[go: up one dir, main page]

JP2009004879A - Video image circuit - Google Patents

Video image circuit Download PDF

Info

Publication number
JP2009004879A
JP2009004879A JP2007161511A JP2007161511A JP2009004879A JP 2009004879 A JP2009004879 A JP 2009004879A JP 2007161511 A JP2007161511 A JP 2007161511A JP 2007161511 A JP2007161511 A JP 2007161511A JP 2009004879 A JP2009004879 A JP 2009004879A
Authority
JP
Japan
Prior art keywords
circuit
signal
video
synchronization signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161511A
Other languages
Japanese (ja)
Other versions
JP4859764B2 (en
Inventor
Toshiro Nakagawa
敏郎 中川
Kenji Takebuchi
堅次 武渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2007161511A priority Critical patent/JP4859764B2/en
Publication of JP2009004879A publication Critical patent/JP2009004879A/en
Application granted granted Critical
Publication of JP4859764B2 publication Critical patent/JP4859764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Picture Signal Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an adverse effect caused by the operation of a charge pump circuit on a video signal even if element characteristics have variations. <P>SOLUTION: A charge pump circuit 20 starts charging of a negative voltage to an output capacitor C3 on the basis of a rise timing of an output signal S22 of a synchronous signal detection circuit 30, and finishes the charging of the negative voltage to the output capacitor C3 after a predetermined time elapses from a finish timing tb of the output signal S22. The predetermined time is determined on the basis of a time from start of constant current charging of a second time constant circuit 45 with a finish timing tb of the output signal S22 of the synchronous signal detecting circuit 30 set to 0V up to a threshold Vth3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、映像処理回路とその映像処理回路に負電圧を供給するチャージポンプ回路とを備えた映像回路に関するものである。   The present invention relates to a video circuit including a video processing circuit and a charge pump circuit that supplies a negative voltage to the video processing circuit.

図3に、チャージポンプ回路により負電圧を発生させて映像処理回路に供給する従来の映像回路の構成を示す。映像処理回路10は、同期信号を含むRGBの入力映像信号のシンクチップとペデスタルのレベルをクランプするクランプ回路11、そのクランプ回路11から出力する映像信号に対して種々の画像処理(色相調整、コントラスト調整、拡大、縮小、エッジ強調、その他の処理)を加える映像信号処理回路12、その映像信号処理回路12の出力信号を映像駆動信号に増幅して例えば75Ωの負荷に供給する出力駆動回路13を有する。この出力駆動回路13には、ダイナミックレンジ拡大化のために、正電源電圧+Vと負電源電圧−Vが電源として供給される。C1はDCカット用のコンデンサである。なお、クランプ回路11と映像信号処理回路12には正電源電圧+Vと接地電圧GNDが印加される。   FIG. 3 shows a configuration of a conventional video circuit that generates a negative voltage by a charge pump circuit and supplies the negative voltage to the video processing circuit. The video processing circuit 10 is a clamp circuit 11 that clamps the sync chip and pedestal level of an RGB input video signal including a synchronization signal, and performs various image processing (hue adjustment, contrast on the video signal output from the clamp circuit 11). A video signal processing circuit 12 that performs adjustment, enlargement, reduction, edge enhancement, and other processing), and an output drive circuit 13 that amplifies the output signal of the video signal processing circuit 12 to a video drive signal and supplies it to a load of, for example, 75Ω Have. The output drive circuit 13 is supplied with a positive power supply voltage + V and a negative power supply voltage −V as power supplies in order to expand the dynamic range. C1 is a capacitor for DC cut. The positive power supply voltage + V and the ground voltage GND are applied to the clamp circuit 11 and the video signal processing circuit 12.

50は100kHz前後の周波数のパルスを発生するフリーラン発振器である。20はチャージポンプ回路であり、フリーラン発振器50から出力するフリーラン信号S51を入力する駆動制御回路21と、その駆動制御回路21によって駆動制御される出力回路22からなり、出力回路22から出力する負電圧−Vが、映像処理回路10の出力駆動回路13に負電源電圧として供給される。   Reference numeral 50 denotes a free-run oscillator that generates pulses having a frequency of around 100 kHz. A charge pump circuit 20 includes a drive control circuit 21 that inputs a free-run signal S51 output from the free-run oscillator 50, and an output circuit 22 that is driven and controlled by the drive control circuit 21. The negative voltage −V is supplied to the output drive circuit 13 of the video processing circuit 10 as a negative power supply voltage.

