閾値THFを設定することが望ましい。例えば、マージンを考慮して、THFを0.3とする。尚、式(6a)における算術記号“<”を“≦”に置換することも可能である。
DA1[n]=IDC1[n]−IDC1[n−1]<−THF ・・・(6a)
DA1[n]=IDC1[n]−IDC1[n−1]<−THF ・・・(6a)
ステップS14において、式(6a)が満たされる場合はステップS15に移行し、式(6a)が満たされない場合はステップS16に移行する。図15における負のスパイク111が検出された後は、正のスパイク112が検出されるまで母線電流IDC1から最小相の相電流を検出することができない。故に、ステップS15においてFLAG1にゼロを代入した後、ステップS31に移行する。
ステップS31に至った場合、図12のモータ電流検出部21は現時点が検出不可期間に属すると判断し、電流が検出できないことを補償するための処理を実行する。この処理を電流補償処理と呼ぶ。電流補償処理については後述する。ステップS31において電流補償処理を行った後、次のキャリア周期が訪れると再度ステップS11に戻る。
ステップS16では、母線電流IDC2が急激に減少したか否かを判断する。これは、図15における負のスパイク121が検出されたか否かを判断していることに等しい。実際には、ステップS16において、下記式(6b)を満たすか否かが判断される。尚、式(6b)における算術記号“<”を“≦”に置換することも可能である。
DA2[n]=IDC2[n]−IDC2[n−1]<−THF ・・・(6b)
DA2[n]=IDC2[n]−IDC2[n−1]<−THF ・・・(6b)
ステップS16において、式(6b)が満たされる場合はステップS17に移行し、式(6b)が満たされない場合はステップS30に移行する。図15における負のスパイク121が検出された後は、正のスパイク122が検出されるまで母線電流IDC2から最大相の相電流を検出することができない。故に、ステップS17においてFLAG2にゼロを代入した後、ステップS31に移行してステップS31における処理を実行する。
ステップS30に至った場合、図12のモータ電流検出部21は現時点が検出可能期間に属すると判断し、最新のステップS11にて検出された母線電流IDC1及びIDC2からU相電流iu及びV相電流ivを算出して、算出値を座標変換器22に送る。この後、iu及びivに基づく、制御部3a内の各部位の動作が実行される。つまり、検出可能期間では、母線電流IDC1及びIDC2に基づいてモータ1がベクトル制御されることになる。ステップS30に移行して必要な処理が行われた後、次のキャリア周期が訪れると再度ステップS11に戻る。
過去において負のスパイク111(図15参照)が検出され、FLAG1が0となっていると、ステップS12からステップS18に移行する。ステップS18では、母線電流IDC1が急激に増加したか否かを判断する。これは、図15における正のスパイク112が検出されたか否かを判断していることに等しい。実際には、ステップS18において、下記式(7a)を満たすか否かが判断される。尚、式(7a)における算術記号“>”を“≧”に置換することも可能である。
DA1[n]=IDC1[n]−IDC1[n−1]>THF ・・・(7a)
DA1[n]=IDC1[n]−IDC1[n−1]>THF ・・・(7a)
ステップS18において式(7a)が満たされる場合は、検出不可期間から検出可能期間に移行したと考えられるため、ステップS19に移行してFLAG1に1を代入した後、ステップS30に移行してステップS30における処理を実行する。一方、ステップS18において式(7a)が満たされない場合は、現時点が未だ検出不可期間に属しているものと考えられるため、ステップS31に移行してステップS31における処理を実行する。
過去において負のスパイク121(図15参照)が検出され、FLAG2が0となっていると、ステップS13からステップS20に移行する。ステップ20では、母線電流IDC2が急激に増加したか否かを判断する。これは、図15における正のスパイク122が検出されたか否かを判断していることに等しい。実際には、ステップS20において、下記式(7b)を満たすか否かが判断される。尚、式(7b)における算術記号“>”を“≧”に置換することも可能である。
DA2[n]=IDC2[n]−IDC2[n−1]>THF ・・・(7b)
DA2[n]=IDC2[n]−IDC2[n−1]>THF ・・・(7b)
ステップS20において式(7b)が満たされる場合は、検出不可期間から検出可能期間に移行したと考えられるため、ステップS21に移行してFLAG2に1を代入した後、ステップS30に移行してステップS30における処理を実行する。一方、ステップS20において式(7b)が満たされない場合は、現時点が未だ検出不可期間に属しているものと考えられるため、ステップS31に移行してステップS31における処理を実行する。
母線電流の一次差分値を利用する第2期間判断処理を適用した場合の動作の流れを説明したが、第2期間判断処理の代わりに、母線電流そのものの値に基づく第1期間判断処理を用いるようにしてもよい。第1期間判断処理を用いる場合は、各キャリア周期において、母線電流IDC1及びIDC2を検出し、上記式(5a)及び(5b)が満たされるか否かを判断する。そして、式(5a)及び(5b)の双方が満たされる場合にステップS30の処理を実行し、そうでない場合はステップS31の処理を実行すればよい。
また、第2期間判断処理の代わりに、母線電流の二次差分値に基づく第3期間判断処理を用いるようにしてもよい。図9(a)、(b)及び(c)から理解されるように、検出可能期間から検出不可期間に遷移する際、一次差分値だけでなく二次差分値にも負のスパイクが観測され、検出不可期間から検出可能期間に遷移する際、一次差分値だけでなく二次差分値にも正のスパイクが観測される。従って、第3期間判断処理を用いる場合における動作の流れは、図14に示すそれと同様である。但し、第3期間判断処理を用いる場合は、ステップS14、S16、S18及びS20において、一次差分値DA1[n]及びDA2[n]の代わりに、それぞれ二次差分値DB1[n]及びDB2[n]を用いるようにする。
[電流補償処理について]
図14のステップS31にて実行される電流補償処理について説明する。電流補償処理では、例えば、過去に検出されたiu及びivに基づいて現時点のiu及びivを算出する。例えば、第(n−1)番目のキャリア周期が検出可能期間に属し、且つ、第n〜第(n+6)番目のキャリア周期が検出不可期間に属していると判断された場合、第(n−1)番目のキャリア周期にて検出された母線電流IDC1及びIDC2に基づくU相電流iu及びV相電流ivを、第n〜第(n+6)番目のキャリア周期におけるU相電流iu及びV相電流ivとして流用して座標変換器22に与えるようにする。
