[go: up one dir, main page]

JP2008282799A - Non-aqueous secondary battery electrode and manufacturing method thereof - Google Patents

Non-aqueous secondary battery electrode and manufacturing method thereof Download PDF

Info

Publication number
JP2008282799A
JP2008282799A JP2008069024A JP2008069024A JP2008282799A JP 2008282799 A JP2008282799 A JP 2008282799A JP 2008069024 A JP2008069024 A JP 2008069024A JP 2008069024 A JP2008069024 A JP 2008069024A JP 2008282799 A JP2008282799 A JP 2008282799A
Authority
JP
Japan
Prior art keywords
active material
insulator
current collector
formation region
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008069024A
Other languages
Japanese (ja)
Inventor
Masanori Yoshida
雅憲 吉田
Tatsuji Mino
辰治 美濃
Keiichi Takahashi
慶一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008069024A priority Critical patent/JP2008282799A/en
Publication of JP2008282799A publication Critical patent/JP2008282799A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce and prevent unsafety due to an internal short-circuit or the like due to high capacity of a non-aqueous secondary battery. <P>SOLUTION: In a non-aqueous secondary battery, a thickness of an insulator 12 in an active material non-forming region 2 contacting with a negative plate 20 via a separator 50 is formed thicker than that of the insulator 12 in an active-material forming region 1 formed with a positive-electrode active material 13. As a result, even if an internal short-circuit due to mixing of foreign matter into the inside of a battery occurs, it prevents a large current from continuously flowing between the negative plate 20 and the active material non-forming region 2 of a positive plate 10. Accordingly, it is possible to improve battery safety without deteriorating battery electrical performance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水二次電池電極に関し、特にリチウム二次電池用の安全性に優れた電極およびその製造方法に関するものである。   The present invention relates to a non-aqueous secondary battery electrode, and more particularly to an electrode having excellent safety for a lithium secondary battery and a method for producing the same.

近年、携帯機器等の電子機器に対する高機能化、および小型化のニーズが高まっている。電子機器の高機能化および小型化に対応するため、電源に用いられるリチウム二次電池も、更なる高容量化、高安全化、低抵抗化によるハイレート化が求められている。   In recent years, there is an increasing need for higher functionality and downsizing of electronic devices such as portable devices. In order to cope with higher functionality and downsizing of electronic devices, lithium secondary batteries used for power supplies are also required to have higher rates due to higher capacity, higher safety, and lower resistance.

従来、リチウム二次電池は、正極活物質または負極活物質としてバインダーおよび導電剤とともに溶剤に分散させたスラリーを集電体上に塗布すること、スパッタ法や蒸着法で直接集電体上に活物質層を形成することにより作製された正極極板および負極極板を用い、それらをセパレータおよび電解液を介して捲回または積層し、それぞれの極板にリードを溶接などで接合して作製されている。   Conventionally, lithium secondary batteries have been manufactured by applying a slurry dispersed in a solvent together with a binder and a conductive agent as a positive electrode active material or a negative electrode active material on a current collector, or directly on a current collector by sputtering or vapor deposition. It is produced by using a positive electrode plate and a negative electrode plate produced by forming a material layer, winding or laminating them via a separator and an electrolytic solution, and joining a lead to each electrode plate by welding or the like. ing.

リチウム二次電池は、電池内に異物が混入していると、圧壊によりセパレータに小さな孔が生じ、内部短絡を引き起こすことがある。通常、リチウム二次電池は、集電リードを極板外周側に溶接するため、極板に活物質を含む合剤を塗布しない活物質の未形成領域を有する。前記内部短絡が、正極極板の活物質の未形成領域と負極極板の活物質の形成領域との間で起こった場合、正極極板の活物質の形成領域の端部と負極極板の活物質の形成領域との間で起こった場合、正極極板の活物質の未形成領域と負極極板の活物質の未形成領域との間で起こった場合等、非水二次電池の活物質の未形成領域の関与で起こった場合に特に大きな電流が流れ、電池発熱を引き起こすことがあるという課題があった。   In the lithium secondary battery, when foreign matter is mixed in the battery, a small hole is generated in the separator due to the collapse, which may cause an internal short circuit. Usually, a lithium secondary battery has a non-formation region of an active material in which a mixture containing an active material is not applied to the electrode plate because the current collecting lead is welded to the outer peripheral side of the electrode plate. When the internal short circuit occurs between the active material non-forming region of the positive electrode plate and the active material forming region of the negative electrode plate, the end of the active material forming region of the positive electrode plate and the negative electrode plate If it occurs between the active material formation region and the positive electrode plate active material non-formation region and the negative electrode plate active material non-formation region. When this occurs due to the involvement of a non-formed region of the substance, there is a problem that a particularly large current flows and may cause battery heat generation.

前記の電池発熱を引き起こすという課題に対し、例えば、特許文献1では、カルボキシメチルセルロース(CMC)の薄膜を正極板表面全体に塗布することが提案されている。   For example, Patent Document 1 proposes to apply a thin film of carboxymethyl cellulose (CMC) to the entire surface of the positive electrode plate in order to deal with the problem of causing the battery heat generation.

また、特許文献2では、サイクル特性の向上の観点から、電極群の巻き始め及び/又は巻き終わりに位置する負極又は正極の非対向部分の少なくとも一部を、電解液に不溶の絶縁性樹脂で被覆する構造の電池が、提案されている。   Further, in Patent Document 2, from the viewpoint of improving cycle characteristics, at least a part of the non-opposing portion of the negative electrode or the positive electrode located at the start and / or end of winding of the electrode group is made of an insulating resin insoluble in the electrolytic solution. A covering battery has been proposed.

また、特許文献3では、正極板の内周部および外周部に未塗工部を設け、正極板外周部の塗工部端部と、正極板外周部未塗工部の少なくとも負極活物質と対向する部分を含む一部または全面に連続的に絶縁物、特にフッ素系樹脂を塗布することが提案されている。   Moreover, in patent document 3, an uncoated part is provided in the inner peripheral part and outer peripheral part of a positive electrode plate, the coating part edge part of a positive electrode outer peripheral part, and at least negative electrode active material of a positive electrode plate outer peripheral part uncoated part It has been proposed to continuously apply an insulating material, particularly a fluorine-based resin, to a part or the entire surface including the facing part.

また、特許文献4では、リチウム複合酸化物からなる正極と、負極と、正極および負極から選ばれる少なくとも一方の表面に接着された無機酸化物フィラー、特にα−アルミナ粒子および膜結着剤からなる多孔膜と、正極と負極との間に介在するセパレータと、非水電解液からなるリチウム二次電池が、提案されている。   Further, in Patent Document 4, a positive electrode made of a lithium composite oxide, a negative electrode, and an inorganic oxide filler bonded to at least one surface selected from the positive electrode and the negative electrode, particularly α-alumina particles and a film binder. A lithium secondary battery made of a porous film, a separator interposed between a positive electrode and a negative electrode, and a non-aqueous electrolyte has been proposed.

また、特許文献5では、電極活物質との密着性を高めることが可能な集電体として、例えば表面の粗さを示す算術平均粗さRaが0.3μm以上1.5μm以下、最大高さRyが0.5μm以上5.0μm以下のアルミニウム箔の表面に、膜耐電圧が0.5V以上2.0V以下の酸化膜が形成する集電体が、提案されている。   Moreover, in patent document 5, as an electrical power collector which can improve adhesiveness with an electrode active material, arithmetic mean roughness Ra which shows the roughness of a surface is 0.3 micrometer or more and 1.5 micrometers or less, for example, maximum height A current collector is proposed in which an oxide film having a withstand voltage of 0.5 V to 2.0 V is formed on the surface of an aluminum foil having an Ry of 0.5 μm to 5.0 μm.

また、特許文献6では、集電体表面に酸化膜を付与することにより、集電体素地の腐食反応を抑制する均一な合剤層を形成して、良好な電池特性を得られる、表面に耐電圧が2
.1V以上の酸化物層を備えた非水電解質二次電池用集電体が、提案されている。
特開2000-357505号公報 特開平7−130389号公報 特開2005−310619号公報 特開2005−327680号公報 特許第3444769号公報 特開2005−259682号公報
Moreover, in patent document 6, by providing an oxide film on the current collector surface, a uniform mixture layer that suppresses the corrosion reaction of the current collector base is formed, and good battery characteristics can be obtained on the surface. Dielectric strength is 2
. A current collector for a non-aqueous electrolyte secondary battery having an oxide layer of 1 V or higher has been proposed.
JP 2000-357505 A JP-A-7-130389 JP 2005-310619 A JP 2005-327680 A Japanese Patent No. 3444769 JP 2005-259682 A

しかしながら、正極板表面全体にCMC薄膜を塗布する技術では、安全性の改善は可能であるが、形成させた薄膜の抵抗により同時に電池の電気特性が低下すること、体積当たりのエネルギー密度が小さくなることという新たなる課題も引き起こしていた。   However, the technique of applying the CMC thin film to the entire surface of the positive electrode plate can improve the safety, but the electrical characteristics of the battery are simultaneously reduced by the resistance of the formed thin film, and the energy density per volume is reduced. It was also causing a new problem.

また、負極又は正極の非対向部分の少なくとも一部を電解液に不溶の絶縁性樹脂で被覆する構造の電池は、電池発熱等を引き起こす可能性の高い正極活物質の未形成領域全体を被覆しておらず、最も発熱の大きい短絡に対しては効果が小さい。   In addition, a battery having a structure in which at least a part of the non-opposing portion of the negative electrode or the positive electrode is covered with an insulating resin insoluble in the electrolytic solution covers the entire unformed region of the positive electrode active material that is likely to cause battery heat generation. It is not effective for a short circuit with the largest heat generation.

また、正極板の内周部および外周部に未塗工部を設け、負極活物質と対向する部分を含む一部または全面に連続的に絶縁物、特にフッ素系樹脂を塗布した電池は、絶縁性樹脂の耐酸化性と耐熱性が低いので、高容量化のために充電終止電圧をアップするには限界がある。   In addition, a battery in which an uncoated portion is provided on the inner and outer peripheral portions of the positive electrode plate and an insulating material, in particular, a fluorine-based resin is continuously applied to a part or the entire surface including a portion facing the negative electrode active material is insulated. Since the oxidation resistance and heat resistance of the conductive resin are low, there is a limit to increasing the end-of-charge voltage for high capacity.

また、無機酸化物フィラーを、特にα−アルミナ粒子および膜結着剤で構成させた多孔膜では、膜結着剤の耐酸化性と耐熱性が低いために、高容量化のために充電終止電圧をアップするには限界がある。   In addition, in porous membranes composed of inorganic oxide fillers, especially α-alumina particles and membrane binders, the charge termination is terminated to increase the capacity because the membrane binders have low oxidation resistance and heat resistance. There is a limit to increasing the voltage.

また、アルミニウム箔の表面に、膜耐電圧が0.5V以上2.0V以下の酸化膜を設ける構成は、アルミニウム箔と活物質の密着性を向上させるには効果があるが、膜耐電圧が低いままなので、高容量化のための充電終止電圧アップ時の腐食抑制効果即ち安全性に課題がある。   In addition, the structure in which an oxide film having a withstand voltage of 0.5 V or more and 2.0 V or less is provided on the surface of the aluminum foil is effective in improving the adhesion between the aluminum foil and the active material. Since it remains low, there is a problem in the corrosion suppression effect when the end-of-charge voltage is increased for higher capacity, that is, safety.

