[go: up one dir, main page]

JP2009005669A - Immobilized enzyme nanofiber, method for producing the same, and reaction apparatus using the nanofiber - Google Patents

Immobilized enzyme nanofiber, method for producing the same, and reaction apparatus using the nanofiber Download PDF

Info

Publication number
JP2009005669A
JP2009005669A JP2007172755A JP2007172755A JP2009005669A JP 2009005669 A JP2009005669 A JP 2009005669A JP 2007172755 A JP2007172755 A JP 2007172755A JP 2007172755 A JP2007172755 A JP 2007172755A JP 2009005669 A JP2009005669 A JP 2009005669A
Authority
JP
Japan
Prior art keywords
enzyme
nanofiber
immobilized
immobilized enzyme
lipase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007172755A
Other languages
Japanese (ja)
Inventor
Shinji Sakai
慎司 境
Yukiei Kawakami
幸衛 川上
Koichi Yasutoku
浩一 安徳
Satoru Yamaguchi
哲 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Fukuoka Prefecture
Original Assignee
Kyushu University NUC
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Fukuoka Prefecture filed Critical Kyushu University NUC
Priority to JP2007172755A priority Critical patent/JP2009005669A/en
Publication of JP2009005669A publication Critical patent/JP2009005669A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

【課題】製造時に酵素の失活を起こしにくく、高い酵素活性を有し、長期間にわたって安定な固定化酵素ナノファイバー及びその製造方法並びに該ナノファイバーを用いた反応装置を提供する。
【解決手段】固定化酵素ナノファイバー14は、高分子化合物及び酵素を含む原料溶液をエレクトロスピニング法により紡糸する工程を有する方法を用いて製造することができ、エレクトロスピニング法により紡糸された直径が100nm〜3μmの繊維状の高分子マトリックス中にリパーゼ等の酵素が固定化されている。また、反応装置は、固定化酵素ナノファイバー14により形成された不織布を固定化酵素担体として用いており、反応効率が高く、バッチ法に比べ経済的効率も向上することができる。
【選択図】図1
The present invention provides an immobilized enzyme nanofiber that hardly causes enzyme deactivation during production, has high enzyme activity, is stable for a long period of time, a method for producing the same, and a reaction apparatus using the nanofiber.
An immobilized enzyme nanofiber 14 can be produced using a method having a step of spinning a raw material solution containing a polymer compound and an enzyme by an electrospinning method, and the diameter spun by the electrospinning method. Enzymes such as lipase are immobilized in a fibrous polymer matrix of 100 nm to 3 μm. Moreover, the reaction apparatus uses the nonwoven fabric formed with the immobilized enzyme nanofiber 14 as an immobilized enzyme carrier, and thus the reaction efficiency is high and the economic efficiency can be improved as compared with the batch method.
[Selection] Figure 1

Description

本発明は、固定化酵素ナノファイバー、その製造方法及び該ナノファイバーを用いた反応装置に関する。 The present invention relates to an immobilized enzyme nanofiber, a production method thereof, and a reaction apparatus using the nanofiber.

酵素は、醸造、チーズなどの発酵、繊維工業、皮革工場、食品工業、化粧品工業、医薬品工業等において、物質の生産や原料加工等に利用されている。酵素反応は温和な反応条件下で高収率かつ高選択的に進行し、副生成物を殆ど生じない。そのため、高効率で環境負荷の小さな化学プロセスとして幅広い分野への応用が期待されている。また、近年では、高い基質特異性を利用したバイオセンサー等への応用もなされている。
従来、酵素反応を用いた物質生産には、主に回分法(バッチ法)が用いられていたが、この方法では、酵素が1度しか使用できないため経済的に不効率であることから、酵素の連続生産プロセスへの適用が検討されている。酵素を連続生産プロセスに適用する場合には、担体上に酵素を固定して反応溶媒に不溶化した固定化酵素が用いられる。酵素の固定化に用いられる担体及び固定化方法は、酵素の変性及び流失の防止、反応基質と酵素との接触面積の確保等の観点から適宜選択される。
Enzymes are used for production of raw materials and raw material processing in brewing, fermentation of cheese, textile industry, leather factory, food industry, cosmetics industry, pharmaceutical industry, and the like. The enzyme reaction proceeds with high yield and high selectivity under mild reaction conditions, and hardly produces by-products. Therefore, it is expected to be applied to a wide range of fields as a chemical process with high efficiency and low environmental impact. In recent years, biosensors using high substrate specificity have also been applied.
Conventionally, batch method (batch method) was mainly used for substance production using enzyme reaction. However, since this method can be used only once, it is economically inefficient. Application to the continuous production process is under consideration. When the enzyme is applied to a continuous production process, an immobilized enzyme in which the enzyme is immobilized on a carrier and insolubilized in a reaction solvent is used. The carrier and the immobilization method used for immobilizing the enzyme are appropriately selected from the viewpoints of denaturation and prevention of enzyme loss, securing the contact area between the reaction substrate and the enzyme, and the like.

従来用いられている酵素の固定化方法としては、不溶性の担体の表面に酵素を物理的又は化学的に結合させる担体結合法(例えば、特許文献1参照)、2以上の官能基を有する架橋剤と酵素の表面官能基とを反応させて、不溶性の巨大分子を形成させる架橋法、網目構造を有する高分子ゲルの格子や、水溶液を包含した水不溶性のマイクロカプセル等で酵素を包み込む包括法(例えば、特許文献2〜4参照)、及びこれらの方法を組み合わせて用いる複合法(例えば、特許文献5及び6参照)等が挙げられる。 Conventionally used enzyme immobilization methods include a carrier binding method in which an enzyme is physically or chemically bound to the surface of an insoluble carrier (see, for example, Patent Document 1), and a crosslinking agent having two or more functional groups. A comprehensive method that encapsulates the enzyme with a cross-linking method that forms an insoluble macromolecule by reacting the enzyme with the surface functional group of the enzyme, a lattice of a polymer gel having a network structure, or a water-insoluble microcapsule that includes an aqueous solution ( For example, refer to Patent Documents 2 to 4, and a composite method using these methods in combination (for example, refer to Patent Documents 5 and 6).

特開昭59−213390号公報JP 59-213390 A 特開昭58−5193号公報JP 58-5193 A 特開平6−181763号公報Japanese Patent Laid-Open No. 6-181763 特公昭53−12998号公報Japanese Patent Publication No.53-12998 特開平3−19687号公報Japanese Patent Laid-Open No. 3-19687 特公昭62−16637号公報Japanese Examined Patent Publication No. 62-16637

しかしながら、担体結合法は、担体粒子の大きさによる表面積の広さが活性効率に及ぼす影響が大きいため、その加工法が問題になる。
架橋法は、多量の酵素を必要とし、架橋剤と反応の際に酵素活性の低下を引き起こす等の問題点が挙げられる。
また、包括法は、マトリックスの形成に重合反応を必要とするような場合には、重合中に酵素の失活が起こりやすいという問題点を有している。
However, the carrier binding method has a large influence on the activity efficiency due to the size of the surface area due to the size of the carrier particles, and the processing method becomes a problem.
The cross-linking method requires a large amount of enzyme and has problems such as causing a decrease in enzyme activity upon reaction with the cross-linking agent.
In addition, the entrapment method has a problem that when a polymerization reaction is required for forming a matrix, the enzyme is easily deactivated during the polymerization.

本発明はかかる事情に鑑みてなされたもので、製造時に酵素の失活を起こしにくく、高い酵素活性を有し、長期間にわたって安定な固定化酵素ナノファイバー及びその製造方法並びに該ナノファイバーを用いた反応装置を提供することを目的とする。 The present invention has been made in view of such circumstances. An immobilized enzyme nanofiber that is less likely to inactivate an enzyme during production, has high enzyme activity, and is stable over a long period of time, a method for producing the same, and the nanofiber are used. An object of the present invention is to provide a reaction apparatus.

前記目的に沿う第1の発明に係る固定化酵素ナノファイバーは、エレクトロスピニング法により紡糸された直径が100nm〜3μmの繊維状の高分子マトリックス中に酵素が固定化されている。
なお、「エレクトロスピニング(electrospinning)法」とは、静電紡糸法、電界紡糸法、電化誘導紡糸法等とも呼ばれている紡糸法の一種で、数十kVの高電圧が印加されたキャピラリー状の紡糸口(正極)から接地された回収板(負極)に向かって、高分子化合物を含む溶液を一定の速度で押し出すことにより紡糸を行う。
In the immobilized enzyme nanofiber according to the first invention that meets the above object, the enzyme is immobilized in a fibrous polymer matrix having a diameter of 100 nm to 3 μm that is spun by electrospinning.
The “electrospinning method” is a kind of spinning method that is also called an electrostatic spinning method, an electrospinning method, an electrification induced spinning method, or the like, and is a capillary-like shape to which a high voltage of several tens of kV is applied. Spinning is performed by extruding a solution containing a polymer compound at a constant speed from a spinning port (positive electrode) toward a grounded recovery plate (negative electrode).

第1の発明に係る固定化酵素ナノファイバーにおいて、前記酵素はリパーゼであってもよい。 In the immobilized enzyme nanofiber according to the first invention, the enzyme may be a lipase.

