JP2009053492A - Laminated film and polarizing plate with optical compensation layer - Google Patents
Laminated film and polarizing plate with optical compensation layer Download PDFInfo
- Publication number
- JP2009053492A JP2009053492A JP2007220780A JP2007220780A JP2009053492A JP 2009053492 A JP2009053492 A JP 2009053492A JP 2007220780 A JP2007220780 A JP 2007220780A JP 2007220780 A JP2007220780 A JP 2007220780A JP 2009053492 A JP2009053492 A JP 2009053492A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- polymer
- unit
- rth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 33
- 239000004925 Acrylic resin Substances 0.000 claims abstract description 33
- 229920000178 Acrylic resin Polymers 0.000 claims abstract description 33
- 239000004952 Polyamide Substances 0.000 claims abstract description 27
- 229920002647 polyamide Polymers 0.000 claims abstract description 27
- 230000009477 glass transition Effects 0.000 claims abstract description 16
- 239000004642 Polyimide Substances 0.000 claims abstract description 8
- 229920001721 polyimide Polymers 0.000 claims abstract description 8
- 239000004962 Polyamide-imide Substances 0.000 claims abstract description 6
- 229920003055 poly(ester-imide) Polymers 0.000 claims abstract description 6
- 229920001643 poly(ether ketone) Polymers 0.000 claims abstract description 6
- 229920002312 polyamide-imide Polymers 0.000 claims abstract description 6
- 229920000728 polyester Polymers 0.000 claims abstract description 6
- 229920000642 polymer Polymers 0.000 claims description 57
- 229920000058 polyacrylate Polymers 0.000 claims description 39
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical group O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 claims description 32
- 150000001732 carboxylic acid derivatives Chemical group 0.000 claims description 29
- 239000001257 hydrogen Substances 0.000 claims description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims description 29
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 20
- 125000004432 carbon atom Chemical group C* 0.000 claims description 19
- 230000001681 protective effect Effects 0.000 claims description 14
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 120
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 239000012788 optical film Substances 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 92
- 229940048053 acrylate Drugs 0.000 description 39
- 239000000178 monomer Substances 0.000 description 39
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 38
- 229920001577 copolymer Polymers 0.000 description 32
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 30
- -1 2,3,4,5,6-pentahydroxyhexyl Chemical group 0.000 description 27
- 239000000243 solution Substances 0.000 description 27
- 238000000576 coating method Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 24
- 239000011248 coating agent Substances 0.000 description 23
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 22
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 22
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 20
- 238000006116 polymerization reaction Methods 0.000 description 19
- 229920001971 elastomer Polymers 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 239000005060 rubber Substances 0.000 description 16
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 15
- 229920006254 polymer film Polymers 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000002904 solvent Substances 0.000 description 11
- 229920002554 vinyl polymer Polymers 0.000 description 11
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical group CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 8
- 238000003402 intramolecular cyclocondensation reaction Methods 0.000 description 8
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 8
- 239000004926 polymethyl methacrylate Substances 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 150000008064 anhydrides Chemical group 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000012792 core layer Substances 0.000 description 6
- 230000018044 dehydration Effects 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000007363 ring formation reaction Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 5
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical group CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011258 core-shell material Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229940114077 acrylic acid Drugs 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical group CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 125000001340 2-chloroethyl group Chemical group [H]C([H])(Cl)C([H])([H])* 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920002284 Cellulose triacetate Polymers 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 3
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 101000837308 Homo sapiens Testis-expressed protein 30 Proteins 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical group CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 102100028631 Testis-expressed protein 30 Human genes 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229920006322 acrylamide copolymer Polymers 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012662 bulk polymerization Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 2
- 229920006351 engineering plastic Polymers 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 125000000686 lactone group Chemical group 0.000 description 2
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical group C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 1
- QILCUDCYZVIAQH-UHFFFAOYSA-N 1-$l^{1}-oxidanyl-2,2,5,5-tetramethylpyrrole-3-carboxylic acid Chemical compound CC1(C)C=C(C(O)=O)C(C)(C)N1[O] QILCUDCYZVIAQH-UHFFFAOYSA-N 0.000 description 1
- KPQOXMCRYWDRSB-UHFFFAOYSA-N 1-(2-chlorophenyl)pyrrole-2,5-dione Chemical compound ClC1=CC=CC=C1N1C(=O)C=CC1=O KPQOXMCRYWDRSB-UHFFFAOYSA-N 0.000 description 1
- RPPHVWXGHJVLOL-UHFFFAOYSA-N 1-(4,5-dihydro-1,3-oxazol-2-yl)prop-2-en-1-one Chemical compound C=CC(=O)C1=NCCO1 RPPHVWXGHJVLOL-UHFFFAOYSA-N 0.000 description 1
- FECSFBYOMHWJQG-UHFFFAOYSA-N 1-(4-bromophenyl)pyrrole-2,5-dione Chemical compound C1=CC(Br)=CC=C1N1C(=O)C=CC1=O FECSFBYOMHWJQG-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- VDNSZPNSUQRUMS-UHFFFAOYSA-N 1-cyclohexyl-4-ethenylbenzene Chemical compound C1=CC(C=C)=CC=C1C1CCCCC1 VDNSZPNSUQRUMS-UHFFFAOYSA-N 0.000 description 1
- WJNKJKGZKFOLOJ-UHFFFAOYSA-N 1-dodecyl-4-ethenylbenzene Chemical compound CCCCCCCCCCCCC1=CC=C(C=C)C=C1 WJNKJKGZKFOLOJ-UHFFFAOYSA-N 0.000 description 1
- JHTICDZLXFNVKL-UHFFFAOYSA-N 1-ethenyl-4-(4-phenylbutyl)benzene Chemical compound C1=CC(C=C)=CC=C1CCCCC1=CC=CC=C1 JHTICDZLXFNVKL-UHFFFAOYSA-N 0.000 description 1
- VVTGQMLRTKFKAM-UHFFFAOYSA-N 1-ethenyl-4-propylbenzene Chemical compound CCCC1=CC=C(C=C)C=C1 VVTGQMLRTKFKAM-UHFFFAOYSA-N 0.000 description 1
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 1
- NQDOCLXQTQYUDH-UHFFFAOYSA-N 1-propan-2-ylpyrrole-2,5-dione Chemical compound CC(C)N1C(=O)C=CC1=O NQDOCLXQTQYUDH-UHFFFAOYSA-N 0.000 description 1
- DABFKTHTXOELJF-UHFFFAOYSA-N 1-propylpyrrole-2,5-dione Chemical compound CCCN1C(=O)C=CC1=O DABFKTHTXOELJF-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- GVJRTUUUJYMTNQ-UHFFFAOYSA-N 2-(2,5-dioxofuran-3-yl)acetic acid Chemical compound OC(=O)CC1=CC(=O)OC1=O GVJRTUUUJYMTNQ-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- RSNDTPFSMDVWCS-UHFFFAOYSA-N 2-(butoxymethyl)prop-2-enamide Chemical compound CCCCOCC(=C)C(N)=O RSNDTPFSMDVWCS-UHFFFAOYSA-N 0.000 description 1
- XZGBFIIYIIVECC-UHFFFAOYSA-N 2-(cyclohexylamino)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNC1CCCCC1 XZGBFIIYIIVECC-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- BWKTWZBHXAMSQP-UHFFFAOYSA-N 2-(propylamino)ethyl prop-2-enoate Chemical compound CCCNCCOC(=O)C=C BWKTWZBHXAMSQP-UHFFFAOYSA-N 0.000 description 1
- CRQSAKXMWFFXJG-UHFFFAOYSA-N 2-[(4-ethenylphenyl)methyl]oxirane Chemical compound C1=CC(C=C)=CC=C1CC1OC1 CRQSAKXMWFFXJG-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- UGCSBAYAYZNGRD-UHFFFAOYSA-N 2-anilinoethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNC1=CC=CC=C1 UGCSBAYAYZNGRD-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- MSWAXXJAPIGEGZ-UHFFFAOYSA-N 2-chlorobenzene-1,4-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C(Cl)=C1 MSWAXXJAPIGEGZ-UHFFFAOYSA-N 0.000 description 1
- BQBSIHIZDSHADD-UHFFFAOYSA-N 2-ethenyl-4,5-dihydro-1,3-oxazole Chemical compound C=CC1=NCCO1 BQBSIHIZDSHADD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- CCIDRBFZPRURMU-UHFFFAOYSA-N 2-methyl-n-propylprop-2-enamide Chemical compound CCCNC(=O)C(C)=C CCIDRBFZPRURMU-UHFFFAOYSA-N 0.000 description 1
- TVONJMOVBKMLOM-UHFFFAOYSA-N 2-methylidenebutanenitrile Chemical compound CCC(=C)C#N TVONJMOVBKMLOM-UHFFFAOYSA-N 0.000 description 1
- VXDHQYLFEYUMFY-UHFFFAOYSA-N 2-methylprop-2-en-1-amine Chemical compound CC(=C)CN VXDHQYLFEYUMFY-UHFFFAOYSA-N 0.000 description 1
- LPIQIQPLUVLISR-UHFFFAOYSA-N 2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CC(=C)C1=NCCO1 LPIQIQPLUVLISR-UHFFFAOYSA-N 0.000 description 1
- SYIUWAVTBADRJG-UHFFFAOYSA-N 2H-pyran-2,6(3H)-dione Chemical compound O=C1CC=CC(=O)O1 SYIUWAVTBADRJG-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- SALYTGCQNQCYIV-UHFFFAOYSA-N 3-(ethylamino)propyl 2-methylprop-2-enoate Chemical compound CCNCCCOC(=O)C(C)=C SALYTGCQNQCYIV-UHFFFAOYSA-N 0.000 description 1
- NMSZFQAFWHFSPE-UHFFFAOYSA-N 3-(oxiran-2-ylmethoxycarbonyl)but-3-enoic acid Chemical compound OC(=O)CC(=C)C(=O)OCC1CO1 NMSZFQAFWHFSPE-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- LBSXSAXOLABXMF-UHFFFAOYSA-N 4-Vinylaniline Chemical compound NC1=CC=C(C=C)C=C1 LBSXSAXOLABXMF-UHFFFAOYSA-N 0.000 description 1
- NGUGWHFIVAQVMN-UHFFFAOYSA-N 4-aminobut-3-en-2-one Chemical compound CC(=O)C=CN NGUGWHFIVAQVMN-UHFFFAOYSA-N 0.000 description 1
- DXFURPHVJQITAC-UHFFFAOYSA-N 4-benzyl-1-ethenyl-2-ethylbenzene Chemical compound C1=C(C=C)C(CC)=CC(CC=2C=CC=CC=2)=C1 DXFURPHVJQITAC-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical group C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- GHAZCVNUKKZTLG-UHFFFAOYSA-N N-ethyl-succinimide Natural products CCN1C(=O)CCC1=O GHAZCVNUKKZTLG-UHFFFAOYSA-N 0.000 description 1
- HDFGOPSGAURCEO-UHFFFAOYSA-N N-ethylmaleimide Chemical compound CCN1C(=O)C=CC1=O HDFGOPSGAURCEO-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000005001 aminoaryl group Chemical group 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- NRTSLUOVGBFANI-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) 2-methylidenebutanedioate Chemical compound C1OC1COC(=O)C(=C)CC(=O)OCC1CO1 NRTSLUOVGBFANI-UHFFFAOYSA-N 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 229960000878 docusate sodium Drugs 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical group CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- IQFXJRXOTKFGPN-UHFFFAOYSA-N n-ethenyl-n-ethylethanamine Chemical compound CCN(CC)C=C IQFXJRXOTKFGPN-UHFFFAOYSA-N 0.000 description 1
- SEEYREPSKCQBBF-UHFFFAOYSA-N n-methylmaleimide Chemical compound CN1C(=O)C=CC1=O SEEYREPSKCQBBF-UHFFFAOYSA-N 0.000 description 1
- IOXXVNYDGIXMIP-UHFFFAOYSA-N n-methylprop-2-en-1-amine Chemical compound CNCC=C IOXXVNYDGIXMIP-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229940090668 parachlorophenol Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical group C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、光学用途に好適な積層フィルム、及びそれを用いた光学補償層付き偏光板に関する。 The present invention relates to a laminated film suitable for optical applications, and a polarizing plate with an optical compensation layer using the same.
液晶表示装置には光学補償を目的として、様々な光学フィルムが使用されている。例えば下記条件(1)を満足する位相差板は、液晶表示装置の視角補償のために液晶セルと偏光板との間に配置されている。 Various optical films are used in liquid crystal display devices for the purpose of optical compensation. For example, a retardation plate that satisfies the following condition (1) is disposed between a liquid crystal cell and a polarizing plate for viewing angle compensation of the liquid crystal display device.
nx≧ny>nz ・・・(1)
(nx、ny、nzは、それぞれ、フィルム面内において最大の屈折率を示す方向をx方向、フィルム面内においてx方向と直交する方向をy方向、フィルム厚み方向をz方向としたとき、それら方向の屈折率を表す。)
このような位相差板は一般的に高分子フィルムを延伸処理したものが用いられていたが、近年では、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアミドイミドおよびポリエステルイミド等のポリマーの溶液を、表面が平滑な基材に塗布し、前記溶液の溶媒を蒸発除去して光学フィルムとする方法が用いられている(特許文献1、2)。前記基材として、SUSベルト、銅薄板、Siウエハ等の無機基材、或いはPET等の有機基材を支持体として使用した場合、それ自身は液晶表示装置に使用できないため、基材から偏光子等へ光学フィルムを転写する必要があった。
nx ≧ ny> nz (1)
(Nx, ny, and nz are those when the direction showing the maximum refractive index in the film plane is the x direction, the direction perpendicular to the x direction in the film plane is the y direction, and the film thickness direction is the z direction. Represents the refractive index in the direction.)
Such a retardation plate is generally used by stretching a polymer film, but recently, a solution of a polymer such as polyamide, polyimide, polyester, polyetherketone, polyamideimide and polyesterimide, A method of applying an optical film by applying to a substrate having a smooth surface and evaporating and removing the solvent of the solution is used (Patent Documents 1 and 2). When the substrate is an inorganic substrate such as a SUS belt, copper thin plate, Si wafer, or an organic substrate such as PET, the substrate cannot be used for a liquid crystal display device. It was necessary to transfer the optical film to the like.
また、TAC(トリアセチルセルロース)等の有機基材に塗布し、塗布膜を基材ごと延伸することによって3次元複屈折率をコントロールする方法が開示されている(特許文献3)。しかし、この方法では延伸によってTACに位相差が発現するため、塗布膜のみの位相差を正確に測定するためには、塗布膜単体で、或いは位相差の発現していないフィルム等へ転写して測定する必要があった。
本発明の目的は、光学用途、特に位相差付き偏光子保護用途に適した、少なくともリターデーション、及び応力による複屈折変化が小さい層と位相差を発現する層からなる積層フィルム、及び光学補償層付き偏光板を提供することにある。 An object of the present invention is to provide a laminated film comprising at least a retardation and a layer having a small change in birefringence due to stress and a layer exhibiting a phase difference, and an optical compensation layer, which are suitable for optical use, particularly for protecting a polarizer with retardation. The object is to provide an attached polarizing plate.
上記課題を解決するための本発明は、以下の特徴を有する。 The present invention for solving the above problems has the following features.
[1]アクリル系樹脂を含む層Aと、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアミドイミドおよびポリエステルイミドからなる群から選ばれる少なくとも1種のポリマーを含む層Bとを有し、かつ、以下の条件(i)〜(iv)を同時に満足する積層フィルム。 [1] A layer A containing an acrylic resin and a layer B containing at least one polymer selected from the group consisting of polyamide, polyimide, polyester, polyetherketone, polyamideimide and polyesterimide, and A laminated film that simultaneously satisfies the conditions (i) to (iv).
(i)層Aの面内位相差Re(a)が5nm以下であり、厚み方向位相差Rth(a)が−5nm以上5nm以下である。 (I) The in-plane retardation Re (a) of the layer A is 5 nm or less, and the thickness direction retardation Rth (a) is −5 nm or more and 5 nm or less.
(ii)層Aの光弾性係数が5.0×10−12Pa−1より小さい。 (Ii) The photoelastic coefficient of the layer A is smaller than 5.0 × 10 −12 Pa −1 .
(iii)層Aに含まれるアクリル系樹脂のガラス転移温度をTgとし、Tg−10℃で1.5倍に延伸したときの面内位相差をRe(a’)としたとき、|Re(a’)−Re(a)|<5(nm)を満たす。 (Iii) When the glass transition temperature of the acrylic resin contained in the layer A is Tg and the in-plane retardation when it is stretched 1.5 times at Tg-10 ° C. is Re (a ′), | Re ( a ′) − Re (a) | <5 (nm) is satisfied.