また、アルミニウム箔の表面に膜耐電圧が2.1V以上の酸化膜を設ける構成は、腐食抑制効果と最も発熱の大きな短絡に対しては改善されるが、微小短絡時即ち微小電流でのアルミニウム箔の溶断機能による安全性向上には限界がある。   Further, the structure in which an oxide film having a withstand voltage of 2.1 V or more is provided on the surface of the aluminum foil is improved against a corrosion-inhibiting effect and a short circuit with the largest heat generation. There is a limit to the improvement in safety due to the fusing function of the foil.

上記課題を解決するために、本発明の非水二次電池用電極は、集電体の上に金属酸化物を含む絶縁物が設けられ、その集電体が、絶縁物の上に活物質が設けられる活物質形成領域と、活物質が絶縁物の上に設けられない活物質未形成領域とを有する非水二次電池用電極であって、活物質未形成領域における絶縁物の厚みを、活物質形成領域における絶縁物の厚み以上の厚みを有するように構成する。   In order to solve the above problems, an electrode for a nonaqueous secondary battery of the present invention is provided with an insulator containing a metal oxide on a current collector, and the current collector is an active material on the insulator. And an active material non-formation region where the active material is not provided on the insulator, and the thickness of the insulator in the active material non-formation region is The active material forming region is configured to have a thickness equal to or greater than the thickness of the insulator.

上記構成により、従来の非水二次電池用電極と比較して、活物質未形成領域での正極極
板と負極極板との接触抵抗を大きく、活物質形成領域での正極活物質と正極集電体との接触抵抗を小さくすることができる。
With the above configuration, the contact resistance between the positive electrode plate and the negative electrode plate in the active material non-formation region is larger than that of the conventional non-aqueous secondary battery electrode, and the positive electrode active material and the positive electrode in the active material formation region The contact resistance with the current collector can be reduced.

本発明の非水二次電池用電極によれば、電池内部への異物混入による内部短絡が発生した時、正極極板の活物質未形成領域と負極極板との間に大きな電流が流れないので、電池の電気的性能を落とすことなく、電池の安全性が改善できる。   According to the electrode for a non-aqueous secondary battery of the present invention, when an internal short circuit occurs due to foreign matter mixing inside the battery, a large current does not flow between the active material non-formation region of the positive electrode plate and the negative electrode plate. Therefore, the safety of the battery can be improved without degrading the electrical performance of the battery.

以下、本発明の実施の形態における非水二次電池用電極およびその製造方法を、図面を参照しながら説明する。   Hereinafter, an electrode for a nonaqueous secondary battery and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings.

(実施の形態)
〈電池の構造〉
図1は、本発明の実施の形態における電池の断面模式図である。一般的な二次電池と同様に、本発明の実施の形態における電池は、正極極板10と負極極板20とがセパレータ50を介して配置されている。正極極板10は、正極集電体11と、正極集電体11の上に形成された絶縁物12と、絶縁物12上に形成された正極活物質13とで構成されている。正極集電体11は、正極活物質が形成された活物質形成領域1と、正極活物質が形成されない活物質未形成領域2とで構成されている。また、活物質未形成領域2の一部に、絶縁物31を表面に有する正極端子30が接続されている。負極極板20は、負極集電体21と、負極集電体21の上に形成された負極活物質22と、負極集電体21に接続された負極端子40とで構成されている。なお、正極集電体11の活物質形成領域1における算術平均粗さは、活物質未形成領域2における算術平均粗さ以上の算術平均粗さを有するように構成されている。この算術平均粗さ(Ra)は、日本工業規格(JISB 0601―1994)に定められており、例えば接触式やレーザー式の表面粗さ計等により測定することができる。
(Embodiment)
<Battery structure>
FIG. 1 is a schematic cross-sectional view of a battery according to an embodiment of the present invention. Similar to a general secondary battery, in the battery according to the embodiment of the present invention, the positive electrode plate 10 and the negative electrode plate 20 are arranged via the separator 50. The positive electrode plate 10 includes a positive electrode current collector 11, an insulator 12 formed on the positive electrode current collector 11, and a positive electrode active material 13 formed on the insulator 12. The positive electrode current collector 11 includes an active material formation region 1 where a positive electrode active material is formed and an active material non-formation region 2 where a positive electrode active material is not formed. A positive electrode terminal 30 having an insulator 31 on the surface thereof is connected to a part of the active material non-formation region 2. The negative electrode plate 20 includes a negative electrode current collector 21, a negative electrode active material 22 formed on the negative electrode current collector 21, and a negative electrode terminal 40 connected to the negative electrode current collector 21. The arithmetic average roughness in the active material formation region 1 of the positive electrode current collector 11 is configured to have an arithmetic average roughness equal to or greater than the arithmetic average roughness in the active material non-formation region 2. This arithmetic average roughness (Ra) is defined in Japanese Industrial Standard (JISB 0601-1994), and can be measured by, for example, a contact type or laser type surface roughness meter.

〈正極極板10の製造方法〉
次に、本実施の形態における電極として、上記正極極板10の製造方法について詳細に説明する。
<Method for Manufacturing Positive Electrode Plate 10>
Next, the manufacturing method of the said positive electrode plate 10 is demonstrated in detail as an electrode in this Embodiment.

図2および図3に、本発明の実施の形態における正極極板10の断面の模式図を示す。正極集電体11として用いる材料は、溶断性の向上や加圧プレスなどによる表面の加工容易性、エッチングなどによる表面粗さ制御性を向上するために、アルミニウムを主成分とする金属の箔を用いることが好ましい。そこで、正極集電体11の材料として、アルミニウムを主成分とする金属の箔、例えば、JIS規格H4000に記載されている合金番号1085や1N30や3003などを用いる。なお、アルミニウムを主成分とした金属の箔は、圧延によって10μmから50μmに薄箔状に成形され、表面の算術平均粗さが0.05μmから0.15μm程度のものとする。上記の表面の算術平均粗さを前述の数値以上に大きくするには、ブラスト処理法、塩酸や硫酸や硝酸などの酸や水酸化ナトリウムなどのアルカリ溶液中で化学エッチング法、電解エッチング法を用いる。なお、電解エッチング法は、所望の表面形状にあわせて、印加する電流を直流、交流、パルスなど変化させて行うことができるので、表面の算術平均粗さを制御する方法として好ましい方法である。そこで、図4に示す陽極(正極)酸化や電解エッチングに用いられる装置により、以下の手順で作製した。まず、正極集電体11を酸の水溶液で満たされた電解槽101中に浸漬し、正極集電体11の活物質形成領域1近傍をアルミナなどの絶縁体103でマスクし、正極集電体11と対向するように陰極102を配置し、電源104により、集電体11と陰極102間に直流電流または交流電流を通電する。この時、正極集電体11の活物質未形成領域2が選択的にエッチングされるので、活物質未形成領域2での算術平均粗さ
を大きくできる。
2 and 3 are schematic views showing a cross section of the positive electrode plate 10 according to the embodiment of the present invention. The material used as the positive electrode current collector 11 is made of a metal foil mainly composed of aluminum in order to improve the fusing property, the ease of processing the surface by a pressure press, and the control of the surface roughness by etching. It is preferable to use it. Therefore, as the material of the positive electrode current collector 11, a metal foil mainly composed of aluminum, for example, alloy numbers 1085, 1N30, and 3003 described in JIS standard H4000 are used. The metal foil mainly composed of aluminum is formed into a thin foil shape from 10 μm to 50 μm by rolling, and the arithmetic average roughness of the surface is about 0.05 μm to 0.15 μm. In order to increase the arithmetic average roughness of the surface above the above numerical value, a blasting method, a chemical etching method or an electrolytic etching method in an acid solution such as hydrochloric acid, sulfuric acid or nitric acid, or an alkali solution such as sodium hydroxide is used. . Note that the electrolytic etching method can be performed by changing the applied current such as direct current, alternating current, and pulse in accordance with a desired surface shape, and thus is a preferable method as a method for controlling the arithmetic average roughness of the surface. Therefore, the anode (positive electrode) oxidation and electrolytic etching apparatus shown in FIG. First, the positive electrode current collector 11 is immersed in an electrolytic cell 101 filled with an acid aqueous solution, and the vicinity of the active material forming region 1 of the positive electrode current collector 11 is masked with an insulator 103 such as alumina, whereby the positive electrode current collector is obtained. The cathode 102 is disposed so as to face the electrode 11, and a direct current or an alternating current is passed between the current collector 11 and the cathode 102 by the power source 104. At this time, since the active material non-formation region 2 of the positive electrode current collector 11 is selectively etched, the arithmetic average roughness in the active material non-formation region 2 can be increased.

なお、活物質形成領域1での算術平均粗さを選択的に小さくするには、正極集電体11全面を一度同一粗さにエッチングした後、または絶縁物12を形成した後、その正極集電体11を所定の表面粗さを持つ金型で加圧プレスして形成する方法を行うことで対応できる。なお、金型で加圧プレスする場合、活物質形成領域のパターンや位置精度の向上が図れることになる。さらに、絶縁物12を正極集電体11形成した後に、金型で加圧プレスすると、プレスされた部分の正極集電体11に絶縁物12の欠陥が生じ、またプレスされなかった部分の正極集電体11に緻密な絶縁物12が残る。その結果、例えばアルミニウムの箔を正極集電体11として用いた場合、活物質との接触抵抗が小さい、正極集電体11の溶解性の小さい正極極板10が得られる。   In order to selectively reduce the arithmetic average roughness in the active material forming region 1, the entire surface of the positive electrode current collector 11 is etched once to the same roughness, or after the insulator 12 is formed, This can be dealt with by performing a method in which the electric body 11 is formed by pressure pressing with a mold having a predetermined surface roughness. In addition, when press-pressing with a metal mold | die, the improvement of the pattern and positional accuracy of an active material formation area can be aimed at. Furthermore, when the insulator 12 is formed and the positive electrode current collector 11 is formed and then press-pressed with a mold, defects in the insulator 12 occur in the pressed positive electrode current collector 11, and the non-pressed portion of the positive electrode current collector 11 is formed. A dense insulator 12 remains on the current collector 11. As a result, for example, when an aluminum foil is used as the positive electrode current collector 11, the positive electrode plate 10 having a low contact resistance with the active material and a low solubility of the positive electrode current collector 11 is obtained.

なお、活物質形成領域1の算術平均粗さRaをR1、活物質未形成領域2の算術平均粗さRaをR2とすると、R1を0.05μm以上2μm以下に、R2を3μm以下にすることで、正極活物質13と正極集電体11との電気的接合の改善と、活物質未形成領域2と負極極板20との間における極板の溶断機能の改善ができる。また、電気的接合と溶断機能をさらに改善するにはR1を0.3μm以上2μm以下、R2を0.4μm以上3μm以下にすることが好ましい。   When the arithmetic average roughness Ra of the active material formation region 1 is R1, and the arithmetic average roughness Ra of the active material non-formation region 2 is R2, R1 is set to 0.05 μm or more and 2 μm or less, and R2 is set to 3 μm or less. Thus, the electrical bonding between the positive electrode active material 13 and the positive electrode current collector 11 can be improved, and the fusing function of the electrode plate between the active material non-formed region 2 and the negative electrode plate 20 can be improved. In order to further improve the electrical joining and fusing function, it is preferable to set R1 to 0.3 μm to 2 μm and R2 to 0.4 μm to 3 μm.