出力回路22は、図4に示すように、チャージ用コンデンサC2、出力用コンデンサC3、スイッチSW1〜SW4からなり、フリーラン信号S51がLレベルのときはスイッチSW1,SW2をオン、スイッチSW3,SW4をオフし、HレベルのときはスイッチSW1,SW2をオフ、スイッチSW3,SW4をオンし、その信号S51のHレベルとLレベルの繰り返しにより、コンデンサC2,C3には図示の極性の電荷が充電され、負電圧−Vが生成される。   As shown in FIG. 4, the output circuit 22 includes a charging capacitor C2, an output capacitor C3, and switches SW1 to SW4. When the free-run signal S51 is at the L level, the switches SW1 and SW2 are turned on and the switches SW3 and SW4 are turned on. When the signal is at the H level, the switches SW1 and SW2 are turned off, and the switches SW3 and SW4 are turned on. By repeating the H level and L level of the signal S51, the capacitors C2 and C3 are charged with the charges of the polarity shown in the figure. And a negative voltage −V is generated.

一方、フリーラン発振器50を使用せす、入力映像信号から同期信号を抽出し、その同期信号に基づいて連続パルスを生成し、この連続パルスをチャージポンプ回路に入力して、負電圧を生成し、この負電圧をメインアンプ(図3の出力駆動回路13に相当)に供給するようにした特許文献1に記載のアンプがある。   On the other hand, using the free-run oscillator 50, a synchronization signal is extracted from the input video signal, a continuous pulse is generated based on the synchronization signal, and this continuous pulse is input to the charge pump circuit to generate a negative voltage. There is an amplifier described in Patent Document 1 in which this negative voltage is supplied to a main amplifier (corresponding to the output drive circuit 13 in FIG. 3).

また、図5に、従来の別の映像回路を示す。この映像回路は、図3の映像回路におけるフリーラン発振器50の代わりに、同期信号検出回路30、検波時定数回路60、比較回路70を備えたものである。同期信号検出回路30は、クランプ回路11の出力信号から同期信号S22を検出して出力する。検波時定数回路60は、図6に示すように、同期信号S22を入力して、その立上りに同期して立ち上り、立下りに同期して所定の時定数で低下する信号S61を出力させる。比較回路70は、図6に示すように、信号S61の立上りに同期して立ち上り、信号S61が閾値Vth4にまて低下すると立ち下がる信号S62を出力する。チャージポンプ回路20の出力回路22(図4)は、駆動制御回路21によって、その比較回路70から出力する信号S62がLレベルのときスイッチSW1,SW2をオン、スイッチSW3,SW4をオフし、HレベルのときはスイッチSW1,SW2をオフ、スイッチSW3,SW4をオンする。   FIG. 5 shows another conventional video circuit. This video circuit includes a synchronization signal detection circuit 30, a detection time constant circuit 60, and a comparison circuit 70 instead of the free-run oscillator 50 in the video circuit of FIG. The synchronization signal detection circuit 30 detects and outputs the synchronization signal S22 from the output signal of the clamp circuit 11. As shown in FIG. 6, the detection time constant circuit 60 receives the synchronization signal S22, and outputs a signal S61 that rises in synchronization with the rising edge and decreases with a predetermined time constant in synchronization with the falling edge. As shown in FIG. 6, the comparison circuit 70 outputs a signal S62 that rises in synchronization with the rise of the signal S61 and falls when the signal S61 falls below the threshold value Vth4. The output circuit 22 (FIG. 4) of the charge pump circuit 20 turns on the switches SW1 and SW2 and turns off the switches SW3 and SW4 when the signal S62 output from the comparison circuit 70 is at the L level. At the level, the switches SW1 and SW2 are turned off and the switches SW3 and SW4 are turned on.

以上の図3に示す映像回路および図5に示す映像回路によれば、映像処理回路10の出力駆動回路13に正電源電圧+Vの他に負電源電圧−Vが印加されるので、ダイナミックレンジの拡大化を図ることができる。前記特許文献1に示されるアンプも同様である。
特開2005−151468号公報
According to the video circuit shown in FIG. 3 and the video circuit shown in FIG. 5, the negative power supply voltage −V is applied to the output drive circuit 13 of the video processing circuit 10 in addition to the positive power supply voltage + V. Expansion can be achieved. The same applies to the amplifier disclosed in Patent Document 1.
JP 2005-151468 A

ところが、図3に示した従来の映像回路および特許文献1に記載のアンプでは、連続信号によりチャージポンプ回路20を駆動し続け、映像信号の期間にもチャージポンプ回路20が動作しているため、チャージポンプ回路20のスイッチSW1〜SW4のスイッチングによる正電圧+Vの揺れや生成された負電圧のリップル成分により、映像信号が影響を受け、実際の映像にビートノイズのような模様が映るなどの不具合が発生する。   However, in the conventional video circuit shown in FIG. 3 and the amplifier described in Patent Document 1, the charge pump circuit 20 is continuously driven by a continuous signal, and the charge pump circuit 20 is operated even during the video signal period. The video signal is affected by the fluctuation of the positive voltage + V due to the switching of the switches SW1 to SW4 of the charge pump circuit 20 and the ripple component of the generated negative voltage, and a pattern such as beat noise appears in the actual video. Occurs.