(iv)層Bの厚み方向位相差Rth(b)が、|Rth(b)|>|Rth(a)|×50を満たす。 (Iv) The thickness direction retardation Rth (b) of the layer B satisfies | Rth (b) |> | Rth (a) | × 50.
[2]アクリル系樹脂を含む層Aが、以下の構造式(a)で表される不飽和カルボン酸アルキルエステル単位aと構造式(b)で表される不飽和カルボン酸単位bと構造式(c)で表される環化構造単位cとを含有するアクリル系ポリマーBと、平均粒子径が10〜1,000nmである弾性体粒子Eとを含有する、上記[1]に記載の積層フィルム。 [2] The layer A containing an acrylic resin has an unsaturated carboxylic acid alkyl ester unit a represented by the following structural formula (a), an unsaturated carboxylic acid unit b represented by the structural formula (b), and a structural formula. The laminate according to the above [1], comprising an acrylic polymer B containing the cyclized structural unit c represented by (c) and elastic particles E having an average particle diameter of 10 to 1,000 nm. the film.
(上記式中、R1、R2は、水素または炭素数1〜5の有機残基を表す。) (In the above formula, R 1 and R 2 represent hydrogen or an organic residue having 1 to 5 carbon atoms.)
(上記式中、R3は、水素または炭素数1〜5の有機残基を表す。) (In the above formula, R 3 represents hydrogen or an organic residue having 1 to 5 carbon atoms.)
(上記式中、R4、R5は、水素または炭素数1〜5の有機残基を表す。上記式中X1、X2は、C=OまたはCH−R11を表す。R11は水素または炭素数1〜5の有機残基を表す。)
[3]アクリル系ポリマーBが、以下の構造式(d)で表されるグルタル酸無水物単位を含有する、上記[2]に記載の積層フィルム。
(In the formula, R 4, R 5 represents. In the formula X 1, X 2 hydrogen or an organic residue having 1 to 5 carbon atoms, .R 11 representing C = O at or CH-R 11 is Represents hydrogen or an organic residue having 1 to 5 carbon atoms.)
[3] The laminated film according to [2], wherein the acrylic polymer B contains a glutaric anhydride unit represented by the following structural formula (d).
(上記式中、R6、R7は、水素または炭素数1〜5の有機残基を表す。)
[4]アクリル系ポリマーBが、不飽和カルボン酸アルキルエステル単位と、グルタル酸無水物単位とを含み、該アクリル系ポリマーBを100質量部としたとき、グルタル酸無水物単位を10〜25質量部含有する、上記[2]または[3]に記載の積層フィルム。
(In the above formula, R 6 and R 7 represent hydrogen or an organic residue having 1 to 5 carbon atoms.)
[4] The acrylic polymer B contains an unsaturated carboxylic acid alkyl ester unit and a glutaric anhydride unit, and when the acrylic polymer B is 100 parts by mass, the glutaric anhydride unit is 10 to 25 parts by mass. The laminated film according to [2] or [3], which is contained in a part.
[5]光学補償層付き偏光子保護フィルムとして用いられる、上記[1]〜[4]のいずれかに記載の積層フィルム。 [5] The laminated film according to any one of [1] to [4], which is used as a polarizer protective film with an optical compensation layer.
[6]上記[5]に記載の積層フィルムを用いて構成された光学補償層付き偏光板。 [6] A polarizing plate with an optical compensation layer constituted by using the laminated film according to [5].
本発明によれば、特に位相差付き偏光子保護用途に適した、少なくともリターデーション、及び応力による複屈折変化が小さい層と位相差を発現する層からなる光学用積層フィルム、及び位相差付き偏光板を提供することができるので、光学補償層付き偏光子保護フィルムに極めて好適に使用することができる。 According to the present invention, an optical laminated film comprising at least a retardation, a layer having a small change in birefringence due to stress, and a layer exhibiting a phase difference, and a polarization having a phase difference, which are particularly suitable for protecting a phased polarizer. Since a plate can be provided, it can be used very suitably for a polarizer protective film with an optical compensation layer.
本発明は、アクリル系樹脂を含む層Aと、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアミドイミドおよびポリエステルイミドからなる群から選ばれる少なくとも1種のポリマーを含む層Bとを有し、かつ、以下の条件(i)〜(iv)を同時に満足する積層フィルムを特徴としている。 The present invention has a layer A containing an acrylic resin and a layer B containing at least one polymer selected from the group consisting of polyamide, polyimide, polyester, polyetherketone, polyamideimide and polyesterimide, and It is characterized by a laminated film that simultaneously satisfies the following conditions (i) to (iv).
(i)層Aの面内位相差Re(a)が5nm以下であり、厚み方向位相差Rth(a)が−5nm以上5nm以下である。 (I) The in-plane retardation Re (a) of the layer A is 5 nm or less, and the thickness direction retardation Rth (a) is −5 nm or more and 5 nm or less.
(ii)層Aの光弾性係数が5.0×10−12Pa−1より小さい。 (Ii) The photoelastic coefficient of the layer A is smaller than 5.0 × 10 −12 Pa −1 .
(iii)層Aに含まれるアクリル系樹脂のガラス転移温度をTgとし、Tg−10℃で1.5倍に延伸したときの面内位相差をRe(a’)としたとき、|Re(a’)−Re(a)|<5(nm)を満たす。 (Iii) When the glass transition temperature of the acrylic resin contained in the layer A is Tg and the in-plane retardation when stretched 1.5 times at Tg-10 ° C. is Re (a ′), | Re ( a ′) − Re (a) | <5 (nm) is satisfied.
(iv)層Bの厚み方向位相差Rth(b)が、|Rth(b)|>|Rth(a)|×50を満たす。 (Iv) The thickness direction retardation Rth (b) of the layer B satisfies | Rth (b) |> | Rth (a) | × 50.
前記層Aは、位相差を発現する前記層Bに対するベースフィルムとして使用する方法が好ましい形態であり、前記層Aは複屈折、および応力による複屈折変化は小さければ小さいほど好ましい。具体的には、好ましくは面内位相差Re(a)が5nm以下であり、厚み方向位相差Rth(a)が−5nm以上5nm以下である。より好ましくは面内位相差Re(a)が2nm以下であり、厚み方向位相差Rth(a)が−2nm以上2nm以下である。 The layer A is preferably used as a base film for the layer B that expresses a phase difference, and the layer A is more preferable as the birefringence and the change in birefringence due to stress are smaller. Specifically, the in-plane retardation Re (a) is preferably 5 nm or less, and the thickness direction retardation Rth (a) is −5 nm or more and 5 nm or less. More preferably, the in-plane retardation Re (a) is 2 nm or less, and the thickness direction retardation Rth (a) is −2 nm or more and 2 nm or less.
また、光弾性係数は5.0×10−12Pa−1より小さいことが好ましく、3.0×10−12Pa−1より小さいとより好ましい。 The photoelastic coefficient is preferably smaller than 5.0 × 10 −12 Pa −1 and more preferably smaller than 3.0 × 10 −12 Pa −1 .
さらに、層Bの厚み方向位相差Rth(b)が、|Rth(b)|>|Rth(a)|×50を満たすことが好ましく、|Rth(b)|>|Rth(a)|×70であればさらに好ましい。 Further, the thickness direction retardation Rth (b) of the layer B preferably satisfies | Rth (b) |> | Rth (a) | × 50, and | Rth (b) |> | Rth (a) | × 70 is more preferable.
また、透明高分子フィルム層の上に複屈折層を形成した後、この積層体を延伸することにより、前記複屈折層の面内に屈折率の差を持たせることができる。この場合、一般的には延伸することによって透明高分子フィルム層は複屈折を有する。しかし、本発明のように層Aに含まれるアクリル系樹脂のガラス転移温度をTgとし、Tg−10℃で1.5倍に延伸したときの面内位相差をRe(a’)としたとき、|Re(a’)−Re(a)|<5(nm)を満たす場合には、延伸しても面内位相差、厚み方向位相差共に実用上問題とならないため基材からの剥離作業や巻取り作業を必要とせず、積層状態で使用できるために好ましい、|Re(a’)−Re(a)|<3(nm)を満たす場合、より好ましい。 Further, after forming a birefringent layer on the transparent polymer film layer, the laminate can be stretched to give a difference in refractive index in the plane of the birefringent layer. In this case, the transparent polymer film layer generally has birefringence by stretching. However, when the glass transition temperature of the acrylic resin contained in the layer A is Tg and the in-plane retardation is 1.5 times stretched at Tg−10 ° C. as in the present invention, Re (a ′). , | Re (a ′) − Re (a) | <5 (nm), both in-plane retardation and thickness direction retardation do not cause any practical problems even if stretched, so that peeling from the substrate It is more preferable to satisfy | Re (a ′) − Re (a) | <3 (nm), which is preferable because it can be used in a stacked state without requiring a winding operation.
このことから、前記層Aは透明性、耐熱性、機械特性など、光学用途に必要な特性を満たしていれば特に構造は限定されないが、層Aが、構造式(a)で表される不飽和カルボン酸アルキルエステル単位aと構造式(b)で表される不飽和カルボン酸単位bと構造式(c)で表される環化構造単位cとを含有するアクリル系ポリマーBと、平均粒子径が10〜1,000nmである弾性体粒子Eとを含有することが、リターデーション、及び応力による複屈折変化を低減するために好ましい。 Thus, the structure of the layer A is not particularly limited as long as it satisfies the properties required for optical applications such as transparency, heat resistance, and mechanical properties. However, the layer A is not represented by the structural formula (a). Acrylic polymer B containing saturated carboxylic acid alkyl ester unit a, unsaturated carboxylic acid unit b represented by structural formula (b), and cyclized structural unit c represented by structural formula (c), and average particles It is preferable to contain elastic particles E having a diameter of 10 to 1,000 nm in order to reduce retardation and birefringence change due to stress.
なお、不飽和カルボン酸アルキルエステル単位aとしてはメタクリル酸メチルが、得られるフィルムの透明性、耐候性の点から好ましい。さらに他の不飽和カルボン酸アルキルエステル単量体をメタクリル酸メチルと共に1種または2種以上を用いることができる。また、他の不飽和カルボン酸アルキルエステル単量体としては特に制限はないが、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシルおよび(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどが挙げられる。 In addition, as the unsaturated carboxylic acid alkyl ester unit a, methyl methacrylate is preferable from the viewpoint of transparency and weather resistance of the resulting film. Further, one or more kinds of other unsaturated carboxylic acid alkyl ester monomers can be used together with methyl methacrylate. Moreover, there is no restriction | limiting in particular as another unsaturated carboxylic acid alkylester monomer, However, (meth) acrylic-acid ethyl, (meth) acrylic-acid n-propyl, (meth) acrylic-acid n-butyl, (meth) acrylic T-butyl acid, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth ) 3-hydroxypropyl acrylate, 2,3,4,5,6-pentahydroxyhexyl (meth) acrylate and 2,3,4,5-tetrahydroxypentyl (meth) acrylate.
(上記式中、R1、R2は、水素または炭素数1〜5の有機残基を表す。)
また、不飽和カルボン酸単位bとしては特に熱安定性が優れる点でアクリル酸、メタクリル酸が好ましく、より好ましくはメタクリル酸である。これらはその1種、または2種以上用いることができる。
(In the above formula, R 1 and R 2 represent hydrogen or an organic residue having 1 to 5 carbon atoms.)
In addition, the unsaturated carboxylic acid unit b is preferably acrylic acid or methacrylic acid, and more preferably methacrylic acid, in view of excellent thermal stability. These can be used alone or in combination of two or more thereof.
(上記式中、R3は、水素または炭素数1〜5の有機残基を表す。)
さらに、環化構造単位cとしては、該単位を与えるビニル系単量体とを重合させ、共重合体とした後、かかる共重合体を適当な触媒の存在下あるいは非存在下で加熱し、脱アルコールおよび/または脱水による分子内環化反応を行わせることにより製造することができる。R3は特に耐熱性の点から水素またはメチル基が好ましく、とりわけメチル基が好ましい。
(In the above formula, R 3 represents hydrogen or an organic residue having 1 to 5 carbon atoms.)
Furthermore, as the cyclized structural unit c, a vinyl monomer that gives the unit is polymerized to form a copolymer, and then the copolymer is heated in the presence or absence of a suitable catalyst, It can be produced by causing an intramolecular cyclization reaction by dealcoholization and / or dehydration. R 3 is particularly preferably hydrogen or a methyl group from the viewpoint of heat resistance, and particularly preferably a methyl group.
(上記式中、R4、R5は、水素または炭素数1〜5の有機残基を表す。上記式中X1、X2は、C=OまたはCH−R11を表す。R11は水素または炭素数1〜5の有機残基を表す。)
アクリル系ポリマーBが、下記構造式(d)で表されるグルタル酸無水物単位を含有すると(構造式(c)の中でも、特に構造式(d)に示すグルタル酸無水物単位を有するアクリル系ポリマーを用いると)、透明性、耐熱性、生産性に優れ、また、光学等方性に優れたフィルムを得ることができるため好ましい。グルタル酸無水物単位は、不飽和カルボン酸単量体および不飽和カルボン酸アルキルエステル単量体を重合させて共重合体とした後、適当な触媒の存在下あるいは非存在下で加熱し、脱アルコールおよび/または脱水による分子内環化反応を行わせることにより製造することができる。この場合、2単位の不飽和カルボン酸単位のカルボキシル基が脱水されて、あるいは隣接する不飽和カルボン酸単位と不飽和カルボン酸アルキルエステル単位からアルコールの脱離により1単位の前記グルタル酸無水物単位が生成される。
(In the formula, R 4, R 5 represents. In the formula X 1, X 2 hydrogen or an organic residue having 1 to 5 carbon atoms, .R 11 representing C = O at or CH-R 11 is Represents hydrogen or an organic residue having 1 to 5 carbon atoms.)
When acrylic polymer B contains a glutaric anhydride unit represented by the following structural formula (d) (among the structural formula (c), an acrylic polymer having a glutaric anhydride unit represented by structural formula (d) in particular Use of a polymer) is preferable because a film having excellent transparency, heat resistance, and productivity and excellent optical isotropy can be obtained. The glutaric anhydride unit is obtained by polymerizing an unsaturated carboxylic acid monomer and an unsaturated carboxylic acid alkyl ester monomer to form a copolymer, followed by heating in the presence or absence of an appropriate catalyst to remove the glutaric anhydride unit. It can be produced by carrying out an intramolecular cyclization reaction by alcohol and / or dehydration. In this case, 1 unit of the glutaric anhydride unit is obtained by dehydrating the carboxyl group of 2 units of the unsaturated carboxylic acid unit or by eliminating the alcohol from the adjacent unsaturated carboxylic acid unit and unsaturated carboxylic acid alkyl ester unit. Is generated.
(上記式中、R6、R7は、水素または炭素数1〜5の有機残基を表す。)
前記層Aは、光学用フィルムとして用いる場合、光学等方用途では位相差が小さいことが要求される。
(In the above formula, R 6 and R 7 represent hydrogen or an organic residue having 1 to 5 carbon atoms.)
When the layer A is used as an optical film, the layer A is required to have a small phase difference in optical isotropic applications.
ここで、光学等方用途とは、その素材の内部で光学的等方性が求められる用途で、具体的には偏光子保護フィルム、レンズ、光導波路コアなどが例示できる。液晶テレビにおいて、偏光板は2枚を直交または平行して使用されるが、偏光子保護フィルムが存在しないか、光学等方である場合、偏光板2枚を直交した状態では黒が表示され、偏光板2枚を平行した状態では白が表示される。一方、偏光子保護フィルムが光学等方でない場合、偏光板2枚を直交した状態では黒ではなく例えば濃い紫が表示され、偏光板2枚を平行した状態では白ではなく例えば黄色が表示される。この着色は偏光子保護フィルムの異方性によって異なる。偏光子保護フィルムは光学的には存在しないことが理想であるが、外からの応力及び水分から偏光子を保護する目的で必要不可欠である。また、レンズの場合、レンズはその界面で光を屈折することを目的とするが、レンズ内は均一に光が進むことが必要である。レンズ内が光学等方でないと、像が歪むなどの問題がある。光導波路コアの場合、光学等方でないと例えば、横方向の波と、縦方向の波の信号の伝達速度に差が生じるため、ノイズ、混信の問題を起こす原因となる。他の光学等方用途としては、プリズムシート基材、光ディスク基板、フラットパネルディスプレイ基板などが挙げられる。 Here, the optical isotropic application is an application in which optical isotropy is required inside the material, and specific examples include a polarizer protective film, a lens, and an optical waveguide core. In a liquid crystal television, two polarizing plates are used orthogonally or in parallel, but when the polarizer protective film does not exist or is optically isotropic, black is displayed in a state where the two polarizing plates are orthogonal, When two polarizing plates are parallel, white is displayed. On the other hand, when the polarizer protective film is not optically isotropic, for example, dark purple is displayed instead of black when the two polarizing plates are orthogonal to each other, and yellow instead of white is displayed when the two polarizing plates are parallel. . This coloring varies depending on the anisotropy of the polarizer protective film. Ideally, the polarizer protective film does not exist optically, but is indispensable for the purpose of protecting the polarizer from external stress and moisture. In the case of a lens, the lens is intended to refract light at the interface, but it is necessary for light to travel uniformly within the lens. If the inside of the lens is not optically isotropic, there is a problem that the image is distorted. In the case of the optical waveguide core, if it is not optically isotropic, for example, there is a difference in the transmission speed between the horizontal wave signal and the vertical wave signal, which causes noise and interference problems. Other optical isotropic applications include prism sheet substrates, optical disk substrates, flat panel display substrates, and the like.