なお、正極集電体11として、例えばアルミニウムの金属箔を用いる場合、成形後の乾燥処理や保管状態(温度、湿度など)等の影響により、アルミニウムの酸化膜がその表面に形成され、絶縁物である酸化膜の厚みは、0.7nmから2.1nm程度となる。また、その酸化膜の耐圧は、アジピン酸アンモニウムなどの電解液中での測定において、0.5Vから1.5V程度となる。また、正極集電体11の活物質未形成領域2での絶縁物12を選択的により厚くすることで、耐圧性をさらに向上させることができる。なお、例えば、図4に示す装置による陽極酸化法でその絶縁物12を作製することができる。その手順は、正極集電体11を、リン酸、ホウ酸、アジピン酸等の酸や、リン酸、ホウ酸、アジピン酸等のアンモニウム塩を溶解させた溶液を満した電解槽101中に浸漬する。次に、正極集電体11の活物質形成領域1近傍をアルミナなどの絶縁体103でマスクし、正極集電体11と対向するように陰極102を配置し、正極集電体11と陰極102間に所望の絶縁物12の厚さに応じて、電源104により電圧を印加して作製する。   For example, when an aluminum metal foil is used as the positive electrode current collector 11, an aluminum oxide film is formed on the surface due to the effects of drying treatment after molding, storage conditions (temperature, humidity, etc.), etc. The thickness of the oxide film is about 0.7 nm to 2.1 nm. The breakdown voltage of the oxide film is about 0.5 V to 1.5 V in measurement in an electrolytic solution such as ammonium adipate. In addition, the pressure resistance can be further improved by selectively increasing the thickness of the insulator 12 in the active material non-formation region 2 of the positive electrode current collector 11. For example, the insulator 12 can be manufactured by an anodic oxidation method using the apparatus shown in FIG. The procedure is to immerse the positive electrode current collector 11 in an electrolytic cell 101 filled with a solution in which an acid such as phosphoric acid, boric acid or adipic acid or an ammonium salt such as phosphoric acid, boric acid or adipic acid is dissolved. To do. Next, the vicinity of the active material formation region 1 of the positive electrode current collector 11 is masked with an insulator 103 such as alumina, and a cathode 102 is disposed so as to face the positive electrode current collector 11. A voltage is applied by a power source 104 in accordance with the desired thickness of the insulator 12 therebetween.

上記の手順により、活物質形成領域1における算術平均粗さが、活物質未形成領域2における算術平均粗さ以上である正極集電体を作製する。   By the above procedure, a positive electrode current collector in which the arithmetic average roughness in the active material formation region 1 is equal to or greater than the arithmetic average roughness in the active material non-formation region 2 is produced.

なお、活物質未形成領域2の絶縁物12の厚さを厚くする別の方法として、エアロゾルデポジション法で絶縁物を成膜することもできる。図5に、エアロゾルデポジション法による成膜装置を示す。図5に示すように、エアロゾル発生器203は、ガス搬送管202を介し、エアロゾル発生用のガスの供給源としてのアルゴンガスボンベ201に接続されている。また、エアロゾル発生器203は、エアロゾル搬送管204を介して、構造物形成室207内に設置されたノズル205に接続されている。また、エアロゾル発生器203には、絶縁物12となる粉体が納められ、供給されるアルゴンガス等の気体により、絶縁物12のエアロゾルを発生させる。ノズル205の先端と対向した位置には、基板ホルダー206に固定された基板となる正極集電体11が配置されている。また、構造物形成室207の排気機構として、真空ポンプ208が吸引配管210および微粒子回収容器209を介し構造物形成室207に接続されている。また、基板ホルダー206として、平面内で移動させることのできるXYステージを使用することで、基板におけるエアロゾル衝突位置を変化させることを可能とし、絶縁物12の成膜を活物質未形成領域2のみに選択的に実施することも可能である。なお、エアロゾルデポジション法では、エアロゾルを差圧等により正極集電体11に直接噴射し形成させるため、バインダーなどを含まない緻
密な絶縁物12を得ることができ、さらに活物質13の形成前、形成後を問わず実施することができる。
As another method of increasing the thickness of the insulator 12 in the active material non-formation region 2, an insulator can be formed by an aerosol deposition method. FIG. 5 shows a film forming apparatus using the aerosol deposition method. As shown in FIG. 5, the aerosol generator 203 is connected to an argon gas cylinder 201 as a gas supply source for generating aerosol through a gas transport pipe 202. The aerosol generator 203 is connected to a nozzle 205 installed in the structure formation chamber 207 via an aerosol transport pipe 204. The aerosol generator 203 stores powder to be the insulator 12 and generates an aerosol of the insulator 12 by a gas such as argon gas supplied. A positive electrode current collector 11 serving as a substrate fixed to the substrate holder 206 is disposed at a position facing the tip of the nozzle 205. Further, a vacuum pump 208 is connected to the structure forming chamber 207 via a suction pipe 210 and a particulate collection container 209 as an exhaust mechanism of the structure forming chamber 207. In addition, by using an XY stage that can be moved in a plane as the substrate holder 206, it is possible to change the aerosol collision position on the substrate, and the insulator 12 is formed only in the active material non-formation region 2 It is also possible to carry out selectively. In the aerosol deposition method, since the aerosol is directly injected and formed on the positive electrode current collector 11 by a differential pressure or the like, a dense insulator 12 that does not contain a binder or the like can be obtained, and further, before the active material 13 is formed. It can be carried out regardless of the formation.

なお、絶縁物12として、アルミニウム、ジルコニウム、イットリウム、ケイ素などの酸化物を用いることができるが、特に、集電体11との密着性、製造および原料のコストを考慮するとアルミナが好ましい。   Note that an oxide such as aluminum, zirconium, yttrium, or silicon can be used as the insulator 12, but alumina is particularly preferable in consideration of adhesion to the current collector 11, production, and raw material costs.

上記のように作製した正極集電体11に、活物質13を形成して電極を作製する。その作製方法は、従来の非水二次電池用電極における活物質13の形成手順と同等なので、その詳細説明は省略する。   An active material 13 is formed on the positive electrode current collector 11 produced as described above to produce an electrode. The manufacturing method is the same as the procedure for forming the active material 13 in the conventional electrode for a non-aqueous secondary battery, and the detailed description thereof is omitted.

なお、正極活物質13は、リチウム二次電池用の電極を作製する場合、リチウム含有遷移金属酸化物として、ニッケル酸リチウムや、コバルト酸リチウムなどのリチウム含有遷移金属酸化物、およびその固溶体が用いられ、一般式(化1)で表される。   In addition, when producing the electrode for lithium secondary batteries, the positive electrode active material 13 uses lithium-containing transition metal oxides, such as lithium nickelate and lithium cobaltate, and its solid solution as a lithium-containing transition metal oxide. And is represented by the general formula (Formula 1).

Figure 2008282799
Figure 2008282799

元素Mは、NiおよびCoよりなる群から選択される少なくとも1元素である。元素Lは、アルカリ土類金属元素、NiおよびCo以外の遷移元素、希土類元素、IIIb族元素、およびIVb族元素よりなる群から選択される少なくとも1種である。   The element M is at least one element selected from the group consisting of Ni and Co. The element L is at least one selected from the group consisting of alkaline earth metal elements, transition elements other than Ni and Co, rare earth elements, IIIb group elements, and IVb group elements.

また、元素Lは、Al、Mn、Ti、Mg、Zr、Nb、Mo、W、およびYよりなる群から選択される少なくとも1元素を含むことが好ましい。これらの元素は、単独で含まれてもよく、2元素以上が含まれてもよい。さらには、元素Lを、Mnなどの遷移元素とすることが望ましい。その調製方法は、所定の金属元素比の酸化物、または水酸化物を酸化雰囲気中で焼成することにより合成することができる。   The element L preferably contains at least one element selected from the group consisting of Al, Mn, Ti, Mg, Zr, Nb, Mo, W, and Y. These elements may be included singly or two or more elements may be included. Furthermore, it is desirable that the element L is a transition element such as Mn. The preparation method can be synthesized by firing an oxide or hydroxide having a predetermined metal element ratio in an oxidizing atmosphere.

また、一般式(化1)における係数のxおよびyは、0.85≦x≦1.25、かつ、0≦y≦0.50を満たすことが望ましい。特に、リチウム含有量を表すxの範囲は、電池の充放電により増減するが、完全放電状態や、電池組立直後の初期状態、もしくはリチウム複合酸化物の合成直後において、0.85≦x≦1.35であればよく、さらには1.02≦x≦1.25が好ましい。   Moreover, it is desirable that the coefficients x and y in the general formula (Formula 1) satisfy 0.85 ≦ x ≦ 1.25 and 0 ≦ y ≦ 0.50. In particular, the range of x representing the lithium content increases or decreases depending on the charge / discharge of the battery, but 0.85 ≦ x ≦ 1 in the fully discharged state, the initial state immediately after the battery assembly, or immediately after the synthesis of the lithium composite oxide. .35, and 1.02 ≦ x ≦ 1.25 is more preferable.

また、正極活物質13の層は、前記のリチウム含有遷移金属酸化物以外に、例えば、人造黒鉛、天然黒鉛、繊維状カーボンやカーボンブラックなどの導電剤、ポリフッ化ビニリデンやポリテトラフルオロエチレンなどの結着剤が含まれることが一般的である。   In addition to the lithium-containing transition metal oxide, the layer of the positive electrode active material 13 is made of, for example, artificial graphite, natural graphite, a conductive agent such as fibrous carbon or carbon black, polyvinylidene fluoride, polytetrafluoroethylene, or the like. In general, a binder is included.

〈電池の構成部材〉
次に、上記の正極極板10以外の、電池を構成させる好ましい構成部材である、負極極板20、セパレータ、溶媒、端子、電池ケース等について説明する。
<Battery components>
Next, the negative electrode plate 20, the separator, the solvent, the terminal, the battery case, and the like, which are preferable constituent members that constitute the battery other than the positive electrode plate 10 described above, will be described.

負極極板20を構成する負極集電体21は、銅やニッケルなどの厚さ5μmから50μmの箔が用いることができ、絶縁物との密着性向上、活物質との接触抵抗低減の観点から
、電解銅箔など表面があらかじめ粗面化されているものが好ましい。また、負極集電体21に形成させる活物質22は、Liを吸蔵放出可能な黒鉛や非晶質炭素、Liと合金化することが可能なSn、Si、SiOなどの化合物を用いることができる。また、負極活物質22の層は、正極活物質13と同様に、例えば、人造黒鉛、天然黒鉛、繊維状カーボンやカーボンブラックなどの導電剤、ポリフッ化ビニリデンやスチレンとブタジエンの供重合体ゴムなどの結着剤を含むこともできる。なお、負極極板20の製造手順は、上記の正極極板10の製造手順を適用できることはいうまでもない。
The negative electrode current collector 21 constituting the negative electrode plate 20 can be made of a foil having a thickness of 5 μm to 50 μm, such as copper or nickel, from the viewpoint of improving adhesion with an insulator and reducing contact resistance with an active material. It is preferable that the surface is roughened in advance, such as electrolytic copper foil. The active material 22 formed on the negative electrode current collector 21 can be made of a compound such as graphite, amorphous carbon capable of occluding and releasing Li, or Sn, Si, SiO, etc. capable of being alloyed with Li. . Further, the layer of the negative electrode active material 22 is, for example, artificial graphite, natural graphite, a conductive agent such as fibrous carbon or carbon black, polyvinylidene fluoride, a copolymer rubber of styrene and butadiene, etc. The binder may also be included. In addition, it cannot be overemphasized that the manufacturing procedure of the negative electrode plate 20 can apply the manufacturing procedure of said positive electrode plate 10. FIG.