第1の発明に係る固定化酵素ナノファイバーにおいて、前記高分子マトリックスは、アルコシキシラン化合物の重縮合により生成したシロキサン重合体を含んでいてもよい。
この場合において、前記シロキサン重合体は、ジアルキルジアルコキシシランとテトラアルコキシシランとの混合物の重縮合により生成した共重合体であることが好ましい。
なお、「シロキサン重合体」とは、一般式(SiRO−)で表される直鎖状、分岐鎖状、及び環状の重合体をいう。なお、R及びRはそれぞれ独立して水酸基、アルキル基、及びアリール基のいずれかを表し、nは2以上の自然数を表す。例えば、ジアルキルシロキサンは、R及びRが両者共にアルキル基であるシロキサン単位を含む単独重合体又は共重合体である。
In the immobilized enzyme nanofiber according to the first invention, the polymer matrix may contain a siloxane polymer formed by polycondensation of an alkoxysilane compound.
In this case, the siloxane polymer is preferably a copolymer produced by polycondensation of a mixture of dialkyl dialkoxysilane and tetraalkoxysilane.
The “siloxane polymer” refers to linear, branched, and cyclic polymers represented by the general formula (SiR 1 R 2 O—) n . R 1 and R 2 each independently represent a hydroxyl group, an alkyl group, or an aryl group, and n represents a natural number of 2 or more. For example, dialkylsiloxane is a homopolymer or copolymer containing siloxane units in which R 1 and R 2 are both alkyl groups.

第2の発明に係る固定化酵素ナノファイバーの製造方法は、紡糸可能な高分子化合物及び酵素を含む原料溶液を調製する工程と、前記原料溶液をエレクトロスピニング法により紡糸する工程とを有する。 The method for producing an immobilized enzyme nanofiber according to the second invention includes a step of preparing a raw material solution containing a spinnable polymer compound and an enzyme, and a step of spinning the raw material solution by an electrospinning method.

第2の発明に係る固定化酵素ナノファイバーの製造方法において、前記酵素はリパーゼであってもよい。 In the method for producing an immobilized enzyme nanofiber according to the second invention, the enzyme may be a lipase.

第2の発明に係る固定化酵素ナノファイバーの製造方法において、前記原料溶液が更に1種類又は2種類以上のアルコキシシラン化合物のゾルを含み、前記紡糸する工程においてアルコシキシラン化合物の重縮合によりシロキサン重合体が生成してもよい。
この場合において、前記アルコキシシラン化合物が、ジアルキルジアルコキシシランとテトラアルコキシシランの混合物であることが好ましい。
In the method for producing an immobilized enzyme nanofiber according to the second invention, the raw material solution further contains a sol of one kind or two or more kinds of alkoxysilane compounds, and a siloxane is obtained by polycondensation of an alkoxysilane compound in the spinning step. A polymer may be formed.
In this case, the alkoxysilane compound is preferably a mixture of dialkyl dialkoxysilane and tetraalkoxysilane.

第3の発明に係る反応装置は、第1の発明に係る固定化酵素ナノファイバーにより形成された不織布を固定化酵素担体として用いている。 The reaction apparatus according to the third invention uses a nonwoven fabric formed of the immobilized enzyme nanofibers according to the first invention as an immobilized enzyme carrier.

請求項1〜4記載の酵素固定化ナノファイバーにおいては、従来の粒状物等の固定化酵素担体と比較すると、単位体積当たりの表面積が大きく、より多くの酵素が表面に露出していると共に、酵素と基質との分子拡散距離を短くすることができるので反応効率が高い。更に、固定化する酵素や酵素反応の特性に応じて、高分子マトリックスの組成等を変化させることが可能であり、表面を化学修飾して、活性や安定性を向上させた酵素を用いることもできる。 In the enzyme-immobilized nanofibers according to claims 1 to 4, compared with a conventional immobilized enzyme carrier such as a granular material, the surface area per unit volume is large, and more enzyme is exposed on the surface, The reaction efficiency is high because the molecular diffusion distance between the enzyme and the substrate can be shortened. Furthermore, it is possible to change the composition of the polymer matrix according to the enzyme to be immobilized and the characteristics of the enzyme reaction. It is also possible to use an enzyme whose surface has been chemically modified to improve its activity and stability. it can.

特に請求項2記載の固定化酵素ナノファイバーにおいては、酵素としてリパーゼを用いているので、脂肪酸トリグリセリド等のエステルの加水分解、エステル合成、エステル交換、エステルから酸アミドの合成(アミノリシス)等の工業上有用な反応に適用可能である。 In particular, in the immobilized enzyme nanofiber according to claim 2, since lipase is used as an enzyme, such industries as hydrolysis of ester such as fatty acid triglyceride, ester synthesis, transesterification, synthesis of acid amide from amino acid (aminolysis), etc. It is applicable to useful reactions.

請求項3記載の固定化酵素ナノファイバーにおいては、高分子マトリックスがシロキサン重合体を含んでいるので、マトリックス中に固定化された酵素の熱安定性を向上させ、かつ酵素活性を向上させることができる。 In the immobilized enzyme nanofiber according to claim 3, since the polymer matrix contains a siloxane polymer, the thermal stability of the enzyme immobilized in the matrix can be improved and the enzyme activity can be improved. it can.

請求項4記載の固定化酵素ナノファイバーにおいては、シロキサン重合体がジアルキルジアルコキシシランとテトラアルコキシシランとの混合物の重縮合により生成した共重合体であるので、ナノファイバー中でシロキサン重合体が三次元的な架橋構造を形成し、反応基質の酵素に対するアクセスが容易になり、酵素活性を向上させることができる。 In the immobilized enzyme nanofiber according to claim 4, since the siloxane polymer is a copolymer formed by polycondensation of a mixture of dialkyl dialkoxysilane and tetraalkoxysilane, the siloxane polymer is tertiary in the nanofiber. An original cross-linked structure is formed, the reaction substrate is easily accessible to the enzyme, and the enzyme activity can be improved.

請求項5〜8記載の固定化酵素ナノファイバーの製造方法においては、反応効率が高い固定化酵素ナノファイバーを簡便かつ低コストに製造することができる。また、穏和な条件下で紡糸を行うことができるため、製造工程における酵素の失活を抑制できる。更に、多くの酵素及び高分子に適用可能なため、固定化する酵素や酵素反応の特性等に応じて、高分子マトリックスの組成等を最適化することが可能である。 In the method for producing an immobilized enzyme nanofiber according to claims 5 to 8, an immobilized enzyme nanofiber having a high reaction efficiency can be produced simply and at low cost. Moreover, since spinning can be performed under mild conditions, inactivation of the enzyme in the production process can be suppressed. Furthermore, since it can be applied to many enzymes and polymers, it is possible to optimize the composition of the polymer matrix according to the enzyme to be immobilized and the characteristics of the enzyme reaction.

請求項6記載の固定化酵素ナノファイバーの製造方法においては、酵素としてリパーゼを用いているので、脂肪酸トリグリセリド等のエステルの加水分解、エステル合成、エステル交換、エステルから酸アミドの合成等の工業上有用な反応に適用可能な固定化酵素ナノファイバーを提供できる。 In the method for producing an immobilized enzyme nanofiber according to claim 6, since lipase is used as an enzyme, industrial hydrolysis such as hydrolysis of ester such as fatty acid triglyceride, ester synthesis, transesterification, synthesis of acid amide from ester, etc. An immobilized enzyme nanofiber applicable to useful reactions can be provided.

請求項7記載の固定化酵素ナノファイバーの製造方法においては、紡糸する工程においてアルコキシシラン化合物の重縮合によりシロキサン重合体が生成するので、ナノファイバー中に固定化された酵素の熱安定性を向上させ、かつ酵素活性を向上させることができる。 In the method for producing an immobilized enzyme nanofiber according to claim 7, since a siloxane polymer is formed by polycondensation of an alkoxysilane compound in the spinning step, the thermal stability of the enzyme immobilized in the nanofiber is improved. And the enzyme activity can be improved.

請求項8記載の固定化酵素ナノファイバーの製造方法においては、アルコキシシラン化合物が、ジアルキルジアルコキシシランとテトラアルコキシシランの混合物であるので、ナノファイバー中でシロキサン重合体が三次元的な架橋構造を形成し、反応基質の酵素に対するアクセスが容易になり、酵素活性を向上させることができる。 In the method for producing an immobilized enzyme nanofiber according to claim 8, since the alkoxysilane compound is a mixture of a dialkyl dialkoxysilane and a tetraalkoxysilane, the siloxane polymer has a three-dimensional crosslinked structure in the nanofiber. This makes it easier to access the enzyme of the reaction substrate, and the enzyme activity can be improved.

請求項9記載の反応装置においては、請求項1〜4記載の固定化酵素ナノファイバーにより形成された不織布を固定化酵素担体として用いているので、反応効率が高く、酵素の繰り返し使用が可能であるため、バッチ法に比べ経済的効率も向上することができる。また、固定化酵素担体は不織布であるため、複数枚積層することにより、反応液の流通を確保しつつ単位体積当たりの酵素量を増大させることが容易である。 In the reaction apparatus according to claim 9, since the nonwoven fabric formed by the immobilized enzyme nanofibers according to claims 1 to 4 is used as the immobilized enzyme carrier, the reaction efficiency is high and the enzyme can be used repeatedly. Therefore, the economic efficiency can be improved as compared with the batch method. In addition, since the immobilized enzyme carrier is a nonwoven fabric, it is easy to increase the amount of enzyme per unit volume while ensuring the circulation of the reaction liquid by laminating a plurality of sheets.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。ここで、図1は本発明の第1の実施の形態に係る固定化酵素ナノファイバーの製造に用いられるエレクトロスピニング装置の概略説明図である。
本発明の第1の実施の形態に係る固定化酵素ナノファイバー14(図1参照)は、直径が100nm〜3μmの繊維状の高分子マトリックス中に酵素が固定化されている。固定化酵素ナノファイバー14は、紡糸可能な高分子化合物及び酵素を含む原料溶液を調製する工程と、このようにして得られた原料溶液をエレクトロスピニング法により紡糸する工程とを有する方法を用いて製造される。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. Here, FIG. 1 is a schematic explanatory view of an electrospinning apparatus used for producing an immobilized enzyme nanofiber according to the first embodiment of the present invention.
In the immobilized enzyme nanofiber 14 (see FIG. 1) according to the first embodiment of the present invention, an enzyme is immobilized in a fibrous polymer matrix having a diameter of 100 nm to 3 μm. The immobilized enzyme nanofiber 14 uses a method having a step of preparing a raw material solution containing a spinnable polymer compound and an enzyme, and a step of spinning the raw material solution thus obtained by an electrospinning method. Manufactured.