樹脂の構造については、π電子を多く持つ芳香環を導入すると、耐熱性は脂環構造を導入する以上に向上するが、同時に複屈折が大きくなり、位相差が発現しやすくなる問題がある。このため、光学等方を保ったまま、耐熱性を向上させるためには脂環構造を含有することが最も好ましい。脂環構造としてはグルタル酸無水物構造、ラクトン環構造、ノルボルネン構造、シクロペンタン構造などが挙げられる。光学等方と耐熱性については、どの構造を用いても同様の効果が得られるが、ラクトン環構造、ノルボルネン構造、シクロペンタン構造などの導入にはこれら構造を有する高価な原料を使用するか、またはこれら構造の前駆体となる高価な原料を使用し、数段階の反応を経て、目的の構造にする必要があるため、工業的に不利である。一方、グルタル酸無水物単位は一般的なアクリル原料から1段階の脱水及び/または脱アルコール反応により得られるため工業的に非常に有利である。 As for the resin structure, when an aromatic ring having many π electrons is introduced, the heat resistance is improved more than the introduction of an alicyclic structure, but at the same time, there is a problem that birefringence increases and phase difference is easily developed. For this reason, it is most preferable to contain an alicyclic structure in order to improve heat resistance while maintaining the optical isotropy. Examples of the alicyclic structure include a glutaric anhydride structure, a lactone ring structure, a norbornene structure, and a cyclopentane structure. For optical isotropy and heat resistance, the same effect can be obtained using any structure, but for the introduction of lactone ring structure, norbornene structure, cyclopentane structure, etc., use expensive raw materials having these structures, Alternatively, it is industrially disadvantageous because it is necessary to use an expensive raw material to be a precursor of these structures and to obtain a target structure through several steps of reaction. On the other hand, glutaric anhydride units are industrially very advantageous because they are obtained from a general acrylic raw material by a one-step dehydration and / or dealcoholization reaction.
アクリル系樹脂のガラス転移温度(Tg)が120℃よりも低い場合には、偏光子保護フィルム等の液晶表示装置用フィルム、各種光ディスク基板保護フィルム等に使用する際の加工工程、或いは自動車のナビゲーションシステム、ハンディカメラなどの普及により、使用範囲が屋外や自動車の車内などの耐候性、耐熱性が要求される過酷な使用環境条件下での使用に耐えることができない。また、ガラス転移温度(Tg)は200℃以下であることが好ましい。200℃よりも高い場合には製膜時に相応の高温にする必要があるため、製膜性の観点から不利となる場合がある。 When the glass transition temperature (Tg) of the acrylic resin is lower than 120 ° C., processing steps when used for a film for liquid crystal display devices such as a polarizer protective film, various optical disk substrate protective films, etc., or automobile navigation Due to the widespread use of systems, handy cameras, etc., the use range cannot withstand use under harsh use environment conditions that require weather resistance and heat resistance such as outdoors and in automobiles. Moreover, it is preferable that a glass transition temperature (Tg) is 200 degrees C or less. When the temperature is higher than 200 ° C., it is necessary to set a corresponding high temperature during film formation, which may be disadvantageous from the viewpoint of film formation.
また、前記熱可塑性樹脂フィルムのフィルム面内の位相差(Re)が10nmを超える場合、或いはフィルム厚み方向の位相差(Rth)が10nmを超える場合には、光学等方用途では表示の品位が低下するなど使用に耐えられなくなる。 In addition, when the retardation (Re) in the film surface of the thermoplastic resin film exceeds 10 nm, or when the retardation (Rth) in the film thickness direction exceeds 10 nm, the display quality is optically isotropic. It will not be able to withstand use such as lowering.
次に、構造式(d)で表されるグルタル酸無水物単位を含有するアクリル系ポリマーの製造方法の例を説明するが、本発明はこれに限定されるものではない。 Next, although the example of the manufacturing method of the acrylic polymer containing the glutaric anhydride unit represented by Structural formula (d) is demonstrated, this invention is not limited to this.
(上記式中、R6、R7は、水素または炭素数1〜5の有機残基を表す。)
当該アクリル系ポリマーは、不飽和カルボン酸アルキルエステル単量体(A)と不飽和カルボン酸単量体(B)、その他のビニル系単量体単位を含む場合には該単位を与えるビニル系単量体(C)とを重合させ、共重合体(ア)とした後、かかる共重合体(ア)を適当な触媒の存在下或いは非存在下で加熱し、脱アルコールおよび/または脱水による分子内環化反応を行わせることにより製造することができる。この場合、典型的には共重合体(ア)を加熱することにより2単位の不飽和カルボン酸単位のカルボキシル基が脱水されて、或いは隣接する不飽和カルボン酸単位と不飽和カルボン酸アルキルエステル単位からアルコールの脱離により1単位の前記グルタル酸無水物単位が生成される。
(In the above formula, R 6 and R 7 represent hydrogen or an organic residue having 1 to 5 carbon atoms.)
When the acrylic polymer contains an unsaturated carboxylic acid alkyl ester monomer (A), an unsaturated carboxylic acid monomer (B), and other vinyl monomer units, the vinyl polymer that gives the units After the polymer (C) is polymerized to form a copolymer (a), the copolymer (a) is heated in the presence or absence of a suitable catalyst, and a molecule obtained by dealcoholization and / or dehydration. It can be produced by carrying out an internal cyclization reaction. In this case, typically, the carboxyl group of the unsaturated carboxylic acid unit of 2 units is dehydrated by heating the copolymer (a), or the adjacent unsaturated carboxylic acid unit and unsaturated carboxylic acid alkyl ester unit. 1 unit of the glutaric anhydride unit is generated by the elimination of the alcohol.
この際用いられる不飽和カルボン酸アルキルエステル単量体(A)としては特に制限はないが、好ましい例として、下記構造式(a)で表されるものを挙げることができる。 The unsaturated carboxylic acid alkyl ester monomer (A) used in this case is not particularly limited, but preferred examples include those represented by the following structural formula (a).
(上記式中、R1、R2は、水素または炭素数1〜5の有機残基を表す。)
これらのうち、炭素数1〜5の脂肪族もしくは脂環式炭化水素基または置換基を有する該炭化水素基をもつアクリル酸エステルおよび/またはメタクリル酸エステルが熱安定性が優れる点で特に好適である。
(In the above formula, R 1 and R 2 represent hydrogen or an organic residue having 1 to 5 carbon atoms.)
Of these, acrylates and / or methacrylates having an aliphatic or alicyclic hydrocarbon group having 1 to 5 carbon atoms or a hydrocarbon group having a substituent are particularly suitable in terms of excellent thermal stability. is there.
不飽和カルボン酸アルキルエステル単量体(B)の好ましい具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシルおよび(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどが挙げられ、中でもメタクリル酸メチルが最も好ましく用いられる。これらはその1種または2種以上を用いることができる。 Preferable specific examples of the unsaturated carboxylic acid alkyl ester monomer (B) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and n-butyl (meth) acrylate. T-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2- (meth) acrylic acid 2- Hydroxyethyl, 3-hydroxypropyl (meth) acrylate, 2,3,4,5,6-pentahydroxyhexyl (meth) acrylate and 2,3,4,5-tetrahydroxypentyl (meth) acrylate Among them, methyl methacrylate is most preferably used. These can be used alone or in combination of two or more thereof.
また、この際用いられる不飽和カルボン酸単量体(B)としては、特に限定はなく、他のビニル化合物(C)と共重合させることが可能な、構造式(b)の不飽和カルボン酸単量体が使用できる。 In addition, the unsaturated carboxylic acid monomer (B) used in this case is not particularly limited, and can be copolymerized with another vinyl compound (C). Monomers can be used.
(上記式中、R3は、水素または炭素数1〜5の有機残基を表す。)
特に、熱安定性が優れる点でアクリル酸、メタクリル酸が好ましく、より好ましくはメタクリル酸である。これらはその1種、または2種以上用いることができる。
(In the above formula, R 3 represents hydrogen or an organic residue having 1 to 5 carbon atoms.)
In particular, acrylic acid and methacrylic acid are preferable from the viewpoint of excellent thermal stability, and methacrylic acid is more preferable. These can be used alone or in combination of two or more thereof.
また、本発明で用いる環構造を持つアクリル系ポリマーの製造においては、本発明の効果を損なわない範囲で、スチレン、アクリルアミド、メタクリルアミドなど、他のビニル系単量体(C)を用いてもかまわないが、透明性、複屈折、耐薬品性の点で芳香環を含まない単量体がより好ましく使用できる。これらは単独ないし2種以上を用いることができる。 Further, in the production of an acrylic polymer having a ring structure used in the present invention, other vinyl monomers (C) such as styrene, acrylamide, methacrylamide, etc. may be used as long as the effects of the present invention are not impaired. Although it does not matter, monomers that do not contain an aromatic ring can be more preferably used in terms of transparency, birefringence, and chemical resistance. These may be used alone or in combination of two or more.
環構造を持つアクリル系ポリマーの重合方法については、基本的にはラジカル重合による、塊状重合、溶液重合、懸濁重合、乳化重合等の重合方法を用いることができるが、不純物がより少ない点で溶液重合、塊状重合、懸濁重合が特に好ましい。 As for the polymerization method of the acrylic polymer having a ring structure, a polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization or the like by radical polymerization can be basically used. Solution polymerization, bulk polymerization, and suspension polymerization are particularly preferred.
重合温度については、特に制限はないが、色調の観点から、不飽和カルボン酸単量体および不飽和カルボン酸アルキルエステル単量体を含む単量体混合物を95℃以下の重合温度で重合することが好ましい。また、重合温度の下限は、重合が進行する温度であれば、特に制限はないが、重合速度を考慮した生産性の面から、通常50℃以上である。重合収率或いは重合速度を向上させる目的で、重合進行に従い重合温度を昇温することも可能である。また重合時間は、必要な重合度を得るのに十分な時間であれば特に制限はないが、生産効率の点から60〜360分間の範囲が好ましい。 The polymerization temperature is not particularly limited, but from the viewpoint of color tone, a monomer mixture containing an unsaturated carboxylic acid monomer and an unsaturated carboxylic acid alkyl ester monomer is polymerized at a polymerization temperature of 95 ° C. or less. Is preferred. The lower limit of the polymerization temperature is not particularly limited as long as the polymerization proceeds, but is usually 50 ° C. or higher from the viewpoint of productivity considering the polymerization rate. For the purpose of improving the polymerization yield or polymerization rate, it is possible to raise the polymerization temperature as the polymerization proceeds. The polymerization time is not particularly limited as long as it is a sufficient time to obtain the required degree of polymerization, but is preferably in the range of 60 to 360 minutes from the viewpoint of production efficiency.
本発明において、環構造を持つアクリル系ポリマーの製造時に用いられるこれらの単量体混合物の好ましい割合は、該単量体混合物を100質量部として、不飽和カルボン酸単量体(A)が5〜50質量部、より好ましくは9〜33質量部、不飽和カルボン酸アルキルエステル単量体(B)は好ましくは50〜95質量部、より好ましくは67〜91質量部、これらに共重合可能な他のビニル系単量体(C)を用いる場合、その好ましい割合は0〜5質量部であり、より好ましい割合は0〜3質量部である。 In the present invention, a preferred ratio of the monomer mixture used in the production of the acrylic polymer having a ring structure is 5 parts by weight of the unsaturated carboxylic acid monomer (A) based on 100 parts by mass of the monomer mixture. -50 parts by mass, more preferably 9-33 parts by mass, the unsaturated carboxylic acid alkyl ester monomer (B) is preferably 50-95 parts by mass, more preferably 67-91 parts by mass, and can be copolymerized therewith. When using another vinyl-type monomer (C), the preferable ratio is 0-5 mass parts, and a more preferable ratio is 0-3 mass parts.
不飽和カルボン酸単量体量(B)が5質量部未満の場合には、共重合体(ア)の加熱などによる構造式(d)で表されるグルタル酸無水物単位の生成量が少なくなり、本発明のアクリル系フィルムの耐熱性向上効果が小さくなる傾向がある。一方、不飽和カルボン酸単量体量(B)が50質量部を超える場合には、共重合体(ア)の加熱による環化反応後に、不飽和カルボン酸単位が多量に残存する傾向があり、無色透明性、滞留安定性、及びフィルム化後の寸法安定性が低下する傾向がある。 When the unsaturated carboxylic acid monomer amount (B) is less than 5 parts by mass, the amount of glutaric anhydride units represented by the structural formula (d) by heating the copolymer (a) is small. Thus, the heat resistance improvement effect of the acrylic film of the present invention tends to be small. On the other hand, when the unsaturated carboxylic acid monomer amount (B) exceeds 50 parts by mass, a large amount of unsaturated carboxylic acid units tend to remain after the cyclization reaction by heating the copolymer (a). , Colorless transparency, residence stability, and dimensional stability after film formation tend to decrease.
また、本発明のアクリル系フィルムに使用する環構造を持つアクリル系ポリマーは、質量平均分子量が5万〜15万であることが好ましい。このような分子量を有する環構造を持つアクリル系ポリマーは、共重合体(ア)の製造時に、共重合体(ア)を所望の分子量、すなわち質量平均分子量で5万〜15万に予め制御しておくことにより、達成することができる。質量平均分子量が、15万を超える場合、後工程の環化時に着色する傾向が見られる。一方、質量平均分子量が、5万未満の場合、アクリル系フィルムの機械的強度が低下する傾向が見られる。 The acrylic polymer having a ring structure used for the acrylic film of the present invention preferably has a mass average molecular weight of 50,000 to 150,000. The acrylic polymer having a ring structure having such a molecular weight is obtained by controlling the copolymer (a) to a desired molecular weight, that is, a mass average molecular weight of 50,000 to 150,000 in advance during the production of the copolymer (a). This can be achieved. When the mass average molecular weight exceeds 150,000, there is a tendency to color during cyclization in the subsequent step. On the other hand, when the mass average molecular weight is less than 50,000, the mechanical strength of the acrylic film tends to decrease.
本発明に好ましく用いられる環構造を持つアクリル系ポリマーの製造に用いる共重合体(ア)を加熱し、(イ)脱水および/または(ロ)脱アルコールにより分子内環化反応を行い、グルタル酸無水物単位を含有するアクリル系ポリマーを製造する方法としては、特に制限はないが、ベントを有する加熱した押出機に通して製造する方法や不活性ガス雰囲気または減圧下で加熱脱気できる装置内で製造する方法が生産性の観点から好ましい。中でも、酸素存在下で加熱による分子内環化反応を行うと、黄色度が低下する傾向が見られるため、十分に系内を窒素などの不活性ガスで置換することが好ましい。また、これらに窒素などの不活性ガスが導入可能な構造を有した装置であることがより好ましい。例えば、二軸押出機に、窒素などの不活性ガスを導入する方法としては、ホッパー上部および/または下部より、10〜100リットル/分程度の不活性ガス気流の配管を繋ぐ方法などが挙げられる。 The copolymer (a) used for the production of the acrylic polymer having a ring structure preferably used in the present invention is heated and subjected to intramolecular cyclization reaction by (i) dehydration and / or (b) dealcoholization, and glutaric acid There are no particular restrictions on the method for producing an acrylic polymer containing an anhydride unit, but a method for producing it through a heated extruder having a vent, or in an apparatus that can be heated and degassed under an inert gas atmosphere or under reduced pressure. Is preferable from the viewpoint of productivity. Among them, when an intramolecular cyclization reaction is carried out by heating in the presence of oxygen, the yellowness tends to decrease, so that it is preferable to sufficiently substitute the inside of the system with an inert gas such as nitrogen. Moreover, it is more preferable that the apparatus has a structure capable of introducing an inert gas such as nitrogen into them. For example, as a method for introducing an inert gas such as nitrogen into a twin-screw extruder, a method of connecting a pipe of an inert gas stream of about 10 to 100 liters / minute from the upper part and / or the lower part of the hopper can be mentioned. .