また、前記の正極極板10と負極極板20を用いて電池を構成する場合、そのセパレータとして、正極と接する界面部分がポリプロピレン製のものであれば、別段限定されるものではない。例えば、ポリプロピレン、ポリエチレンなどの単独又は組み合わせたポリオレフィン系ポリマーや、ポリアラミド系ポリマーやガラス繊維などからつくられたシートや不織布を用いることができる。なお、一般的には、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の微多孔性薄膜が好ましい。セパレータの孔径は、電極シートより脱離した活物質、結着剤、導電剤が透過しない範囲であることが望ましく、例えば、0.01〜1μmであるものが望ましい。セパレータの厚みは、一般的には、5〜300μmが用いられる。空孔率は、電池特性として必要とされる電子やイオンの透過性と、電池素材やセパレータ等の膜の突き刺し強度に応じて決定されるが、一般的には20〜90%であることが望ましい。なお、セパレータは、複数の単層膜を積層した多層膜でもよい。多層膜の場合、電池の安全性を高める上で、120〜145℃の温度でいわゆるシャットダウン機能を発現させることが望ましい。120℃より低温でシャットダウン機能が作動する場合、高温保存時に電池機能を消失する危険があり、145℃より高温でシャットダウン機能が作動する場合、電池の熱暴走反応を抑止できなくなる危険が生じる。前記の温度範囲でシャットダウン機能を発現させるには、ポリエチレンを主成分とした単層膜を含めることが望ましい。さらに、電池の耐熱安全性を高めるには、SiOやAlといった無機物を主体とした単層膜を含めることもできる。 Further, when a battery is formed using the positive electrode plate 10 and the negative electrode plate 20, the separator is not particularly limited as long as the interface portion in contact with the positive electrode is made of polypropylene. For example, a sheet or non-woven fabric made from a polyolefin polymer such as polypropylene or polyethylene alone or in combination, a polyaramid polymer, glass fiber, or the like can be used. In general, an insulating microporous thin film having a high ion permeability and a predetermined mechanical strength is preferable. The pore diameter of the separator is preferably in a range in which the active material, the binder, and the conductive agent detached from the electrode sheet do not permeate, for example, 0.01 to 1 μm is desirable. As for the thickness of a separator, 5-300 micrometers is generally used. The porosity is determined according to the permeability of electrons and ions required as battery characteristics, and the piercing strength of a film such as a battery material or a separator, but is generally 20 to 90%. desirable. The separator may be a multilayer film in which a plurality of single layer films are stacked. In the case of a multilayer film, it is desirable to develop a so-called shutdown function at a temperature of 120 to 145 ° C. in order to increase the safety of the battery. When the shutdown function is operated at a temperature lower than 120 ° C., there is a risk that the battery function is lost during high temperature storage. When the shutdown function is operated at a temperature higher than 145 ° C., there is a risk that the thermal runaway reaction of the battery cannot be suppressed. In order to exhibit the shutdown function in the above temperature range, it is desirable to include a single layer film mainly composed of polyethylene. Furthermore, in order to improve the heat resistance safety of the battery, a single layer film mainly composed of an inorganic material such as SiO 2 or Al 2 O 3 can be included.

また、非水溶媒として、例えば、エチレンカーボネ−ト、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの非環状カーボネート類などを用いることができる。これらの一種または二種以上を混合して使用し、特に、環状カーボネートと非環状カーボネートとの混合系を主成分とすることが好ましい。さらに、非水溶媒に溶解させるリチウム塩として、例えばLiClO、LiBF 、LiPF、LiCFSO 、LiCFCO、Li(CFSO、LiN(CFSOなどを用いることができる。なお、電解液等にリチウム塩を単独又は二種以上を組み合わせて使用することもでき、特に、LiPFを含ませることがさらに好ましい。 Examples of non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and non-cyclic carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate. Can be used. One or two or more of these are used in combination, and it is particularly preferable to use a mixed system of a cyclic carbonate and an acyclic carbonate as a main component. Furthermore, as a lithium salt dissolved in a non-aqueous solvent, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2, etc. Can be used. Incidentally, it is also possible to use alone or in combination of two or more lithium salts in the electrolyte solution or the like, particularly, more preferably be included LiPF 6.

また、非水電解液として、有機高分子に担持させたゲル電解質を用いることもできる。非水電解液を担持させる有機高分子としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリアクリレート、ポリメタクリレートやこれらの誘導体などを用いることができる。   Moreover, the gel electrolyte carry | supported by the organic polymer can also be used as a non-aqueous electrolyte. Examples of the organic polymer that supports the non-aqueous electrolyte include polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyhexafluoropropylene, polyacrylate, polymethacrylate, and derivatives thereof.

また、本発明の端子として、正極端子30はアルミニウムが好ましく、負極端子40はニッケル、銅が好ましい。特に、アルミニウムは、酸化膜陽極酸化法により酸化膜31を容易に厚くできるので、絶縁性を容易に高くでき、かつ抵抗溶接などで容易に低抵抗の接続を取りやすく、好ましい素材である。また、正極端子と負極極板20との電気的短絡を防止し、安全性をさらに向上するためには、それらの端子は、活物質未形成領域2の絶縁物12の厚み以上の厚みの酸化膜31や絶縁物層を有することが望ましい。   Moreover, as a terminal of this invention, the positive electrode terminal 30 has preferable aluminum, and the negative electrode terminal 40 has preferable nickel and copper. In particular, aluminum is a preferable material because the oxide film 31 can be easily thickened by the oxide film anodic oxidation method, so that the insulating property can be easily increased and a low resistance connection can be easily made by resistance welding or the like. Further, in order to prevent an electrical short circuit between the positive electrode terminal and the negative electrode plate 20 and further improve safety, these terminals are oxidized with a thickness equal to or greater than the thickness of the insulator 12 in the active material non-formation region 2. It is desirable to have the film 31 and an insulator layer.

また、本発明における電池ケースとして、AlやFe等の金属性の電池缶や金属箔の両面に樹脂フィルムをラミネートしたラミネートフィルムを袋状にしたものを用いることもでき、市場における電池の更なる薄型化や軽量化の要望に応えるためには、ラミネートフィルム製の電池ケースを用いることもできる。   In addition, as the battery case in the present invention, a metallic battery can such as Al or Fe or a laminate film obtained by laminating a resin film on both sides of a metal foil can be used as a bag. A battery case made of a laminate film can also be used in order to meet the demand for a reduction in thickness and weight.

〈正極極板10の特徴と効果〉
次に、本願発明の実施の形態に示す正極極板10の特徴的な構造と、その効果について説明する。
<Characteristics and effects of positive electrode plate 10>
Next, the characteristic structure of the positive electrode plate 10 shown in the embodiment of the present invention and the effects thereof will be described.

構成の特徴は、正極極板10の活物質未形成領域2における絶縁物12の厚みを、活物質形成領域1における絶縁物の厚み以上の厚みになるように構成する点である。本構成により、活物質未形成領域2での正極極板10と負極極板20との接触抵抗を大きく、活物質形成領域1での正極活物質13と正極集電体11との接触抵抗を小さくすることができる。その結果、電池を構成させた場合、電池内部への異物混入による内部短絡が発生した時に、正極極板の活物質未形成領域と負極極板との間に大きな電流が流れないので、電池の電気的性能を落とすことなく、電池の安全性が改善できる。   A feature of the configuration is that the thickness of the insulator 12 in the active material non-formation region 2 of the positive electrode plate 10 is configured to be equal to or greater than the thickness of the insulator in the active material formation region 1. With this configuration, the contact resistance between the positive electrode plate 10 and the negative electrode plate 20 in the active material unformed region 2 is increased, and the contact resistance between the positive electrode active material 13 and the positive electrode current collector 11 in the active material forming region 1 is increased. Can be small. As a result, when the battery is configured, a large current does not flow between the active material non-formation region of the positive electrode plate and the negative electrode plate when an internal short circuit occurs due to contamination of foreign matter inside the battery. Battery safety can be improved without degrading electrical performance.

なお、活物質未形成領域2の絶縁物12の厚みが、活物質形成領域1の絶縁物12の厚みより大きい場合、活物質未形成領域2の正極集電体11の算術平均粗さR2が、活物質形成領域1の正極集電体11の算術平均粗さR1以上になるように構成されるのが好ましい。R1とR2とが同一のときは、活物質未形成領域2での正極極板10と負極極板20との接触抵抗を大きく、活物質形成領域1での正極活物質13と正極集電体11との接触抵抗を小さくすることができることになる。また、R2がR1より大きいときは、さらに活物質未形成領域2の微小短絡時、即ち微小電流での正極集電体11の突起部分で溶断機能を発現させる。さらに、微小短絡時の電流を超えて大電流が流れたときに、正極集電体11が溶断するので、さらに安全性を向上できるからである。なお、溶断とは、導体に大電流が流れたとき、ジュール熱により導体が溶解することで、導体に流れる電流を遮断する機構を言う。   In addition, when the thickness of the insulator 12 in the active material non-formation region 2 is larger than the thickness of the insulator 12 in the active material formation region 1, the arithmetic average roughness R2 of the positive electrode current collector 11 in the active material non-formation region 2 is The positive electrode current collector 11 in the active material forming region 1 is preferably configured to have an arithmetic average roughness R1 or more. When R1 and R2 are the same, the contact resistance between the positive electrode plate 10 and the negative electrode plate 20 in the active material non-formation region 2 is increased, and the positive electrode active material 13 and the positive electrode current collector in the active material formation region 1 The contact resistance with 11 can be reduced. Further, when R2 is larger than R1, a fusing function is developed at the time of a minute short circuit of the active material non-forming region 2, that is, at the protruding portion of the positive electrode current collector 11 with a minute current. Further, when a large current flows exceeding the current at the time of a short circuit, the positive electrode current collector 11 is melted, so that safety can be further improved. Note that fusing refers to a mechanism that cuts off the current flowing through the conductor by melting the conductor by Joule heat when a large current flows through the conductor.

また、活物質未形成領域2の絶縁物12の厚みが、活物質形成領域1の絶縁物12の厚みと同じ場合、活物質未形成領域2の正極集電体11の算術平均粗さR2が、活物質形成領域1の正極集電体11の算術平均粗さR1より大きくなるように構成されるのが好ましい。活物質形成領域1の絶縁物12の厚みと、活物質未形成領域2の絶縁物12の厚みTが同一のとき、活物質未形成領域2の正極集電体11の算術平均粗さR2を、活物質形成領域1の正極集電体11の算術平均粗さR1より大きくすることで、活物質未形成領域2の微小短絡時、即ち微小電流での正極集電体11の突起部分で溶断機能を発現させる。さらに、微小短絡時の電流を超えて大電流が流れたときに、正極集電体11が溶断するので、さらに安全性を向上できるからである。   Moreover, when the thickness of the insulator 12 in the active material non-formation region 2 is the same as the thickness of the insulator 12 in the active material formation region 1, the arithmetic average roughness R2 of the positive electrode current collector 11 in the active material non-formation region 2 is The positive electrode current collector 11 in the active material forming region 1 is preferably configured to be larger than the arithmetic average roughness R1. When the thickness of the insulator 12 in the active material formation region 1 and the thickness T of the insulator 12 in the active material non-formation region 2 are the same, the arithmetic average roughness R2 of the positive electrode current collector 11 in the active material non-formation region 2 is By making the arithmetic mean roughness R1 of the positive electrode current collector 11 in the active material forming region 1 larger than the arithmetic mean roughness R1, the active material non-formed region 2 is blown at the protrusion of the positive electrode current collector 11 at a minute short circuit, that is, at a small current. Express function. Further, when a large current flows exceeding the current at the time of a short circuit, the positive electrode current collector 11 is melted, so that safety can be further improved.