また、図5に示した従来の別の映像回路では、コンデンサC3の充電終了タイミングtaが、検波時定数回路60の出力信号S61が閾値Vth4に降下した時点で決まるが、この信号S61の放電開始タイミングtbの電圧は、信号S61のピーク値であり、そのピーク値は素子特性のバラツキの影響を受けやすい。このため、コンデンサC3の充電終了タイミングtaにバラツキが発生し、例えば映像期間にこの充電終了タイミングtaが入ると、前記したと同様に、実際の映像にビートノイズのような模様が映るなどの不具合が発生する。これを避けるために、閾値Vth4を高めに設定すると、充電期間が短くなり、充電効率が悪くなる。また、映像信号の等化パルスを利用して負電圧を発生させる場合も、上記と同様な問題がある。   In the other conventional video circuit shown in FIG. 5, the charging end timing ta of the capacitor C3 is determined when the output signal S61 of the detection time constant circuit 60 drops to the threshold value Vth4. The voltage at the timing tb is the peak value of the signal S61, and the peak value is easily affected by variations in element characteristics. For this reason, variation occurs in the charging end timing ta of the capacitor C3. For example, when the charging end timing ta enters the video period, a defect such as a beat noise pattern appears in the actual video as described above. Occurs. In order to avoid this, if the threshold value Vth4 is set higher, the charging period becomes shorter and the charging efficiency becomes worse. In addition, when a negative voltage is generated using an equalization pulse of a video signal, there is a problem similar to the above.

本発明の目的は、同期信号や等化パルスを利用して負電圧を発生させるとき、素子特性にバラツキが発生していても、チャージポンプ回路の動作が映像信号に悪影響を与えることがないようにした映像回路を提供することである。   An object of the present invention is to prevent the operation of the charge pump circuit from adversely affecting the video signal even when the device characteristics vary when the negative voltage is generated using the synchronization signal or the equalization pulse. It is to provide an image circuit that is made up of.

上記目的を達成するために、請求項1にかかる発明の映像回路は、同期信号又は等化パルスを含む映像信号のシンクチップあるいはペデスタルをクランプ回路によりクランプし、映像処理し、映像駆動信号として出力する映像処理回路と、該映像処理回路に供給する負電圧を出力コンデンサに充電するチャージポンプ回路と、前記クランプ回路の出力信号から同期信号又は等化パルスを検出する同期信号検出回路と、該同期信号検出回路から出力する前記同期信号又は前記等化パルスの開始タイミングに基づいて前記チャージポンプ回路の前記出力コンデンサへの負電圧の充電を開始し、前記同期信号検出回路から出力する前記同期信号又は前記等化パルスの終了タイミングから所定時間の経過後に前記出力コンデンサへの前記負電圧の充電を終了するチャージポンプ駆動回路とを備え、且つ、前記所定時間が、前記同期信号又は前記等化パルスの終了タイミングを0Vとして、そこから第2時定数回路の定電流充電を開始し第3閾値に達するまでの時間で決まるようにしたことを特徴とする。
請求項2にかかる発明は、請求項1に記載の映像回路において、前記第2時定数回路は、前記同期信号又は前記等化パルスの開始タイミングから少なくとも該等化パルスのパルス幅だけ経過した後に発生し前記同期信号又は前記等化パルスの終了タイミングに消滅する第2信号発生回路から出力する信号により、クリアされるようにしたことを特徴とする。
請求項3にかかる発明は、請求項1又は2に記載の映像回路において、前記出力コンデンサへの負電圧の充電の開始タイミングは、前記同期信号又は前記等化パルスの開始タイミングを0Vとして、そこから第1時定数回路を定電流充電して第1閾値に達するタイミングであることを特徴とする。
To achieve the above object, the video circuit according to the first aspect of the present invention clamps a sync chip or pedestal of a video signal including a synchronization signal or an equalization pulse by a clamp circuit, processes the video, and outputs it as a video drive signal. A video processing circuit that performs charging, a charge pump circuit that charges an output capacitor with a negative voltage supplied to the video processing circuit, a synchronization signal detection circuit that detects a synchronization signal or equalization pulse from the output signal of the clamp circuit, and the synchronization Starting the negative voltage to the output capacitor of the charge pump circuit based on the start timing of the synchronization signal or the equalization pulse output from the signal detection circuit, the synchronization signal output from the synchronization signal detection circuit or Charge of the negative voltage to the output capacitor after a lapse of a predetermined time from the end timing of the equalization pulse And a charge pump drive circuit that terminates, and the predetermined time is set to 0 V as the end timing of the synchronization signal or the equalization pulse, from which constant current charging of the second time constant circuit is started and the third threshold value is reached. It is characterized by being determined by the time to reach.
According to a second aspect of the present invention, in the video circuit according to the first aspect, the second time constant circuit is configured so that at least a pulse width of the equalization pulse has elapsed from the start timing of the synchronization signal or the equalization pulse. It is characterized in that it is cleared by a signal output from the second signal generation circuit that is generated and disappears at the end timing of the synchronization signal or the equalization pulse.
According to a third aspect of the present invention, in the video circuit according to the first or second aspect, the start timing of charging the negative voltage to the output capacitor is set to 0 V as the start timing of the synchronization signal or the equalization pulse. The first time constant circuit is charged at a constant current and reaches a first threshold value.