なお、環化時の温度は、(イ)脱水および/または(ロ)脱アルコールにより分子内環化反応が生じる温度であれば特に限定されないが、好ましくは180〜300℃の範囲、特に200〜280℃の範囲が好ましい。 The temperature during cyclization is not particularly limited as long as (i) dehydration and / or (b) dealcoholization causes an intramolecular cyclization reaction, but is preferably in the range of 180 to 300 ° C, particularly 200 to 200 ° C. A range of 280 ° C is preferred.
また、この際の環化時間も特に限定されず、所望する共重合組成に応じて適宜設定可能であるが、通常、1分間〜60分間、好ましくは2分間〜30分間、とりわけ3〜20分間の範囲が好ましい。特に、押出機を用いて、十分な分子内環化反応を進行させるための加熱時間を確保するため、押出機スクリューの長さ/直径比(L/D)が40以上であることが好ましい。L/Dの短い押出機を使用した場合、未反応の不飽和カルボン酸単位が多量に残存するため、加熱成形加工時に反応が再進行し、成形品に気泡が見られる傾向や成形滞留時に色調が大幅に低下する傾向がある。 Further, the cyclization time at this time is not particularly limited and can be appropriately set according to the desired copolymer composition, but is usually 1 minute to 60 minutes, preferably 2 minutes to 30 minutes, especially 3 to 20 minutes. The range of is preferable. In particular, the length / diameter ratio (L / D) of the extruder screw is preferably 40 or more in order to secure a heating time for allowing sufficient intramolecular cyclization reaction to proceed using an extruder. When an extruder with a short L / D is used, a large amount of unreacted unsaturated carboxylic acid units remain, so that the reaction proceeds again during the heat molding process, and there is a tendency for bubbles to be seen in the molded product and the color tone during molding retention. Tend to drop significantly.
さらに本発明では、共重合体(ア)を上記方法等により加熱する際にグルタル酸無水物への環化反応を促進させる触媒として、酸、アルカリ、塩化合物の1種以上を添加することができる。その添加量は特に制限はなく、共重合体(ア)100質量部に対し、0.01〜1質量部程度が適当である。 Furthermore, in the present invention, when the copolymer (a) is heated by the above method or the like, one or more of acid, alkali and salt compounds may be added as a catalyst for promoting the cyclization reaction to glutaric anhydride. it can. The addition amount is not particularly limited, and is preferably about 0.01 to 1 part by mass with respect to 100 parts by mass of the copolymer (a).
環構造を持つアクリル系ポリマーは、ガラス転移温度(Tg)が120℃以上であることが耐熱性の面で好ましい。ガラス転移温度を上げる方法としては、特に限定されないが、環構造を持つアクリル系ポリマー中の、例えば、構造式(d)で表される様な環化構造単位の含有量を増やすことが効果的である。 The acrylic polymer having a ring structure preferably has a glass transition temperature (Tg) of 120 ° C. or more in terms of heat resistance. The method for raising the glass transition temperature is not particularly limited, but it is effective to increase the content of the cyclized structural unit represented by, for example, the structural formula (d) in the acrylic polymer having a ring structure. It is.
本発明の環構造を持つアクリル系ポリマーとしては、上記構造式(d)で表されるグルタル酸無水物単位と不飽和カルボン酸アルキルエステル単位からなる共重合体を好ましく使用することができる。不飽和カルボン酸アルキルエステル単位とグルタル酸無水物単位の含有量は特に制限はないが、一般的には不飽和カルボン酸アルキルエステル単位は負の複屈折性を、グルタル酸無水物単位は正の複屈折性を発現することから、不飽和カルボン酸アルキルエステル単位とグルタル酸無水物単位の合計を100質量部としたときに、好ましくは不飽和カルボン酸アルキルエステル単位75〜90質量部及びグルタル酸無水物単位10〜25質量部からなり、より好ましくは、不飽和カルボン酸アルキルエステル単位80〜87質量部及びグルタル酸無水物単位13〜20質量部からなる。グルタル酸無水物単位が10質量部未満である場合、耐熱性向上効果が小さくなる傾向がある。 As the acrylic polymer having a ring structure of the present invention, a copolymer comprising a glutaric anhydride unit represented by the structural formula (d) and an unsaturated carboxylic acid alkyl ester unit can be preferably used. The content of the unsaturated carboxylic acid alkyl ester unit and the glutaric anhydride unit is not particularly limited, but in general, the unsaturated carboxylic acid alkyl ester unit has negative birefringence and the glutaric anhydride unit has a positive value. Since the birefringence is expressed, when the total of unsaturated carboxylic acid alkyl ester units and glutaric anhydride units is 100 parts by mass, preferably 75 to 90 parts by mass of unsaturated carboxylic acid alkyl ester units and glutaric acid are used. It consists of 10-25 parts by weight of anhydride units, more preferably 80-87 parts by weight of unsaturated carboxylic acid alkyl ester units and 13-20 parts by weight of glutaric anhydride units. When the glutaric anhydride unit is less than 10 parts by mass, the effect of improving heat resistance tends to be small.
また、本発明の環構造を持つアクリル系ポリマーにおける各成分単位の定量には、プロトン核磁気共鳴(1H−NMR)測定機が用いられる。1H−NMR法では、例えば、グルタル酸無水物単位、メタクリル酸、メタクリル酸メチルからなる共重合体の場合、ジメチルスルホキシド重溶媒中でのスペクトルの帰属を、0.5〜1.5ppmのピークがメタクリル酸、メタクリル酸メチルおよびグルタル酸無水物環化合物のα−メチル基の水素、1.6〜2.1ppmのピークはポリマー主鎖のメチレン基の水素、3.5ppmのピークはメタクリル酸メチルのカルボン酸エステル(−COOCH3)の水素、12.4ppmのピークはメタクリル酸のカルボン酸の水素と、スペクトルの積分比から共重合体組成を決定することができる。また、上記に加えて、他の共重合成分としてスチレンを含有する共重合体の場合、6.5〜7.5ppmにスチレンの芳香族環の水素が見られ、同様にスペクトル比から共重合体組成を決定することができる。 In addition, a proton nuclear magnetic resonance ( 1 H-NMR) measuring instrument is used for quantification of each component unit in the acrylic polymer having a ring structure of the present invention. In the 1 H-NMR method, for example, in the case of a copolymer consisting of a glutaric anhydride unit, methacrylic acid, and methyl methacrylate, the spectral assignment in a dimethyl sulfoxide heavy solvent is 0.5 to 1.5 ppm peak. Is hydrogen of α-methyl group of methacrylic acid, methyl methacrylate and glutaric anhydride ring compound, peak of 1.6 to 2.1 ppm is hydrogen of methylene group of polymer main chain, peak of 3.5 ppm is methyl methacrylate The carboxylic acid ester (—COOCH 3 ) of hydrogen, the peak at 12.4 ppm can determine the copolymer composition from the carboxylic acid hydrogen of methacrylic acid and the integral ratio of the spectrum. In addition to the above, in the case of a copolymer containing styrene as another copolymer component, hydrogen of an aromatic ring of styrene is seen at 6.5 to 7.5 ppm, and the copolymer is similarly obtained from the spectral ratio. The composition can be determined.
また、本発明の環構造を持つアクリル系ポリマーは、屈折率が所定の範囲内であれば環構造を持つアクリル系ポリマー中に他の不飽和カルボン酸単位および/または、共重合可能な他のビニル系単量体単位を含有することができる。 In addition, the acrylic polymer having a ring structure of the present invention may have other unsaturated carboxylic acid units and / or other copolymerizable copolymer in the acrylic polymer having a ring structure as long as the refractive index is within a predetermined range. A vinyl-type monomer unit can be contained.
アクリル系ポリマー100質量部中に含有される他の不飽和カルボン酸単位量は10質量部以下、すなわち0〜10質量部であることが好ましく、より好ましくは0〜5質量部、最も好ましくは0〜1質量部である。不飽和カルボン酸単位が10質量部を超える場合には、無色透明性、滞留安定性が低下する傾向がある。 The amount of other unsaturated carboxylic acid units contained in 100 parts by mass of the acrylic polymer is preferably 10 parts by mass or less, that is, 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, and most preferably 0. -1 part by mass. When the unsaturated carboxylic acid unit exceeds 10 parts by mass, the colorless transparency and the residence stability tend to decrease.
また、共重合可能な他のビニル系単量体単位量はアクリル系ポリマー100質量部中、5質量部以下、すなわち0〜5質量部の範囲であることが好ましく、より好ましくは0〜3質量部である。特に、スチレンなどの芳香族ビニル系単量体単位を含有する場合、含有量が上記範囲を超えると、無色透明性、光学等方性、耐薬品性が低下する傾向がある。 Further, the amount of other copolymerizable vinyl monomer units is preferably 5 parts by mass or less, ie, 0 to 5 parts by mass, more preferably 0 to 3 parts by mass, in 100 parts by mass of the acrylic polymer. Part. In particular, when an aromatic vinyl monomer unit such as styrene is contained and the content exceeds the above range, colorless transparency, optical isotropy, and chemical resistance tend to decrease.
また、本発明においては本発明の効果を損なわない範囲で、平均粒子径が10〜1,000nmである弾性体粒子Eを用いることができる。弾性体粒子Eとしては、1以上のゴム質重合体を含む層と、それとは異種の重合体から構成される1以上の層から構成され、かつ、これらの各層が隣接し合った構造の、いわゆるコアシェル型と呼ばれる多層構造重合体(E−1)が好ましく使用できる。 In the present invention, elastic particles E having an average particle diameter of 10 to 1,000 nm can be used as long as the effects of the present invention are not impaired. The elastic particles E are composed of a layer containing one or more rubbery polymers and one or more layers composed of different polymers, and these layers are adjacent to each other. A so-called core-shell type multilayer structure polymer (E-1) can be preferably used.
本発明に使用されるコアシェル型の多層構造重合体(E−1)としては、これを構成する層の数は、特に限定されるものではなく、2層以上であればよく、3層以上または4層以上であってもよいが、内部に少なくとも1層以上のゴム層を有する多層構造重合体であることが好ましい。 As the core-shell type multilayer structure polymer (E-1) used in the present invention, the number of layers constituting the core-shell type polymer (E-1) is not particularly limited, and may be two or more, or three or more. Although it may be four layers or more, it is preferably a multilayer structure polymer having at least one rubber layer inside.
本発明の多層構造重合体(E−1)において、ゴム層の種類は、特に限定されるものではなく、ゴム弾性を有する重合体成分から構成されるものであればよい。例えば、アクリル成分、シリコーン成分、スチレン成分、ニトリル成分、共役ジエン成分、ウレタン成分またはエチレン成分、プロピレン成分、イソブテン成分などを重合させたものから構成されるゴムが挙げられる。好ましいゴムとしては、例えば、アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分、ジメチルシロキサン単位やフェニルメチルシロキサン単位などのシリコーン成分、スチレン単位やα−メチルスチレン単位などのスチレン成分、アクリロニトリル単位やメタクリロニトリル単位などのニトリル成分およびブタンジエン単位やイソプレン単位などの共役ジエン成分から構成されるゴムである。また、これらの成分を2種以上組み合わせたものから構成されるゴムも好ましく、例えば、(1)アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分およびジメチルシロキサン単位やフェニルメチルシロキサン単位などのシリコーン成分から構成されるゴム、(2)アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分およびスチレン単位やα−メチルスチレン単位などのスチレン成分から構成されるゴム、(3)アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分およびブタンジエン単位やイソプレン単位などの共役ジエン成分から構成されるゴム、および(4)アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分、ジメチルシロキサン単位やフェニルメチルシロキサン単位などのシリコーン成分およびスチレン単位やα−メチルスチレン単位などのスチレン成分から構成されるゴムなどが挙げられる。また、これらの成分の他に、ジビニルベンゼン単位、アリルアクリレート単位およびブチレングリコールジアクリレート単位などの架橋性成分から構成される共重合体を架橋させたゴムも好ましい。 In the multilayer structure polymer (E-1) of the present invention, the type of the rubber layer is not particularly limited as long as it is composed of a polymer component having rubber elasticity. For example, a rubber composed of a polymer obtained by polymerizing an acrylic component, a silicone component, a styrene component, a nitrile component, a conjugated diene component, a urethane component or an ethylene component, a propylene component, an isobutene component, and the like can be given. Preferred rubbers include, for example, acrylic components such as ethyl acrylate units and butyl acrylate units, silicone components such as dimethylsiloxane units and phenylmethylsiloxane units, styrene components such as styrene units and α-methylstyrene units, acrylonitrile units, A rubber composed of a nitrile component such as a methacrylonitrile unit and a conjugated diene component such as a butanediene unit or an isoprene unit. A rubber composed of a combination of two or more of these components is also preferable. For example, (1) acrylic components such as ethyl acrylate units and butyl acrylate units and silicones such as dimethylsiloxane units and phenylmethylsiloxane units. Rubber composed of components, (2) rubber composed of acrylic components such as ethyl acrylate units and butyl acrylate units, and styrene components such as styrene units and α-methylstyrene units, (3) ethyl acrylate units and Rubber composed of acrylic components such as butyl acrylate units and conjugated diene components such as butanediene units and isoprene units, and (4) acrylic components such as ethyl acrylate units and butyl acrylate units, dimethylsiloxane units and phenylmethylsiloxanes Unit etc. Rubber composed of styrene component such as silicone component and styrene units and α- methyl styrene units and the like. In addition to these components, a rubber obtained by crosslinking a copolymer composed of a crosslinking component such as a divinylbenzene unit, an allyl acrylate unit, and a butylene glycol diacrylate unit is also preferable.
上記の多層構造重合体(E−1)において、ゴム層以外の層の種類は、熱可塑性を有する重合体成分から構成されるものであれば特に限定されるものではないが、ゴム層よりもガラス転移温度が高い重合体成分であることが好ましい。熱可塑性を有する重合体としては、不飽和カルボン酸アルキルエステル系単位、不飽和カルボン酸系単位、不飽和グリシジル基含有単位、不飽和ジカルボン酸無水物系単位、脂肪族ビニル系単位、芳香族ビニル系単位、シアン化ビニル系単位、マレイミド系単位、不飽和ジカルボン酸系単位およびその他のビニル系単位などから選ばれる少なくとも1種以上の単位を含有する重合体が挙げられ、中でも、不飽和カルボン酸アルキルエステル系単位、不飽和グリシジル基含有単位および不飽和ジカルボン酸無水物系単位から選ばれる少なくとも1種以上の単位を含有する重合体が好ましく、さらには不飽和グリシジル基含有単位および不飽和ジカルボン酸無水物系単位から選ばれる少なくとも1種以上の単位を含有する重合体がより好ましい。 In the above multilayer structure polymer (E-1), the type of layer other than the rubber layer is not particularly limited as long as it is composed of a polymer component having thermoplasticity, but it is more than the rubber layer. A polymer component having a high glass transition temperature is preferred. Polymers having thermoplastic properties include unsaturated carboxylic acid alkyl ester units, unsaturated carboxylic acid units, unsaturated glycidyl group-containing units, unsaturated dicarboxylic acid anhydride units, aliphatic vinyl units, and aromatic vinyls. Examples include polymers containing at least one unit selected from system units, vinyl cyanide units, maleimide units, unsaturated dicarboxylic acid units and other vinyl units. Among them, unsaturated carboxylic acids A polymer containing at least one unit selected from an alkyl ester unit, an unsaturated glycidyl group-containing unit, and an unsaturated dicarboxylic acid anhydride unit is preferable, and further, an unsaturated glycidyl group-containing unit and an unsaturated dicarboxylic acid A polymer containing at least one unit selected from anhydride-based units is more preferable.