図14のステップS31にて実行される電流補償処理について説明する。電流補償処理では、例えば、過去に検出されたiu及びivに基づいて現時点のiu及びivを算出する。例えば、第(n−1)番目のキャリア周期が検出可能期間に属し、且つ、第n〜第(n+6)番目のキャリア周期が検出不可期間に属していると判断された場合、第(n−1)番目のキャリア周期にて検出された母線電流IDC1及びIDC2に基づくU相電流iu及びV相電流ivを、第n〜第(n+6)番目のキャリア周期におけるU相電流iu及びV相電流ivとして流用して座標変換器22に与えるようにする。
或いは例えば、特開2004−64903号公報に記載の電流補償処理を利用しても良い。即ち例えば、現時点が検出不可期間に属する場合、過去に検出したU相電流iu及びV相電流ivを座標変換して得たγ軸電流iγ及びδ相電流iδを、再度、回転子位置θeを用いてU相電流iu及びV相電流ivに逆変換し、この逆変換によって得られたU相電流iu及びV相電流ivを現時点におけるU相電流iu及びV相電流ivとして利用してモータ1をベクトル制御する。
或いは、例えば、検出可能期間において電圧指令値を保持しておき、検出不可期間において、その保持された電圧指令値を用いるようにしてもよい。この電圧指令値の保持を利用した手法も、電流補償処理を実現する手法の一つである。図16を参照して、電圧指令値の保持を利用した手法を説明する。今、第(n−1)番目のキャリア周期が検出可能期間に属し、且つ、第n〜第(n+6)番目のキャリア周期が検出不可期間に属し、且つ、第(n+7)番目のキャリア周期が検出可能期間に属していると判断された場合を想定する。また、第n番目のキャリア周期に対応するvγ*及びvδ*を夫々vγ*[n]及びvδ*[n]で表し、第n番目のキャリア周期に対応するθe及びωeを夫々θe[n]及びωe[n]で表す。
この場合、第(n−1)番目のキャリア周期にて検出された母線電流IDC1及びIDC2からU相電流iu及びV相電流ivが求められ、この求められたU相電流iu及びV相電流ivに基づいて、座標変換器22、速度制御部23、電流制御部24及び推定器26の各処理を介してθe[n−1]及びωe[n−1]並びにvγ*[n−1]及びvδ*[n−1]が算出される。このvγ*[n−1]及びvδ*[n−1]は、第(n−1)番目のキャリア周期に対応するvγ*及びvδ*として、座標変換器25に与えられる。
第n〜第(n+6)番目のキャリア周期では、iu、iv、iγ及びiδの算出を休止し、座標変換器25にvγ*及びvδ*としてvγ*[n−1]及びvδ*[n−1]を与えるようにする。第(n+7)番目のキャリア周期では母線電流IDC1及びIDC2からU相電流iu及びV相電流ivが求められ、この求められたU相電流iu及びV相電流ivに基づいて、座標変換器22、速度制御部23、電流制御部24及び推定器26の各処理を介してvγ*[n+7]及びvδ*[n+7]が算出される。このvγ*[n+7]及びvδ*[n+7]は、第(n+7)番目のキャリア周期に対応するvγ*及びvδ*として、座標変換器25に与えられる。
第n〜第(n+6)番目のキャリア周期において、推定器26は、iγ及びiδに基づくθe及びωeの推定を一時的に休止する。その代わり、推定器26は、θe[n−1]を基準にし、検出不可期間内において回転子6がωe[n−1]の回転速度で回転し続けるものと仮定して検出不可期間内におけるθe(即ち、θe[n]〜θe[n+6])を推定する。従って、検出不可期間内におけるωe(即ち、ωe[n]〜ωe[n+6])はωe[n−1]と同じとされる。定常状態において、回転子は略一定速度で回転し続けるため、上記のように検出不可期間内におけるθe及びωeを推定しても実害は少ない。
検出不可期間内においてvγ*及びvδ*を保持し、この保持されたvγ*及びvδ*に基づいてモータ1を制御する手法も、検出可能期間において検出された母線電流に基づいてモータ1を制御する手法に属する。検出不可期間においてvγ*及びvδ*として用いられるvγ*[n−1]及びvδ*[n−1]は、検出可能期間において検出された母線電流に基づいて求められるからである。
[実際の電流波形]
図9(a)、(b)及び(c)のシミュレーション結果に対応する、電流の実測結果を図17(a)、(b)及び(c)に示す。図17(a)は、実測された母線電流IDC2の時間変化を示す。図17(b)は、実測された母線電流IDC2の一次差分値の時間変化を示す。図17(c)は、実測された母線電流IDC2の二次差分値の時間変化を示す。
図9(a)、(b)及び(c)のシミュレーション結果に対応する、電流の実測結果を図17(a)、(b)及び(c)に示す。図17(a)は、実測された母線電流IDC2の時間変化を示す。図17(b)は、実測された母線電流IDC2の一次差分値の時間変化を示す。図17(c)は、実測された母線電流IDC2の二次差分値の時間変化を示す。
図9(a)等に対応する理想状態と異なり、実際には、ベクトル制御で用いるモータパラメータと真値との誤差や回転子位置の推定誤差などに由来して、母線電流の電流波形は歪みを持つが、上述の手法によって検出不可期間を判定することができる。
従来より、2つの相電圧の差の電圧閾値を設定しておき、その差と電圧閾値とを比較することによって検出不可期間を判定する手法が存在する。しかしながら、電圧閾値は、様々な要因を考慮しつつ余裕をもって定めておく必要があるため、この従来手法では、実際に2相分の電流を検出可能であるにも拘らず2相分の電流を検出できないと判断される場合が生じる。つまり、2相分の電流を検出可能な区間を最大限に利用することができない。また、最適な電圧閾値はモータの駆動条件に依存して変化するため、様々な駆動条件に適応した電圧閾値を駆動条件ごとに予め求めておく必要があり、設計に多大な手間がかかる。
一方、本実施例によれば、実際に検出された母線電流からリアルタイムに検出不可期間を判定することができるため、2相分の電流を検出可能な区間を最大限に利用することができる。この結果、モータ1に対する制御の精度が向上する。また、電圧閾値を求めておく必要もないため、設計における手間も簡素化される。
尚、現時点において検出された母線電流を用いて現時点が検出可能期間と検出不可期間の何れに属するかを判断する手法を説明したが、任意の着目時点がそれらの何れに属するかの判断を過去の母線電流の検出結果に基づいて行うことも可能である。
この判断手法では、検出不可期間から検出可能期間に移行するタイミング(以下、第1移行タイミングと呼ぶ)や検出可能期間から検出不可期間に移行するタイミング(以下、第2移行タイミングと呼ぶ)が周期的に訪れることを利用する。まず、上述してきた手法を用いて各時点が検出可能期間と検出不可期間の何れに属するかを判断する。そして例えば、その判断結果に基づいて、連続する第1移行タイミング(例えば、図9(a)のt2、t4及びt6)を図示されないメモリに逐次記憶する。