固定化酵素ナノファイバー14の製造に使用されるエレクトロスピニング装置10は、図1に示すように、紡糸原料となる原料溶液(以下、溶液という)11を一定の流量で送出するためのシリンジポンプ12、シリンジポンプ12から送出された溶液11を噴出するキャピラリー状の紡糸口13、生成した固定化酵素ナノファイバー14を回収するための回収板(コレクター)15とを有する。紡糸口13と回収板15とは、間隔が数十cm程度となるように配置され、紡糸口13には数十kVの正の電圧が印加され、回収板15は接地されている。そのため、溶液11は正に帯電した状態で紡糸口13から噴出される。静電引力が溶液11の表面張力よりも大きい場合、帯電した溶液11のジェットが発生し、回収板15に向かって飛行する。ジェット中の溶媒は徐々に揮発し、回収板15に到達する頃には、ジェットの直径はナノメートルオーダーまで減少する。このようにして形成された固定化酵素ナノファイバー14は、回収板15上に堆積し、マット状の不織布として回収される。なお、回収板15を回転させたり、巻き取り機構を設けることにより、固定化酵素ナノファイバー14を糸状の配向体として回収することもできる。 As shown in FIG. 1, an electrospinning apparatus 10 used for manufacturing an immobilized enzyme nanofiber 14 is a syringe pump 12 for sending a raw material solution (hereinafter referred to as a solution) 11 as a raw material for spinning at a constant flow rate. And a capillary-shaped spinneret 13 for ejecting the solution 11 delivered from the syringe pump 12 and a recovery plate (collector) 15 for recovering the generated immobilized enzyme nanofibers 14. The spinneret 13 and the recovery plate 15 are arranged so that the interval is about several tens of centimeters, a positive voltage of several tens of kV is applied to the spinneret 13, and the recovery plate 15 is grounded. Therefore, the solution 11 is ejected from the spinneret 13 in a positively charged state. When the electrostatic attractive force is larger than the surface tension of the solution 11, a jet of the charged solution 11 is generated and flies toward the recovery plate 15. The solvent in the jet gradually evaporates, and the diameter of the jet decreases to the nanometer order when reaching the recovery plate 15. The immobilized enzyme nanofibers 14 thus formed are deposited on the recovery plate 15 and recovered as a mat-like nonwoven fabric. The immobilized enzyme nanofibers 14 can also be collected as a thread-like oriented body by rotating the collection plate 15 or providing a winding mechanism.

固定化酵素ナノファイバーの直径は、100nm〜3μmの範囲内である。直径が100nm未満だと、機械的強度が低下すると共にビーズと呼ばれる球状の欠陥が生成しやすくなる。また、直径が3μmを上回ると、表面積の割合が低下するため、酵素活性が低下する。
固定化酵素ナノファイバーの直径は、原料となる溶液11中の酵素及び高分子化合物の濃度、シリンジポンプ12からの送出速度、紡糸口13の太さ、紡糸口13の電位、紡糸口13と回収板15との間隔等によって調節することができるが、これらの各因子と得られる固定化酵素ナノファイバー14の直径との関係は、用いられる高分子化合物、酵素及び溶媒の種類に依存するため一義的に決定することは困難である。そのため、予備実験等により事前に検討しておくことが好ましい。
The diameter of the immobilized enzyme nanofiber is in the range of 100 nm to 3 μm. When the diameter is less than 100 nm, the mechanical strength is reduced and spherical defects called beads are easily generated. Moreover, since the ratio of a surface area will fall when a diameter exceeds 3 micrometers, enzyme activity falls.
The diameter of the immobilized enzyme nanofiber is determined by the concentration of the enzyme and polymer compound in the solution 11 as a raw material, the delivery speed from the syringe pump 12, the thickness of the spinneret 13, the potential of the spinneret 13, the spinneret 13 and the recovery. Although it can adjust by the space | interval with the board | substrate 15, etc., since the relationship between each of these factors and the diameter of the immobilized enzyme nanofiber 14 obtained depends on the kind of polymer compound, enzyme, and solvent to be used, it is unambiguous. It is difficult to make a decision. Therefore, it is preferable to examine in advance by a preliminary experiment or the like.

固定化酵素ナノファイバーの製造において、高分子マトリックスの材料として用いることができる高分子化合物に特に制限はなく、エレクトロスピニング法による紡糸が可能な任意の高分子化合物を用いることができる。
用いることができる高分子化合物の具体例としては、ポリエチレン、ポリスチレン、ポリアクリロニトリル、ポリビニルアルコール(PVA)、ポリL−乳酸(PLLA)、ポリ(乳酸−グリコール酸共重合体)(PLGA)、ポリエチレンオキシド、ポリウレタン、ポリウレア、ポリカーボネート、ポリイミド、ポリカプロラクトン等の合成高分子化合物、キチン、キトサン、アルギン酸、ヒアルロン酸、デキストラン等の多糖類、コラーゲン、ゼラチン、ポリアルギニン、γ−ポリグルタミン酸(γ−PGA)、シルク等のポリペプチド系高分子化合物、シリカ又はシロキサン重合体、アルミナ、チタニア等の無機高分子化合物、及びこれらの混合物が挙げられる。これらをベースとして、化学修飾等の手法により、親水性及び疎水性、極性等を変化させた高分子化合物(例えば、ビニロン等)を用いることもできる。
In the production of the immobilized enzyme nanofiber, the polymer compound that can be used as a material for the polymer matrix is not particularly limited, and any polymer compound that can be spun by an electrospinning method can be used.
Specific examples of the polymer compound that can be used include polyethylene, polystyrene, polyacrylonitrile, polyvinyl alcohol (PVA), poly L-lactic acid (PLLA), poly (lactic acid-glycolic acid copolymer) (PLGA), polyethylene oxide. Synthetic polymer compounds such as polyurethane, polyurea, polycarbonate, polyimide, polycaprolactone, polysaccharides such as chitin, chitosan, alginic acid, hyaluronic acid, dextran, collagen, gelatin, polyarginine, γ-polyglutamic acid (γ-PGA), Examples thereof include polypeptide polymer compounds such as silk, silica or siloxane polymers, inorganic polymer compounds such as alumina and titania, and mixtures thereof. Based on these, high molecular compounds (for example, vinylon) whose hydrophilicity, hydrophobicity, polarity and the like are changed by a technique such as chemical modification can also be used.

高分子マトリックスの材料として用いられる高分子化合物は、固定化される酵素の種類、酵素反応に用いられる溶媒等に応じて適宜選択される。例えば、反応溶媒として水を用いる場合には、高分子マトリックスの膨潤や溶解を防止するために、ポリスチレン、ポリカーボネート等の疎水性高分子化合物が用いられる。
逆に、反応溶媒としてオクタン等の有機溶媒を用いる場合には、高分子マトリックスの膨潤や溶解を防止するために、PVA、ポリエチレンオキシド等の親水性高分子化合物が用いられる。親水性高分子化合物を用いる場合には、酵素分子表面の親水性基との相互作用により酵素を安定化して失活を抑制する効果も期待できる。
或いは、紡糸性の改善等のために疎水性の高分子化合物と親水性高分子化合物を混合して用い、固定化酵素ナノファイバーの形成後に溶媒で洗浄して一方を除去してもよい。
The polymer compound used as a material for the polymer matrix is appropriately selected according to the type of enzyme to be immobilized, the solvent used for the enzyme reaction, and the like. For example, when water is used as the reaction solvent, hydrophobic polymer compounds such as polystyrene and polycarbonate are used to prevent swelling and dissolution of the polymer matrix.
Conversely, when an organic solvent such as octane is used as the reaction solvent, hydrophilic polymer compounds such as PVA and polyethylene oxide are used in order to prevent swelling and dissolution of the polymer matrix. In the case of using a hydrophilic polymer compound, an effect of stabilizing the enzyme and suppressing deactivation by interaction with a hydrophilic group on the surface of the enzyme molecule can be expected.
Alternatively, in order to improve spinnability, a hydrophobic polymer compound and a hydrophilic polymer compound may be mixed and used, and after forming the immobilized enzyme nanofibers, one may be removed by washing with a solvent.

高分子化合物としてシロキサン重合体を単独で、或いは他の高分子化合物と組み合わせて用いる場合には、シロキサン重合体の前駆体であるアルコキシシラン、水、更に加水分解触媒として酸又はアンモニアを溶液11中に添加し、エレクトロスピニング法による紡糸工程と同時に、例えば、下式に示すような、アルコキシシラン化合物の加水分解及び生成したシラノールの重縮合(いわゆるゾル−ゲル法)によりシロキサン重合体を形成させることもできる。 When the siloxane polymer is used alone or in combination with another polymer compound as the polymer compound, alkoxysilane which is a precursor of the siloxane polymer, water, and acid or ammonia as the hydrolysis catalyst in the solution 11 At the same time as the spinning step by electrospinning, a siloxane polymer is formed by, for example, hydrolysis of an alkoxysilane compound and polycondensation of the generated silanol (so-called sol-gel method) as shown in the following formula: You can also.

nSi(OR)+4nHO→nSi(OH)+4nROH
nSi(OH)→nSiO+2nH
なお、上記の式において、nは任意の自然数である。
nSi (OR) 4 +4 nH 2 O → nSi (OH) 4 +4 nROH
nSi (OH) 4 → nSiO 2 + 2nH 2 O
In the above formula, n is an arbitrary natural number.