上記不飽和カルボン酸アルキルエステル系単位の原料となる単量体としては、特に限定されるものではないが、(メタ)アクリル酸アルキルエステルが好ましく使用される。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチル、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチルおよびメタクリル酸シクロヘキシルアミノエチルなどが挙げられ、耐衝撃性を向上する効果が大きいという観点から、(メタ)アクリル酸メチルが好ましく使用される。これらの単位は単独ないし2種以上を用いることができる。 Although it does not specifically limit as a monomer used as the raw material of the said unsaturated carboxylic-acid alkylester type | system | group unit, (meth) acrylic-acid alkylester is used preferably. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, (meth) acrylic N-hexyl acid, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, stearyl (meth) acrylate, octadecyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, ( Chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2,3,4,5,6 (meth) acrylic acid -Pentahydroxyhexyl, 2,3,4,5-tetrahydroxypentyl (meth) acrylate, amino acid acrylate Examples include ethyl, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, phenylaminoethyl methacrylate, and cyclohexylaminoethyl methacrylate, and from the viewpoint that the effect of improving impact resistance is large ( Methyl methacrylate is preferably used. These units can be used alone or in combination of two or more.
上記不飽和カルボン酸単量体としては特に制限はなく、アクリル酸、メタクリル酸、マレイン酸、及びさらには無水マレイン酸の加水分解物などが挙げられるが、特に熱安定性が優れる点でアクリル酸、メタクリル酸が好ましく、より好ましくはメタクリル酸である。これらはその1種または2種以上用いることができる。 The unsaturated carboxylic acid monomer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, maleic acid, and further a hydrolyzate of maleic anhydride. Acrylic acid is particularly excellent in terms of thermal stability. Methacrylic acid is preferable, and methacrylic acid is more preferable. These can be used alone or in combination.
上記不飽和グリシジル基含有単位の原料となる単量体としては、特に限定されるものではなく、(メタ)アクリル酸グリシジル、イタコン酸グリシジル、イタコン酸ジグリシジル、アリルグリシジルエーテル、スチレン−4−グリシジルエーテルおよび4−グリシジルスチレンなどが挙げられ、耐衝撃性を向上する効果が大きいという観点から、(メタ)アクリル酸グリシジルが好ましく使用される。これらの単位は単独ないし2種以上を用いることができる。 The monomer used as the raw material for the unsaturated glycidyl group-containing unit is not particularly limited, and is glycidyl (meth) acrylate, glycidyl itaconate, diglycidyl itaconate, allyl glycidyl ether, styrene-4-glycidyl ether. And 4-glycidylstyrene, and glycidyl (meth) acrylate is preferably used from the viewpoint that the effect of improving impact resistance is great. These units can be used alone or in combination of two or more.
上記不飽和ジカルボン酸無水物系単位の原料となる単量体としては、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸および無水アコニット酸などが挙げられ、耐衝撃性を向上する効果が大きいという観点から、無水マレイン酸が好ましく使用される。これらの単位は単独ないし2種以上を用いることができる。 Examples of the monomer used as a raw material for the unsaturated dicarboxylic acid anhydride unit include maleic anhydride, itaconic anhydride, glutaconic anhydride, citraconic anhydride, and aconitic anhydride, and the effect of improving impact resistance. From the standpoint of large, maleic anhydride is preferably used. These units can be used alone or in combination of two or more.
また、上記脂肪族ビニル系単位の原料となる単量体としては、エチレン、プロピレンおよびブタジエンなどを、上記芳香族ビニル系単位の原料となる単量体としては、スチレン、α−メチルスチレン、1−ビニルナフタレン、4−メチルスチレン、4−プロピルスチレン、4−シクロヘキシルスチレン、4−ドデシルスチレン、2−エチル−4−ベンジルスチレン、4−(フェニルブチル)スチレンおよびハロゲン化スチレンなどを、上記シアン化ビニル系単位の原料となる単量体としては、アクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどを、上記マレイミド系単位の原料となる単量体としては、マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−イソプロピルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−(p−ブロモフェニル)マレイミドおよびN−(クロロフェニル)マレイミドなどを、上記不飽和ジカルボン酸系単位の原料となる単量体としては、マレイン酸、マレイン酸モノエチルエステル、イタコン酸およびフタル酸などを、上記その他のビニル系単位の原料となる単量体としては、アクリルアミド、メタクリルアミド、N−メチルアクリルアミド、ブトキシメチルアクリルアミド、N−プロピルメタクリルアミド、N−ビニルジエチルアミン、N−アセチルビニルアミン、アリルアミン、メタアリルアミン、N−メチルアリルアミン、p−アミノスチレン、2−イソプロペニル−オキサゾリン、2−ビニル−オキサゾリン、2−アクロイル−オキサゾリンおよび2−スチリル−オキサゾリンなどを、それぞれ挙げることができ、これらの単量体は単独ないし2種以上を用いることができる。 Examples of the monomer that is a raw material for the aliphatic vinyl-based unit include ethylene, propylene, and butadiene. Examples of the monomer that is a raw material for the aromatic vinyl-based unit are styrene, α-methylstyrene, 1 -Vinyl naphthalene, 4-methyl styrene, 4-propyl styrene, 4-cyclohexyl styrene, 4-dodecyl styrene, 2-ethyl-4-benzyl styrene, 4- (phenylbutyl) styrene, halogenated styrene, etc. Acrylonitrile, methacrylonitrile, ethacrylonitrile, etc. are used as the raw material for the vinyl-based unit, and maleimide, N-methylmaleimide, N-ethylmaleimide are used as the monomer for the maleimide-based unit. N-propylmaleimide, N-isopropylmaleimide, Examples of monomers that can be used as raw materials for the unsaturated dicarboxylic acid units include maleic acid and maleic acid such as -cyclohexylmaleimide, N-phenylmaleimide, N- (p-bromophenyl) maleimide, and N- (chlorophenyl) maleimide. Monoethyl ester, itaconic acid, phthalic acid, and the like, which are monomers used as raw materials for the other vinyl units, include acrylamide, methacrylamide, N-methylacrylamide, butoxymethylacrylamide, N-propylmethacrylamide, N- Vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, p-aminostyrene, 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acryloyl-oxazoline, and 2-styrene Examples include ril-oxazoline, and these monomers can be used alone or in combination of two or more.
上記のゴム質重合体を含有する多層構造重合体(E−1)において、最外層の種類は、特に限定されるものではなく、不飽和カルボン酸アルキルエステル系単位、不飽和カルボン酸系単位、不飽和グリシジル基含有単位、脂肪族ビニル系単位、芳香族ビニル系単位、シアン化ビニル系単位、マレイミド系単位、不飽和ジカルボン酸系単位、不飽和ジカルボン酸無水物系単位およびその他のビニル系単位などを含有する重合体などから選ばれた少なくとも1種が挙げられ、中でも、不飽和カルボン酸アルキルエステル系単位、不飽和カルボン酸系単位、不飽和グリシジル基含有単位および不飽和ジカルボン酸無水物系単位を含有する重合体から選ばれた少なくとも1種が好ましく、さらには不飽和カルボン酸アルキルエステル系単位、不飽和カルボン酸系単位を含有する重合体がより好ましい。 In the multilayer structure polymer (E-1) containing the rubber polymer, the type of the outermost layer is not particularly limited, and is an unsaturated carboxylic acid alkyl ester unit, an unsaturated carboxylic acid unit, Unsaturated glycidyl group-containing units, aliphatic vinyl units, aromatic vinyl units, vinyl cyanide units, maleimide units, unsaturated dicarboxylic acid units, unsaturated dicarboxylic anhydride units, and other vinyl units And at least one selected from polymers containing, for example, unsaturated carboxylic acid alkyl ester units, unsaturated carboxylic acid units, unsaturated glycidyl group-containing units, and unsaturated dicarboxylic anhydrides At least one selected from polymers containing units is preferred, and further, unsaturated carboxylic acid alkyl ester units, unsaturated polymers. Polymers containing carbon acid units are more preferable.
さらに、本発明では、上記の多層構造重合体(E−1)における最外層が不飽和カルボン酸アルキルエステル系単位および不飽和カルボン酸系単位を含有する重合体である場合、加熱することにより、前述した本発明の熱可塑性共重合体(A)の製造時と同様に、分子内環化反応が進行し、上記一般式(d)で表されるグルタル酸無水物単位が生成する。従って、最外層に不飽和カルボン酸アルキルエステル系単位および不飽和カルボン酸系単位を含有する重合体を有する多層構造重合体(E−1)を熱可塑性共重合体(A)に配合し、適当な条件で、加熱溶融混練することにより、実質的には、連続相(マトリックス相)となる熱可塑性共重合体(A)中に、最外層に上記一般式(d)で表されるグルタル酸無水物単位を含有してなる重合体を有する多層構造重合体(E−1)が分散することにより、凝集することなく、良好な分散状態が可能となり、耐衝撃性等の機械特性向上とともに、極めて高度な透明性が発現しうるものと考えられる。 Furthermore, in the present invention, when the outermost layer in the multilayer polymer (E-1) is a polymer containing an unsaturated carboxylic acid alkyl ester unit and an unsaturated carboxylic acid unit, by heating, In the same manner as in the production of the thermoplastic copolymer (A) of the present invention described above, the intramolecular cyclization reaction proceeds to produce a glutaric anhydride unit represented by the general formula (d). Therefore, a multilayer structure polymer (E-1) having a polymer containing an unsaturated carboxylic acid alkyl ester unit and an unsaturated carboxylic acid unit in the outermost layer is blended with the thermoplastic copolymer (A), In the thermoplastic copolymer (A) that becomes a continuous phase (matrix phase) by heating and melt-kneading under such conditions, the glutaric acid represented by the above general formula (d) in the outermost layer is practically used. By dispersing the multilayer structure polymer (E-1) having a polymer containing an anhydride unit, a good dispersion state is possible without agglomeration, and with improved mechanical properties such as impact resistance, It is considered that extremely high transparency can be expressed.
ここでいう不飽和カルボン酸アルキルエステル系単位の原料となる単量体としては、特に限定されるものではないが、(メタ)アクリル酸アルキルエステルが好ましく、さらには(メタ)アクリル酸メチルがより好ましく使用される。 The monomer used as the raw material for the unsaturated carboxylic acid alkyl ester unit herein is not particularly limited, but (meth) acrylic acid alkyl ester is preferred, and methyl (meth) acrylate is more preferred. Preferably used.
また、不飽和カルボン酸系単位の原料となる単量体としては、特に限定されるものではないが、(メタ)アクリル酸が好ましく、さらにはメタクリル酸がより好ましく使用される。 Further, the monomer used as a raw material for the unsaturated carboxylic acid unit is not particularly limited, but (meth) acrylic acid is preferable, and methacrylic acid is more preferably used.
本発明の多層構造重合体(E−1)の好ましい例としては、コア層がアクリル酸ブチル/スチレン重合体で、最外層がメタクリル酸メチル/上記一般式(d)で表されるグルタル酸無水物単位からなる共重合体、またはメタクリル酸メチル/上記一般式(d)で表されるグルタル酸無水物単位/メタクリル酸重合体であるもの、コア層がジメチルシロキサン/アクリル酸ブチル重合体で最外層がメタクリル酸メチル重合体であるもの、コア層がブタンジエン/スチレン重合体で最外層がメタクリル酸メチル重合体であるもの、およびコア層がアクリル酸ブチル重合体で最外層がメタクリル酸メチル重合体であるものなどが挙げられる(“/”は共重合を示す)。さらに、ゴム層または最外層のいずれか一つもしくは両方の層がメタクリル酸グリシジル単位を含有する重合体であるものも好ましい例として挙げられる。中でも、コア層がアクリル酸ブチル/スチレン重合体で、最外層がメタクリル酸メチル/上記一般式(d)で表されるグルタル酸無水物単位からなる共重合体、またはメタクリル酸メチル/上記一般式(d)で表されるグルタル酸無水物単位/メタクリル酸重合体であるものが、連続相(マトリックス相)であるアクリル系樹脂(A)との屈折率を近似させること、および樹脂組成物中での良好な分散状態を得ることが可能となり、近年、より高度化する要求を満足しうる透明性が発現するため、好ましく使用することができる。 As a preferable example of the multilayer structure polymer (E-1) of the present invention, the core layer is butyl acrylate / styrene polymer, the outermost layer is methyl methacrylate / glutaric acid anhydride represented by the above general formula (d). A copolymer consisting of a product unit, or methyl methacrylate / glutaric anhydride unit represented by the above general formula (d) / methacrylic acid polymer, and the core layer is a dimethylsiloxane / butyl acrylate polymer. The outer layer is a methyl methacrylate polymer, the core layer is a butanediene / styrene polymer and the outermost layer is a methyl methacrylate polymer, and the core layer is a butyl acrylate polymer and the outermost layer is a methyl methacrylate polymer ("/" Indicates copolymerization). Furthermore, a preferable example is one in which either one or both of the rubber layer and the outermost layer is a polymer containing a glycidyl methacrylate unit. Among them, the core layer is butyl acrylate / styrene polymer, and the outermost layer is methyl methacrylate / a copolymer of glutaric anhydride units represented by the above general formula (d), or methyl methacrylate / the above general formula. The glutaric anhydride unit represented by (d) / methacrylic acid polymer approximates the refractive index with the acrylic resin (A) that is the continuous phase (matrix phase), and in the resin composition It is possible to obtain a good dispersion state with the above, and in recent years, since transparency that can satisfy the demand for higher level is developed, it can be preferably used.
フィルムを成形する方法としては、従来公知の任意の方法が可能である。例えば、溶液流延法および溶融押出法等などが挙げられ、そのいずれをも採用することができる。例えば溶液流延法を用いてフィルムを得ようとする場合は、環構造を持つアクリル系ポリマーを良溶媒中に撹拌混合して均一混合液とし、支持フィルムやドラムにキャストして自己支持性を有するまで予備乾燥した後、支持フィルムやドラムから剥がして乾燥すると得ることができる。また、溶融押出法はT型ダイス等を装着した押出機から環構造を持つアクリル系ポリマーを加熱溶融を行いながら押し出し、得られるフィルムを引き取ることにより任意の厚みを持つフィルムとすることができる。 As a method of forming the film, any conventionally known method can be used. Examples thereof include a solution casting method and a melt extrusion method, and any of them can be employed. For example, when trying to obtain a film using the solution casting method, an acrylic polymer having a ring structure is stirred and mixed in a good solvent to form a uniform mixed solution, and cast on a support film or drum to provide self-supporting properties. After pre-drying until it has, it can be obtained by peeling off from the support film or drum and drying. In the melt extrusion method, a film having an arbitrary thickness can be obtained by extruding an acrylic polymer having a ring structure while heating and melting it from an extruder equipped with a T-type die and the like, and taking out the resulting film.
本発明のフィルムの厚みとしては、得られるフィルムの面内リターデーション値、及び厚みリターデーション値を低くするという観点から1〜100μmが好ましい。より好ましくは5〜50μmである。 As thickness of the film of this invention, 1-100 micrometers is preferable from a viewpoint of making the in-plane retardation value of the film obtained, and thickness retardation value low. More preferably, it is 5-50 micrometers.
本発明のフィルムは、製造プロセスの簡略化、低コスト化などの点で未延伸のまま最終製品としてもよいが、フィルムの強度向上、或いは薄膜化等のために周知の延伸加工方法を用いて、少なくとも1軸以上に延伸処理を行ってもよい。 The film of the present invention may be unstretched as a final product in terms of simplification of the manufacturing process, cost reduction, etc., but using a known stretching method for improving the strength of the film or reducing the film thickness. Further, at least one axis may be stretched.
また、上記した本発明の熱可塑性樹脂フィルムは、そのまま、或いは各種加工を行って、最終製品として各種用途に使用することができる。特に優れた透明性、低複屈折性などを利用して、光学用フィルムすなわち光学的等方フィルム、偏光子保護フィルムや透明導電フィルムなど液晶表示装置周辺等の公知の光学的用途に好適に用いることができる。この場合、上記熱可塑性樹脂フィルムを1層以上含むようにして構成した光学用フィルムとすることが好ましい。 Moreover, the above-mentioned thermoplastic resin film of the present invention can be used for various uses as a final product as it is or after being subjected to various processing. Utilizing particularly excellent transparency, low birefringence, etc., it is suitably used for known optical applications such as optical films, that is, optical isotropic films, polarizer protective films, transparent conductive films, and the like around liquid crystal display devices. be able to. In this case, it is preferable to use an optical film configured to include one or more layers of the thermoplastic resin film.
さらに、本発明のフィルムは、必要によりフィルムの片面或いは両面に表面処理を行うことができる。表面処理方法としては、例えば、コロナ処理、プラズマ処理、紫外線照射などが挙げられる。特に、フィルム表面にコーティング加工等の表面加工が施される場合や、粘着剤により別のフィルムがラミネートされる場合には、相互の密着性を上げるための手段として、フィルムの表面処理を行うことが好ましい。 Furthermore, the film of the present invention can be subjected to surface treatment on one side or both sides of the film, if necessary. Examples of the surface treatment method include corona treatment, plasma treatment, and ultraviolet irradiation. In particular, when surface processing such as coating is applied to the film surface, or when another film is laminated with an adhesive, surface treatment of the film is performed as a means for improving mutual adhesion. Is preferred.