そして、記憶された隣接する第1移行タイミング間(例えばt2−t4間)の間隔に基づいて、次回以降の第1移行タイミングを推定する。例えば、記憶された連続する第1移行タイミングがタイミングtF[1]、tF[2]及びtF[3]を含んでいる場合、第1移行タイミングtF[1]−tF[2]間の間隔と第1移行タイミングtF[2]−tF[3]間の間隔の平均間隔を算出する。そして、第1移行タイミングtF[3]から該平均間隔が経過した時点が次の第1移行タイミングtF[4]であると推定する。ここで、tF[1]、tF[2]、tF[3]及びtF[4]は、この順番で連続して訪れる第1移行タイミングである。また、上記の平均間隔を2つの間隔を平均化することによって得ているが、それを3つ以上の間隔を平均化することによって得るようにしてもよい。
同様の推定処理を第2移行タイミングに対しても行うことができる。現時点以降に訪れる第1及び第2移行タイミングが推定できれば、検出可能期間と検出不可期間の何れに属するのかの判断を任意の着目時点に対して行うことができる。そして、着目時点が検出可能期間に属しているならば着目時点における母線電流から着目時点における相電流を検出し、着目時点が検出不可期間に属しているならば着目時点に対して上述の電流補償処理を実行すればよい。
<<第2実施例>>
第1実施例に係るモータ駆動システムでは、d軸とγ軸との間の軸誤差Δθをゼロに収束させるベクトル制御、即ち、γ軸をd軸に追従させるベクトル制御を実施しているが、γ軸をd軸と異なる軸に追従させるベクトル制御を実施するようにしてもよい。第1実施例に対するこの変形例を、第2実施例とする。例えば、非特許文献;比田、他2名,「最大トルク制御軸に基づく永久磁石同期モータの位置センサレスベクトル制御」,平成18年電気学会産業応用部門大会講演論文集,電気学会産業応用部門,平成18年8月,p.385−388(I−385〜I−388)、に記載されているようなdm軸を定義し、γ軸をdm軸に追従させるベクトル制御を実施するようにしてもよい。
第1実施例に係るモータ駆動システムでは、d軸とγ軸との間の軸誤差Δθをゼロに収束させるベクトル制御、即ち、γ軸をd軸に追従させるベクトル制御を実施しているが、γ軸をd軸と異なる軸に追従させるベクトル制御を実施するようにしてもよい。第1実施例に対するこの変形例を、第2実施例とする。例えば、非特許文献;比田、他2名,「最大トルク制御軸に基づく永久磁石同期モータの位置センサレスベクトル制御」,平成18年電気学会産業応用部門大会講演論文集,電気学会産業応用部門,平成18年8月,p.385−388(I−385〜I−388)、に記載されているようなdm軸を定義し、γ軸をdm軸に追従させるベクトル制御を実施するようにしてもよい。
dm軸は、qm軸から電気角で90度遅れた軸である。qm軸とは、最大トルク制御を実現する際にモータ1に供給されるべき電流ベクトルの向きと向きが一致する回転軸である。モータ1に供給されるべき電流ベクトルとは、モータ1に供給されるべき電流をベクトルにて表現したものを指す。また、最大トルク制御を実現する際にモータ1に供給されるべき電流ベクトルの向きと向きが一致する回転軸よりも更に位相が進んだ回転軸をqm軸とするようにしてもよい。
γ軸をdm軸に追従させるベクトル制御を実施する場合、例えば、以下のように処理すればよい。図12における推定器26が、iγ及びiδ並びにvγ*及びvδ*の内の全部又は一部を用いてdm軸とγ軸との間の軸誤差Δθmを推定し、比例積分制御を用いて軸誤差Δθmがゼロに収束するように回転子位置θe及びモータ速度ωeを推定する。
<<第3実施例>>
第1及び第2実施例に係るモータ駆動システムは、回転子位置を検出するための位置センサを用いない位置センサレスベクトル制御を行っている。しかしながら、第1及び第2実施例に記載された技術は、位置センサを設けた場合にも有益である。位置センサを設けたモータ駆動システムを第3実施例とする。位置センサを用いる場合は、第1(又は第2)実施例に係るモータ駆動システムを、以下のように変形すればよい。
第1及び第2実施例に係るモータ駆動システムは、回転子位置を検出するための位置センサを用いない位置センサレスベクトル制御を行っている。しかしながら、第1及び第2実施例に記載された技術は、位置センサを設けた場合にも有益である。位置センサを設けたモータ駆動システムを第3実施例とする。位置センサを用いる場合は、第1(又は第2)実施例に係るモータ駆動システムを、以下のように変形すればよい。
図12のモータ駆動システムから推定器26を削除し、位置センサによって検出されたd軸の位相をθeとして取り扱って、座標変換器22及び25に与える。このθeは、理想的には図13のθと完全に一致する。また、位置センサの検出に基づくθeを速度算出用微分器(不図示)にて微分することによってωeを算出し、そのωeを速度制御部23に与える。
<<第4実施例>>
上述してきた、母線電流に基づいて検出不可期間を判定する手法は、モータ駆動システム以外のシステムに対しても適用可能である。この手法を系統連系システムに適用する実施例を第4実施例とする。
上述してきた、母線電流に基づいて検出不可期間を判定する手法は、モータ駆動システム以外のシステムに対しても適用可能である。この手法を系統連系システムに適用する実施例を第4実施例とする。
図18は、第4実施例に係る系統連系システムの全体構成図である。図18の系統連系システムでは、太陽電池で発電した電力を三相式のインバータを用いて三相の系統に連系する。この種の系統連系に関する制御技術は、例えば、文献“山田、他2名,「電流制御形正弦波電圧連系三相インバータ(Current Controlled Type Sinusoidal Voltage Interconnecting Three-Phase Inverter)」,平成19年電気学会全国大会講演論文集,電気学会,平成19年3月,第4分冊,4−076,p.115”に開示されており、その文献の技術が図18の系統連系システムにも適用される。
図18において、符号304は、直流電源としての太陽電池である。図18には、太陽電池304の等価回路が示されている。太陽電池304は、太陽エネルギーに基づく発電を行い、直流電圧を発生させる。その直流電圧は、負出力端子304bを低電圧側として、正出力端子304aと負出力端子304bとの間に生じる。平滑化コンデンサCdの両端子間には正出力端子304aと負出力端子304bとの間の直流電圧が印加され、平滑化コンデンサCdは該直流電圧に応じた電荷を蓄える。電圧検出器306は、平滑化コンデンサCdの両端子間電圧の電圧値を検出し、検出値を制御部303に送る。
図18の系統連系システムに組み込まれたインバータ2は、図1のそれと同じものである。但し、図18のインバータ2に対する直流電圧は太陽電池304から供給され、インバータ2の3つの出力端子312u、312v及び312wは、夫々、連系用リアクトル(インダクタ)及び屋内配線を介して連系点330u、330v及び330wに接続される。出力端子312u、312v及び312wは、図1のモータ駆動システムにおいては、夫々、端子12u、12v及び12wに接続されていた端子である。