また、正極活物質13と正極集電体11の電気的接合の改善と、活物質未形成領域2と負極極板20との絶縁性を改善するために、活物質形成領域1での絶縁物12の厚みが、3nm以上14nm以下となるように構成されることが好ましい。この時、活物質未形成領域2での絶縁物12の厚みは、3nm以上でかつ正極活物質の厚みを超えないようにすることが好ましい。   Further, in order to improve the electrical connection between the positive electrode active material 13 and the positive electrode current collector 11 and to improve the insulation between the active material non-formation region 2 and the negative electrode plate 20, an insulator in the active material formation region 1 is used. Preferably, the thickness of 12 is 3 nm or more and 14 nm or less. At this time, the thickness of the insulator 12 in the active material non-formation region 2 is preferably 3 nm or more and does not exceed the thickness of the positive electrode active material.

なお、構成する電池の形状は、別段に限定されるものではなく、円筒形、扁平形および角形のいずれでもよい。   In addition, the shape of the battery which comprises is not specifically limited, Any of cylindrical shape, a flat shape, and a square shape may be sufficient.

また、本発明による正極極板10を用いた電池では、正極極板10と負極板間20との短絡防止機能を向上できるので、電池の充電終止電圧を4.4V以上5.0V以下の高電
圧した非水二次電池を作製することができる。また、絶縁物12を形成する方法として、バインダーフリーの形成方法である陽極酸化法、エアロゾルデポジション法が、バインダーの酸化劣化を発生させないことになるので、充電終止電圧を4.4V以上5.0V以下で使用される集電体における絶縁物12の形成方法として好適となる。
Further, in the battery using the positive electrode plate 10 according to the present invention, the function of preventing a short circuit between the positive electrode plate 10 and the negative electrode plate 20 can be improved, so that the end-of-charge voltage of the battery is high between 4.4V and 5.0V. A non-aqueous secondary battery can be produced. In addition, as a method for forming the insulator 12, the anodizing method and the aerosol deposition method, which are binder-free forming methods, do not cause oxidative degradation of the binder, so that the end-of-charge voltage is 4.4 V or more and 5. This is suitable as a method for forming the insulator 12 in the current collector used at 0 V or less.

次に、本発明の正極極板10の製造、および製造した正極極板10用いて構成する電池の内部短絡試験の実施例と比較例について、図面を参照して説明する。   Next, examples of the positive electrode plate 10 of the present invention and examples of the internal short circuit test of the battery configured using the manufactured positive electrode plate 10 and comparative examples will be described with reference to the drawings.

(実施例1)
実施例1では、活物質形成領域1の算術平均粗さR1と活物質未形成領域2の算術平均粗さR2が同一で、活物質形成領域1の絶縁物12の厚みより活物質未形成領域2の絶縁物12の厚みが大きい正極極板10を作製した。使用した集電体11はJISの合金番号1N30で、面内ばらつきが0.05μmから0.15μmで平均値が0.11μmで、絶縁物12として自然酸化膜厚みが0.5nmから1nm程度の東洋製箔製の厚み20μmのアルミニウム箔である。すなわち、実施例1では、R1とR2が、平均値で0.11μmとなる。
Example 1
In Example 1, the arithmetic average roughness R1 of the active material formation region 1 and the arithmetic average roughness R2 of the active material non-formation region 2 are the same, and the active material non-formation region is greater than the thickness of the insulator 12 in the active material formation region 1 A positive electrode plate 10 having a large thickness of the insulator 12 was prepared. The current collector 11 used is JIS alloy number 1N30, the in-plane variation is 0.05 μm to 0.15 μm, the average value is 0.11 μm, and the natural oxide film thickness as the insulator 12 is about 0.5 nm to 1 nm. It is an aluminum foil made of Toyo Foil with a thickness of 20 μm. That is, in Example 1, R1 and R2 are 0.11 μm on average.

〈正極集電体11上への絶縁物12の形成〉
正極集電体11への絶縁物12の形成は、図4に示す装置を用い、陽極酸化法で行った。まず、陽極酸化を行う前に、アルミニウム箔を3重量%NaOH、液温40℃の水溶液中で、20秒間浸漬する浸漬処理を行い、その後水洗し、400℃で1分間乾燥し、アルミニウム箔表面を清浄した。その後、電解槽101中に10重量%アジピン酸アンモニウム水溶液を入れ、液温80℃とし、アルミニウム箔と陰極板102となるカーボン板を浸漬した。次に、絶縁板103を除いた状態で、アルミニウム箔を陽極、陰極板102を陰極とし、2.4Vの直流電圧を10分間印加し、厚さ3nmの絶縁物12を形成した。その後、活物質形成領域1を絶縁板103で挟み込み、10.2Vの直流電圧を15分間印加し、厚さ14nmの活物質未形成領域2の絶縁物12を形成し、水洗した後、400℃2分間乾燥させた。すなわち、実施例1では、活物質形成領域1の絶縁物12の厚さが3nm、活物質未形成領域2の絶縁物12の厚さが14nmとなる。
<Formation of insulator 12 on positive electrode current collector 11>
The insulator 12 was formed on the positive electrode current collector 11 by an anodizing method using the apparatus shown in FIG. First, before anodizing, the aluminum foil is immersed in an aqueous solution of 3% by weight NaOH and a liquid temperature of 40 ° C. for 20 seconds, then washed with water, dried at 400 ° C. for 1 minute, and the surface of the aluminum foil. Was cleaned. Thereafter, a 10% by weight ammonium adipate aqueous solution was placed in the electrolytic bath 101, the temperature of the solution was set to 80 ° C., and an aluminum foil and a carbon plate serving as the cathode plate 102 were immersed therein. Next, with the insulating plate 103 removed, an aluminum foil was used as an anode and a cathode plate 102 was used as a cathode, and a DC voltage of 2.4 V was applied for 10 minutes to form an insulator 12 having a thickness of 3 nm. Thereafter, the active material forming region 1 is sandwiched between the insulating plates 103, and a 10.2 V DC voltage is applied for 15 minutes to form an insulator 12 in the active material non-formed region 2 having a thickness of 14 nm, washed with water, and then 400 ° C. Dry for 2 minutes. That is, in Example 1, the thickness of the insulator 12 in the active material formation region 1 is 3 nm, and the thickness of the insulator 12 in the active material non-formation region 2 is 14 nm.

〈正極活物質の合成〉
Ni原子とCo原子とAl原子とのモル比が80:15:5になるように混合した、硫酸ニッケルと硫酸コバルトと硫酸アルミニウムとの混合物3kgを、10リットルの水に溶解させて、原料溶液を得た。原料溶液に、水酸化ナトリウムを400g加えて、沈殿物を生成させた。その沈殿物を十分に水洗し、乾燥させ、共沈水酸化物を得た。
<Synthesis of positive electrode active material>
A raw material solution was prepared by dissolving 3 kg of a mixture of nickel sulfate, cobalt sulfate and aluminum sulfate mixed in a molar ratio of Ni atoms, Co atoms and Al atoms of 80: 15: 5 in 10 liters of water. Got. 400 g of sodium hydroxide was added to the raw material solution to form a precipitate. The precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.

得られたNi−Co−Al共沈水酸化物3kgに、所定量の水酸化リチウムを混合し、酸素分圧を0.5気圧にした酸素雰囲気中で、750℃の温度で10時間焼成して、元素LとしてAlを含むNi/Co系Li複合酸化物(LiNi0.8Co0.15Al0.05)を作製した。その複合酸化物を、玉石の径がφ2mmの遊星ボールミルを用いて粉砕した後、乾燥させ、さらに500℃、10時間酸素中で熱処理した。なお、前記処理により、平均粒径が1.2μm(マイクロトラック社製の湿式レーザー粒度分布測定装置により測定)の活物質粒子を作製した。 A predetermined amount of lithium hydroxide was mixed with 3 kg of the obtained Ni—Co—Al coprecipitated hydroxide and calcined at a temperature of 750 ° C. for 10 hours in an oxygen atmosphere with an oxygen partial pressure of 0.5 atm. Then, a Ni / Co-based Li composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) containing Al as the element L was produced. The composite oxide was pulverized using a planetary ball mill having a cobblestone diameter of 2 mm, dried, and further heat-treated in oxygen at 500 ° C. for 10 hours. In addition, active material particles having an average particle diameter of 1.2 μm (measured by a wet laser particle size distribution measuring device manufactured by Microtrack Co., Ltd.) were produced by the treatment.

〈活物質形成領域1への正極活物質13の形成〉
図5に示すエアロゾルデポジション装置を用いて、活物質形成領域1に上記の活物質の膜を成膜した。成膜条件は、成膜温度を30℃、キャリアガスとしてアルゴンを用い、成膜室の真空度は100Paの間となるようにキャリアガスの流量を3000sccmで調整しながら成膜した。なお、成膜面積は50mm×70mm、厚みは70μmとし、膜相
対密度が約60%の膜が得られた。
<Formation of Positive Electrode Active Material 13 in Active Material Formation Region 1>
Using the aerosol deposition apparatus shown in FIG. 5, the active material film was formed in the active material formation region 1. The film forming conditions were as follows: the film forming temperature was 30 ° C., argon was used as the carrier gas, and the carrier gas flow rate was adjusted to 3000 sccm so that the degree of vacuum in the film forming chamber was 100 Pa. A film having an area of 50 mm × 70 mm, a thickness of 70 μm, and a film relative density of about 60% was obtained.

〈負極極板20の作製〉
人造黒鉛3kgを、日本ゼオン(株)製のバインダー(BM−400B)200gとカルボキシメチルセルロース(CMC)50g、および適量の水とともに双腕式練合機にて攪拌し、負極合剤ペーストを調製した。このペーストを、負極集電体21となる厚さ12μmの銅箔に、塗工面積が54mm×74mmとなるように塗布した。その後、乾燥し、総厚が70μmとなるように圧延し、負極極板20を作製した。
<Preparation of negative electrode plate 20>
3 kg of artificial graphite was stirred together with 200 g of binder (BM-400B) manufactured by Nippon Zeon Co., Ltd., 50 g of carboxymethyl cellulose (CMC) and an appropriate amount of water in a double-arm kneader to prepare a negative electrode mixture paste. . This paste was applied to a 12 μm-thick copper foil serving as the negative electrode current collector 21 so that the coating area was 54 mm × 74 mm. Then, it dried and rolled so that total thickness might be set to 70 micrometers, and the negative electrode plate 20 was produced.

〈電池の組立〉
図1に示すように、正極極板10の活物質未形成領域1に正極端子30として、1nm程度の自然酸化膜を有する厚み100μmのアルミニウム板を、負極極板20の活物質未形成領域1に負極端子40として厚み100μmのニッケル板をそれぞれ抵抗溶接し、セパレータ50を介して、内部電池を構成した。セパレータ50には、ポリエチレンとポリプロピレンとの複合フィルム(セルガード(株)製の2300、厚さ25μm)を用いた。作製した内部電池と、5gの非水電解液をラミネートケース内に入れ、非水二次電池を作製した。非水電解液は、エチレンカーボネートとメチルエチルカーボネートとの体積比10:30の混合溶媒に、ビニレンカーボネート2重量%、ビニルエチレンカーボネート2重量%、フルオロベンゼン5重量%、およびフォスファゼン5重量%を添加し、その混合液にLiPF6を1.2mol/リットルの濃度で溶解させたものを用いた。
<Battery assembly>
As shown in FIG. 1, a 100 μm thick aluminum plate having a natural oxide film of about 1 nm is used as the positive electrode terminal 30 in the active material non-formation region 1 of the positive electrode plate 10, and the active material non-formation region 1 of the negative electrode plate 20. A nickel plate having a thickness of 100 μm was resistance welded to each as a negative electrode terminal 40, and an internal battery was configured through a separator 50. As the separator 50, a composite film of polyethylene and polypropylene (2300 manufactured by Celgard Co., Ltd., thickness 25 μm) was used. The produced internal battery and 5 g of non-aqueous electrolyte were put in a laminate case to produce a non-aqueous secondary battery. The non-aqueous electrolyte is a mixture solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 10:30, with 2% vinylene carbonate, 2% vinyl ethylene carbonate, 5% fluorobenzene, and 5% phosphazene added. Then, a solution obtained by dissolving LiPF6 at a concentration of 1.2 mol / liter was used in the mixed solution.