他にも、上記の延伸フィルムの表面には、必要に応じハードコート層などのコーティング層を形成することができる。また、本発明のフィルムは、コーティング層を介して、または、介さずに、スパッタリング法等により透明導電層を形成してもよい。 In addition, a coating layer such as a hard coat layer can be formed on the surface of the stretched film as necessary. Moreover, the film of this invention may form a transparent conductive layer by sputtering method etc. through or without a coating layer.
また、前記層Bは光学特性、塗工性、安定性など、光学用途に必要な特性を満たしていれば特に構造は限定されないが、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアミドイミドおよびポリエステルイミドからなる群から選ばれる少なくとも1種のポリマーを含んでいることが望ましく、さらにこれらポリマーから構成されていることが好ましい。なかでも、面内配向性が高く、有機溶剤に可溶であることが好ましい。 Further, the structure of the layer B is not particularly limited as long as it satisfies optical properties such as optical properties, coating properties, and stability, but polyamide, polyimide, polyester, polyetherketone, polyamideimide, and polyesterimide are not limited. It is desirable to include at least one polymer selected from the group consisting of, and it is preferable that the polymer is composed of these polymers. Especially, it is preferable that in-plane orientation is high and it is soluble in an organic solvent.
具体的には、ポリアミドの例として、例えば、特表2000−511296号公報に開示された、9,9−ビス(アミノアリール)フルオレンと芳香族テトラカルボン酸二無水物との縮合重合生成物を含むポリマーが使用できる。 Specifically, as an example of polyamide, for example, a condensation polymerization product of 9,9-bis (aminoaryl) fluorene and aromatic tetracarboxylic dianhydride disclosed in JP 2000-511296 A is disclosed. Including polymers can be used.
前記層Bは、層A上に層Bを構成するポリマーの溶液をフィルム状に塗工し、溶媒を蒸発除去して複屈折層として形成することが好ましい。前記塗工する溶液の溶媒は、特に制限されず、例えば、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン、オルソジクロロベンゼン等のハロゲン化炭化水素類;フェノール、バラクロロフェノール等のフェノール類;ベンゼン、トルエン、キシレン、メトキシベンゼン、1,2−ジメトキシベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2−ピロリドン、N−メチル−2−ピロリドン等のケトン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;t−ブチルアルコール、グリセリン、エチレングリコール、トリエチレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコール、ジプロピレングリコール、2−メチル−2,4−ペンタンジオールのようなアルコール系溶媒;ジメチルホルムアミド、ジメチルアセトアミドのようなアミド系溶媒;アセトニトリル、ブチロニトリルのようなニトリル系溶媒;ジエチルエーテル、ジブチルエーテル、テトラヒドロフランのようなエーテル系溶媒;あるいは二硫化炭素、エチルセルソルブ、ブチルセルソルブ等があげられる。これらの溶媒は、一種類でもよいし、二種類以上を併用してもよい。 The layer B is preferably formed as a birefringent layer by applying a polymer solution constituting the layer B on the layer A in the form of a film and evaporating and removing the solvent. The solvent of the solution to be applied is not particularly limited, and examples thereof include halogenated hydrocarbons such as chloroform, dichloromethane, carbon tetrachloride, dichloroethane, tetrachloroethane, trichloroethylene, tetrachloroethylene, chlorobenzene, and orthodichlorobenzene; phenol and parachlorophenol. Phenols such as benzene, toluene, xylene, methoxybenzene, 1,2-dimethoxybenzene and other aromatic hydrocarbons; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-pyrrolidone, N-methyl- Ketone solvents such as 2-pyrrolidone; ester solvents such as ethyl acetate and butyl acetate; t-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, ethylene glycol Alcohol solvents such as monomethyl ether, diethylene glycol dimethyl ether, propylene glycol, dipropylene glycol and 2-methyl-2,4-pentanediol; amide solvents such as dimethylformamide and dimethylacetamide; nitrile systems such as acetonitrile and butyronitrile Solvents; ether solvents such as diethyl ether, dibutyl ether, tetrahydrofuran; carbon disulfide, ethyl cellosolve, butyl cellosolve, and the like. One type of these solvents may be used, or two or more types may be used in combination.
前記塗工溶液は、例えば、必要に応じて、さらに、安定剤、可塑剤、金属類等の種々の添加剤を配合してもよい。 For example, the coating solution may further contain various additives such as a stabilizer, a plasticizer, and metals as necessary.
また、前記塗工溶液は、異なる他の樹脂を含有してもよい。前記他の樹脂としては、例えば、各種汎用樹脂、エンジニアリングプラスチック、熱可塑性樹脂、熱硬化性樹脂等があげられる。 The coating solution may contain other different resins. Examples of the other resin include various general-purpose resins, engineering plastics, thermoplastic resins, and thermosetting resins.
前記汎用樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ABS樹脂、およびAS樹脂等があげられる。前記エンジニアリングプラスチックとしては、例えば、ポリアセテート(POM)、ポリカーボネート(PC)、ポリアミド(PA:ナイロン)、ポリエチレンテレフタレート(PET)、およびポリブチレンテレフタレート(PBT)等があげられる。前記熱可塑性樹脂としては、例えば、ポリフェニレンスルフィド(PPS)、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリイミド(PI)、ポリシクロヘキサンジメタノールテレフタレート(PCT)、ポリアリレート(PAR)、および液晶ポリマー(LCP)等があげられる。前記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノールノボラック樹脂等があげられる。 Examples of the general-purpose resin include polyethylene (PE), polypropylene (PP), polystyrene (PS), polymethyl methacrylate (PMMA), ABS resin, and AS resin. Examples of the engineering plastic include polyacetate (POM), polycarbonate (PC), polyamide (PA: nylon), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT). Examples of the thermoplastic resin include polyphenylene sulfide (PPS), polyethersulfone (PES), polyketone (PK), polyimide (PI), polycyclohexanedimethanol terephthalate (PCT), polyarylate (PAR), and liquid crystal polymer. (LCP) and the like. Examples of the thermosetting resin include an epoxy resin and a phenol novolac resin.
このように、前記他の樹脂等を前記塗工溶液に配合する場合、その配合量は、前記ポリマー材料に対して、例えば、0〜50質量%であり、好ましくは、0〜30質量%である。 Thus, when said other resin etc. are mix | blended with the said coating solution, the compounding quantity is 0-50 mass% with respect to the said polymer material, Preferably, it is 0-30 mass%. is there.
前記溶液の塗工方法としては、例えば、スピンコート法、ロールコート法、フローコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等があげられる。また、塗工に際しては、必要に応じて、ポリマー層の重畳方式も採用できる。 Examples of the solution coating method include spin coating, roll coating, flow coating, printing, dip coating, casting film formation, bar coating, and gravure printing. Moreover, in the case of coating, the superposition | polymerization method of a polymer layer is also employable as needed.
塗工後、例えば、自然乾燥、風乾、加熱乾燥(例えば、60〜250℃)により、前記溶液中の溶媒を蒸発除去させ、フィルム状の複屈折層を形成する。この複屈折層は、前記式(1)の条件を満たす。前記複屈折層の厚みは、特に制限されないが、液晶表示装置の薄型化、視角補償およびフィルムの均質性等の観点から、例えば、0.1〜50μm、好ましくは0.5〜30μm、より好ましくは1〜20μmの範囲である。 After the coating, for example, the solvent in the solution is evaporated and removed by natural drying, air drying, or heat drying (for example, 60 to 250 ° C.) to form a film-like birefringent layer. This birefringent layer satisfies the condition of the formula (1). The thickness of the birefringent layer is not particularly limited, but is, for example, 0.1 to 50 μm, preferably 0.5 to 30 μm, more preferably from the viewpoint of thinning the liquid crystal display device, viewing angle compensation, film homogeneity, and the like. Is in the range of 1-20 μm.
上記の積層フィルムは、偏光子に貼合して偏光子保護フィルムとして使用し、光学補償層付き偏光板とすることができる。ここで、偏光子としては、例えば、延伸されたポリビニルアルコールにヨウ素を含有させたものなど、従来公知の任意の偏光子が使用可能である。偏光子保護フィルムは、偏光子の片面または両面に積層される。 The above laminated film can be used as a polarizer protective film by being bonded to a polarizer to form a polarizing plate with an optical compensation layer. Here, as a polarizer, conventionally well-known arbitrary polarizers, such as what made iodine contain in the stretched polyvinyl alcohol, can be used, for example. The polarizer protective film is laminated on one side or both sides of the polarizer.
以下、本発明を実施例にて具体的に説明するが、本発明はこの実施例に限定されるものではない。なお、各特性値は以下のようにして測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to this Example. Each characteristic value was measured as follows.
1.フィルム厚み
マイクロ厚み計(アンリツ社製)を用いて5点測定し、平均値を求めた。
1. Film thickness Five points were measured using a micro thickness gauge (manufactured by Anritsu), and an average value was obtained.
2.ガラス転移温度(Tg)
示差走査熱量計(Perkin Elmer社製DSC−7型)を用い、窒素雰囲気下、20℃/minの昇温速度で測定した。サンプル量は5mgとした。
2. Glass transition temperature (Tg)
Using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer), the measurement was performed at a temperature increase rate of 20 ° C./min in a nitrogen atmosphere. The sample amount was 5 mg.
尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC−7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い、求めた中間点ガラス転移温度(Tmg)である。 The glass transition temperature here was measured at a rate of temperature increase of 20 ° C./min using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer) and determined according to JIS K7121 (1987). The midpoint glass transition temperature (T mg ).
3.透明性(全光線透過率、ヘイズ値)
東洋精機(株)製直読ヘイズメーターを用いて、23℃での全光線透過率(%)、ヘイズ値(%)を3回測定し、平均値で透明性を評価した。光源にはハロゲンランプ(12V50W)を用い、全光線透過率はJIS−K7361−1997、ヘイズはJIS−K7136−2000に準じて測定を行った。
3. Transparency (total light transmittance, haze value)
Using a direct reading haze meter manufactured by Toyo Seiki Co., Ltd., the total light transmittance (%) and haze value (%) at 23 ° C. were measured three times, and transparency was evaluated with an average value. A halogen lamp (12V50W) was used as the light source, the total light transmittance was measured according to JIS-K7361-1997, and the haze was measured according to JIS-K7136-2000.
4.面内位相差Re、及び厚み方向の位相差Rth
面内位相差は王子計測(株)社製の自動複屈折計(KOBRA−21ADH)を用い、波長分散測定モードにおいて、波長480.4nmの光線に対する位相差、波長548.3nmの光線に対する位相差、波長628.2nmの光線に対する位相差、波長752.7nmの光線に対する位相差を測定し、各波長における位相差(R)および測定波長(λ)からコーシーの波長分散式(R(λ)=a+b/λ2+c/λ4+d/λ6)の各a〜dの係数を求め、このコーシーの波長分散式に波長550nm(λ=550)を代入して面内の最大位相差を求めた。測定は1回行った。
4). In-plane retardation Re and thickness direction retardation Rth
The in-plane retardation is determined by using an automatic birefringence meter (KOBRA-21ADH) manufactured by Oji Scientific Co., Ltd., and in a chromatic dispersion measurement mode, a phase difference for a light beam having a wavelength of 480.4 nm and a phase difference for a light beam having a wavelength of 548.3 nm , The phase difference with respect to the light beam having a wavelength of 628.2 nm, and the phase difference with respect to the light beam with a wavelength of 752.7 nm were measured, and the Cauchy wavelength dispersion formula (R (λ) = a + b / λ2 + c / λ4 + d / λ6) coefficients a to d were determined, and the maximum in-plane phase difference was determined by substituting the wavelength 550 nm (λ = 550) into the Cauchy wavelength dispersion formula. The measurement was performed once.
厚み方向の位相差Rthは、王子計測(株)社製の自動複屈折計(KOBRA−21ADH)を用い、波長590nmの光線に対するアクリル系樹脂フィルム面内の直交軸方向の屈折率、nx、ny(ただしnx≧ny)、波長590nmの光線に対するアクリル系樹脂フィルムの厚み方向の屈折率nzを測定し、アクリル系樹脂フィルムの厚みをd(nm)とした時に下記式から求めた。測定は1回行った。 The retardation Rth in the thickness direction is determined by using an automatic birefringence meter (KOBRA-21ADH) manufactured by Oji Scientific Co., Ltd., the refractive index in the orthogonal axis direction in the acrylic resin film plane with respect to light having a wavelength of 590 nm, nx, ny (However, nx ≧ ny), the refractive index nz in the thickness direction of the acrylic resin film with respect to light having a wavelength of 590 nm was measured, and the thickness was determined from the following formula when the thickness of the acrylic resin film was d (nm). The measurement was performed once.
厚み方向の位相差Rth(nm)=d×{(nx+ny)/2−nz}
5.光弾性係数
短辺1cm長辺7cmのサンプルを切り出した。このサンプルを島津(株)社製TRANSDUCER U3C1−5Kを用いて、上下1cmずつをチャックに挟み長辺方向に1kg/mm2(9.81×106Pa)の張力(F)をかけた。この状態で、ニコン(株)社製偏光顕微鏡5892を用いてRe(nm)を測定した。光源としてはナトリウムD線(589nm)を用いた。これらの数値を光弾性係数=Re/(d×F)にあてはめて光弾性係数を計算した。測定は1回行った。
Thickness direction retardation Rth (nm) = d × {(nx + ny) / 2−nz}
5). Photoelastic coefficient A sample having a short side of 1 cm and a long side of 7 cm was cut out. Using this sample, TRANSDUCER U3C1-5K manufactured by Shimadzu Corp., the upper and lower sides were sandwiched by 1 cm each, and a tension (F) of 1 kg / mm 2 (9.81 × 10 6 Pa) was applied in the long side direction. In this state, Re (nm) was measured using a polarizing microscope 5892 manufactured by Nikon Corporation. Sodium D line (589 nm) was used as a light source. These numerical values were applied to photoelastic coefficient = Re / (d × F) to calculate the photoelastic coefficient. The measurement was performed once.
6.各成分組成
試料をアセトンに溶解し、この溶液を9,000rpmで30分間遠心分離して、アセトン可溶成分とアセトン不溶成分とに分離した。アセトン可溶成分を60℃で5時間減圧乾燥し、各成分単位を定量してアクリル系樹脂の各成分組成を特定した。
6). Each component composition The sample was melt | dissolved in acetone, this solution was centrifuged at 9,000 rpm for 30 minutes, and it isolate | separated into the acetone soluble component and the acetone insoluble component. The acetone-soluble component was dried under reduced pressure at 60 ° C. for 5 hours, and each component unit was quantified to identify each component composition of the acrylic resin.
各成分単位の定量は、プロトン核磁気共鳴(1H−NMR)法により行った。1H−NMR法では、例えば、グルタル酸無水物単位、メタクリル酸、メタクリル酸メチルからなる共重合体の場合、ジメチルスルホキシド重溶媒中でのスペクトルの帰属を、0.5〜1.5ppmのピークがメタクリル酸、メタクリル酸メチルおよびグルタル酸無水物環化合物のα−メチル基の水素、1.6〜2.1ppmのピークはポリマー主鎖のメチレン基の水素、3.5ppmのピークはメタクリル酸メチルのカルボン酸エステル(−COOCH3)の水素、12.4ppmのピークはメタクリル酸のカルボン酸の水素と、スペクトルの積分比から共重合体組成を決定することができる。また上記に加えて、他の共重合成分としてスチレンを含有する共重合体の場合、6.5〜7.5ppmにスチレンの芳香族環の水素が見られ、同様にスペクトル比から共重合体組成を決定することができる。 Quantification of each component unit was performed by a proton nuclear magnetic resonance ( 1 H-NMR) method. In the 1 H-NMR method, for example, in the case of a copolymer consisting of a glutaric anhydride unit, methacrylic acid, and methyl methacrylate, the spectral assignment in a dimethyl sulfoxide heavy solvent is 0.5 to 1.5 ppm peak. Is hydrogen of α-methyl group of methacrylic acid, methyl methacrylate and glutaric anhydride ring compound, peak of 1.6 to 2.1 ppm is hydrogen of methylene group of polymer main chain, peak of 3.5 ppm is methyl methacrylate The carboxylic acid ester (—COOCH 3 ) of hydrogen, the peak at 12.4 ppm can determine the copolymer composition from the carboxylic acid hydrogen of methacrylic acid and the integral ratio of the spectrum. In addition to the above, in the case of a copolymer containing styrene as another copolymer component, hydrogen of the aromatic ring of styrene is seen at 6.5 to 7.5 ppm, and the copolymer composition is similarly determined from the spectral ratio. Can be determined.