尚、出力端子312u、312v及び312wと連系点330u、330v及び330wとの間に三相変圧器(トランス;不図示)を介在させ、該三相変圧器を用いて系統連系を行うようにしてもよい。この三相変圧器は、インバータ2側と系統側(後述の電力系統340側)との絶縁や変圧を目的として設けられる。また、u、v及びwは、一般的に、三相式のモータにおける各相を表す記号として用いられ、本実施例で説明するような系統連系システムでは、各相を表す記号としてu、v及びw以外の記号(例えば、a、b及びc)が用いられることも多い。しかしながら、説明の便宜上、インバータ2の各相を表す記号としてu、v及びwを用いる。
符号340は、三相交流電力を供給する電力系統(系統側電源)である。電力系統340を、3つの交流電圧源340u、340v及び340wに分解して考えることができ、交流電圧源340u、340v及び340wの夫々は、基準点341を基準として交流電圧を出力する。但し、交流電圧源340u、340v及び340wが出力する交流電圧の位相は、互いに、電気角で120度ずつ異なっている。
電力系統340は、基準点341を基準とした交流電圧源340u、340v及び340wの出力電圧を、夫々、端子342u、342v及び342wから出力する。端子342u、342v及び342wは、夫々、屋外配線を介して連系点330u、330v及び330wに接続される。
異なる連系点間には家電製品等の負荷が接続される。図18に示す例では、連系点330uと330vとの間に線形負荷である負荷335が接続され、連系点330vと330wとの間に非線形負荷である負荷336が接続されている。このため、負荷335は、連系点330u−330v間電圧を駆動電圧として駆動され、負荷336は、連系点330v−330w間電圧を駆動電圧として駆動される。線形負荷とは、オームの法則に従う負荷であり、非線形負荷とは、オームの法則に従わない負荷である。例えば、AC/DCコンバータのような整流回路を含む負荷が負荷336として想定される。
インバータ2は、制御部303から与えられた三相電圧指令値に基づいて各相に対するPWM信号(パルス幅変調信号)を生成し、該PWM信号をインバータ2内の各スイッチング素子の制御端子(ベース又はゲート)に与えることで、各スイッチング素子をスイッチング動作させる。制御部303からインバータ2に供給される三相電圧指令値は、U相電圧指令値vu *、V相電圧指令値vv *及びW相電圧指令値vw *から構成され、vu *、vv *及びvw *によって、夫々、U相電圧vu、V相電圧vv及びW相電圧vwの電圧レベル(電圧値)が表される。そして、インバータ2は、vu *、vv *及びvw *に基づいて、各スイッチング素子のオン(導通)又はオフ(非導通)を制御する。
本実施例において、U相電圧vu、V相電圧vv及びW相電圧vwは、夫々、或る固定電位を有する基準電位点(例えば、基準点341)から見た端子312u、312v及び312wの電圧を指し、U相電流iu、V相電流iv及びW相電流iwは、夫々、端子312u、312v及び312wを介して流れる電流を指す。尚、端子312u、312v又は312wから流れ出す方向の電流の極性を正とする。
上述のように構成することにより、直流電源としての太陽電池304と電力系統340との系統連系が行われ、電力系統340に連係しつつインバータ2からの三相交流電圧に応じた交流電力が負荷335及び336に供給される。
そして、図18の系統連系システムには、上述してきた1シャント電流検出方式が適用される。
電流センサ305は、図1の電流センサ5と同様のものであり、母線313に流れる電流を検出する。この電流を母線電流と呼ぶ。インバータ2において、下アーム9u、9v及び9wの低電圧側は共通結線されて太陽電池304の負出力端子304bに接続される。下アーム9u、9v及び9wの低電圧側が共通結線される配線が母線313であり、電流センサ305は、母線313に直列に介在している。
本実施例における各相電圧(vu、vv及びvw)は、上述のモータ駆動システムにおける各相電圧と同様、正弦波状とされ且つ各相電圧間の電圧レベルの高低関係は時間と共に変化していく(図2参照)。この高低関係は三相電圧指令値によって定まり、インバータ2は与えられた三相電圧指令値に従って各相に対する通電パターンを決定する。合計8通りの通電パターンは、モータ駆動システムにおけるそれ(図3参照)と同じである。
また、各相電圧の電圧レベルとキャリア信号との関係、並びに、その関係に応じたPWM信号及び母線電流の波形も、モータ駆動システムにおけるそれら(図4参照)と同じである。また、最大相、中間相及び最小相の組み合わせも、モータ駆動システムにおけるそれと同様に6通り存在する(図6参照)。更に、三相電圧指令値vu *、vv *及びvw *に基づくインバータ2の各アームに対するスイッチング動作も、モータ駆動システムにおけるそれと同様である。即ち、インバータ2は、vu *、vv *及びvw *によって表される各相電圧の電圧レベルとキャリア信号を比較し、その比較結果に基づいて各アームのオン/オフを制御する。
電流センサ305によって検出された母線電流(検出電流)の電流値を表す信号は、制御部303内に存在する電流検出部(不図示)に伝達される。この電流検出部は、図12のモータ電流検出部21と同様の動作を行う。即ち、制御部303が算出する三相電圧指令値vu *、vv *及びvw *に基づいて、何れの相が最大相、中間相及び最小相であるかを特定すると共に電流センサ305の出力信号をサンプリングするタイミングST1及びST2(図6参照)を決定し、そのタイミングにおいて得た母線電流IDC1及びIDC2の電流値から三相電流(iu、iv及びiw)を算出する。
モータ駆動システムにおける場合と同様、各時点は検出可能期間と検出不可期間の何れかに属する。制御部303は、各時点が検出可能期間と検出不可期間の何れに属するかを判断する。この判断手法は、モータ駆動システムにおけるそれと同様である。即ち、制御部303は、電流センサ305から得られる母線電流IDC1及びIDC2に基づいて、着目時点(例えば現時点)が検出可能期間と検出不可期間の何れに属するかを判断する。勿論、上述の第1、第2及び第3期間判断処理の何れをも利用可能である。
着目時点が検出可能期間に属する場合、着目時点における母線電流から三相電流(iu、iv及びiw)が算出される。この場合、制御部303は、交流電圧源340uが出力する交流電圧の位相に合わせたU相電圧vuの位相を用いて、算出された三相電流を座標変換することにより、インバータ2の出力電流の有効電流成分及び無効電流成分を算出する(iu、iv及びiwは、インバータ2の出力電流のU相、V相及びW相軸成分である)。そして、平滑化コンデンサCdの両端子間電圧の電圧値が所望値に保たれるように且つ無効電流成分がゼロとなるように、三相電圧指令値vu *、vv *及びvw *を算出して、それらをインバータ2に与える。