用いることができるアルコキシシラン化合物としては、下記の一般式(1)で表されるテトラアルコキシシラン、(2)で表されるモノアルキルトリアルコキシシラン、及び(3)で表されるジアルキルジアルコキシシランが挙げられる。
Si(OR) ・・・(1)
SiR(OR) ・・・(2)
SiR(OR) ・・・(3)
なお、式(1)〜(3)において、Rはメチル(Me)基又はエチル(Et)基、R及びRは、それぞれ独立して任意の置換基を有していてもよいアルキル基又はアリール基を表す。
Examples of the alkoxysilane compound that can be used include a tetraalkoxysilane represented by the following general formula (1), a monoalkyltrialkoxysilane represented by (2), and a dialkyldialkoxysilane represented by (3). Is mentioned.
Si (OR) 4 (1)
SiR 1 (OR) 3 (2)
SiR 1 R 2 (OR) 2 (3)
In the formulas (1) to (3), R is a methyl (Me) group or an ethyl (Et) group, and R 1 and R 2 are each independently an alkyl group optionally having an arbitrary substituent. Or represents an aryl group.

一般式(1)で表されるテトラアルコキシシランの具体例としては、テトラメトシシシラン(TMOS、R=Me)、テトラエトキシシラン(TEOS、R=Et)が挙げられる。
一般式(2)で表されるモノアルキルトリアルコキシシランの具体例としては、メチルトリメトキシシラン(MTrMOS、R=R=Me)、メチルトリエトキシシラン(MTrEOS、R=Et、R=Me)、3−アミノプロピルトリメトキシシラン(APrTMOS、R=Me、R=NHCHCHCH−)、3−アミノプロピルトリエトキシシラン(APrTrEOS、R=Et、R=NHCHCHCH−)、ブチルトリメトシシシラン(BuTrMOS、R=Me、R=C)、n−ブチルトリエトキシシラン(n−BuTrEOS、R=Et、R=C)、フェニルトリメトキシシラン(PheTrMOS、R=Me、R=C)、フェニルトリエトキシシラン(PheTrEOS、R=Et、R=C)、3−トリメトキシシリルプロピルメタクリレート(TSM、R=Me、R=CH=C(CH)COO(CH−)等が挙げられる。
一般式(3)で表されるジアルキルジアルコキシシランの具体例としては、ジメチルジメトキシシラン(DMDMOS、R=R=R=Me)、ジメチルジエトキシシラン(DMDEOS、R=Et、R=R=Me)、ジブチルジメトキシシラン(DBDMOS、R=R=R=C)、ジブチルジエトキシシラン(DBDEOS、R=Et、R=R=C)等が挙げられる。
これらのアルコキシシラン化合物は、単独で用いてもよく、任意の2以上を組み合わせて(例えば、ジアルキルジアルコキシシランとテトラアルコキシシランの混合物)用いることもでき。それぞれ重縮合によりホモポリマー及びコポリマー(共重合体)を生成する。
Specific examples of the tetraalkoxysilane represented by the general formula (1) include tetramethoxysilane (TMOS, R = Me) and tetraethoxysilane (TEOS, R = Et).
Specific examples of the monoalkyltrialkoxysilane represented by the general formula (2) include methyltrimethoxysilane (MTrMOS, R = R 1 = Me), methyltriethoxysilane (MTrEOS, R = Et, R 1 = Me). ), 3-aminopropyltrimethoxysilane (APrTMOS, R = Me, R 1 = NH 2 CH 2 CH 2 CH 2 -), 3- aminopropyltriethoxysilane (APrTrEOS, R = Et, R 1 = NH 2 CH 2 CH 2 CH 2 -), butyl trimetrexate Shishishi run (BuTrMOS, R = Me, R 1 = C 4 H 9), n- butyl triethoxysilane (n-BuTrEOS, R = Et , R 1 = C 4 H 9 ), phenyltrimethoxysilane (PheTrMOS, R = Me, R 1 = C 6 H 5), phenyl triethoxysilane Run (PheTrEOS, R = Et, R 1 = C 6 H 5), 3- trimethoxysilylpropyl methacrylate (TSM, R = Me, R 1 = CH 2 = C (CH 3) COO (CH 2) 3 -) Etc.
Specific examples of the dialkyl dialkoxysilane represented by the general formula (3) include dimethyldimethoxysilane (DMDMOS, R = R 1 = R 2 = Me), dimethyldiethoxysilane (DMDEOS, R = Et, R 1 = R 2 = Me), dibutyldimethoxysilane (DBDMOS, R = R 1 = R 2 = C 4 H 9 ), dibutyldiethoxysilane (DBDEOS, R = Et, R 1 = R 2 = C 4 H 9 ), etc. Can be mentioned.
These alkoxysilane compounds may be used alone or in combination of two or more (for example, a mixture of dialkyl dialkoxysilane and tetraalkoxysilane). A homopolymer and a copolymer (copolymer) are produced by polycondensation, respectively.

固定化酵素ナノファイバーの製造に用いられるアルコキシシランの種類、組み合わせ、濃度及び組成比、他の高分子化合物との濃度比は、用いられる酵素の種類、酵素反応に用いられる溶媒の種類等に応じて適宜選択される。
例えば、反応中心近傍に存在する疎水性環境によって反応性が向上するリパーゼ等の酵素を用いる場合には、一般式(2)及び(3)で表されるアルコシキシラン化合物の組成比を高くすることが好ましい。また、一般式(1)及び(2)で表されるアルコキシシラン化合物の組成比を高くすると、シロキサン鎖間で架橋を形成することができ、酵素の漏出を抑制しつつ、反応基質の酵素へのアクセスを改善することができる。
The types, combinations, concentrations and composition ratios of alkoxysilanes used in the production of immobilized enzyme nanofibers, and the concentration ratios with other polymer compounds depend on the type of enzyme used, the type of solvent used in the enzyme reaction, etc. Are appropriately selected.
For example, when an enzyme such as lipase whose reactivity is improved by a hydrophobic environment existing in the vicinity of the reaction center is used, the composition ratio of the alkoxysilane compound represented by the general formulas (2) and (3) is increased. It is preferable. Moreover, when the composition ratio of the alkoxysilane compound represented by the general formulas (1) and (2) is increased, crosslinking between siloxane chains can be formed, and the leakage of the enzyme can be suppressed while the enzyme is a reaction substrate. Access can be improved.

加水分解及び重縮合反応を経てシロキサン重合体を生成するアルコキシシラン化合物であれば、上記以外のアルコキシシラン化合物を用いることができる。また、ポリシリカやケイ酸ナトリウムを用いることもできる。
更に、アルコキシシランの代わりに、アルミニウム、ジルコニウム、チタンのアルコキシドを用いることもできる。
Any alkoxysilane compound other than the above can be used as long as it is an alkoxysilane compound that forms a siloxane polymer through hydrolysis and polycondensation reactions. Polysilica and sodium silicate can also be used.
Furthermore, an alkoxide of aluminum, zirconium, or titanium can be used in place of the alkoxysilane.

固定化酵素ナノファイバーの製造に用いることができる酵素に特に制限はなく、エレクトロスピニング法により失活しない任意の酵素を用いることができる。また、固定化酵素ナノファイバーの製造には、生体等に由来の酵素(いわゆるNative酵素)をそのまま用いてもよく、活性、熱安定性、及び至適pH改変のためにタンパク質構造に改変又は修飾を施した酵素を用いてもよい。酵素の改変又は修飾には、化学的手法、遺伝子工学的手法及び分子進化工学的手法のいずれを用いてもよい。 There is no restriction | limiting in particular in the enzyme which can be used for manufacture of an immobilized enzyme nanofiber, Arbitrary enzymes which are not inactivated by an electrospinning method can be used. In addition, for the production of immobilized enzyme nanofibers, an enzyme derived from a living body (so-called native enzyme) may be used as it is, and the protein structure is modified or modified for activity, thermal stability, and optimum pH modification. You may use the enzyme which gave. For the modification or modification of the enzyme, any of chemical methods, genetic engineering methods, and molecular evolution engineering methods may be used.