本発明によれば、素子特性のバラツキの影響が少ないので、チャージポンプ回路によるコンデンサの充電終了タイミングを、ペデスタル期間のより終わりに近づけることができ、充電効率を高くすることができる。等化パルスによっても同期信号の場合と全く同様に充電できるので、全体の充電効率を上げることができる。   According to the present invention, since the influence of variations in element characteristics is small, the charging end timing of the capacitor by the charge pump circuit can be brought closer to the end of the pedestal period, and the charging efficiency can be increased. The equalization pulse can be charged in the same manner as in the case of the synchronization signal, so that the overall charging efficiency can be increased.

図1は本発明の1つの実施例の映像回路の構成を示すブロック図、図2はその動作波形図である。映像処理回路10、チャージポンプ回路20、および同期信号検出回路30は図5で説明したものと同じである。40はチャージポンプ駆動回路であり、ノイズフィルタ41、第1時定数回路42、第1信号発生回路43、第2信号発生回路44、第2時定数回路45、第3信号発生回路46、および駆動信号発生回路47を備える。   FIG. 1 is a block diagram showing a configuration of a video circuit according to one embodiment of the present invention, and FIG. 2 is an operation waveform diagram thereof. The video processing circuit 10, the charge pump circuit 20, and the synchronization signal detection circuit 30 are the same as those described with reference to FIG. Reference numeral 40 denotes a charge pump drive circuit, which includes a noise filter 41, a first time constant circuit 42, a first signal generation circuit 43, a second signal generation circuit 44, a second time constant circuit 45, a third signal generation circuit 46, and a drive. A signal generation circuit 47 is provided.

ノイズフィルタ41は、同期信号検出回路30の出力信号S22内に含まれるノイズを除去する回路であるが、等化パルスは通過させる。つまり、等化パルスよりパルス幅の短い信号はこのノイズフィルタ41で遮断される。   The noise filter 41 is a circuit that removes noise included in the output signal S22 of the synchronization signal detection circuit 30, but allows the equalization pulse to pass therethrough. That is, a signal having a shorter pulse width than the equalization pulse is blocked by the noise filter 41.

第1時定数回路42は、ノイズフィルタ41の出力信号S22の立上りエッジに同期して時定数Taで0Vから定電流充電を開始し、飽和値に達した後は、信号S22が立ち下がりに同期してリセット(一挙放電)される波形の出力信号S24を出力する。時定数Taは、等化パルスのパルス幅より大きい時間に設定されている。   The first time constant circuit 42 starts constant current charging from 0V with a time constant Ta in synchronization with the rising edge of the output signal S22 of the noise filter 41, and after reaching the saturation value, the signal S22 is synchronized with the falling edge. Then, an output signal S24 having a waveform that is reset (discharged at once) is output. The time constant Ta is set to a time larger than the pulse width of the equalization pulse.

第1信号発生回路43は、第1時定数回路42の出力信号S24が閾値Vth1に達すると立ち上り、同信号S24がリセット(一挙放電)されると立ち下がる波形の信号S25を発生する。   The first signal generating circuit 43 generates a signal S25 having a waveform that rises when the output signal S24 of the first time constant circuit 42 reaches the threshold value Vth1 and falls when the signal S24 is reset (discharged at once).