一方、着目時点が検出不可期間に属している場合、制御部303は電流補償処理を実行する。この電流補償処理として、第1実施例で述べたそれを流用可能である。例えば、過去に検出された三相電流に基づいて着目時点の三相電流を算出する。例えば、第(n−1)番目のキャリア周期が検出可能期間に属し、且つ、第n〜第(n+6)番目のキャリア周期が検出不可期間に属していると判断された場合、第(n−1)番目のキャリア周期にて検出された母線電流に基づく三相電流を、第n〜第(n+6)番目のキャリア周期における三相電流として推定し、その推定した三相電流から第n〜第(n+6)番目のキャリア周期における三相電圧指令値を作成する。
<<変形等>>
上述の実施形態の変形例または注釈事項として、以下に、注釈1〜注釈5を記す。各注釈に記載した内容は、矛盾なき限り、任意に組み合わせることが可能である。
上述の実施形態の変形例または注釈事項として、以下に、注釈1〜注釈5を記す。各注釈に記載した内容は、矛盾なき限り、任意に組み合わせることが可能である。
[注釈1]
上述の各種の指令値(iγ*、iδ*、vγ*及びvδ*など)や状態量(iγ、iδなど)を含む、導出されるべき全ての値の導出手法は任意である。即ち、例えば、それらを、制御部(3又は3a)内での演算によって導出するようにしてもよいし、予め設定しておいたテーブルデータから導出するようにしてもよい。
上述の各種の指令値(iγ*、iδ*、vγ*及びvδ*など)や状態量(iγ、iδなど)を含む、導出されるべき全ての値の導出手法は任意である。即ち、例えば、それらを、制御部(3又は3a)内での演算によって導出するようにしてもよいし、予め設定しておいたテーブルデータから導出するようにしてもよい。
[注釈2]
制御部(3又は3a)の機能の一部または全部は、例えば汎用マイクロコンピュータ等に組み込まれたソフトウェア(プログラム)を用いて実現される。ソフトウェアを用いて制御部を実現する場合、制御部の各部の構成を示すブロック図は機能ブロック図を表すこととなる。勿論、ソフトウェアではなく、ハードウェアのみによって、或いは、ソフトウェアとハードウェアの組み合わせによって、制御部を形成することも可能である。
制御部(3又は3a)の機能の一部または全部は、例えば汎用マイクロコンピュータ等に組み込まれたソフトウェア(プログラム)を用いて実現される。ソフトウェアを用いて制御部を実現する場合、制御部の各部の構成を示すブロック図は機能ブロック図を表すこととなる。勿論、ソフトウェアではなく、ハードウェアのみによって、或いは、ソフトウェアとハードウェアの組み合わせによって、制御部を形成することも可能である。
[注釈3]
本明細書では、記述の簡略化上、記号(iγなど)のみの表記によって、その記号に対応する状態量(状態変数)などを表現している場合もある。即ち、本明細書では、例えば、「iγ」と「γ軸電流iγ」は同じものを指す。
本明細書では、記述の簡略化上、記号(iγなど)のみの表記によって、その記号に対応する状態量(状態変数)などを表現している場合もある。即ち、本明細書では、例えば、「iγ」と「γ軸電流iγ」は同じものを指す。
[注釈4]
例えば、以下のように考えることができる。図12のモータ駆動システムは電流検出ユニットを備え、この電流検出ユニットは、主として、モータ電流検出部21によって形成される。この電流検出ユニットに、座標変換器22、速度制御部23、電流制御部24、座標変換器25及び推定器26の内の一部が含まれていると考えることも可能であり、また、電流センサ5が含まれていると考えることも可能である。電流検出ユニットは、電流検出手段と三相電流検出手段と判定手段を備えており、それらはモータ電流検出部21によって実現される。尚、電流検出手段が、モータ電流検出部21と電流センサ5とによって実現されると考えることも可能である。また、制御部3aは、モータ制御装置として機能する。
例えば、以下のように考えることができる。図12のモータ駆動システムは電流検出ユニットを備え、この電流検出ユニットは、主として、モータ電流検出部21によって形成される。この電流検出ユニットに、座標変換器22、速度制御部23、電流制御部24、座標変換器25及び推定器26の内の一部が含まれていると考えることも可能であり、また、電流センサ5が含まれていると考えることも可能である。電流検出ユニットは、電流検出手段と三相電流検出手段と判定手段を備えており、それらはモータ電流検出部21によって実現される。尚、電流検出手段が、モータ電流検出部21と電流センサ5とによって実現されると考えることも可能である。また、制御部3aは、モータ制御装置として機能する。
また、上記の電流検出ユニットと同様の電流検出ユニットが、図18の系統連系システにも備えられている。系統連系システムにおける電流検出ユニットは、主として、図18の制御部303内の電流検出部(不図示)によって形成される。この電流検出ユニットに、電流センサ305が含まれていると考えることも可能である。
[注釈5]
本明細書等において下記の点に留意すべきである。図面において、所謂下付き文字として表記されているギリシャ文字(γ及びδ等)は、本明細書において、下付き文字でない標準文字として表記されうる。このギリシャ文字の下付き文字と標準文字との相違は無視されるべきである。
本明細書等において下記の点に留意すべきである。図面において、所謂下付き文字として表記されているギリシャ文字(γ及びδ等)は、本明細書において、下付き文字でない標準文字として表記されうる。このギリシャ文字の下付き文字と標準文字との相違は無視されるべきである。
本発明は、モータを用いるあらゆる電気機器に好適である。特に、冷蔵庫用の圧縮機、車載用空気調和機、電動車などに好適である。また、系統連系システム等に対しても本発明は適用可能である。
1 モータ
2 インバータ
3、3a 制御部
4 直流電源
5 電流センサ
6 回転子
7 固定子
7u、7v、7w 電機子巻線
21 モータ電流検出部
2 インバータ
3、3a 制御部
4 直流電源
5 電流センサ
6 回転子
7 固定子
7u、7v、7w 電機子巻線
21 モータ電流検出部
Claims (7)
- 三相式のインバータと直流電源との間に流れる電流を検出電流として検出する電流検出手段と、
前記検出電流から前記インバータの三相電流を検出するための三相電流検出手段と、
着目時点が前記三相電流を検出することのできる期間に属するか否かを、前記検出電流に基づいて判定する判定手段と、を備え、
前記判定手段によって前記着目時点が前記期間に属すると判定されたときに、前記三相電流検出手段は前記三相電流を検出する
ことを特徴とする電流検出ユニット。 - 前記判定手段は、前記検出電流の大きさ、前記検出電流の一次差分値、または、前記検出電流の二次差分値に基づいて、前記着目時点が前記期間に属するか否かを判定する
ことを特徴とする請求項1に記載の電流検出ユニット。 - 前記判定手段は、
前記検出電流の大きさ、前記検出電流の一次差分値、または、前記検出電流の二次差分値と、
所定の判定閾値と、
を比較することによって、前記着目時点が前記期間に属するか否かを判定し、
前記判定閾値は、前記検出電流の最大値の半分以下の値とされる
ことを特徴とする請求項1に記載の電流検出ユニット。 - 請求項1〜請求項3の何れかに記載の電流検出ユニットを備え、前記インバータによって三相式のモータを駆動するモータ制御装置であって、