固定化酵素ナノファイバーの製造に用いることができる酵素としては、例えば、以下に示す各種酵素が挙げられる。
(1)ホルメートデヒドロゲナーゼ、ホルムアルデヒドデヒドロゲナーゼ、アルコールデヒドロゲナーゼ、グリセルアルデヒドリン酸デヒドロゲナーゼ、イソクエン酸デヒドロゲナーゼ、リンゴ酸デヒドロゲナーゼ、グルコースオキシダーゼ、コレステロールオキシダーゼ、L−アミノ酸オキシダーゼ、D−アミノ酸オキシダーゼ、リポキシゲナーゼ、尿酸オキシダーゼ、キサンチンオキシダーゼ、プロトカテク酸−3,4−ジオキシゲナーゼ、ピリジンヌクレオチドトランスヒドロゲナーゼ、西洋ワサビペルオキシダーゼ(HRP)、カタラーゼ、L−グルタミン酸デヒドラーゼ等の酸化還元酵素。
(2)乳酸デヒドロゲナーゼ(LDH)、グルタミン酸−ピルビン酸トランスアミナーゼ、クレアチンキナーゼ、ピルビン酸キナーゼ、ヘキソキナーゼ、トロンボキナーゼ、ウロキナーゼ、ストレプトキナーゼ、カルバミン酸キナーゼ、トランスアルドラーゼ、ホスホリラーゼ、ポリヌクレオチドホスホリラーゼ、デキストランスクラーゼ、tRNA−ヌクレオチジルトランスフェラーゼ、NADピロホスホリラーゼ等の転移酵素。
Examples of enzymes that can be used for the production of immobilized enzyme nanofibers include various enzymes shown below.
(1) Formate dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase, glyceraldehyde phosphate dehydrogenase, isocitrate dehydrogenase, malate dehydrogenase, glucose oxidase, cholesterol oxidase, L-amino acid oxidase, D-amino acid oxidase, lipoxygenase, urate oxidase, xanthine Oxidoreductases such as oxidase, protocatechuic acid-3,4-dioxygenase, pyridine nucleotide transhydrogenase, horseradish peroxidase (HRP), catalase, L-glutamate dehydrase.
(2) Lactate dehydrogenase (LDH), glutamate-pyruvate transaminase, creatine kinase, pyruvate kinase, hexokinase, thrombokinase, urokinase, streptokinase, carbamate kinase, transaldolase, phosphorylase, polynucleotide phosphorylase, dextransclase, tRNA- Transferases such as nucleotidyl transferase and NAD pyrophosphorylase.

(3)α−アミラーゼ、β−アミラーゼ、アルドラーゼ、インベルターゼ、ジアスターゼ、β−グルコシダーゼ、β−フルクトフラノシダーゼ、アミログルコシダーゼ、ラクターゼ、グルコアミラーゼ、デキストラナーゼ、タカアミラーゼA、ヒアルロニダーゼ、アルカリ性タンパク質分解酵素、中性タンパク質分解酵素、トリプシン、α−キモトリプシン、σ−キモトリプシン、パパイン、スブチリシン、スブチロペプチターゼA、スブチロペプチターゼB、ペプシン、カルボキシペプチダーゼ、レニン、アミノペプチダーゼM、ロイシンアミノペプチダーゼ、アピラーゼ、ナリンギナーゼ、カリクレイン、エラスターゼ、チマーゼ、フィシン、プロナーゼ、アスパラキナーゼ、アスパルターゼ、ブロメリン、レンニン、プロリダーゼ、リパーゼ、アセチルコリンエステラーゼ、アミノアシラーゼ、ステロイドエステラーゼ、アシッドフォスファターゼ、アルカリフォスファターゼ、フルクトースジホスファターゼ、無機ピロホスファターゼ、アミノアシラーゼ、アミノアシラーゼ1、ATPアーゼ、ATPデアミナーゼ、AMPデアミナーゼ、リボヌクレアーゼ、リボヌクレアーゼT1、ミオシンATPアーゼ、デオキシリボヌクレアーゼ、デオキシリボヌクレアーゼ1、ペニシリンアミダーゼ、ペニシリナーゼ、パラチオンヒドロラーゼ、アトラジンクロロヒドロラーゼ、ウレアーゼ、リゾチーム、トロンビン、アリルスルファターゼ、D−オキシニトリラーゼ等の加水分解酵素。 (3) α-amylase, β-amylase, aldolase, invertase, diastase, β-glucosidase, β-fructofuranosidase, amyloglucosidase, lactase, glucoamylase, dextranase, takaamylase A, hyaluronidase, alkaline proteolytic enzyme , Neutral proteolytic enzyme, trypsin, α-chymotrypsin, σ-chymotrypsin, papain, subtilisin, subtilopeptidase A, subtilopeptidase B, pepsin, carboxypeptidase, renin, aminopeptidase M, leucine aminopeptidase, apyrase, Naringinase, kallikrein, elastase, chymase, ficin, pronase, asparakinase, aspartase, bromelin, rennin, prolidase, lipper Acetylcholinesterase, aminoacylase, steroid esterase, acid phosphatase, alkaline phosphatase, fructose diphosphatase, inorganic pyrophosphatase, aminoacylase, aminoacylase 1, ATPase, ATP deaminase, AMP deaminase, ribonuclease, ribonuclease T1, myosin ATPase, deoxy Hydrolytic enzymes such as ribonuclease, deoxyribonuclease 1, penicillin amidase, penicillinase, parathion hydrolase, atrazine chlorohydrolase, urease, lysozyme, thrombin, allylsulfatase, and D-oxynitrilase.

(4)フェニルアラニンデカルボキシラーゼ、カルボニックアンヒドラーゼ等の脱離酵素。
(5)α−アミノ−ε−カプロラクタムラセマーゼ、グルコースイソメラーゼ、グルコースリン酸イソメラーゼ等の異性化酵素。
(6)クエン酸シンターゼ、スクシニルCoAシンターゼ等の合成酵素(リガーゼ)。
(4) Desorption enzymes such as phenylalanine decarboxylase and carbonic anhydrase.
(5) Isomerase such as α-amino-ε-caprolactam racemase, glucose isomerase, glucose phosphate isomerase.
(6) Synthetic enzymes (ligases) such as citrate synthase and succinyl CoA synthase.

また、これらの酵素の修飾及び改変体及びこれらの混合物又は筋肉酵素抽出液を用いてもよく、例えば、メトミオグロビン、シトクロムC等の酵素以外の機能性タンパク質を用いることもできる。 In addition, modifications and modifications of these enzymes, mixtures thereof, or muscle enzyme extracts may be used. For example, functional proteins other than enzymes such as metmyoglobin and cytochrome C may be used.

酵素は、固定化酵素ナノファイバーの用途(酵素反応の種類、基質及び生成物)に応じて適宜選択される。例えば、タンパク質やペプチドの加水分解によるアミノ酸の製造には、トリプシン、α−キモトリプシン等のタンパク加水分解酵素が、脂質及び脂肪酸エステルの加水分解による脂肪酸の製造には、リパーゼがそれぞれ用いられる。これらの加水分解酵素は、反応溶媒として有機溶媒を用いることにより、逆反応であるエステル又は酸アミドの合成触媒として用いることもできる。
また、有用物質の生産以外の用途として、例えば、グルコースオキシダーゼを用いた溶液中のグルコース濃度の定量等のバイオセンサーへの応用が挙げられる。
The enzyme is appropriately selected according to the use of the immobilized enzyme nanofiber (type of enzyme reaction, substrate and product). For example, protein hydrolases such as trypsin and α-chymotrypsin are used for the production of amino acids by hydrolysis of proteins and peptides, and lipase is used for the production of fatty acids by hydrolysis of lipids and fatty acid esters. These hydrolases can also be used as synthesis catalysts for esters or acid amides, which are reverse reactions, by using an organic solvent as a reaction solvent.
Moreover, as uses other than production of useful substances, for example, application to biosensors such as quantification of glucose concentration in a solution using glucose oxidase can be mentioned.

エレクトロスピニング法による紡糸原料として用いられる溶液11は、上記のような高分子化合物、及び酵素を適当な溶媒に溶解させて調製する。溶媒は、高分子化合物及び酵素の両者を適当な濃度で溶解させることができる単一溶媒又は混合溶媒が好ましく用いられる。例えば、高分子化合物がPVA等の水溶性高分子化合物である場合には、酵素に対しても良溶媒である水が用いられる。
溶液11に含まれる高分子化合物及び酵素の濃度は、用いられる高分子化合物及び酵素の種類及びその組み合わせ、紡糸しようとする固定化酵素ナノファイバー14の直径等に応じて適宜調節される。
The solution 11 used as a raw material for spinning by the electrospinning method is prepared by dissolving the polymer compound and the enzyme as described above in an appropriate solvent. As the solvent, a single solvent or a mixed solvent capable of dissolving both the polymer compound and the enzyme at an appropriate concentration is preferably used. For example, when the polymer compound is a water-soluble polymer compound such as PVA, water that is a good solvent for the enzyme is used.
The concentrations of the polymer compound and the enzyme contained in the solution 11 are appropriately adjusted according to the type and combination of the polymer compound and enzyme used, the diameter of the immobilized enzyme nanofiber 14 to be spun, and the like.

次に、本発明の第2の実施の形態に係る反応装置について説明する。反応装置は、固定化酵素担体として、前記実施の形態の固定化酵素ナノファイバー14を使用している。反応装置は、回分式(バッチ式)、流通式のいずれであってもよく、反応装置のスケール(内容積等)にも特に制限はない。
固定化酵素ナノファイバー14を用いた固定化酵素担体は、反応溶液との接触面積を確保しつつ反応溶液の流通を妨げにくく、かつ複数枚積層して用いることも可能な不織布であることが好ましい。
Next, a reaction apparatus according to the second embodiment of the present invention will be described. The reaction apparatus uses the immobilized enzyme nanofiber 14 of the above embodiment as an immobilized enzyme carrier. The reaction apparatus may be either a batch type (batch type) or a flow type, and the scale (internal volume, etc.) of the reaction apparatus is not particularly limited.
The immobilized enzyme carrier using the immobilized enzyme nanofibers 14 is preferably a non-woven fabric that does not hinder the flow of the reaction solution while ensuring a contact area with the reaction solution, and can be used by laminating a plurality of sheets. .

次に、本発明の作用効果を確認するために行った実施例について説明する。なお、以下の実施例においては、酵素としてリパーゼを、高分子化合物としてポリビニルアルコールを用いた場合について説明するが、本発明はこれらの組み合わせに限定されるものではない。 Next, examples carried out for confirming the effects of the present invention will be described. In the following examples, a case where lipase is used as an enzyme and polyvinyl alcohol is used as a polymer compound will be described, but the present invention is not limited to these combinations.