第2信号発生回路44は、第1時定数回路42の出力信号S24が閾値Vth2(>Vth1)に達すると立ち上り、同信号S24がリセット(一挙放電)されると立ち下がる波形の信号S26を発生する。この閾値Vth2は、第1時定数回路42の出力信号S24の充電開始から時間T1が経過する時点のレベルに設定されている。この時間は、等化パルスのパルス幅より若干短い時間である。   The second signal generation circuit 44 generates a signal S26 having a waveform that rises when the output signal S24 of the first time constant circuit 42 reaches the threshold value Vth2 (> Vth1) and falls when the signal S24 is reset (discharged at once). To do. The threshold value Vth2 is set to a level at which time T1 has elapsed from the start of charging of the output signal S24 of the first time constant circuit 42. This time is slightly shorter than the pulse width of the equalization pulse.

第2時定数回路45は、第2信号発生回路44の出力信号S26の立上りに同期してリセット(一挙放電)され、同信号S26の立下りに同期して0Vから時定数Tb(>Ta)で定電流充電を開始する波形の信号S27を出力する。   The second time constant circuit 45 is reset (discharged once) in synchronization with the rise of the output signal S26 of the second signal generation circuit 44, and the time constant Tb (> Ta) from 0 V in synchronization with the fall of the signal S26. To output a signal S27 having a waveform for starting constant current charging.

第3信号発生回路46は、第2時定数回路45の出力信号S27のリセット(一挙放電)に同期して立ち上り、同信号S27が閾値Vth3に達すると立ち下がる波形の信号S28を出力する。   The third signal generation circuit 46 outputs a signal S28 having a waveform that rises in synchronization with the reset (discharge at once) of the output signal S27 of the second time constant circuit 45 and falls when the signal S27 reaches the threshold value Vth3.

駆動信号発生回路47は、第1信号発生回路43の出力信号S25の立上りに同期して立ち上がり、第3信号発生回路47の出力信号S28の立下りに同期して立ち下がる波形の信号S29を出力する。この駆動信号発生回路47は、入力する信号S25と信号S28の論理和をとる構成であり、信号S25と信号S28の一部がオーバーラップしていても問題ない。   The drive signal generation circuit 47 outputs a signal S29 having a waveform that rises in synchronization with the rise of the output signal S25 of the first signal generation circuit 43 and falls in synchronization with the fall of the output signal S28 of the third signal generation circuit 47. To do. The drive signal generation circuit 47 is configured to take a logical sum of the input signal S25 and the signal S28, and there is no problem even if the signals S25 and S28 partially overlap.

さて、映像信号入力端子に映像信号S21が入力されると、外付けコンデンサC1で映像信号のDC成分が除去され、映像処理回路10のクランプ回路11で映像信号のシンクチップとペデスタルが所定の電圧にクランプされ、映像信号処理回路12で種々の画像処理(色相調整、コントラスト調整、拡大、縮小、エッジ強調、その他の処理)が加えられ、出力駆動回路13で正電源電圧+Vと負電源電圧−Vによって広いダイナミックレンジの映像駆動信号に増幅され、例えば75Ωの負荷に供給される。   When the video signal S21 is input to the video signal input terminal, the DC component of the video signal is removed by the external capacitor C1, and the sync chip and pedestal of the video signal are set to a predetermined voltage by the clamp circuit 11 of the video processing circuit 10. The image signal processing circuit 12 performs various image processing (hue adjustment, contrast adjustment, enlargement, reduction, edge enhancement, and other processing), and the output drive circuit 13 supplies a positive power supply voltage + V and a negative power supply voltage −. A video drive signal having a wide dynamic range is amplified by V and supplied to a load of 75Ω, for example.

ここで、同期信号検出回路30の出力信号S22が水平同期信号である場合は、信号S22〜S28が図2に示すような波形となり、第1信号発生回路43の出力信号S25の立上りが駆動信号発生回路47の出力信号S29の立上りタイミングt1を決め、第3信号発生回路46の出力信号S28の立下りが駆動信号発生回路47の出力信号S29の立下りタイミングt2を決める。   Here, when the output signal S22 of the synchronization signal detection circuit 30 is a horizontal synchronization signal, the signals S22 to S28 have waveforms as shown in FIG. 2, and the rise of the output signal S25 of the first signal generation circuit 43 is the drive signal. The rise timing t1 of the output signal S29 of the generation circuit 47 is determined, and the fall of the output signal S28 of the third signal generation circuit 46 determines the fall timing t2 of the output signal S29 of the drive signal generation circuit 47.