前記電流検出ユニットによる前記三相電流の検出によって前記モータに流れるモータ電流を検出し、該モータ電流に基づいて前記インバータを介して前記モータを制御する
ことを特徴とするモータ制御装置。 - 前記判定手段によって前記着目時点が前記期間に属すると判定されたとき、前記着目時点に検出された前記検出電流に基づいて前記モータを制御し、
前記判定手段によって前記着目時点が前記期間に属さないと判定されたとき、前記着目時点の過去に検出された前記検出電流に基づいて前記モータを制御する
ことを特徴とする請求項4に記載のモータ制御装置。 - 三相式のモータと、
前記モータを駆動するインバータと、
前記インバータを制御することにより前記モータを制御する請求項4または請求項5に記載のモータ制御装置と、を備えた
ことを特徴とするモータ駆動システム。 - 請求項1〜請求項3の何れかに記載の電流検出ユニット及び三相式のインバータを備え、
検出された前記三相電流に基づきつつ前記直流電源からの直流電圧を前記インバータによって三相交流電圧に変換し、外部の三相交流電力系統に連系しつつ前記三相交流電圧に基づく三相交流電力を負荷に供給する
ことを特徴とする系統連系システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007221981A JP2009055748A (ja) | 2007-08-29 | 2007-08-29 | 電流検出ユニット及びモータ制御装置 |
US12/196,671 US8040086B2 (en) | 2007-08-29 | 2008-08-22 | Current detector unit and motor control device |
EP08015140.0A EP2031752B1 (en) | 2007-08-29 | 2008-08-27 | Current detector unit and motor control device |
CN2008102149068A CN101383584B (zh) | 2007-08-29 | 2008-08-28 | 电动机控制装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007221981A JP2009055748A (ja) | 2007-08-29 | 2007-08-29 | 電流検出ユニット及びモータ制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009055748A true JP2009055748A (ja) | 2009-03-12 |
Family
ID=40056184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007221981A Pending JP2009055748A (ja) | 2007-08-29 | 2007-08-29 | 電流検出ユニット及びモータ制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8040086B2 (ja) |
EP (1) | EP2031752B1 (ja) |
JP (1) | JP2009055748A (ja) |
CN (1) | CN101383584B (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013175620A1 (ja) * | 2012-05-25 | 2013-11-28 | 三菱電機株式会社 | 電力変換装置 |
CN113376553A (zh) * | 2021-04-27 | 2021-09-10 | 国网江苏省电力有限公司营销服务中心 | 三相四线计量串电流回路接线的智能甄别方法和系统 |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4867483B2 (ja) * | 2006-06-09 | 2012-02-01 | 日本精工株式会社 | モータ制御方法及び制御装置 |
US10468993B2 (en) * | 2007-05-17 | 2019-11-05 | Enphase Energy, Inc. | Inverter for use in photovoltaic module |
US7629761B2 (en) * | 2007-07-13 | 2009-12-08 | Xerox Corporation | System for measuring current in multiple motor coils using a single sensing element |
ITVA20070065A1 (it) * | 2007-07-25 | 2009-01-26 | St Microelectronics Srl | Metodo e dispositivo di pilotaggio per motore brushless con profilo di tensione predisposto per una commutazione progressiva e automatica da un pilotaggio di tipo sinusoidale trifase ad un pliotaggio trifase ad onda quadra |
KR101517101B1 (ko) * | 2008-10-02 | 2015-05-04 | 삼성전자 주식회사 | 상전류 추정방법 |
JP5150585B2 (ja) * | 2009-08-28 | 2013-02-20 | 株式会社日立産機システム | 永久磁石同期電動機の駆動装置 |
JP2011125107A (ja) * | 2009-12-09 | 2011-06-23 | Sanyo Electric Co Ltd | モータ制御装置、モータ駆動システム及びインバータ制御装置 |
JP5377398B2 (ja) * | 2010-04-09 | 2013-12-25 | 日立アプライアンス株式会社 | モータ制御装置及びそのための相電流検出方法 |
KR101167778B1 (ko) * | 2010-04-22 | 2012-07-31 | 엘지전자 주식회사 | 모터 제어 장치 및 이의 제어 방법 |
US8482904B2 (en) | 2010-05-25 | 2013-07-09 | Lear Corporation | Power module with current sensing |
DE102010034299A1 (de) * | 2010-08-13 | 2012-02-16 | Bizerba Gmbh & Co. Kg | Schneidemaschine |
US8878483B2 (en) | 2011-01-14 | 2014-11-04 | Lear Corporation | Electronics unit with current sensing |