(実施例2)
実施例2では、活物質未形成領域2の絶縁物12をアルミナとし、エアロゾルデポジション法を用いて形成した正極極板10を用いた。それ以外の構成は、実施例1と同様として、電池を組み立てた。なお、実施例2では、R1とR2が平均値で0.11μm、活物質形成領域1の絶縁物12の厚さが3nm、活物質未形成領域2の絶縁物12の厚さが2μmとなる。また、正極集電体11上への絶縁物12の形成条件を以下に説明する。
(Example 2)
In Example 2, the positive electrode plate 10 formed using the aerosol deposition method with the insulator 12 in the active material non-formation region 2 made of alumina was used. Otherwise, the battery was assembled in the same manner as in Example 1. In Example 2, R1 and R2 are 0.11 μm on average, the thickness of the insulator 12 in the active material formation region 1 is 3 nm, and the thickness of the insulator 12 in the active material non-formation region 2 is 2 μm. . The conditions for forming the insulator 12 on the positive electrode current collector 11 will be described below.

〈正極集電体11上への絶縁物12としてアルミナの形成〉
正極集電体11となるアルミニウム箔を、3重量%NaOH、液温40℃の水溶液中で、20秒間浸漬する浸漬処理を行い、その後水洗し、400℃で1分間乾燥し、アルミニウム箔表面の清浄化を行った。その後、図4に示す電解槽101中に10重量%アジピン酸アンモニウム水溶液を入れ、液温80℃とし、アルミニウム箔と陰極板102となるカーボン板を浸漬した。次に、絶縁板103を除いた状態で、アルミニウム箔を陽極、陰極板102を陰極とし、2.4Vの直流電圧を10分間印加し、厚さ3nmの絶縁物12を形成し、水洗した後、400℃2分間乾燥した。その後、図5に示すエアロゾルデポジション装置に設置し、活物質未形成領域2に、アルミナの絶縁物12を形成した。
<Formation of alumina as insulator 12 on positive electrode current collector 11>
The aluminum foil used as the positive electrode current collector 11 is immersed in an aqueous solution of 3% by weight NaOH and a liquid temperature of 40 ° C. for 20 seconds, then washed with water, dried at 400 ° C. for 1 minute, Cleaning was performed. Thereafter, a 10 wt% ammonium adipate aqueous solution was placed in the electrolytic cell 101 shown in FIG. 4, the liquid temperature was set to 80 ° C., and an aluminum foil and a carbon plate serving as the cathode plate 102 were immersed therein. Next, after the insulating plate 103 is removed, the aluminum foil is used as an anode, the cathode plate 102 is used as a cathode, and a DC voltage of 2.4 V is applied for 10 minutes to form an insulator 12 having a thickness of 3 nm and washed with water. And dried at 400 ° C. for 2 minutes. Then, it was installed in the aerosol deposition apparatus shown in FIG. 5, and an alumina insulator 12 was formed in the active material non-formation region 2.

使用したアルミナは、和光純薬工業株式会社製の平均径0.5μmのα−アルミナである。成膜条件は、成膜温度を30℃、キャリアガスをアルゴン、成膜室の真空度は100Paの間となるようにキャリアガスの流量を8000sccmで調整しながら成膜した。なお、厚みが2μm、膜相対密度が約92%の絶縁物の膜が得られた。   The alumina used was α-alumina having an average diameter of 0.5 μm manufactured by Wako Pure Chemical Industries, Ltd. Film formation was performed while adjusting the flow rate of carrier gas at 8000 sccm so that the film formation temperature was 30 ° C., the carrier gas was argon, and the degree of vacuum in the film formation chamber was 100 Pa. An insulating film having a thickness of 2 μm and a film relative density of about 92% was obtained.

(実施例3)
実施例3では、活物質未形成領域2の絶縁物12をフッ化アルミニウムとし、蒸着法を用いて形成した正極極板10を用いた。それ以外の構成は、実施例1と同様として、電池を組み立てた。なお、実施例2では、R1とR2が平均値で0.13μm、活物質形成領域1の絶縁物12の厚さが3nm、活物質未形成領域2の絶縁物12の厚さが2μmとなる。また、絶縁物の形成と正極集電体11の算術表面粗さを制御した条件を以下に説明する。
(Example 3)
In Example 3, the positive electrode 10 formed by vapor deposition using the insulator 12 in the active material non-formation region 2 as aluminum fluoride was used. Otherwise, the battery was assembled in the same manner as in Example 1. In Example 2, R1 and R2 are 0.13 μm on average, the thickness of the insulator 12 in the active material formation region 1 is 3 nm, and the thickness of the insulator 12 in the active material non-formation region 2 is 2 μm. . The conditions under which the formation of the insulator and the arithmetic surface roughness of the positive electrode current collector 11 are controlled will be described below.

〈正極集電体11上への絶縁物12としてフッ化アルミニウムの形成〉
タンタルボートに純度99.9%のフッ化アルミニウムを入れ、実施例1で作製したアルミニウムエッチング箔上に、抵抗加熱法により、成膜速度0.3nm/秒で10秒間成膜し、3nmのフッ化アルミニウムの絶縁物(絶縁膜)を形成した。さらに、活物質形成領域1上をステンレス板で遮蔽し、同様に、抵抗加熱法により、成膜速度20nm/秒で100秒間成膜し、活物質未形成領域2に2μmのフッ化アルミニウムの絶縁物(絶縁膜)を形成した。
<Formation of aluminum fluoride as the insulator 12 on the positive electrode current collector 11>
Aluminum fluoride with a purity of 99.9% was placed in a tantalum boat, and the film was formed on the aluminum etching foil produced in Example 1 for 10 seconds by a resistance heating method at a film formation rate of 0.3 nm / second. An aluminum halide insulator (insulating film) was formed. Further, the active material forming region 1 is shielded with a stainless steel plate, and similarly, a resistance heating method is used to form a film at a film forming rate of 20 nm / second for 100 seconds, and the active material non-formed region 2 is insulated with 2 μm of aluminum fluoride. An object (insulating film) was formed.

(実施例4)
実施例4では、絶縁物12の厚みが、活物質形成領域1および活物質未形成領域2共に5nm、活物質未形成領域2の算術平均粗さR2が1.5μm、活物質形成領域1の算術平均粗さR1が1μmの正極極板10を用いた(図3に示すような正極極板10)。それ以外の構成は、実施例1と同様として、電池を組み立てた。また、正極集電体11の作製条件を以下に説明する。
Example 4
In Example 4, the thickness of the insulator 12 is 5 nm for both the active material formation region 1 and the active material non-formation region 2, the arithmetic average roughness R2 of the active material non-formation region 2 is 1.5 μm, and the active material formation region 1 A positive electrode plate 10 having an arithmetic average roughness R1 of 1 μm was used (positive electrode plate 10 as shown in FIG. 3). Otherwise, the battery was assembled in the same manner as in Example 1. In addition, the manufacturing conditions of the positive electrode current collector 11 will be described below.

〈正極集電体11の作製〉
まず、アルミニウム箔を3重量%NaOH、液温40℃の水溶液中で、20秒間浸漬する浸漬処理を行い、その後水洗し、400℃で1分間乾燥し、アルミニウム箔表面の清浄化を行った。その後、図4に示す電解槽101中に、5重量%の塩酸、2重量%の塩化アルミニウムの水溶液からなる温度30℃の溶液と、集電体11と陰極板102を浸漬し、13Hzの正弦波交流電流で電流密度0.2A/cmで20秒間、集電体11全面に交流エッチングを行い、R1=R2=1.5μmのアルミニウム箔を得た。
<Preparation of positive electrode current collector 11>
First, the aluminum foil was immersed in an aqueous solution of 3 wt% NaOH and a liquid temperature of 40 ° C. for 20 seconds, then washed with water and dried at 400 ° C. for 1 minute to clean the aluminum foil surface. Thereafter, a 30 ° C. solution consisting of an aqueous solution of 5% by weight hydrochloric acid and 2% by weight aluminum chloride, the current collector 11 and the cathode plate 102 were immersed in the electrolytic cell 101 shown in FIG. AC etching was performed on the entire surface of the current collector 11 with a wave AC current at a current density of 0.2 A / cm 2 for 20 seconds to obtain an aluminum foil with R1 = R2 = 1.5 μm.

その後、活物質形成領域1の算術平均粗さR1を小さくするため、活物質形成領域1を50mm×70mmの大きさで1cmあたり5MPaの圧力で加圧プレスを行い、R1を1μmとした。 Thereafter, in order to reduce the arithmetic average roughness R1 of the active material formation region 1, the active material formation region 1 was pressed at a pressure of 5 MPa per cm 2 in a size of 50 mm × 70 mm, and R1 was set to 1 μm.

(実施例5)
実施例5では、活物質形成領域1での算術平均粗さR1を2μm、活物質未形成領域2での算術平均粗さR2を3μmとした正極集電体11を用いた。その算術平均粗さを得るため、陽極酸化法によるエッチング時間を32秒とした。なお、活物質形成領域1および活物質未形成領域2の絶縁物12の厚さが5nmとなる。それ以外の構成は、実施例1と同様として、電池を組み立てた。
(Example 5)
In Example 5, the positive electrode current collector 11 having an arithmetic average roughness R1 in the active material formation region 1 of 2 μm and an arithmetic average roughness R2 in the active material non-formation region 2 of 3 μm was used. In order to obtain the arithmetic average roughness, the etching time by the anodic oxidation method was set to 32 seconds. Note that the thickness of the insulator 12 in the active material formation region 1 and the active material non-formation region 2 is 5 nm. Otherwise, the battery was assembled in the same manner as in Example 1.

(実施例6)
実施例6では、正極集電体11に絶縁物12を形成する前に、電解エッチングにより算術平均粗さを大きくし、その後活物質形成領域1を加圧プレスにより算術平均粗さを小さくし、その後活物質未形成領域2の絶縁物をエアロゾルデポジション法で形成した正極極板10を用いた。具体的には、正極集電体11として、実施例4で作製した正極集電体11を用い、エアロゾルデポジション装置で実施例2の正極集電体10に形成させた絶縁物12と同等の絶縁物を作製した(図2に示すような正極極板10)。それ以外の構成は、実施例1と同様として、電池を組み立てた。なお、実施例6では、R1が1μm、R2が1.5μm、活物質形成領域1の絶縁物12の厚さが3nm、活物質未形成領域2の絶縁物12の厚さが2μmとなる。
(Example 6)
In Example 6, before the insulator 12 is formed on the positive electrode current collector 11, the arithmetic average roughness is increased by electrolytic etching, and then the active material formation region 1 is decreased by the pressurization press. Thereafter, the positive electrode plate 10 in which the insulator in the active material non-formation region 2 was formed by the aerosol deposition method was used. Specifically, the positive electrode current collector 11 produced in Example 4 is used as the positive electrode current collector 11, and is equivalent to the insulator 12 formed on the positive electrode current collector 10 of Example 2 by the aerosol deposition apparatus. An insulator was produced (positive electrode plate 10 as shown in FIG. 2). Otherwise, the battery was assembled in the same manner as in Example 1. In Example 6, R1 is 1 μm, R2 is 1.5 μm, the thickness of the insulator 12 in the active material formation region 1 is 3 nm, and the thickness of the insulator 12 in the active material non-formation region 2 is 2 μm.