7.弾性体粒子の平均粒子径
フィルムを厚さ方向に100〜800nm程度の超薄切片とし、ルテニウム酸で染色した後に透過型電子顕微鏡(日本電子製JEM−1200EX)を用いて、10万倍の倍率で場所を変えながら100個の粒子について円相当径を求め、平均値を平均粒子径とした。なお、コア・シェル型やグラフト共重合型のアクリル弾性体粒子においては、ゴム質重合体部分の平均粒子径を測定した。
7). Average particle diameter of elastic particles The film was made into an ultra-thin section of about 100 to 800 nm in the thickness direction, dyed with ruthenic acid, and then used with a transmission electron microscope (JEM-1200EX manufactured by JEOL Ltd.) at a magnification of 100,000 times. The equivalent circle diameter was determined for 100 particles while changing the location, and the average value was taken as the average particle diameter. For core-shell type and graft copolymer type acrylic elastic particles, the average particle size of the rubbery polymer portion was measured.
参考例(1)アクリル系ポリマー(A1)
容量が5リットルで、バッフルおよびファウドラ型撹拌翼を備えたステンレス製オートクレーブに、メタクリル酸メチル/アクリルアミド共重合体系懸濁剤(以下の方法で調製した。メタクリル酸メチル20質量部、アクリルアミド80質量部、過硫酸カリウム0.3質量部、イオン交換水1,500質量部を反応器中に仕込み反応器中を窒素ガスで置換しながら70℃に保つ。反応は単量体が完全に、重合体に転化するまで続け、アクリル酸メチルとアクリルアミド共重合体の水溶液として得る。得られた水溶液を懸濁剤として使用した)0.05質量部をイオン交換水165質量部に溶解した溶液を供給し、400rpmで撹拌し、系内を窒素ガスで置換した。次に、下記混合物質を反応系を撹拌しながら添加し、70℃に昇温した。内温が70℃に達した時点を重合開始として、180分間保ち、重合を終了した。以降、通常の方法に従い、反応系の冷却、ポリマーの分離、洗浄、乾燥を行い、ビーズ状の共重合体(a−1)を得た。この共重合体(a−1)の重合率は98%であり、重量平均分子量は6.8万であった。
Reference Example (1) Acrylic polymer (A1)
A methyl methacrylate / acrylamide copolymer suspension (prepared by the following method) in a stainless steel autoclave having a volume of 5 liters and equipped with a baffle and a foudra type stirring blade. 20 parts by mass of methyl methacrylate and 80 parts by mass of acrylamide , 0.3 parts by weight of potassium persulfate and 1,500 parts by weight of ion-exchanged water were charged into the reactor and maintained at 70 ° C. while replacing the reactor with nitrogen gas. The resulting solution is obtained as an aqueous solution of methyl acrylate and acrylamide copolymer (using the obtained aqueous solution as a suspending agent), and a solution obtained by dissolving 0.05 part by mass in 165 parts by mass of ion-exchanged water is supplied. The mixture was stirred at 400 rpm and the system was replaced with nitrogen gas. Next, the following mixed substances were added while stirring the reaction system, and the temperature was raised to 70 ° C. The time when the internal temperature reached 70 ° C. was set as the start of polymerization, and kept for 180 minutes to complete the polymerization. Thereafter, the reaction system was cooled, the polymer was separated, washed and dried according to the usual method to obtain a bead-shaped copolymer (a-1). The polymerization rate of this copolymer (a-1) was 98%, and the weight average molecular weight was 68,000.
メタクリル酸 :20質量部
メタクリル酸メチル :80質量部
t−ドデシルメルカプタン :1.5質量部
2,2’−アゾビスイソブチロニトリル: 0.6質量部
得られた共重合体(a−1)を2軸押出機(TEX30(日本製鋼社製、L/D=44.5)を用いて、ホッパー部より窒素を10L/分の量でパージしながら、スクリュー回転数100rpm、原料供給量5kg/h、シリンダ温度270℃で分子内環化反応を行い、ペレット状のアクリル系樹脂(A1)を得た。このアクリル系樹脂(A1)100質量部中のグルタル酸無水物単位の組成比は13質量部、重量平均分子量は10万であった。
Methacrylic acid: 20 parts by weight Methyl methacrylate: 80 parts by weight t-dodecyl mercaptan: 1.5 parts by weight 2,2′-azobisisobutyronitrile: 0.6 parts by weight The obtained copolymer (a-1 ) Using a twin-screw extruder (TEX30 (manufactured by Nippon Steel Co., Ltd., L / D = 44.5)) while purging nitrogen from the hopper at an amount of 10 L / min. / H, an intramolecular cyclization reaction was carried out at a cylinder temperature of 270 ° C. to obtain a pellet-shaped acrylic resin (A1) The composition ratio of glutaric anhydride units in 100 parts by mass of the acrylic resin (A1) is 13 mass parts and the weight average molecular weight were 100,000.
参考例(2)アクリル系ポリマー(A2)
用いた物質を下記に変更した以外は参考例1と同じ方法でアクリル系樹脂(A2)を得た。
Reference Example (2) Acrylic polymer (A2)
An acrylic resin (A2) was obtained in the same manner as in Reference Example 1 except that the substance used was changed to the following.
メタクリル酸 :27質量部
メタクリル酸メチル :73質量部
t−ドデシルメルカプタン :1.5質量部
2,2’−アゾビスイソブチロニトリル:0.4質量部
このアクリル系樹脂(A2)100質量部中のグルタル酸無水物単位の組成比は17質量部、重量平均分子量は10万であった。
Methacrylic acid: 27 parts by weight Methyl methacrylate: 73 parts by weight t-dodecyl mercaptan: 1.5 parts by weight 2,2′-azobisisobutyronitrile: 0.4 parts by weight This acrylic resin (A2) 100 parts by weight The composition ratio of glutaric anhydride units in the mixture was 17 parts by mass, and the weight average molecular weight was 100,000.
参考例(3)アクリル弾性体粒子(E1)
下記により得られたコアシェル重合体を用いた。
Reference Example (3) Acrylic Elastic Particle (E1)
The core-shell polymer obtained by the following was used.
冷却器付きのガラス容器(容量5リットル)内に脱イオン水120質量部、炭酸カリウム0.5質量部、スルフォコハク酸ジオクチル0.5質量部、過硫酸カリウム0.005質量部を仕込み、窒素雰囲気下で撹拌後、アクリル酸ブチル53質量部、スチレン17質量部、メタクリル酸アリル(架橋剤)1質量部を仕込んだ。これら混合物を70℃で30分間反応させて、コア層重合体を得た。次いで、メタクリル酸メチル21質量部、メタクリル酸9質量部、過硫酸カリウム0.005質量部の混合物を90分かけて連続的に添加し、更に90分間保持して、シェル層を重合させ、この重合体ラテックスを硫酸で凝固し、苛性ソーダで中和した後、洗浄、濾過、乾燥して、2層構造のアクリル弾性体粒子(E1)を得た。電子顕微鏡で測定したこの重合体粒子の平均粒子径は155nmであった。 A nitrogen container is charged with 120 parts by mass of deionized water, 0.5 parts by mass of potassium carbonate, 0.5 parts by mass of dioctyl sulfosuccinate, and 0.005 parts by mass of potassium persulfate in a glass container with a condenser (capacity 5 liters). After stirring under, 53 parts by mass of butyl acrylate, 17 parts by mass of styrene, and 1 part by mass of allyl methacrylate (crosslinking agent) were charged. These mixtures were reacted at 70 ° C. for 30 minutes to obtain a core layer polymer. Next, a mixture of 21 parts by weight of methyl methacrylate, 9 parts by weight of methacrylic acid, and 0.005 parts by weight of potassium persulfate was continuously added over 90 minutes, and further maintained for 90 minutes to polymerize the shell layer. The polymer latex was coagulated with sulfuric acid, neutralized with caustic soda, washed, filtered, and dried to obtain acrylic elastic particles (E1) having a two-layer structure. The average particle diameter of the polymer particles measured with an electron microscope was 155 nm.
参考例(4)アクリル系樹脂からなるポリマーフィルム(A1F)の製膜
上記の参考例(1)で得られたアクリル系ポリマー(A1)のペレットを100℃で3時間乾燥し、45mmφの一軸押出機(設定温度250℃)を用い、Tダイ(設定温度250℃)を介してシート状に押出した。このフィルムを130℃の冷却ロールに片面を完全に接着させるようにして冷却して、未延伸のアクリル系樹脂フィルムを得た。このとき、Tダイのリップ間隙/フィルム厚み=15となるよう、冷却ロールの速度を調整した。得られたフィルムの特性は次の通りである。
Reference Example (4) Formation of Polymer Film (A1F) Made of Acrylic Resin Pellets of acrylic polymer (A1) obtained in the above Reference Example (1) were dried at 100 ° C. for 3 hours, and uniaxial extrusion of 45 mmφ Using a machine (set temperature 250 ° C.), the sheet was extruded through a T die (set temperature 250 ° C.). This film was cooled so that one surface was completely adhered to a 130 ° C. cooling roll to obtain an unstretched acrylic resin film. At this time, the speed of the cooling roll was adjusted so that the lip gap of the T die / film thickness = 15. The characteristics of the obtained film are as follows.
厚み(μm) :40
ガラス転移温度(Tg)(℃) :127
全光線透過率(%) :93
ヘイズ(%) :0.4
位相差(nm) :0.3
厚み方向位相差(nm) :0.4
光弾性係数(10−12Pa−1) :1.0
参考例(5)アクリル系樹脂からなるポリマーフィルム(A2E1F)の製膜
上記の参考例(2)で得られたアクリル系ポリマー(A2)80質量部および参考例(3)で得られたアクリル弾性体粒子(E1)を20質量部の組成比で配合し、2軸押出機(TEX30(日本製鋼社製、L/D=44.5)を用いてスクリュー回転数150rpm、シリンダ温度280℃で混練し、ペレット状のアクリル系ポリマー(A2E1)を得た。
Thickness (μm): 40
Glass transition temperature (Tg) (° C.): 127
Total light transmittance (%): 93
Haze (%): 0.4
Phase difference (nm): 0.3
Thickness direction retardation (nm): 0.4
Photoelastic coefficient (10 −12 Pa −1 ): 1.0
Reference Example (5) Film Formation of Polymer Film (A2E1F) Consisting of Acrylic Resin 80 parts by mass of acrylic polymer (A2) obtained in Reference Example (2) above and acrylic elasticity obtained in Reference Example (3) The body particles (E1) were blended at a composition ratio of 20 parts by mass and kneaded using a twin screw extruder (TEX30 (manufactured by Nippon Steel Co., Ltd., L / D = 44.5) at a screw speed of 150 rpm and a cylinder temperature of 280 ° C. As a result, a pellet-shaped acrylic polymer (A2E1) was obtained.
次いで、ペレット状のアクリル系ポリマー(A2E1)を用いた以外は実施例1と同じ方法で未延伸のアクリル系樹脂フィルムを得た。得られたフィルムの特性は次の通りである。 Subsequently, the unstretched acrylic resin film was obtained by the same method as Example 1 except having used the pellet-shaped acrylic polymer (A2E1). The characteristics of the obtained film are as follows.
厚み(μm) :40
ガラス転移温度(Tg)(℃) :135
全光線透過率(%) :93
ヘイズ(%) :0.4
位相差(nm) :0.4
厚み方向位相差(nm) :0.6
光弾性係数(10−12Pa−1) :1.1
参考例(6)ポリアミド溶液(B1)の調整
まず、重合溶媒のNMP(N−メチル−2−ピロリドン)に、芳香族ジアミン成分として50モル%に相当する44’DDS(4,4’−ジアミノジフェニルスルホン)と、50モル%に相当する33’DDS(3,3’−ジアミノジフェニルスルホン)を溶解させ、これに酸クロリド成分として99モル%に相当するCTPC(2−クロロテレフタル酸ジクロリド)を添加し、2時間撹拌して重合を完了した。この溶液を炭酸リチウムで中和したのち、水に再沈殿させてポリアミド樹脂を得た。
Thickness (μm): 40
Glass transition temperature (Tg) (° C.): 135
Total light transmittance (%): 93
Haze (%): 0.4
Phase difference (nm): 0.4
Thickness direction retardation (nm): 0.6
Photoelastic coefficient (10 −12 Pa −1 ): 1.1
Reference Example (6) Preparation of Polyamide Solution (B1) First, 44′DDS (4,4′-diamino) corresponding to 50 mol% as an aromatic diamine component was added to NMP (N-methyl-2-pyrrolidone) as a polymerization solvent. Diphenylsulfone) and 33′DDS (3,3′-diaminodiphenylsulfone) corresponding to 50 mol% are dissolved, and CTPC (2-chloroterephthalic acid dichloride) corresponding to 99 mol% is added thereto as an acid chloride component. Added and stirred for 2 hours to complete the polymerization. This solution was neutralized with lithium carbonate and then reprecipitated in water to obtain a polyamide resin.
次に、得られたポリアミド樹脂をDMAC(ジメチルアセトアミド)に5質量%で溶解し調製した。 Next, the obtained polyamide resin was dissolved in DMAC (dimethylacetamide) at 5% by mass and prepared.
参考例(7)ポリアミド溶液(B1)の光学特性測定
参考例(6)で調製したポリアミド溶液を、寸法30×30mm、厚み1.1mmのガラス板上にバーコーターで均一な溶液膜として塗布した後、120℃に加熱した熱風オーブン中で20分間乾燥させ、均一な塗膜を得た。得られた塗布膜の特性は、
厚み(μm) :5(ガラス板厚み含まず)
位相差(nm) :0.7
厚み方向位相差(nm) :−90.3
実施例1
上記の参考例(4)で得られたアクリル系樹脂からなるポリマーフィルム(A1F)に、参考例(6)で得られたポリアミド溶液(B1)をバーコーターで5μmの均一な膜厚を持つ溶液膜として塗布した後、120℃に加熱した熱風オーブン中で20分間乾燥させ、均一な積層フィルムを得た。
Reference Example (7) Optical Property Measurement of Polyamide Solution (B1) The polyamide solution prepared in Reference Example (6) was applied as a uniform solution film with a bar coater on a glass plate with dimensions of 30 × 30 mm and a thickness of 1.1 mm. Then, it was dried in a hot air oven heated to 120 ° C. for 20 minutes to obtain a uniform coating film. The characteristics of the obtained coating film are as follows:
Thickness (μm): 5 (not including glass plate thickness)
Phase difference (nm): 0.7
Thickness direction retardation (nm): -90.3
Example 1
A solution having a uniform film thickness of 5 μm of the polyamide solution (B1) obtained in Reference Example (6) on the polymer film (A1F) made of the acrylic resin obtained in Reference Example (4) using a bar coater After coating as a film, it was dried in a hot air oven heated to 120 ° C. for 20 minutes to obtain a uniform laminated film.
得られた積層フィルムから、幅50mm、長さ150mmのサンプルを2枚切り出した。そのうち1枚の面内位相差は0.9nm、厚み方向位相差は−89.5nmであった。 Two samples having a width of 50 mm and a length of 150 mm were cut out from the obtained laminated film. Among them, the in-plane retardation of one sheet was 0.9 nm, and the thickness direction retardation was −89.5 nm.
ついで、アクリル系樹脂からなるポリマーフィルム(A1F)上のポリアミド層をDMAC(ジメチルアセトアミド)を浸したガーゼでふき取ることで除去して面内位相差及び厚み方向位相差を測定したところ、それぞれ0.3nm、0.4nmであった。また、光弾性係数は1.0×10−12Pa−1であった。層Bの厚み位相差は−89.9nmとなり、|Rth(b)|>|Rth(a)|×50を満たす。(ここで、アクリル系樹脂からなるポリマーフィルム(A1F)の厚み方向位相差をRth(a)、ポリアミド溶液(B1)の塗布膜の厚み方向位相差をRth(b)とする。)
切り出したもう一枚のサンプルを117℃で1.5倍に延伸したところ、均質な延伸配向フィルムが得られた。得られたフィルムの面内位相差は35.0nm、厚み方向位相差は−72.5nmであった。
Next, the in-plane retardation and thickness direction retardation were measured by removing the polyamide layer on the polymer film (A1F) made of acrylic resin by wiping with a gauze soaked in DMAC (dimethylacetamide). They were 3 nm and 0.4 nm. The photoelastic coefficient was 1.0 × 10 −12 Pa −1 . The thickness retardation of the layer B is -89.9 nm, which satisfies | Rth (b) |> | Rth (a) | × 50. (Here, the thickness direction retardation of the polymer film (A1F) made of acrylic resin is Rth (a), and the thickness direction retardation of the coating film of the polyamide solution (B1) is Rth (b).)