このとき、第3信号発生回路46の出力信号S28は、第2時定数回路45の出力信号S27のレベルが閾値Vth3に達したときに立ち下がるので、立下りタイミングt2のバラツキは極めて少ない。すなわち、第2時定数回路45の出力信号S27は、同期信号の終了タイミングtbにおいて、安定した0V(=GND)から時定数Tbで上昇するので、閾値Vth3に達するタイミングt2は、精度が高くなる。これに対し、前記した図6の検波時定数回路60の出力信号S61は、同期信号の終了タイミングtbにおいて、不安定なピーク値(素子特性のバラツキの影響を大きく受ける)から低下し、閾値Vth4に達したときにそのタイミングtaが比較回路70で検出されるので、その検出精度が低い。したがって、本実施例によれば、素子特性のバラツキの影響が小さいので、充電終了のタイミングt2をペデスタル区間において映像信号の開始端に極力近づけることができ、充電期間を長くすることが可能となる。   At this time, since the output signal S28 of the third signal generation circuit 46 falls when the level of the output signal S27 of the second time constant circuit 45 reaches the threshold value Vth3, the variation in the fall timing t2 is very small. That is, the output signal S27 of the second time constant circuit 45 rises from the stable 0V (= GND) with the time constant Tb at the synchronization signal end timing tb, so that the timing t2 reaching the threshold Vth3 has high accuracy. . On the other hand, the output signal S61 of the detection time constant circuit 60 shown in FIG. 6 decreases from the unstable peak value (significantly influenced by variations in element characteristics) at the end timing tb of the synchronization signal, and the threshold value Vth4. Since the timing ta is detected by the comparison circuit 70 when the value reaches, the detection accuracy is low. Therefore, according to the present embodiment, since the influence of variations in element characteristics is small, the charging end timing t2 can be made as close as possible to the start end of the video signal in the pedestal section, and the charging period can be extended. .

また、同期信号検出回路30の出力信号S22が垂直期間の等化パルスである場合は、そのパルス幅は水平同期信号の約半分(時間T1以上)であるので、第1時定数回路42の出力信号S24は少なくとも閾値Vth2までは上昇するので、第2信号発生回路44の出力信号S26が立ち上がり、これにより第2時定数回路45の出力信号S27も発生するので、第3信号発生回路46の出力信号S28も発生する。したがって、駆動信号発生回路47の出力信号S29も発生し、チャージポンプ回路20により負電圧が生成される。   Further, when the output signal S22 of the synchronization signal detection circuit 30 is an equalization pulse in the vertical period, the pulse width is about half of the horizontal synchronization signal (time T1 or more), so the output of the first time constant circuit 42 Since the signal S24 rises at least to the threshold value Vth2, the output signal S26 of the second signal generation circuit 44 rises, and thereby the output signal S27 of the second time constant circuit 45 is also generated, so the output of the third signal generation circuit 46 A signal S28 is also generated. Therefore, the output signal S29 of the drive signal generation circuit 47 is also generated, and a negative voltage is generated by the charge pump circuit 20.

また、同期信号検出回路30の出力信号S22のパルス幅が短く(通常ではノイズフィルタ41で遮断されるが、遮断されなかった場合)、第1時定数発生回路43の出力信号S24が閾値Vth2にまで上昇しない場合は、第2信号発生回路44の出力信号S26は立ち上がらず、第2時定数回路45の出力信号S27はハイレベルのままであるので、第3信号発生回路46の出力信号S28は立ち上がらない。このときは、第1信号発生回路43の出力信号S25のパルス幅が狭くなり、このパルス幅に応じて駆動発生回路47の出力信号S29が出力する。   Further, the pulse width of the output signal S22 of the synchronization signal detection circuit 30 is short (normally blocked by the noise filter 41 but not blocked), and the output signal S24 of the first time constant generation circuit 43 becomes the threshold value Vth2. When the output signal S26 of the second signal generation circuit 44 does not rise, the output signal S27 of the second time constant circuit 45 remains at the high level. Does not stand up. At this time, the pulse width of the output signal S25 of the first signal generation circuit 43 is narrowed, and the output signal S29 of the drive generation circuit 47 is output according to this pulse width.