(実施例7)
実施例7では、実施例1の正極極板10に、厚さ30nmの絶縁物31を有する正極端子30を用いた。なお、それ以外の構成は、実施例1と同様として、電池を組み立てた。なお、実施例7では、R1とR2が平均値で0.11μm、活物質形成領域1の絶縁物1
2の厚さが3nm、活物質未形成領域2の絶縁物12の厚さが14nmとなる。また、正極端子の陽極酸化による作製条件を以下に説明する。
(Example 7)
In Example 7, the positive electrode terminal 30 having the insulator 31 with a thickness of 30 nm was used for the positive electrode plate 10 of Example 1. The remaining configuration was the same as in Example 1, and a battery was assembled. In Example 7, R1 and R2 are 0.11 μm on average, and the insulator 1 in the active material formation region 1
2 is 3 nm, and the thickness of the insulator 12 in the active material unformed region 2 is 14 nm. In addition, the production conditions by anodic oxidation of the positive electrode terminal will be described below.

〈正極端子の陽極酸化による作製〉
厚さ100μmのアルミニウム板を3重量%NaOH、液温40℃の水溶液中で、20秒間浸漬する浸漬処理を行い、その後水洗し、400℃で1分間乾燥し、アルミニウム板表面の清浄化を行った。その後、図4に示す電解槽101中に、10重量%アジピン酸アンモニウム水溶液を入れ、液温90℃とし、アルミニウム箔と陰極板102となるカーボン板を浸漬した。まず、絶縁板103を除いた状態で、アルミニウム板を陽極、陰極板102を陰極とし、22Vの直流電圧を20分間印加し、厚さ30nmの絶縁物31を形成した。
<Preparation by positive electrode terminal anodic oxidation>
An aluminum plate having a thickness of 100 μm is immersed in an aqueous solution of 3% by weight NaOH and a liquid temperature of 40 ° C. for 20 seconds, then washed with water and dried at 400 ° C. for 1 minute to clean the surface of the aluminum plate. It was. Thereafter, a 10 wt% aqueous solution of ammonium adipate was placed in the electrolytic cell 101 shown in FIG. 4, the liquid temperature was set to 90 ° C., and an aluminum foil and a carbon plate serving as the cathode plate 102 were immersed therein. First, with the insulating plate 103 removed, an aluminum plate was used as an anode and a cathode plate 102 was used as a cathode, and a DC voltage of 22 V was applied for 20 minutes to form an insulator 31 having a thickness of 30 nm.

(比較例1)
比較例1では、R1とR2が平均値で0.11μm、活物質形成領域1および活物質未形成領域2の絶縁物12を膜厚として2.9nmとした、実施例1の正極極板10を正極極板10として用いた。なお、それ以外の構成は、実施例1と同様として、電池を組み立てた。
(Comparative Example 1)
In Comparative Example 1, the positive electrode plate 10 of Example 1 in which R1 and R2 are 0.11 μm on average and the thickness of the insulator 12 in the active material formation region 1 and the active material non-formation region 2 is 2.9 nm. Was used as the positive electrode plate 10. The remaining configuration was the same as in Example 1, and a battery was assembled.

(比較例2)
比較例2では、実施例4の正極極板10で、活物質形成領域1に加圧プレスを行わなかった極板を正極極板として用いた。なお、R1とR2が1.5μm、活物質形成領域1かつ活物質未形成領域2の絶縁物12を厚さが5nmとなる。それ以外の構成は、実施例1と同様として、電池を組み立てた。
(Comparative Example 2)
In Comparative Example 2, the positive electrode plate 10 of Example 4 that was not pressed in the active material forming region 1 was used as the positive electrode plate. Note that R1 and R2 are 1.5 μm, and the thickness of the insulator 12 in the active material formation region 1 and the active material non-formation region 2 is 5 nm. Otherwise, the battery was assembled in the same manner as in Example 1.

〈評価〉
実施例1から7、および比較例1と2で作製した電池を用い、その電池特性の評価を行った。評価は、20℃環境下で充電終止電圧を4.4Vとして、0.05Cで定電流充電を行い、放電終止電圧を2.5Vとして、0.2Cで定電流放電を3サイクル行った後、再度充電終止電圧を4.4Vとして、0.05Cで定電流充電を行い、活物質未形成領域2に1mm径の鉄製丸釘を、20℃の環境下で5mm/秒の速度で突き刺して内部短絡試験を行い、貫通箇所近傍における1秒後および20秒後の到達温度を測定することで行った。なお、実施例4および比較例2で作製した電池は、正極極板の活物質形成領域の1cmあたりの膜厚方向の抵抗も測定した。表1に、電池特性の評価結果を示す。
<Evaluation>
Using the batteries prepared in Examples 1 to 7 and Comparative Examples 1 and 2, the battery characteristics were evaluated. The evaluation was performed under a constant current charge at 0.05 C, a discharge end voltage of 2.5 V, and a constant current discharge at 0.2 C for 3 cycles under a 20 ° C. environment with a charge end voltage of 4.4 V. Once again, the end-of-charge voltage is set to 4.4 V, constant current charging is performed at 0.05 C, and a 1 mm diameter iron round nail is pierced at a rate of 5 mm / second in an environment where the active material is not formed 2 at a temperature of 20 ° C. A short-circuit test was performed, and the temperature reached after 1 second and 20 seconds in the vicinity of the penetration portion was measured. In addition, the battery produced in Example 4 and Comparative Example 2 also measured the resistance in the film thickness direction per 1 cm 2 of the active material formation region of the positive electrode plate. Table 1 shows the evaluation results of battery characteristics.

Figure 2008282799
Figure 2008282799

実施例1と比較例1の試験結果を比較すると、内部短絡試験時の実施例1での電池の温度が低いことがわかる。すなわち、活物質未形成領域2の絶縁物12の厚みより、活物質形成領域1の絶縁物12の厚みが大きくすることで、電池の温度上昇が抑えられ、安全性が改善されたことがわかる。   Comparing the test results of Example 1 and Comparative Example 1, it can be seen that the temperature of the battery in Example 1 during the internal short circuit test is low. That is, it can be seen that by increasing the thickness of the insulator 12 in the active material formation region 1 compared to the thickness of the insulator 12 in the active material non-formation region 2, the temperature rise of the battery is suppressed and the safety is improved. .

実施例1と実施例2及び実施例3の評価を比較すると、活物質未形成領域2に、膜厚が厚くかつ緻密な絶縁物12をエアロゾルデポジション法あるいは蒸着法により形成することで、さらに電池の温度上昇が抑えられ、安全性が改善されたことがわかる。なお、実施例2と実施例3の評価結果から、形成する絶縁物としては、酸化アルミニウムまたはフッ化アルミニウムの単独、または酸化アルミニウムとフッ化アルミニウムの混合体であっても同等の効果が得られるものと推測できる。   Comparing the evaluation of Example 1 with Example 2 and Example 3, it was found that the thick and dense insulator 12 was formed in the active material non-formed region 2 by the aerosol deposition method or the vapor deposition method. It can be seen that the temperature rise of the battery is suppressed and the safety is improved. From the evaluation results of Example 2 and Example 3, the same effect can be obtained even if the insulator to be formed is aluminum oxide or aluminum fluoride alone or a mixture of aluminum oxide and aluminum fluoride. I can guess it.

実施例2と実施例4の試験結果を比較すると、実施例4では活物質未形成領域2の算術平均粗さR2が活物質未形成領域2の算術平均粗さR1より大きくなるので、微小短絡により1秒後の温度上昇が大きくなった。しかし、少ないジュール熱で凸部部分が溶融されてオープンになるため、20秒後の温度は実施例2と同じとなり、実施例2と同様に安全が高まったことがわかる。なお、実施例4と比較例2の極板抵抗を比較すると、実施例4での極板抵抗が小さくなっている。これは、正極集電体11を加圧プレスすることによる効果であり、正極活物質13と正極集電体11との接触抵抗が低減され、安全性に加え低抵抗の極板となっていることがわかる。   When the test results of Example 2 and Example 4 are compared, in Example 4, the arithmetic average roughness R2 of the active material non-formation region 2 is larger than the arithmetic average roughness R1 of the active material non-formation region 2; As a result, the temperature increase after 1 second became large. However, since the convex part is melted and opened with a small Joule heat, the temperature after 20 seconds is the same as in Example 2, and it can be seen that the safety has increased as in Example 2. When the electrode plate resistances of Example 4 and Comparative Example 2 are compared, the electrode plate resistance in Example 4 is small. This is an effect obtained by press-pressing the positive electrode current collector 11. The contact resistance between the positive electrode active material 13 and the positive electrode current collector 11 is reduced, and the electrode plate has a low resistance in addition to safety. I understand that.

実施例4と実施例5の試験結果を比較すると、実施例5では算術平均粗さが実施例4より大きいので、実施例4より20秒後の温度が低くなり、溶断機能が実施例4よりも改善できることがわかる。   Comparing the test results of Example 4 and Example 5, in Example 5, the arithmetic average roughness is larger than Example 4, so the temperature after 20 seconds is lower than Example 4, and the fusing function is more than that of Example 4. Can also be improved.

実施例6と、実施例2および実施例5の試験結果を比較すると、実施例6の正極集電体11が実施例2と実施例5の構成が複合されているので、実施例2と4の電池より温度上昇が抑制できていることがわかる。   When the test results of Example 6 and Example 2 and Example 5 are compared, the configurations of Example 2 and Example 5 are combined in the positive electrode current collector 11 of Example 6, so that Examples 2 and 4 are combined. It can be seen that the temperature rise can be suppressed as compared with the battery.

実施例1と実施例7の評価を比較すると、実施例7の正極端子30の絶縁物31の厚みが実施例1の正極端子30の絶縁物31の厚みより厚くなっているので、温度上昇が抑制された安全な電池が得られたことがわかる。   Comparing the evaluation of Example 1 and Example 7, the thickness of the insulator 31 of the positive electrode terminal 30 of Example 7 is thicker than the thickness of the insulator 31 of the positive electrode terminal 30 of Example 1, so that the temperature rise It can be seen that a suppressed and safe battery was obtained.

以上より、本発明により開示した安全性の高い正極極板を用いることにより、より安全性が求められる充電終止電圧が4.4V以上5.0V以下の高エネルギー密度のリチウム二次電池を提供できる。   As described above, by using the positive electrode plate with high safety disclosed by the present invention, it is possible to provide a high energy density lithium secondary battery having a charge end voltage of 4.4 V or more and 5.0 V or less that is required to be more safe. .

本発明にかかる非水二次電池用電極およびその製造方法は、安全性の高い電極を得ることができるため、高容量で優れた安全性をもつリチウムイオン二次電池のみならず、電気化学キャパシタなど電気化学的メカニズムを利用するデバイス全般として有用である。   The electrode for a non-aqueous secondary battery and the method for producing the same according to the present invention can obtain a highly safe electrode, so that not only a lithium ion secondary battery having high capacity and excellent safety, but also an electrochemical capacitor It is useful as a device in general using an electrochemical mechanism.