(1)エレクトロスピニング法によるPVAナノファイバー作製条件の検討
図1に記載のエレクトロスピニング装置を用いて、リパーゼを含まないPVA水溶液を原料溶液とし、種々の条件下で(PVA水溶液濃度、印加電圧、射出速度、極板間(紡糸口−回収板間)距離)PVAナノファイバーを作製した。得られた不織布状のPVAナノファイバーを走査型電子顕微鏡で観察し、繊維径を測定した。
PVA水溶液濃度、印加電圧、射出速度、及び極板間距離がPVAナノファイバーの繊維径に及ぼす影響について検討した結果、PVA水溶液濃度10重量%、印加電圧15kV、射出速度1.0mL/時、及び極板間距離10cmとしたときに、繊維径が約0.75μmのナノファイバーを再現性よく得られることがわかった。以下の実施例では、これらの条件下でナノファイバーの作製を行うこととした。
(1) Examination of PVA nanofiber production conditions by electrospinning method Using the electrospinning apparatus shown in FIG. 1, PVA aqueous solution not containing lipase was used as a raw material solution, and under various conditions (PVA aqueous solution concentration, applied voltage, Injection speed, distance between electrode plates (spinning port-collection plate distance)) PVA nanofibers were produced. The obtained nonwoven PVA nanofiber was observed with a scanning electron microscope, and the fiber diameter was measured.
As a result of examining the influence of the PVA aqueous solution concentration, applied voltage, injection speed, and electrode plate distance on the fiber diameter of the PVA nanofiber, the PVA aqueous solution concentration was 10% by weight, the applied voltage was 15 kV, the injection speed was 1.0 mL / hour, and It was found that nanofibers with a fiber diameter of about 0.75 μm can be obtained with good reproducibility when the distance between electrode plates is 10 cm. In the following examples, nanofibers were prepared under these conditions.

(2)リパーゼ固定化PVAナノファイバーの作製及び酵素活性の評価
精製水180mLとPVA(シグマ−アルドリッチ社、加水分解率98〜99%、平均分子量146,000〜186,000、以下同じ)20gとを混合し、数時間湯煎して溶解させた。こうして得られたPVA10%水溶液15mLを取り、リパーゼ(和光純薬(株)、リパーゼF−AP、以下同じ)150mg(1重量%)を溶解させ、エレクトロスピニング法(印加電圧15kV、射出速度1.0mL/時、極板間距離10cm)を用いて、不織布状のリパーゼ固定化PVAナノファイバーを作製した。
このようにして得られたリパーゼ固定化PVAナノファイバーを真空乾燥し、質量が0.1gとなるよう切り出した切片を、室温の飽和LiCl水溶液上で24時間水和処理した。このようにして得られた水和粉末を、基質として(S)−グリシドール20mM、酢酸ビニル0.4Mを含むイソオクタン溶液40mL中に分散させ、35℃、撹拌速度300rpmの条件下で、リパーゼを触媒とするエステル交換反応(下式参照)を行った。
(2) Preparation of lipase-immobilized PVA nanofiber and evaluation of enzyme activity 180 mL of purified water and 20 g of PVA (Sigma-Aldrich, hydrolysis rate 98-99%, average molecular weight 146,000-186,000, the same applies hereinafter) Were mixed and dissolved by boiling in water for several hours. 15 mL of the 10% aqueous solution of PVA thus obtained was taken and 150 mg (1% by weight) of lipase (Wako Pure Chemical Industries, Ltd., lipase F-AP, the same applies hereinafter) was dissolved, and electrospinning (applied voltage 15 kV, injection speed 1. Non-woven lipase-immobilized PVA nanofibers were produced using 0 mL / hour and a distance between electrode plates of 10 cm).
The lipase-immobilized PVA nanofibers thus obtained were vacuum-dried, and the section cut out to a mass of 0.1 g was hydrated on a saturated LiCl aqueous solution at room temperature for 24 hours. The hydrated powder thus obtained was dispersed in 40 mL of an isooctane solution containing (S) -glycidol 20 mM and vinyl acetate 0.4 M as a substrate, and lipase was catalyzed under conditions of 35 ° C. and stirring speed 300 rpm. A transesterification reaction (see the following formula) was carried out.

反応開始から5分毎に4回サンプリングを行い、反応生成物である酢酸(S)−グリシジルの濃度を、ガスクロマトグラフィ(GLC)でモニターした。酢酸(S)−グリシジル濃度の時間変化より、反応の初速度を求めたところ、リパーゼ1mg当たりの反応初速度として6.3μM/mg/minという値が得られた。
なお、同様の測定を行ったところ、反応初速度として2.0μM/mg/minという値が得られた。
また、エレクトロスピニング法に用いた溶液を凍結乾燥後粉砕したリパーゼ包括PVA粉末を用いて同様の測定を行ったところ、反応初速度として4.8μM/mg/minという値が得られた。この結果から、ナノファイバーとすることにより酵素活性が増大していることがわかる。
Sampling was performed 4 times every 5 minutes from the start of the reaction, and the concentration of acetic acid (S) -glycidyl as a reaction product was monitored by gas chromatography (GLC). When the initial rate of reaction was determined from the change in acetic acid (S) -glycidyl concentration with time, a value of 6.3 μM / mg / min was obtained as the initial rate of reaction per 1 mg of lipase.
In addition, when the same measurement was performed, a value of 2.0 μM / mg / min was obtained as the initial reaction rate.
Moreover, when the same measurement was performed using the lipase inclusion PVA powder which freeze-dried and pulverized the solution used for the electrospinning method, the value of 4.8 micromol / mg / min was obtained as initial reaction rate. From this result, it can be seen that the enzyme activity is increased by using nanofibers.

(3)リパーゼ固定化PVA−ポリシロキサンナノファイバーの作製
TMOS(テトラメトキシシラン)0.136mmol、ジメチルジメトキシシラン(DMDMOS)、及びDMDMOS−TMOSの4:1(モル比)混合物のいずれか(0.681mmol)を精製水23.3μL、及び40mM塩酸1.5μLとそれぞれ混合し、加水分解を行った。これを氷水で冷却しながら100mMリン酸緩衝液(NaHPO−KHPO、pH7.5)50μLを混合し、更にリン酸緩衝液167μLに溶解したリパーゼ150mgを加えた。このようにして得られた3種類の溶液をそれぞれ10%PVA水溶液15gに加え、よく撹拌した後、エレクトロスピニング法(印加電圧15kV、射出速度1.0mL/時、極板間距離10cm)を用いて、不織布状のリパーゼ固定化PVA−ポリシロキサンナノファイバーを作製した。
(2)で作製したリパーゼ固定化PVAナノファイバーと同様に処理し、得られた水和粉末を、基質として(S)−グリシドール20mM、酢酸ビニル0.4Mを含むイソオクタン溶液40mL中に分散させ、35℃、撹拌速度300rpmの条件下でエステル交換させた。反応開始から5分毎に4回サンプリングを行い、反応生成物である酢酸(S)−グリシジルの濃度を、ガスクロマトグラフィ(GLC)でモニターした。酢酸(S)−グリシジル濃度の時間変化より、反応の初速度を求めた。
得られた結果を、(2)において得られた結果と併せて表1に示す。
(3) Preparation of lipase-immobilized PVA-polysiloxane nanofiber Any one of 0.136 mmol of TMOS (tetramethoxysilane), dimethyldimethoxysilane (DMDMOS), and a 4: 1 (molar ratio) mixture of DMDMOS-TMOS (0. 681 mmol) was mixed with 23.3 μL of purified water and 1.5 μL of 40 mM hydrochloric acid, respectively, for hydrolysis. While cooling this with ice water, 50 μL of 100 mM phosphate buffer (Na 2 HPO 4 -KH 2 PO 4 , pH 7.5) was mixed, and 150 mg of lipase dissolved in 167 μL of phosphate buffer was further added. The three types of solutions thus obtained were each added to 15 g of 10% PVA aqueous solution and stirred well, and then an electrospinning method (applied voltage: 15 kV, injection speed: 1.0 mL / hour, distance between electrode plates: 10 cm) was used. Thus, a non-woven lipase-immobilized PVA-polysiloxane nanofiber was produced.
Treated in the same manner as the lipase-immobilized PVA nanofiber prepared in (2), the obtained hydrated powder was dispersed in 40 mL of an isooctane solution containing (S) -glycidol 20 mM and vinyl acetate 0.4 M as a substrate, The transesterification was performed under conditions of 35 ° C. and a stirring speed of 300 rpm. Sampling was performed 4 times every 5 minutes from the start of the reaction, and the concentration of acetic acid (S) -glycidyl as a reaction product was monitored by gas chromatography (GLC). The initial rate of reaction was determined from the time change of the acetic acid (S) -glycidyl concentration.
The obtained results are shown in Table 1 together with the results obtained in (2).

なお、表1において、No.1及びNo.2は、それぞれ反応基質のイソオクタン溶液中に直接分散させた粉末状のリパーゼ、及びリパーゼ固定化PVAナノファイバーより得られた水和粉末を表し(前記(2)参照)、No.3〜6は、本実施例において、種々の条件下で調製したリパーゼ固定化PVA−ポリシロキサンナノファイバーより得られた水和粉末を表す。
No.1と2との比較より、リパーゼをPVA中に固定化することによって、酵素活性が向上していることがわかる。
No.2とNo.3及び4の結果との比較より、TMOS由来のシロキサン重合体の高分子マトリックスへの導入は、リパーゼ近傍の親水性を高めるため酵素活性はむしろ低下するが、DMDMOS由来のシロキサン重合体の高分子マトリックスへの導入は、リパーゼ近傍に疎水性環境をもたらすことにより酵素活性が向上することがわかる。
In Table 1, no. 1 and no. 2 represents a powdered lipase dispersed directly in an isooctane solution of a reaction substrate and a hydrated powder obtained from a lipase-immobilized PVA nanofiber (see (2) above). 3 to 6 represent hydrated powders obtained from lipase-immobilized PVA-polysiloxane nanofibers prepared under various conditions in this example.
No. From comparison between 1 and 2, it can be seen that the enzyme activity is improved by immobilizing lipase in PVA.
No. 2 and No. From the comparison with the results of 3 and 4, the introduction of the TMOS-derived siloxane polymer into the polymer matrix increases the hydrophilicity in the vicinity of the lipase, but the enzyme activity rather decreases, but the polymer of the DMDMOS-derived siloxane polymer. It can be seen that introduction into the matrix improves the enzyme activity by providing a hydrophobic environment near the lipase.