JP5652610B2 (ja) * | 2011-02-15 | 2015-01-14 | サンデン株式会社 | モータ制御装置 |
JP5898407B2 (ja) * | 2011-02-15 | 2016-04-06 | サンデンホールディングス株式会社 | モータ制御装置 |
JP5838032B2 (ja) * | 2011-02-15 | 2015-12-24 | サンデンホールディングス株式会社 | モータ制御装置 |
JP5675567B2 (ja) * | 2011-11-30 | 2015-02-25 | 日立アプライアンス株式会社 | 電力変換装置、電動機駆動装置及び空気調和機 |
JPWO2014010020A1 (ja) * | 2012-07-09 | 2016-06-20 | 株式会社安川電機 | モータ制御装置及びモータシステム |
CN102914686A (zh) * | 2012-11-14 | 2013-02-06 | 天津市翔晟远电力设备实业有限公司 | 一种三相输配电线路的实时负载电流、零序电流的检测系统 |
CN103840725B (zh) * | 2012-11-26 | 2016-05-18 | 台达电子工业股份有限公司 | 永磁同步电机转子位置偏差测量装置及方法 |
US9160262B2 (en) * | 2013-01-29 | 2015-10-13 | Nidec Motor Corporation | Sensorless motor control |
US9231500B2 (en) * | 2013-01-30 | 2016-01-05 | Nidec Motor Corporation | Sensorless motor braking system |
GB2512078A (en) | 2013-03-19 | 2014-09-24 | Control Tech Ltd | Control system for multi-phase rotary machines |
CN105099329B (zh) | 2014-05-19 | 2018-04-06 | 罗克韦尔自动化技术公司 | 准变频电机控制器 |
WO2016103324A1 (ja) * | 2014-12-22 | 2016-06-30 | 三菱電機株式会社 | 電力変換装置および電力用半導体モジュール |
CN104682804B (zh) * | 2014-12-25 | 2018-01-12 | 中国电子科技集团公司第二十一研究所 | 无刷直流电动机电压矢量控制方法及装置 |
JP6372424B2 (ja) * | 2015-06-05 | 2018-08-15 | 株式会社安川電機 | 電力変換装置および電流検出方法 |
KR101691793B1 (ko) * | 2015-07-10 | 2017-01-09 | 엘지전자 주식회사 | 모터 구동장치 및 이를 구비하는 홈 어플라이언스 |
JP6583000B2 (ja) | 2016-01-07 | 2019-10-02 | 株式会社デンソー | 回転電機の制御装置 |
CN106443133B (zh) * | 2016-10-31 | 2019-02-15 | 广东美的制冷设备有限公司 | 空调系统、三相逆变电路的电流采样方法和装置 |
CN110326210B (zh) * | 2017-10-17 | 2021-03-05 | 日立江森自控空调有限公司 | 空调机 |
CN110346635A (zh) * | 2019-08-15 | 2019-10-18 | 浙江工业大学 | 汽车电动压缩机中永磁同步电机直流母线电流的估算方法 |
CN112415255B (zh) * | 2020-11-14 | 2023-10-24 | 陕西航空电气有限责任公司 | 一种改进的有功电流采样电路 |
JP2024118631A (ja) * | 2023-02-21 | 2024-09-02 | トヨタ自動車株式会社 | 推定システム |
CN116559519B (zh) * | 2023-07-10 | 2023-12-01 | 苏州时代新安能源科技有限公司 | 电流采集延时时间的确定方法、装置、设备及存储介质 |
CN118133242B (zh) * | 2024-05-08 | 2024-08-06 | 中山大学 | 基于ai的电流指纹识别方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004064903A (ja) * | 2002-07-30 | 2004-02-26 | Hitachi Ltd | 同期モータの制御装置およびこれを用いた機器 |
JP2005045990A (ja) * | 2003-07-10 | 2005-02-17 | Kaga Electronics Co Ltd | 速度起電力検出装置及び方法、並びにインバータ制御装置等 |
JP2007209164A (ja) * | 2006-02-03 | 2007-08-16 | Ebara Densan Ltd | 位相角の検知方法およびインバータ装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2712470B2 (ja) | 1989-01-23 | 1998-02-10 | 松下電器産業株式会社 | インバータ装置の電流検出装置 |
ES2428120T3 (es) * | 2001-09-25 | 2013-11-06 | Daikin Industries, Ltd. | Aparato para la detección de corriente de fase |
ES2427589T3 (es) * | 2001-09-29 | 2013-10-31 | Daikin Industries, Ltd. | Procedimiento para la detección de la corriente de fase, procedimiento de control de inversor, procedimiento de control de motor y aparatos utilizados en estos procedimientos |
JP4045105B2 (ja) * | 2002-01-30 | 2008-02-13 | 株式会社日立産機システム | パルス幅変調方法、電力変換装置、およびインバータ装置 |
JP4031965B2 (ja) * | 2002-09-13 | 2008-01-09 | 日立アプライアンス株式会社 | 電動機の制御装置 |
JP4069741B2 (ja) * | 2002-12-19 | 2008-04-02 | 株式会社日立製作所 | パルス幅変調方法および電力変換器 |
JP4585774B2 (ja) * | 2003-03-07 | 2010-11-24 | キヤノン株式会社 | 電力変換装置および電源装置 |