When another cut sample was stretched 1.5 times at 117 ° C., a homogeneous stretch-oriented film was obtained. The obtained film had an in-plane retardation of 35.0 nm and a thickness direction retardation of −72.5 nm.
ついで、この均質な延伸配向フィルム上のポリアミド層をDMAC(ジメチルアセトアミド)を浸したガーゼでふき取ることで除去して面内位相差及び厚み方向位相差を測定したところ、それぞれ0.5nm、0.3nmであった。また、光弾性係数は1.0×10−12Pa−1であった。層Bの厚み位相差は−72.8nmとなり、|Rth(b)|>|Rth(a)|×50を満たす。(ここで、アクリル系樹脂からなるポリマーフィルム(A1F)の厚み方向位相差をRth(a)、ポリアミド溶液(B1)の塗布膜の厚み方向位相差をRth(b)とする。)
このことから、層Aは延伸処理を施しても位相差変化を起こさないため、ポリアミド層のみの位相差を測定する代替として、積層フィルムの位相差を測定することが可能であった。
Subsequently, the in-plane retardation and the thickness direction retardation were measured by removing the polyamide layer on the homogeneous stretch-oriented film by wiping with gauze soaked in DMAC (dimethylacetamide). It was 3 nm. The photoelastic coefficient was 1.0 × 10 −12 Pa −1 . The thickness retardation of the layer B is -72.8 nm, which satisfies | Rth (b) |> | Rth (a) | × 50. (Here, the thickness direction retardation of the polymer film (A1F) made of acrylic resin is Rth (a), and the thickness direction retardation of the coating film of the polyamide solution (B1) is Rth (b).)
Therefore, even if the layer A is subjected to a stretching treatment, the phase difference does not change. Therefore, as an alternative to measuring the phase difference of only the polyamide layer, it was possible to measure the phase difference of the laminated film.
実施例2
用いたアクリル系樹脂からなるポリマーフィルムを、参考例(5)で得られたA2E1Fとした以外は実施例1と同様の方法で積層フィルムを得た。
Example 2
A laminated film was obtained in the same manner as in Example 1 except that the polymer film made of the acrylic resin used was A2E1F obtained in Reference Example (5).
得られた積層フィルムから、幅50mm、長さ150mmのサンプルを2枚切り出した。そのうち1枚の面内位相差は0.8nm、厚み方向位相差は−88.0nmであった。 Two samples having a width of 50 mm and a length of 150 mm were cut out from the obtained laminated film. Among them, the in-plane retardation of one sheet was 0.8 nm, and the thickness direction retardation was −88.0 nm.
ついで、アクリル系樹脂からなるポリマーフィルム(A2E1F)上のポリアミド層をDMAC(ジメチルアセトアミド)を浸したガーゼでふき取ることで除去して面内位相差及び厚み方向位相差を測定したところ、それぞれ0.3nm、0.3nmであった。また、光弾性係数は1.1×10−12Pa−1であった。層Bの厚み位相差は−88.3nmとなり、|Rth(b)|>|Rth(a)|×50を満たす。(ここで、アクリル系樹脂からなるポリマーフィルム(A2E1F)の厚み方向位相差をRth(a)、ポリアミド溶液(B1)の塗布膜の厚み方向位相差をRth(b)とする。)
切り出したもう一枚のサンプルを125℃で1.5倍に延伸したところ、均質な延伸配向フィルムが得られた。得られたフィルムの面内位相差は32.0nm、厚み方向位相差は−74.0nmであった。
Subsequently, the polyamide layer on the polymer film (A2E1F) made of an acrylic resin was removed by wiping with a gauze soaked in DMAC (dimethylacetamide), and the in-plane retardation and the thickness direction retardation were measured. They were 3 nm and 0.3 nm. The photoelastic coefficient was 1.1 × 10 −12 Pa −1 . The thickness retardation of the layer B is -88.3 nm, which satisfies | Rth (b) |> | Rth (a) | × 50. (Here, the thickness direction retardation of the polymer film (A2E1F) made of acrylic resin is Rth (a), and the thickness direction retardation of the coating film of the polyamide solution (B1) is Rth (b).)
When another cut sample was stretched 1.5 times at 125 ° C., a homogeneous stretch-oriented film was obtained. The in-plane retardation of the obtained film was 32.0 nm, and the thickness direction retardation was −74.0 nm.
ついで、この均質な延伸配向フィルム上のポリアミド層をDMAC(ジメチルアセトアミド)を浸したガーゼでふき取ることで除去して面内位相差及び厚み方向位相差を測定したところ、それぞれ0.5nm、0.3nmであった。また、光弾性係数は1.1×10−12Pa−1であった。層Bの厚み位相差は−74.3nmとなり、|Rth(b)|>|Rth(a)|×50を満たす。(ここで、アクリル系樹脂からなるポリマーフィルム(A2E1F)の厚み方向位相差をRth(a)、ポリアミド溶液(B1)の塗布膜の厚み方向位相差をRth(b)とする。)
このことから、層Aは延伸処理を施しても位相差変化を起こさないため、ポリアミド層のみの位相差を測定する代替として、積層フィルムの位相差を測定することが可能であった。
Subsequently, the in-plane retardation and the thickness direction retardation were measured by removing the polyamide layer on the homogeneous stretch-oriented film by wiping with gauze soaked in DMAC (dimethylacetamide). It was 3 nm. The photoelastic coefficient was 1.1 × 10 −12 Pa −1 . The thickness retardation of the layer B is -74.3 nm, which satisfies | Rth (b) |> | Rth (a) | × 50. (Here, the thickness direction retardation of the polymer film (A2E1F) made of acrylic resin is Rth (a), and the thickness direction retardation of the coating film of the polyamide solution (B1) is Rth (b).)
Therefore, even if the layer A is subjected to a stretching treatment, the phase difference does not change. Therefore, as an alternative to measuring the phase difference of only the polyamide layer, it was possible to measure the phase difference of the laminated film.
比較例1
PMMA(「デルペット(登録商標)80N」(旭化成社製))を使用し、参考例4と同様の方法にてフィルム化を行った。1H−NMR法にて確認したところ、環構造は確認できなかった。得られたPMMAフィルムの特性は次の通りである。
Comparative Example 1
Using PMMA (“Delpet (registered trademark) 80N” (manufactured by Asahi Kasei Corporation)), a film was formed in the same manner as in Reference Example 4. When confirmed by 1 H-NMR method, the ring structure could not be confirmed. The characteristics of the obtained PMMA film are as follows.
厚み(μm) :40
ガラス転移温度(Tg)(℃) :110
全光線透過率(%) :90
ヘイズ(%) :1.0
位相差(nm) :1.8
厚み方向位相差(nm) :1.2
光弾性係数(10−12Pa−1) :5.0
このフィルムを用いた以外は実施例1と同様の方法で積層フィルムを得た。
Thickness (μm): 40
Glass transition temperature (Tg) (° C.): 110
Total light transmittance (%): 90
Haze (%): 1.0
Phase difference (nm): 1.8
Thickness direction retardation (nm): 1.2
Photoelastic coefficient (10 −12 Pa −1 ): 5.0
A laminated film was obtained in the same manner as in Example 1 except that this film was used.
得られた積層フィルムから、幅50mm、長さ150mmのサンプルを2枚切り出した。そのうち1枚の面内位相差は2.5nm、厚み方向位相差は−83.0nmであった。 Two samples having a width of 50 mm and a length of 150 mm were cut out from the obtained laminated film. Among them, the in-plane retardation of one sheet was 2.5 nm, and the thickness direction retardation was −83.0 nm.
ついで、PMMAフィルム上のポリアミド層をDMAC(ジメチルアセトアミド)を浸したガーゼでふき取ることで除去して面内位相差及び厚み方向位相差を測定したところ、それぞれ1.8nm、1.2nmであった。また、光弾性係数は5.0×10−12Pa−1であった。層Bの厚み位相差は−84.2nmとなり、|Rth(b)|>|Rth(a)|×50を満たす。(ここで、PMMAフィルムの厚み方向位相差をRth(a)、ポリアミド溶液(B1)の塗布膜の厚み方向位相差をRth(b)とする。)
切り出したもう一枚のサンプルを100℃で1.5倍に延伸したところ、均質な延伸配向フィルムが得られた。得られたフィルムの面内位相差は102.0nm、厚み方向位相差は−39.5nmであった。
Subsequently, the polyamide layer on the PMMA film was removed by wiping with a gauze soaked in DMAC (dimethylacetamide), and the in-plane retardation and thickness direction retardation were measured to be 1.8 nm and 1.2 nm, respectively. . The photoelastic coefficient was 5.0 × 10 −12 Pa −1 . The thickness retardation of the layer B is -84.2 nm, which satisfies | Rth (b) |> | Rth (a) | × 50. (Here, the thickness direction retardation of the PMMA film is Rth (a), and the thickness direction retardation of the coating film of the polyamide solution (B1) is Rth (b).)
When another cut sample was stretched 1.5 times at 100 ° C., a homogeneous stretch-oriented film was obtained. The obtained film had an in-plane retardation of 102.0 nm and a thickness direction retardation of -39.5 nm.
ついで、この均質な延伸配向フィルム上のポリアミド層をDMAC(ジメチルアセトアミド)を浸したガーゼでふき取ることで除去して面内位相差及び厚み方向位相差を測定したところ、それぞれ60.5nm、−120.5nmであった。また、光弾性係数は5.0×10−12Pa−1であった。層Bの厚み位相差は−81.0nmとなり、|Rth(b)|>|Rth(a)|×50を満たさない。(ここで、PMMAフィルムの厚み方向位相差をRth(a)、ポリアミド溶液(B1)の塗布膜の厚み方向位相差をRth(b)とする。)
PMMAからなる層Aは延伸処理を施すと位相差変化を起こすため、ポリアミド層のみの位相差を測定する代替として、積層フィルムの位相差を測定することは不可能であった。
Subsequently, the in-plane retardation and the thickness direction retardation were measured by removing the polyamide layer on the homogeneous stretch-oriented film by wiping with gauze soaked in DMAC (dimethylacetamide). 0.5 nm. The photoelastic coefficient was 5.0 × 10 −12 Pa −1 . The thickness retardation of the layer B is -81.0 nm, and does not satisfy | Rth (b) |> | Rth (a) | × 50. (Here, the thickness direction retardation of the PMMA film is Rth (a), and the thickness direction retardation of the coating film of the polyamide solution (B1) is Rth (b).)
Since the layer A made of PMMA undergoes a change in phase difference when subjected to the stretching treatment, it was impossible to measure the phase difference of the laminated film as an alternative to measuring the phase difference of only the polyamide layer.
本発明のフィルムは、リターデーション、応力による複屈折変化、及び延伸配向による位相差変化が小さい層と位相差を発現する層からなる光学用積層フィルムであって、光学補償層付き偏光子保護フィルムに極めて好適に使用することができる。 The film of the present invention is an optical laminated film comprising a layer that exhibits retardation, a birefringence change due to stress, and a small retardation change due to stretching orientation, and a layer that exhibits a retardation, and a polarizer protective film with an optical compensation layer Can be used very suitably.
Claims (6)
(i)層Aの面内位相差Re(a)が5nm以下であり、厚み方向位相差Rth(a)が−5nm以上5nm以下である。
(ii)層Aの光弾性係数が5.0×10−12Pa−1より小さい。
(iii)層Aに含まれるアクリル系樹脂のガラス転移温度をTgとし、Tg−10℃で1.5倍に延伸したときの面内位相差をRe(a’)としたとき、|Re(a’)−Re(a)|<5(nm)を満たす。
(iv)層Bの厚み方向位相差Rth(b)が、|Rth(b)|>|Rth(a)|×50を満たす。 A layer A containing an acrylic resin and a layer B containing at least one polymer selected from the group consisting of polyamide, polyimide, polyester, polyetherketone, polyamideimide and polyesterimide, and the following conditions ( A laminated film satisfying i) to (iv) at the same time.
(I) The in-plane retardation Re (a) of the layer A is 5 nm or less, and the thickness direction retardation Rth (a) is −5 nm or more and 5 nm or less.
(Ii) The photoelastic coefficient of the layer A is smaller than 5.0 × 10 −12 Pa −1 .
(Iii) When the glass transition temperature of the acrylic resin contained in the layer A is Tg and the in-plane retardation when it is stretched 1.5 times at Tg-10 ° C. is Re (a ′), | Re ( a ′) − Re (a) | <5 (nm) is satisfied.
(Iv) The thickness direction retardation Rth (b) of the layer B satisfies | Rth (b) |> | Rth (a) | × 50.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007220780A JP2009053492A (en) | 2007-08-28 | 2007-08-28 | Laminated film and polarizing plate with optical compensation layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007220780A JP2009053492A (en) | 2007-08-28 | 2007-08-28 | Laminated film and polarizing plate with optical compensation layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009053492A true JP2009053492A (en) | 2009-03-12 |
Family
ID=40504624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007220780A Pending JP2009053492A (en) | 2007-08-28 | 2007-08-28 | Laminated film and polarizing plate with optical compensation layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009053492A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013080642A1 (en) * | 2011-11-30 | 2013-06-06 | 学校法人慶應義塾 | Optical film, resin material for optical film, and image display device |
US9874657B2 (en) | 2016-01-07 | 2018-01-23 | Samsung Electronics Co., Ltd. | Compensation film and optical film and display device |
CN113272688A (en) * | 2018-12-27 | 2021-08-17 | 日东电工株式会社 | Polarizing plate and polarizing plate roll |
-
2007
- 2007-08-28 JP JP2007220780A patent/JP2009053492A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013080642A1 (en) * | 2011-11-30 | 2013-06-06 | 学校法人慶應義塾 | Optical film, resin material for optical film, and image display device |
JP2013114198A (en) * | 2011-11-30 | 2013-06-10 | Keio Gijuku | Optical film, resin material for optical film, and image display device |
CN104011097A (en) * | 2011-11-30 | 2014-08-27 | 学校法人庆应义塾 | Optical film, resin material for optical film, and image display device |
US20140309395A1 (en) * | 2011-11-30 | 2014-10-16 | Keio University | Optical film, resin material for optical film, and image display device |
US9874657B2 (en) | 2016-01-07 | 2018-01-23 | Samsung Electronics Co., Ltd. | Compensation film and optical film and display device |
CN113272688A (en) * | 2018-12-27 | 2021-08-17 | 日东电工株式会社 | Polarizing plate and polarizing plate roll |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070243364A1 (en) | Acrylic Resin Films and Process for Producing the Same | |
TWI628222B (en) | Methacrylic resin, methacrylic resin composition, film, manufacturing method | |
KR102059714B1 (en) | Resin composition and film thereof | |
JP2008239739A (en) | Thermoplastic resin film and production method thereof | |
JPWO2008020570A1 (en) | Acrylic resin film | |
WO2014162370A1 (en) | Optical resin material and optical film | |
JP2009235249A (en) | Thermoplastic copolymer, thermoplastic resin composition, and molded product comprising them | |
JP5574787B2 (en) | Resin composition and production method thereof, molded product, film, optical film, polarizer protective film, polarizing plate | |
JP2006241197A (en) | Film | |
JP2008074918A (en) | Acrylic resin film for optical use | |
KR20050116139A (en) | Thermoplastic resin composition, molded article, and film | |
JP2006283013A (en) | Acrylic resin film for optical use | |
CN101669049A (en) | Optical compensation films, optically compensating film, and processes for producing these | |
JP2007171577A (en) | Film, polarizer protective film and display | |
JP2007118266A (en) | Acrylic film and its manufacturing method | |
JP2006241263A (en) | Method for producing acrylic resin composition film | |
JP2007119565A (en) | Resin film, its manufacturing method and display member using the same | |
WO2005108438A1 (en) | Imide resin, method for producing same, and molded body using same | |
JP2009053492A (en) | Laminated film and polarizing plate with optical compensation layer | |
JP2009041007A (en) | Optically isotropic acrylic resin film and its manufacturing method | |
JP2009227908A (en) | Thermoplastic resin film and manufacturing method therefor | |
JP2009052025A (en) | Thermoplastic resin film, optical film, and polarization plate | |
JP5672518B2 (en) | Substrate for liquid crystal display and manufacturing method thereof | |
JP2008239741A (en) | Acrylic resin film and method for producing the same | |
JP2009222743A (en) | Polarizer protective film |