なお、No.5は、DMDMOS加水分解物とリパーゼとの混合溶液を凍結乾燥し、得られた凍結乾燥粉末を10%PVA水溶液に加えた溶液から作製したリパーゼ固定化ナノファイバーより得られた結果である。凍結乾燥を行わなかった場合(No.4)に比べて若干酵素活性は低下するものの、No.1及び2に比べて高い酵素活性を示すことがわかる。
また、No.4と6との比較より、DMDMOS及びTMOSを共に高分子マトリックスに導入することで、更に酵素活性が向上することがわかる。これは、シロキサン鎖間で架橋が形成されることにより、立体的な骨格が形成されたため、反応基質がリパーゼと接触しやすくなることによると考えられる。
In addition, No. 5 is a result obtained from a lipase-immobilized nanofiber prepared from a solution obtained by freeze-drying a mixed solution of DMDMOS hydrolyzate and lipase and adding the obtained freeze-dried powder to a 10% PVA aqueous solution. Although the enzyme activity is slightly reduced as compared with the case where lyophilization was not performed (No. 4), It can be seen that the enzyme activity is higher than those of 1 and 2.
No. From comparison between 4 and 6, it can be seen that introduction of DMDMOS and TMOS into the polymer matrix further improves the enzyme activity. This is considered to be due to the fact that the reaction substrate easily comes into contact with the lipase because a three-dimensional skeleton was formed by the formation of a bridge between siloxane chains.

(4)リパーゼ固定化PVAナノファイバーへのシロキサンゲルの被覆
(2)で作製した不織布状のリパーゼ固定化PVAナノファイバーを真空乾燥後、質量が0.1gとなるよう切り出した切片を、35℃に加温した5%DMDMOSヘキサン溶液に撹拌しながら85時間浸漬した。溶液から取り出したリパーゼ固定化PVAナノファイバーは、空気中の水分により加水分解したDMDMOSより生成したシロキサンゲルで被覆されていた。これを真空乾燥後、上述の方法により酵素活性を測定したところ、反応初速度として12μM/mg/minという値が得られた。この結果を、表1のNo.2の結果と比較すると、PVAのみを高分子マトリックスとして用いた場合よりも酵素活性が向上していることがわかる。このことから、リパーゼをPVAマトリックス中に固定化した後にDMDMOSで処理することによっても、リパーゼの酵素活性を向上させることができることが確認された。
(4) Covering the lipase-immobilized PVA nanofibers with the siloxane gel (2) After drying the non-woven lipase-immobilized PVA nanofibers in a vacuum and cutting them out so that the mass becomes 0.1 g, The sample was immersed in a 5% DMDMOS hexane solution heated for 5 hours with stirring. The lipase-immobilized PVA nanofibers taken out from the solution were coated with a siloxane gel produced from DMDMOS hydrolyzed by moisture in the air. When the enzyme activity was measured by the above-mentioned method after vacuum drying, a value of 12 μM / mg / min was obtained as the initial reaction rate. The results are shown in Table 1. Compared with the result of 2, it can be seen that the enzyme activity is improved as compared with the case where only PVA is used as the polymer matrix. From this, it was confirmed that the enzyme activity of the lipase can also be improved by immobilizing the lipase in the PVA matrix and then treating it with DMDMOS.

(5)リパーゼ固定化PVAナノファイバー及びリパーゼ固定化PVA−ポリシロキサンナノファイバーを用いた反応装置の作製並びに性能評価
(2)と同様の方法により作製、真空乾燥、及び水和処理した不織布状のリパーゼ固定化PVAナノファイバー、並びに(3)と同様の方法により(DMDDOS−TMOS4:1混合物を使用)作製、真空乾燥、及び水和処理した不織布状のリパーゼ固定化PVA−ポリシロキサンナノファイバーを、それぞれ6mm径のパンチで切り出し、それぞれ円筒形の流通型反応装置に装入した。
基質として(S)−グリシドール20mM、酢酸ビニル0.4Mを含むイソオクタン溶液を、一定流量(1.0、0.5、0.1mL/min)で通液し、反応開始から10分毎にサンプリングを行い、反応生成物である酢酸(S)−グリシジルへの変換率を、ガスクロマトグラフィ(GLC)でモニターした。変換率が一定になった時点の値を定常反応率とした。結果は表2に示すとおりである。
(5) Preparation of reactor using lipase-immobilized PVA nanofibers and lipase-immobilized PVA-polysiloxane nanofibers and performance evaluation The same method as in (2), vacuum drying, and hydrated nonwoven fabric A lipase-immobilized PVA nanofiber, and a non-woven lipase-immobilized PVA-polysiloxane nanofiber prepared in the same manner as in (3) (using a DMDDOS-TMOS 4: 1 mixture), vacuum-dried, and hydrated into a lipase-immobilized PVA-polysiloxane nanofiber Each was cut with a 6 mm diameter punch and charged into a cylindrical flow reactor.
An isooctane solution containing (S) -glycidol 20 mM and vinyl acetate 0.4 M as a substrate is passed at a constant flow rate (1.0, 0.5, 0.1 mL / min) and sampled every 10 minutes from the start of the reaction. And the conversion rate to the reaction product, acetic acid (S) -glycidyl, was monitored by gas chromatography (GLC). The value at the time when the conversion rate became constant was taken as the steady reaction rate. The results are as shown in Table 2.

流速が小さいほど定常反応率が高くなること、及びリパーゼ固定化PVA−ポリシロキサンナノファイバーの方がリパーゼ固定化PVAナノファイバーよりも高い定常反応率を示すことがわかる。 It can be seen that the smaller the flow rate, the higher the steady-state reaction rate, and the lipase-immobilized PVA-polysiloxane nanofibers show a higher steady-state reaction rate than the lipase-immobilized PVA nanofibers.

リパーゼ固定化PVAナノファイバー及びリパーゼ固定化PVA−ポリシロキサンナノファイバーを、それぞれ反応装置中に27枚、及び100枚装入し、流通速度0.5mL/minで上記と同様の測定を行った結果を表3に示す。 As a result of carrying out the same measurement as described above at a flow rate of 0.5 mL / min, with 27 and 100 lipase-immobilized PVA nanofibers and lipase-immobilized PVA-polysiloxane nanofibers, respectively, charged in the reactor. Is shown in Table 3.

リパーゼ固定化PVAナノファイバー及びリパーゼ固定化PVA−ポリシロキサンナノファイバーのいずれの場合についても、積層枚数を多くすることによって定常反応率が向上していることがわかる。 It can be seen that, in both cases of lipase-immobilized PVA nanofibers and lipase-immobilized PVA-polysiloxane nanofibers, the steady-state reaction rate is improved by increasing the number of laminated layers.

本発明の第1の実施の形態に係る固定化酵素ナノファイバーの製造に用いられるエレクトロスピニング装置の概略説明図である。It is a schematic explanatory drawing of the electrospinning apparatus used for manufacture of the immobilized enzyme nanofiber which concerns on the 1st Embodiment of this invention.

符号の説明Explanation of symbols

10:エレクトロスピニング装置、11:溶液、12:シリンジポンプ、13:紡糸口、14:固定化酵素ナノファイバー、15:回収板 10: Electrospinning device, 11: Solution, 12: Syringe pump, 13: Spinning port, 14: Immobilized enzyme nanofiber, 15: Recovery plate

Claims (9)