また、同期信号検出回路30の出力信号S22のパルス幅が短く(通常ではノイズフィルタ41で遮断されるが、遮断されなかった場合)、第1時定数発生回路43の出力信号S24が閾値Vth1にまで上昇しない場合は、第1信号発生回路43からの出力信号S25は立ち上がらず、第2信号発生回路44からの出力信号S26も立ち上がらないので、駆動信号発生回路47からの出力信号S29も立ち上がらない。この閾値Vth1は、このようにパルス幅の短いノイズの影響を防ぐ点で効果的であるが、そのレベルが高いほど駆動信号発生回路47の出力信号S29の立上りのタイミングt1が遅れるので、正常動作時の充電期間が短くなる。よって、その閾値Vth1のレベルは、ノイズフィルタ41の性能とのトレードオフとなる。   Further, the pulse width of the output signal S22 of the synchronization signal detection circuit 30 is short (usually blocked by the noise filter 41 but not blocked), and the output signal S24 of the first time constant generation circuit 43 becomes the threshold value Vth1. Output signal S25 from the first signal generation circuit 43 does not rise, and the output signal S26 from the second signal generation circuit 44 does not rise, so the output signal S29 from the drive signal generation circuit 47 does not rise. . The threshold value Vth1 is effective in preventing the influence of noise having a short pulse width as described above. However, the higher the level is, the later the timing t1 of the output signal S29 of the drive signal generation circuit 47 is delayed. The charging period will be shorter. Therefore, the level of the threshold value Vth1 is a trade-off with the performance of the noise filter 41.

本発明の1つの実施例の映像回路の構成を示すブロック図である。It is a block diagram which shows the structure of the video circuit of one Example of this invention. 図1の映像回路の動作波形図である。FIG. 2 is an operation waveform diagram of the video circuit in FIG. 1. 従来の映像回路の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional video circuit. チャージポンプ回路の出力回路の回路図である。It is a circuit diagram of the output circuit of a charge pump circuit. 従来の別の映像回路の構成を示すブロック図である。It is a block diagram which shows the structure of another conventional video circuit. 図5の映像回路の動作波形図である。FIG. 6 is an operation waveform diagram of the video circuit in FIG. 5.

符号の説明Explanation of symbols

10:映像処理回路、11:クランプ回路、12:映像信号処理回路、13:出力駆動回路
20:チャージポンプ回路、21:駆動制御回路、22:出力回路
30:同期信号検出回路
40:チャージポンプ駆動回路、41:ノイズフィルタ、42:第1時定数回路、43:第1信号発生回路、44:第2信号発生回路、45:第2時定数回路、46:第2信号発生回路、47:駆動信号発生回路
50:フリーラン発振器
60:検波時定数回路
70:比較回路
10: Video processing circuit, 11: Clamp circuit, 12: Video signal processing circuit, 13: Output drive circuit, 20: Charge pump circuit, 21: Drive control circuit, 22: Output circuit, 30: Sync signal detection circuit, 40: Charge pump drive Circuit 41: noise filter 42: first time constant circuit 43: first signal generation circuit 44: second signal generation circuit 45: second time constant circuit 46: second signal generation circuit 47: drive Signal generation circuit 50: Free-run oscillator 60: Detection time constant circuit 70: Comparison circuit

Claims (3)

同期信号又は等化パルスを含む映像信号のシンクチップあるいはペデスタルをクランプ回路によりクランプし、映像処理し、映像駆動信号として出力する映像処理回路と、
該映像処理回路に供給する負電圧を出力コンデンサに充電するチャージポンプ回路と、
前記クランプ回路の出力信号から同期信号又は等化パルスを検出する同期信号検出回路と、
該同期信号検出回路から出力する前記同期信号又は前記等化パルスの開始タイミングに基づいて前記チャージポンプ回路の前記出力コンデンサへの負電圧の充電を開始し、前記同期信号検出回路から出力する前記同期信号又は前記等化パルスの終了タイミングから所定時間の経過後に前記出力コンデンサへの前記負電圧の充電を終了するチャージポンプ駆動回路とを備え、
且つ、前記所定時間が、前記同期信号又は前記等化パルスの終了タイミングを0Vとして、そこから第2時定数回路の定電流充電を開始し第3閾値に達するまでの時間で決まるようにしたことを特徴とする映像回路。
A video processing circuit that clamps a sync chip or a pedestal of a video signal including a synchronization signal or an equalization pulse by a clamp circuit, performs video processing, and outputs as a video driving signal;
A charge pump circuit that charges an output capacitor with a negative voltage supplied to the video processing circuit;
A synchronization signal detection circuit for detecting a synchronization signal or an equalization pulse from the output signal of the clamp circuit;
The synchronization signal output from the synchronization signal detection circuit starts the negative voltage charging to the output capacitor of the charge pump circuit based on the start timing of the synchronization signal or the equalization pulse, and outputs from the synchronization signal detection circuit A charge pump drive circuit that terminates charging of the negative voltage to the output capacitor after elapse of a predetermined time from the end timing of the signal or the equalization pulse,
In addition, the predetermined time is determined by the time from the start of constant current charging of the second time constant circuit to the arrival of the third threshold value, with the end timing of the synchronization signal or the equalization pulse set to 0V. A video circuit characterized by
請求項1に記載の映像回路において、
前記第2時定数回路は、前記同期信号又は前記等化パルスの開始タイミングから少なくとも該等化パルスのパルス幅だけ経過した後に発生し前記同期信号又は前記等化パルスの終了タイミングに消滅する第2信号発生回路から出力する信号により、クリアされるようにしたことを特徴とする映像回路。
The video circuit according to claim 1,
The second time constant circuit is generated after at least the pulse width of the equalization pulse has elapsed from the start timing of the synchronization signal or the equalization pulse and disappears at the end timing of the synchronization signal or the equalization pulse. A video circuit which is cleared by a signal output from a signal generation circuit.
請求項1又は2に記載の映像回路において、
前記出力コンデンサへの負電圧の充電の開始タイミングは、前記同期信号又は前記等化パルスの開始タイミングを0Vとして、そこから第1時定数回路を定電流充電して第1閾値に達するタイミングであることを特徴とする映像回路。
The video circuit according to claim 1 or 2,
The negative voltage charging start timing of the output capacitor is a timing at which the start timing of the synchronization signal or the equalization pulse is set to 0 V, and then the first time constant circuit is constant-current charged to reach the first threshold value. A video circuit characterized by that.
JP2007161511A 2007-06-19 2007-06-19 Video circuit Expired - Fee Related JP4859764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161511A JP4859764B2 (en) 2007-06-19 2007-06-19 Video circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161511A JP4859764B2 (en) 2007-06-19 2007-06-19 Video circuit