JP2004282969A (ja) * | 2003-03-19 | 2004-10-07 | Hitachi Ltd | 交流電動機の制御装置及び制御方法 |
JP4847060B2 (ja) * | 2005-07-15 | 2011-12-28 | 日立オートモティブシステムズ株式会社 | 交流モータ駆動装置及びその制御方法 |
JP4425193B2 (ja) | 2005-08-16 | 2010-03-03 | 三洋電機株式会社 | モータの位置センサレス制御装置 |
JP4759422B2 (ja) * | 2006-03-27 | 2011-08-31 | 日立アプライアンス株式会社 | 電力変換器システム、および、それを利用した洗濯機 |
-
2007
- 2007-08-29 JP JP2007221981A patent/JP2009055748A/ja active Pending
-
2008
- 2008-08-22 US US12/196,671 patent/US8040086B2/en active Active
- 2008-08-27 EP EP08015140.0A patent/EP2031752B1/en active Active
- 2008-08-28 CN CN2008102149068A patent/CN101383584B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004064903A (ja) * | 2002-07-30 | 2004-02-26 | Hitachi Ltd | 同期モータの制御装置およびこれを用いた機器 |
JP2005045990A (ja) * | 2003-07-10 | 2005-02-17 | Kaga Electronics Co Ltd | 速度起電力検出装置及び方法、並びにインバータ制御装置等 |
JP2007209164A (ja) * | 2006-02-03 | 2007-08-16 | Ebara Densan Ltd | 位相角の検知方法およびインバータ装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013175620A1 (ja) * | 2012-05-25 | 2013-11-28 | 三菱電機株式会社 | 電力変換装置 |
CN113376553A (zh) * | 2021-04-27 | 2021-09-10 | 国网江苏省电力有限公司营销服务中心 | 三相四线计量串电流回路接线的智能甄别方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
EP2031752A2 (en) | 2009-03-04 |
US8040086B2 (en) | 2011-10-18 |
CN101383584A (zh) | 2009-03-11 |
CN101383584B (zh) | 2011-06-01 |
EP2031752B1 (en) | 2018-09-19 |
EP2031752A3 (en) | 2016-01-13 |
US20090058334A1 (en) | 2009-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009055748A (ja) | 電流検出ユニット及びモータ制御装置 | |
US7598698B2 (en) | Motor control device | |
JP4429338B2 (ja) | モータ制御装置、電流検出ユニット | |
JP5311864B2 (ja) | モータ制御装置 | |
JP4961292B2 (ja) | モータ制御装置 | |
CN101960712B (zh) | 逆变器装置 | |
CN102577086B (zh) | 无传感器无刷直流马达中用于减少零交叉粒度的可变脉宽调制 | |
CN106452225B (zh) | 无位置传感器无刷直流电机换向相位实时校正系统及方法 | |
JP2008067556A (ja) | モータ制御装置 | |
JP2010011540A (ja) | モータ制御装置 | |
CN100428621C (zh) | 一种无刷直流电动机变频控制装置 | |
JP2012178927A (ja) | インバータ制御装置 | |
Tsotoulidis et al. | A sensorless commutation technique of a brushless DC motor drive system using two terminal voltages in respect to a virtual neutral potential | |
CN104521131B (zh) | 同步电动机驱动系统 | |
JP6854404B2 (ja) | インバータ制御装置 | |
Arias et al. | Enhancing the flux estimation based sensorless speed control for switched reluctance machines | |
Chen et al. | A control strategy for BLDC motor based on terminal voltage | |
JP6827182B2 (ja) | インバータ制御装置 | |
Wang et al. | A Half-bridge Strategy Based Fault-tolerant Control for BLDCM under Open Circuit Fault | |
Pillai et al. | Efficient Commutation and Torque Ripples Minimization in BLDC Motor for Hoist Applications | |
Hu et al. | Sensorless drive of brushless DC motor with 180-degree commutation | |
Wipasuramonton et al. | Current-controlled PWM Technique for brushless DC motor drives with a single current sensing resistor | |
TW201608811A (zh) | 可允許電感變化之三相換流裝置及其三相d-σ控制方法 | |
Ştirban et al. | FEM assisted position and speed observer for BLDC PM motor drive sensorless control, with experiments | |
KR101414818B1 (ko) | 비엘디씨 모터의 구동 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120605 |