エレクトロスピニング法により紡糸された直径が100nm〜3μmの繊維状の高分子マトリックス中に酵素が固定化されていることを特徴とする固定化酵素ナノファイバー。 An immobilized enzyme nanofiber, wherein an enzyme is immobilized in a fibrous polymer matrix having a diameter of 100 nm to 3 μm spun by electrospinning. 請求項1記載の固定化酵素ナノファイバーにおいて、前記酵素はリパーゼであることを特徴とする固定化酵素ナノファイバー。 The immobilized enzyme nanofiber according to claim 1, wherein the enzyme is a lipase. 請求項1及び2のいずれか1項に記載の固定化酵素ナノファイバーにおいて、前記高分子マトリックスは、アルコシキシラン化合物の重縮合により生成したシロキサン重合体を含んでいることを特徴とする固定化酵素ナノファイバー。 The immobilized enzyme nanofiber according to any one of claims 1 and 2, wherein the polymer matrix contains a siloxane polymer formed by polycondensation of an alkoxysilane compound. Enzyme nanofiber. 請求項3記載の固定化酵素ナノファイバーにおいて、前記シロキサン重合体は、ジアルキルジアルコキシシランとテトラアルコキシシランとの混合物の重縮合により生成した共重合体であることを特徴とする固定化酵素ナノファイバー。 The immobilized enzyme nanofiber according to claim 3, wherein the siloxane polymer is a copolymer formed by polycondensation of a mixture of a dialkyl dialkoxysilane and a tetraalkoxysilane. . 紡糸可能な高分子化合物及び酵素を含む原料溶液を調製する工程と、前記原料溶液をエレクトロスピニング法により紡糸する工程とを有することを特徴とする固定化酵素ナノファイバーの製造方法。 A method for producing an immobilized enzyme nanofiber, comprising a step of preparing a raw material solution containing a spinnable polymer compound and an enzyme, and a step of spinning the raw material solution by an electrospinning method. 請求項5記載の固定化酵素ナノファイバーの製造方法において、前記酵素はリパーゼであることを特徴とする固定化酵素ナノファイバーの製造方法。 The method for producing an immobilized enzyme nanofiber according to claim 5, wherein the enzyme is a lipase. 請求項5及び6のいずれか1項に記載の固定化酵素ナノファイバーの製造方法において、前記原料溶液が更に1種類又は2種類以上のアルコキシシラン化合物のゾルを含み、前記紡糸する工程において該アルコキシシラン化合物の重縮合によりシロキサン重合体が生成することを特徴とする固定化酵素ナノファイバーの製造方法。 The method for producing an immobilized enzyme nanofiber according to any one of claims 5 and 6, wherein the raw material solution further contains a sol of one or two or more types of alkoxysilane compounds, and the alkoxy in the spinning step. A method for producing an immobilized enzyme nanofiber, wherein a siloxane polymer is produced by polycondensation of a silane compound. 請求項7記載の固定化酵素ナノファイバーの製造方法において、前記アルコキシシラン化合物が、ジアルキルジアルコキシシランとテトラアルコキシシランの混合物であることを特徴とする固定化酵素ナノファイバーの製造方法。 The method for producing an immobilized enzyme nanofiber according to claim 7, wherein the alkoxysilane compound is a mixture of a dialkyl dialkoxysilane and a tetraalkoxysilane. 請求項1〜4のいずれか1項に記載の固定化酵素ナノファイバーにより形成された不織布を固定化酵素担体として用いたことを特徴とする反応装置。 A reaction apparatus using the nonwoven fabric formed of the immobilized enzyme nanofiber according to any one of claims 1 to 4 as an immobilized enzyme carrier.
JP2007172755A 2007-06-29 2007-06-29 Immobilized enzyme nanofiber, method for producing the same, and reaction apparatus using the nanofiber Withdrawn JP2009005669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007172755A JP2009005669A (en) 2007-06-29 2007-06-29 Immobilized enzyme nanofiber, method for producing the same, and reaction apparatus using the nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007172755A JP2009005669A (en) 2007-06-29 2007-06-29 Immobilized enzyme nanofiber, method for producing the same, and reaction apparatus using the nanofiber

Publications (1)

Publication Number Publication Date
JP2009005669A true JP2009005669A (en) 2009-01-15

Family

ID=40321429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007172755A Withdrawn JP2009005669A (en) 2007-06-29 2007-06-29 Immobilized enzyme nanofiber, method for producing the same, and reaction apparatus using the nanofiber

Country Status (1)

Country Link
JP (1) JP2009005669A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011321A (en) * 2007-07-06 2009-01-22 Evonik Goldschmidt Gmbh Enzyme preparation
JP2011047089A (en) * 2009-08-28 2011-03-10 Japan Vilene Co Ltd Production method for enzyme-containing nanofiber, enzyme-containing nanofiber, nonwoven fabric containing the enzyme-containing nanofiber and reactor using the nonwoven fabric
KR101297927B1 (en) * 2013-04-25 2013-08-19 숙명여자대학교산학협력단 Method for immobilization of trypsin on chitosan non-woven using glutaraldehyde
KR101634205B1 (en) * 2015-03-31 2016-06-28 한림대학교 산학협력단 Filter for portable peritoneal dialysis system using silk fibroin including enzyme and method thereof
JP2017501704A (en) * 2013-12-24 2017-01-19 ゼネラル・エレクトリック・カンパニイ Electrospun fibers for protein stabilization and storage
CN108483678A (en) * 2018-05-31 2018-09-04 深圳市碧园环保技术有限公司 A kind of biological zymophore and laying method for riverbed Water Ecological Recovery
JP2019502373A (en) * 2015-12-03 2019-01-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Enzyme delivery system
WO2019246070A1 (en) * 2018-06-19 2019-12-26 Jl Biosciences, Inc. Enzymes entrapped in oragnopolysiloxane matrix for treating intestinal diseases
CN112481248A (en) * 2020-12-08 2021-03-12 华南农业大学 Polyurethane nanofiber membrane immobilized enzyme as well as preparation method and application thereof
CN113061596A (en) * 2021-03-29 2021-07-02 万华化学集团股份有限公司 Immobilized enzyme catalyst, preparation method thereof and application thereof in synthesis of vitamin A palmitate
CN113731197A (en) * 2021-09-17 2021-12-03 山东省科学院新材料研究所 Preparation method of high-permeability antibacterial polyimide/chitosan composite nanofiber air filtering membrane, product and application thereof
JP7674461B2 (en) 2020-07-16 2025-05-09 ▲凱▼菜英生命科学技▲術▼(天津)有限公司 PVA membrane immobilized enzyme and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011321A (en) * 2007-07-06 2009-01-22 Evonik Goldschmidt Gmbh Enzyme preparation
JP2011047089A (en) * 2009-08-28 2011-03-10 Japan Vilene Co Ltd Production method for enzyme-containing nanofiber, enzyme-containing nanofiber, nonwoven fabric containing the enzyme-containing nanofiber and reactor using the nonwoven fabric
KR101297927B1 (en) * 2013-04-25 2013-08-19 숙명여자대학교산학협력단 Method for immobilization of trypsin on chitosan non-woven using glutaraldehyde
JP2017501704A (en) * 2013-12-24 2017-01-19 ゼネラル・エレクトリック・カンパニイ Electrospun fibers for protein stabilization and storage
KR101634205B1 (en) * 2015-03-31 2016-06-28 한림대학교 산학협력단 Filter for portable peritoneal dialysis system using silk fibroin including enzyme and method thereof
WO2016159500A1 (en) * 2015-03-31 2016-10-06 한림대학교 산학협력단 Filter for portable peritoneal dialysate regeneration system using enzyme-included silk fibroin and method for manufacturing same
JP2019502373A (en) * 2015-12-03 2019-01-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Enzyme delivery system
CN108483678A (en) * 2018-05-31 2018-09-04 深圳市碧园环保技术有限公司 A kind of biological zymophore and laying method for riverbed Water Ecological Recovery
WO2019246070A1 (en) * 2018-06-19 2019-12-26 Jl Biosciences, Inc. Enzymes entrapped in oragnopolysiloxane matrix for treating intestinal diseases
JP7674461B2 (en) 2020-07-16 2025-05-09 ▲凱▼菜英生命科学技▲術▼(天津)有限公司 PVA membrane immobilized enzyme and its manufacturing method
CN112481248A (en) * 2020-12-08 2021-03-12 华南农业大学 Polyurethane nanofiber membrane immobilized enzyme as well as preparation method and application thereof
CN113061596A (en) * 2021-03-29 2021-07-02 万华化学集团股份有限公司 Immobilized enzyme catalyst, preparation method thereof and application thereof in synthesis of vitamin A palmitate
CN113731197A (en) * 2021-09-17 2021-12-03 山东省科学院新材料研究所 Preparation method of high-permeability antibacterial polyimide/chitosan composite nanofiber air filtering membrane, product and application thereof

Similar Documents

Publication Publication Date Title
JP2009005669A (en) Immobilized enzyme nanofiber, method for producing the same, and reaction apparatus using the nanofiber
Thangaraj et al. Immobilization of lipases–a review. Part II: carrier materials
Miletić et al. Immobilization of biocatalysts for enzymatic polymerizations: possibilities, advantages, applications
Hwang et al. Enzyme stabilization by nano/microsized hybrid materials
EP1692295B1 (en) Immobilization of enzymes by template-directed silicate precipitation
Cui et al. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges
Jesionowski et al. Enzyme immobilization by adsorption: a review
Kharrat et al. Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme
Bhushan et al. Immobilization of lipase by entrapment in Ca-alginate beads
US6596520B1 (en) Immobilizing lipase by adsorption from a crude solution onto nonpolar polyolefin particles
CN102517273A (en) Enzyme preparations
Gouda et al. Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca
Spasojevic et al. The enzyme immobilization: carriers and immobilization methods
Soares et al. Characterization of sol–gel encapsulated lipase using tetraethoxysilane as precursor
Pervez et al. Characterization of cross-linked amyloglucosidase aggregates from Aspergillus fumigatus KIBGE-IB33 for continuous production of glucose
JP5555928B2 (en) Method for producing enzyme-containing nanofiber, enzyme-containing nanofiber, nonwoven fabric containing this enzyme-containing nanofiber, and reaction apparatus using this nonwoven fabric
CA1119539A (en) Preparation of immobilized enzymes or microorganisms
Kumari et al. Comparative study of thermostabilty and ester synthesis ability of free and immobilized lipases on cross linked silica gel
JP2002095471A (en) Immobilized lipase, method for improving substrate specificity of lipase, and method for optical resolution reaction
Darwish et al. Evaluation of effectiveness of covalently immobilized α-amylase and lipase in cleaning of historical textiles
CA2554033C (en) Stabilization of enzymes
Chen et al. Synthesis of geranyl acetate by esterification with lipase entrapped in hybrid sol‐gel formed within nonwoven fabric
Adham et al. Immobilization and stability of lipase from Mucor racemosus NRRL 3631
Poojari et al. Immobilization and activity of pepsin in silicone elastomers
Maritz et al. Calcium alginate entrapment of the yeast Rhodosporidium toruloides for the kinetic resolution of 1, 2-epoxyoctane

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907