本発明の実施の形態における内部電池の断面を示す模式図The schematic diagram which shows the cross section of the internal battery in embodiment of this invention 本発明の実施の形態における正極極板の断面の一例を示す模式図The schematic diagram which shows an example of the cross section of the positive electrode plate in embodiment of this invention 本発明の実施の形態における正極極板の断面の一例を示す模式図The schematic diagram which shows an example of the cross section of the positive electrode plate in embodiment of this invention 本発明の実施の形態における陽極酸化や電解エッチングに用いられる装置概 略図Schematic diagram of an apparatus used for anodization and electrolytic etching in an embodiment of the present invention 本発明の実施の形態におけるエアロゾルデポジション装置の概略図Schematic of an aerosol deposition apparatus in an embodiment of the present invention

符号の説明Explanation of symbols

1 活物質形成領域
2 活物質未形成領域
10 正極極板
11 正極集電体
12 絶縁物
13 正極活物質
20 負極極板
21 負極集電体
22 負極活物質
30 正極端子
31 絶縁物
40 負極端子
50 セパレータ
101 電解槽
102 陰極板
103 絶縁板
104 電源
201 ガスボンベ
202 ガス配送管
203 エアロゾル発生室
204 エアロゾル配送管
205 ノズル
206 基板ホルダー
207 構造物形成室
208 真空ポンプ
209 微粒子回収容器
210 吸引配管
DESCRIPTION OF SYMBOLS 1 Active material formation area | region 2 Active material non-formation area | region 10 Positive electrode plate 11 Positive electrode collector 12 Insulator 13 Positive electrode active material 20 Negative electrode plate 21 Negative electrode collector 22 Negative electrode active material 30 Positive electrode terminal 31 Insulator 40 Negative electrode terminal 50 Separator 101 Electrolytic cell 102 Cathode plate 103 Insulating plate 104 Power supply 201 Gas cylinder 202 Gas delivery pipe 203 Aerosol generation chamber 204 Aerosol delivery pipe 205 Nozzle 206 Substrate holder 207 Structure formation chamber 208 Vacuum pump 209 Fine particle collection container 210 Suction pipe

Claims (11)

集電体と、
前記集電体の上に設けられ、金属酸化物を含む絶縁物と、
電池の活物質とを有し、
前記集電体が、前記活物質が前記絶縁物の上に設けられる活物質形成領域と、前記活物質が前記絶縁物の上に設けられない活物質未形成領域とを有する非水二次電池用電極であって、前記活物質未形成領域における絶縁物の厚みが、前記活物質形成領域における絶縁物の厚み以上の厚みになるように構成される非水二次電池用電極。
A current collector,
An insulator provided on the current collector and including a metal oxide;
Battery active material,
The current collector includes an active material forming region in which the active material is provided on the insulator, and an active material non-forming region in which the active material is not provided on the insulator. An electrode for a non-aqueous secondary battery configured such that the thickness of the insulator in the active material non-formation region is equal to or greater than the thickness of the insulator in the active material formation region.
前記活物質未形成領域の絶縁物の厚みが、前記活物質形成領域の絶縁物の厚みより大きい場合、
前記活物質未形成領域の集電体の算術平均粗さが、
前記活物質形成領域の集電体の算術平均粗さ以上の粗さになるように構成される、
請求項1に記載の非水二次電池用電極。
When the thickness of the insulator in the active material unformed region is larger than the thickness of the insulator in the active material formed region,
Arithmetic average roughness of the current collector non-formation region current collector,
The active material forming region is configured to have a roughness equal to or higher than the arithmetic average roughness of the current collector,
The electrode for nonaqueous secondary batteries according to claim 1.
前記活物質未形成領域絶縁物の厚みが、
前記活物質形成領域の前記絶縁物の厚みと同じである場合、
前記活物質未形成領域の集電体の算術平均粗さが、
前記活物質形成領域の集電体の算術平均粗さより大きな粗さなるように構成される、
請求項1に記載の非水二次電池用電極。
The thickness of the active material unformed region insulator is
When the thickness of the insulator in the active material formation region is the same,
Arithmetic average roughness of the current collector non-formation region current collector,
The active material forming region is configured to have a roughness larger than the arithmetic average roughness of the current collector,
The electrode for nonaqueous secondary batteries according to claim 1.
前記活物質形成領域の集電体の算術平均粗さが、0.05μm以上2μm以下となるように、
前記活物質未形成領域の集電体の算術平均粗さが、3μm以下となるよう構成される、請求項2および3に記載の非水二次電池用電極。
The arithmetic mean roughness of the current collector in the active material formation region is 0.05 μm or more and 2 μm or less,
The electrode for non-aqueous secondary batteries according to claim 2 and 3, wherein the current collector in the active material non-formation region is configured to have an arithmetic average roughness of 3 µm or less.
前記活物質形成領域での絶縁物の厚みが、3nm以上14nm以下となるように構成される、
請求項1から4のいずれかに記載の非水二次電池用電極。
The thickness of the insulator in the active material formation region is configured to be 3 nm or more and 14 nm or less,
The electrode for nonaqueous secondary batteries in any one of Claim 1 to 4.
前記集電体が、アルミニウムを主成分とする箔である、
請求項1から5のいずれかに記載の非水二次電池用電極。
The current collector is a foil mainly composed of aluminum;
The electrode for nonaqueous secondary batteries in any one of Claim 1 to 5.
前記絶縁物が、アルミナを主成分とする酸化物である、
請求項1から6のいずれかに記載の非水二次電池用電極。
The insulator is an oxide mainly composed of alumina;
The electrode for nonaqueous secondary batteries according to any one of claims 1 to 6.
前記集電体に接続される端子が、前記活物質未形成領域の絶縁物の厚み以上の厚みの絶縁物を有する、
請求項1から7のいずれかに記載の非水二次電池用電極。
The terminal connected to the current collector has an insulator having a thickness greater than or equal to the thickness of the insulator in the active material non-formation region.
The electrode for nonaqueous secondary batteries in any one of Claim 1 to 7.
請求項1から8のいずれかに記載の非水二次電池用電極を用いて構成され、
充電終止電圧が、4.4V以上5.0V以下の電圧で設定される、
リチウム二次電池。
It is comprised using the electrode for nonaqueous secondary batteries in any one of Claim 1 to 8,
The end-of-charge voltage is set at a voltage not lower than 4.4V and not higher than 5.0V.
Lithium secondary battery.
前記活物質未形成領域の絶縁物が、
脆性材料微粒子を含むエアロゾルを低真空下で基板に吹き付け形成させるエアロゾルデポジション法によって形成される、
請求項1から9のいずれかに記載の非水二次電池用電極の製造方法。
The insulator in the active material non-formation region is
Formed by an aerosol deposition method in which an aerosol containing fine particles of brittle material is sprayed onto a substrate under a low vacuum,
The manufacturing method of the electrode for nonaqueous secondary batteries in any one of Claim 1 to 9.
前記集電体が、
前記集電体の表面を粗面化する工程と、
前記集電体の表面に絶縁物を形成する工程と、
前記活物質形成領域の前記集電体を加圧プレスにより算術平均粗さを小さくする工程とを含む工程により製造される、
請求項1から10のいずれかに記載の非水二次電池用電極の製造方法。
The current collector is
Roughening the surface of the current collector;
Forming an insulator on the surface of the current collector;
Manufactured by a process including a step of reducing the arithmetic average roughness of the current collector in the active material formation region by a pressure press,
The manufacturing method of the electrode for nonaqueous secondary batteries in any one of Claim 1 to 10.
JP2008069024A 2007-04-11 2008-03-18 Non-aqueous secondary battery electrode and manufacturing method thereof Pending JP2008282799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069024A JP2008282799A (en) 2007-04-11 2008-03-18 Non-aqueous secondary battery electrode and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007103623 2007-04-11
JP2008069024A JP2008282799A (en) 2007-04-11 2008-03-18 Non-aqueous secondary battery electrode and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008282799A true JP2008282799A (en) 2008-11-20

Family

ID=40143417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069024A Pending JP2008282799A (en) 2007-04-11 2008-03-18 Non-aqueous secondary battery electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008282799A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153262A (en) * 2008-12-25 2010-07-08 Nippon Zeon Co Ltd Electrode composition layer with support body and manufacturing method of electrode for electrochemical element
JP2016062738A (en) * 2014-09-17 2016-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2017183174A (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Metal foil, manufacturing method thereof, and current collector for power storage device
KR101878037B1 (en) * 2016-06-08 2018-07-16 현대자동차주식회사 Current interrupt device for battery
JP2020140808A (en) * 2019-02-27 2020-09-03 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery
US11024855B2 (en) 2013-07-01 2021-06-01 Envision Aesc Energy Devices Ltd. Electrode for use in a nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell
WO2023085895A1 (en) * 2021-11-15 2023-05-19 주식회사 엘지에너지솔루션 Electrode and electrode manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153262A (en) * 2008-12-25 2010-07-08 Nippon Zeon Co Ltd Electrode composition layer with support body and manufacturing method of electrode for electrochemical element
US11024855B2 (en) 2013-07-01 2021-06-01 Envision Aesc Energy Devices Ltd. Electrode for use in a nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell
JP2016062738A (en) * 2014-09-17 2016-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2017183174A (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Metal foil, manufacturing method thereof, and current collector for power storage device
KR101878037B1 (en) * 2016-06-08 2018-07-16 현대자동차주식회사 Current interrupt device for battery
JP2020140808A (en) * 2019-02-27 2020-09-03 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery
JP7151036B2 (en) 2019-02-27 2022-10-12 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery
WO2023085895A1 (en) * 2021-11-15 2023-05-19 주식회사 엘지에너지솔루션 Electrode and electrode manufacturing method
JP2024521830A (en) * 2021-11-15 2024-06-04 エルジー エナジー ソリューション リミテッド Electrode and method for producing the same

Similar Documents

Publication Publication Date Title
JP4563503B2 (en) Nonaqueous electrolyte secondary battery
JP2008282797A (en) Non-aqueous secondary battery current collector and method for producing the same
CN101232090B (en) Cathode for lithium ion secondary battery and lithium ion secondary battery
JP5604468B2 (en) Aluminum base material for current collector, current collector, positive electrode, negative electrode, and secondary battery
JP5231557B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5334156B2 (en) Method for producing non-aqueous electrolyte secondary battery
US9831500B2 (en) Porous electrode active material and secondary battery including the same
JP5590381B2 (en) Lithium ion secondary battery
KR20190039425A (en) Lithium ion secondary battery and manufacturing method thereof
JP2010165471A (en) Lithium secondary battery
CN102077404A (en) Lithium ion secondary cell
KR20160141676A (en) Lithium ion secondary battery
WO2022000308A1 (en) Bipolar current collector, electrochemical device, and electronic device
JP5194483B2 (en) Non-aqueous electrolyte secondary battery silicon negative electrode current collector, non-aqueous electrolyte secondary battery silicon negative electrode and method for producing the same, and non-aqueous electrolyte secondary battery
JP2008282799A (en) Non-aqueous secondary battery electrode and manufacturing method thereof
JP6862752B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this
JP2009266737A (en) Lithium ion secondary battery and its manufacturing method
JP2015011969A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
CN113597696A (en) Negative electrode sheet, electrochemical device, and electronic device
JP2015195195A (en) Nonaqueous electrolyte secondary battery
JP2002231224A (en) Lithium secondary battery electrode, its manufacturing method, and lithium secondary battery
JP2009301825A (en) Nonaqueous electrolyte secondary battery and electrode used for the same, and method of manufacturing them
JPH11204145A (en) Lithium secondary battery
JP2005259682A (en) Non-aqueous electrolyte secondary battery current collector, electrode plate for non-aqueous electrolyte secondary battery using the same, and method for producing electrode plate for non-aqueous electrolyte secondary battery
JP5880942B2 (en) Non-aqueous electrolyte secondary battery