Publications (2)

Publication Number Publication Date
JP2009004879A true JP2009004879A (en) 2009-01-08
JP4859764B2 JP4859764B2 (en) 2012-01-25

Family

ID=40320824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161511A Expired - Fee Related JP4859764B2 (en) 2007-06-19 2007-06-19 Video circuit

Country Status (1)

Country Link
JP (1) JP4859764B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243096A (en) * 1998-12-11 2000-09-08 Toshiba Corp Pulse generating circuit and semiconductor memory
JP2001343402A (en) * 2000-06-05 2001-12-14 Mitsubishi Electric Corp Dc current detector
JP2005151468A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Amplifier
JP2006252721A (en) * 2005-03-14 2006-09-21 Elpida Memory Inc Overdrive period controller unit and overdrive period determination method
JP2007267148A (en) * 2006-03-29 2007-10-11 New Japan Radio Co Ltd Video circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243096A (en) * 1998-12-11 2000-09-08 Toshiba Corp Pulse generating circuit and semiconductor memory
JP2001343402A (en) * 2000-06-05 2001-12-14 Mitsubishi Electric Corp Dc current detector
JP2005151468A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Amplifier
JP2006252721A (en) * 2005-03-14 2006-09-21 Elpida Memory Inc Overdrive period controller unit and overdrive period determination method
JP2007267148A (en) * 2006-03-29 2007-10-11 New Japan Radio Co Ltd Video circuit

Also Published As

Publication number Publication date
JP4859764B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US9014398B2 (en) Charging circuit and amplifier
US7746130B2 (en) Triangular wave generating circuit having synchronization with external clock
JP6702010B2 (en) Switching power supply
EP1909379A3 (en) Method and apparatus for pulse width modulation
US20180205316A1 (en) Comparator circuit, power supply control ic, and switching power supply device
JP2007020247A (en) Power supply circuit
JP3895930B2 (en) Solid-state imaging device
US7474064B2 (en) Lamp driving circuit for a discharge lamp and a control method thereof
JP2009065613A (en) Pulse width modulation circuit, and switching amplifier using the same
JP6613951B2 (en) Power converter
JP4859764B2 (en) Video circuit
JP2010278839A (en) Peak hold detection circuit
JP5058704B2 (en) Video circuit
JP2006277983A (en) Discharge lamp driving device
JP2005286477A (en) Data slicer
JP4859503B2 (en) Video circuit
JP6712867B2 (en) Switching power supply
JP4983412B2 (en) Power amplifier circuit
US7227588B2 (en) Clamping system for clamping a video signal by using a charge-pump circuit
JP5739850B2 (en) Switching power supply
JP2009094568A (en) Triangular wave generation circuit
JP6128148B2 (en) Clock signal control circuit
JP2000217040A (en) Electronic shutter controller and image pickup device using the controller
JP2010171790A (en) Bias potential generation circuit
JP4002644B2 (en) Clamping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees