[go: up one dir, main page]

JP2005259682A - Non-aqueous electrolyte secondary battery current collector, electrode plate for non-aqueous electrolyte secondary battery using the same, and method for producing electrode plate for non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery current collector, electrode plate for non-aqueous electrolyte secondary battery using the same, and method for producing electrode plate for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005259682A
JP2005259682A JP2005008795A JP2005008795A JP2005259682A JP 2005259682 A JP2005259682 A JP 2005259682A JP 2005008795 A JP2005008795 A JP 2005008795A JP 2005008795 A JP2005008795 A JP 2005008795A JP 2005259682 A JP2005259682 A JP 2005259682A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
electrode plate
current collector
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005008795A
Other languages
Japanese (ja)
Inventor
Hideaki Fujita
秀明 藤田
Yutaka Wakai
豊 若井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005008795A priority Critical patent/JP2005259682A/en
Publication of JP2005259682A publication Critical patent/JP2005259682A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】アルカリ性ペーストによる極板の腐食反応を抑制し、均一な合剤層を有し、電池特性に優れた非水電解質二次電池用集電体およびそれを用いた非水電解質二次電池用極板ならびに非水電解質二次電池用極板の製造方法を提供し、非水電解質二次電池の抵抗低減などの特性向上や安定化を達成する。
【解決手段】非水電解質二次電池用集電体7として、表面に耐電圧が2.1V以上の酸化物層8を備えた集電体であって、該集電体はアルミニウムからなり、表面にアルミニウム酸化物層を有することが好ましい。
【選択図】図2
A current collector for a non-aqueous electrolyte secondary battery that suppresses the corrosion reaction of an electrode plate caused by an alkaline paste, has a uniform mixture layer, and has excellent battery characteristics, and a non-aqueous electrolyte secondary battery using the same The manufacturing method of the electrode plate for a nonaqueous electrolyte and a nonaqueous electrolyte secondary battery is provided, and the characteristic improvement, such as resistance reduction of a nonaqueous electrolyte secondary battery, and stabilization are achieved.
A current collector having a surface with an oxide layer having a withstand voltage of 2.1 V or more as a current collector for a non-aqueous electrolyte secondary battery, the current collector being made of aluminum, It is preferable to have an aluminum oxide layer on the surface.
[Selection] Figure 2

Description

本発明は、非水電解質二次電池の正極の製造方法に関するものである。   The present invention relates to a method for producing a positive electrode of a nonaqueous electrolyte secondary battery.

近年、電子機器の小型化、軽量化が急速に進んでおり、その電源としての電池に対しても小型、軽量化、さらに高容量化の要望が高まっており、高エネルギー密度のリチウム二次電池が盛んに研究開発され、実用化に至っている。   In recent years, electronic devices are rapidly becoming smaller and lighter, and there is an increasing demand for smaller, lighter, and higher capacity batteries as a power source. High energy density lithium secondary batteries Has been actively researched and developed, and has been put to practical use.

また、これら小型民生用途のみならず、電力貯蔵用や電気自動車用など大容量の大型電池への技術展開も加速してきており、特にハイブリッド電気自動車(HEV)用リチウムイオン二次電池の開発も急速に進められている。さらに、電動工具の駆動用電源など非常に高出力が求められる電池においても従来のニカド電池、ニッケル水素電池に代わって、高出力タイプのリチウムイオン二次電池の開発が急がれている。   In addition to these small-sized consumer applications, technology development for large-capacity large-sized batteries such as for power storage and electric vehicles has been accelerated. In particular, the development of lithium-ion secondary batteries for hybrid electric vehicles (HEV) has been rapidly progressing. It is advanced to. Furthermore, even for batteries that require a very high output such as a power source for driving an electric tool, development of a high-output type lithium ion secondary battery is urgently replacing the conventional nickel-cadmium battery and nickel-metal hydride battery.

ここで、HEV用リチウムイオン二次電池では、その用途、要求性能が小型民生用途のものとは大きく異なり、限られた容量で瞬時にエンジンのパワーアシストあるいは回生を行う必要があり、高いレベルの入出力特性が求められる。そのため電池としては内部抵抗を極力最小にする必要があり、そのために活物質や電解液の開発のみならず、電極集電構造の見直しなど電池構造部品抵抗の低減や電極の薄型長尺化による電極反応面積の増加などにより大幅な高出入力化が図られている。   Here, the lithium ion secondary battery for HEV is greatly different in use and required performance from those of small consumer applications, and it is necessary to perform engine power assist or regeneration instantly with a limited capacity. Input / output characteristics are required. Therefore, it is necessary for the battery to minimize internal resistance as much as possible. Therefore, not only the development of active materials and electrolytes, but also the electrode by reducing the resistance of battery structural parts such as reviewing the electrode current collection structure and making the electrodes thinner and longer Significantly higher input / output is achieved by increasing the reaction area.

また、小型電池ではリチウムコバルト複合酸化物を正極活物質にしたものが普及しているが、HEV用リチウムイオン二次電池の正極活物質としてはコバルト系と比較して安価であるリチウムニッケル複合酸化物が有力視されている。
特開平11−162470号公報
In addition, a small battery using a lithium cobalt composite oxide as a positive electrode active material is widely used. However, as a positive electrode active material for a lithium ion secondary battery for HEV, a lithium nickel composite oxide is cheaper than a cobalt-based material. Things are seen as promising.
JP 11-162470 A

さらなる高性能化、低コスト化が求められているHEV用リチウム二次電池において、ペースト作製のための溶媒に水を用いると有機溶媒と比較して材料費さらには製造設備費を格段に安くすることが可能となり、電池の低コスト化に貢献することが可能となるが、芯材上に塗布された合剤層の重量や厚みが不均一であった場合、充放電反応の不均一化による電池抵抗の増加、あるいは寿命特性が悪化するなど、合剤層の重量や厚みの均一化は電池特性の向上、安定化を達成する上で極めて重要な要素になる。   In a lithium secondary battery for HEV that is required to have higher performance and lower cost, if water is used as a solvent for paste preparation, material costs and manufacturing equipment costs are significantly reduced compared to organic solvents. It becomes possible to contribute to lowering the cost of the battery, but if the weight and thickness of the mixture layer applied on the core material is not uniform, the charge / discharge reaction is not uniform. Uniformity of the weight and thickness of the mixture layer, such as an increase in battery resistance or deterioration in life characteristics, is an extremely important factor in achieving improvement and stabilization of battery characteristics.

また電池の高性能化、低コスト化のためリチウムニッケル複合酸化物を適用した電池開発が盛んに行われているが、このリチウムニッケル複合酸化物と安価な水を溶媒として作製した合剤ペーストはpHが12程度と非常に強いアルカリ性を示し、このペーストを集電体上に塗布した場合、アルカリによる集電体の腐食反応が生じる。   Battery development using lithium-nickel composite oxide has been actively conducted to improve battery performance and cost. However, a mixture paste prepared using this lithium-nickel composite oxide and inexpensive water as a solvent is used. When the pH is about 12 and shows very strong alkalinity, and this paste is applied on the current collector, corrosion reaction of the current collector due to alkali occurs.

ここで集電体であるアルミ箔表面には薄い初期酸化膜層が存在し、この酸化膜はアルカリによる純アルミ素地への侵食作用を防御する作用があるが、通常は酸化膜厚が薄いために浸食が進み、このようなアルカリ域においては防御作用が小さく、初期酸化膜層の下部にあるアルミ素地とアルカリ性ペーストの接触が起こると、一気に腐食反応が進行し、塗工乾燥過程での脱水反応による新たな酸化物層の生成と水素ガスの発生が生じる。   Here, a thin initial oxide film layer exists on the surface of the current collector aluminum foil, and this oxide film protects against the erosion of the pure aluminum substrate by alkali, but usually the oxide film thickness is thin. In such an alkaline area, the protective action is small, and when the aluminum substrate under the initial oxide film layer comes into contact with the alkaline paste, the corrosion reaction proceeds at once, and the dehydration during the coating drying process A new oxide layer and hydrogen gas are generated by the reaction.

そして、水素ガスの発泡により、乾燥過程において合剤中に空洞が生じる現象が起こり、集電体上の合剤層の疎密化が生じ、合剤塗工密度の低下、電池抵抗の上昇、あるいはサイクル寿命特性が悪化などの問題が生じる。   Then, due to the foaming of hydrogen gas, a phenomenon that cavities occur in the mixture during the drying process occurs, the mixture layer on the current collector becomes densified, the mixture coating density decreases, the battery resistance increases, or Problems such as deterioration in cycle life characteristics occur.

特許文献1には、合剤とアルミ箔との接着性を向上させるためアルミ箔表面を粗面化させ、さらには電池の充放電における集電体の安定化を図るため表面に耐電圧が0.5〜2.0Vとなる酸化膜を形成させることが示されているが、アルミ表面酸化膜が腐食反応に対する抵抗となるものの、上記酸化膜ではpH10以上のアルカリ性ペーストの塗工工程において腐食反応を抑制するには至らず、結局合剤密度の低下を引き起こす。   In Patent Document 1, the surface of the aluminum foil is roughened in order to improve the adhesion between the mixture and the aluminum foil, and further, the withstand voltage is zero on the surface in order to stabilize the current collector in charge / discharge of the battery. Although it is shown that an oxide film having a thickness of 5 to 2.0 V is formed, the aluminum surface oxide film is resistant to the corrosion reaction. However, in the oxide film, the corrosion reaction is performed in the coating process of an alkaline paste having a pH of 10 or more. It does not lead to suppression, and eventually causes a decrease in the mixture density.

したがって本発明では、このような集電体の腐食反応を抑制し、合剤層厚みの均一化を図ることにより、リチウム二次電池の抵抗低減など、電池特性を向上させることが可能となるリチウム二次電池用正極を提供するものである。   Therefore, in the present invention, by suppressing such a corrosion reaction of the current collector and making the mixture layer thickness uniform, it is possible to improve the battery characteristics such as reducing the resistance of the lithium secondary battery. A positive electrode for a secondary battery is provided.

本発明は、表面に耐電圧が2.1V以上の酸化物層を備えた非水電解質二次電池用集電体であって、集電体表面の酸化膜付与により集電体素地の腐食反応を抑制することができ、その結果均一な合剤層が得られ、良好な電池特性を得ることができる。   The present invention relates to a current collector for a non-aqueous electrolyte secondary battery having an oxide layer with a withstand voltage of 2.1 V or more on the surface, and the corrosion reaction of the current collector base by providing an oxide film on the current collector surface As a result, a uniform mixture layer can be obtained and good battery characteristics can be obtained.

本発明は、アルカリ性ペーストによる腐食反応を抑制し、均一な合剤層を有し、特性に優れたリチウム二次電池用正極板およびその製造方法を提供するものであり、リチウム二次電池の特性向上、安定化を達成することができるという効果を奏する。   The present invention provides a positive electrode plate for a lithium secondary battery that suppresses a corrosion reaction due to an alkaline paste, has a uniform mixture layer, and has excellent characteristics, and a method for producing the same. There is an effect that improvement and stabilization can be achieved.

本発明は、表面に耐電圧が2.1V以上の酸化物層を備えた非水電解質二次電池用集電体であって、集電体表面の酸化膜付与により集電体素地の腐食反応を抑制することができ、その結果均一な合剤層が得られ、良好な電池特性を得ることができる。   The present invention relates to a current collector for a non-aqueous electrolyte secondary battery having an oxide layer with a withstand voltage of 2.1 V or more on the surface, and the corrosion reaction of the current collector base by providing an oxide film on the current collector surface As a result, a uniform mixture layer can be obtained and good battery characteristics can be obtained.

さらに、本発明の集電体の耐電圧は3.0V以下であることが好ましい。これは、集電体表面の酸化膜耐電圧が2.1V未満の場合には酸化膜厚が不十分であり、pH10以上のアルカリ性ペーストでは腐食反応によって合剤の疎密化、合剤塗工密度の低下、さらには集電体素地の腐食反応による新規酸化膜形成などの要因で極板の抵抗が上昇し、電池抵抗が増加するためである。一方、酸化膜耐電圧が3.0Vを超えると初期酸化膜厚が厚いため、腐食防御作用は高いが、この初期酸化膜厚のために極板としての抵抗が高くなり、電池特性に逆に悪影響を及ぼすためである。   Furthermore, the withstand voltage of the current collector of the present invention is preferably 3.0 V or less. This is because when the oxide film withstand voltage on the current collector surface is less than 2.1 V, the oxide film thickness is insufficient. In an alkaline paste having a pH of 10 or more, the density of the mixture is reduced due to the corrosion reaction and the mixture coating density. This is because the resistance of the electrode plate increases due to a decrease in the resistance, and the formation of a new oxide film due to the corrosion reaction of the current collector substrate, and the battery resistance increases. On the other hand, when the withstand voltage of the oxide film exceeds 3.0 V, the initial oxide film thickness is thick, so the corrosion protection action is high. However, this initial oxide film thickness increases the resistance as an electrode plate, which is contrary to the battery characteristics. This is to have an adverse effect.

また、本発明の非水電解質用二次電池用集電体は、表面にアルミニウム酸化物層を有するアルミニウムからなり、さらにアルミニウムの引っ張り強度は50N/mm2以上であることが好ましい。 In addition, the current collector for a secondary battery for nonaqueous electrolyte of the present invention is preferably made of aluminum having an aluminum oxide layer on the surface, and the tensile strength of aluminum is preferably 50 N / mm 2 or more.

また、本発明の非水電解質二次電池用極板の製造方法は、集電体表面に耐電圧が2.1V以上の酸化物層を形成する工程と、アルカリ性ペーストを集電体に塗布して極板を形成する工程と、極板を乾燥させる工程とを有し、アルカリによる集電体の腐食反応の抑制が可能となり、均一な合剤層が得られる極板を提供することが可能となる。   The method for producing a non-aqueous electrolyte secondary battery electrode plate according to the present invention includes a step of forming an oxide layer having a withstand voltage of 2.1 V or more on the surface of the current collector, and applying an alkaline paste to the current collector. The electrode plate is formed, and the electrode plate is dried. The corrosion reaction of the current collector due to alkali can be suppressed, and an electrode plate with a uniform mixture layer can be provided. It becomes.

さらに、本発明の非水電解質二次電池用極板の製造方法において、アルカリ性ペーストのpHが10以上であり、集電体が表面にアルミニウム酸化物層を有するアルミニウムからなり、このようなアルカリ域においてさらに上記の効果を発揮しうる。   Furthermore, in the method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to the present invention, the alkaline paste has a pH of 10 or more, and the current collector is made of aluminum having an aluminum oxide layer on its surface. In addition, the above-described effects can be exhibited.

また、アルミニウムの引っ張り強度が50N/mm2以上であることが好ましい。 Moreover, it is preferable that the tensile strength of aluminum is 50 N / mm 2 or more.

なお酸化物層としては、アルミニウム、ケイ素、チタニウムなどの酸化物層を用いることができる。また、酸化膜層を得るためには、熱処理方法、陽極酸化法、スパッタ法、蒸着法、CVD、UVオゾン照射法、酸素プラズマ処理方法、コロナ処理方法、塗工、プリントなどを挙げることができる。また、熱処理での温度と時間によって表面酸化膜厚は変化するが、温度、時間によってアルミ箔は焼鈍によって強度低下が生じ、極端な強度低下は製造時の設備通し時にアルミ箔のしわ、よれなどの問題を引き起こす可能性があるため、引っ張り強度が50N/mm2以上であるアルミニウム箔を用いることが望ましい。 As the oxide layer, an oxide layer of aluminum, silicon, titanium, or the like can be used. In order to obtain an oxide film layer, a heat treatment method, an anodic oxidation method, a sputtering method, a vapor deposition method, a CVD, a UV ozone irradiation method, an oxygen plasma treatment method, a corona treatment method, coating, printing, and the like can be exemplified. . In addition, the surface oxide film thickness varies depending on the temperature and time in the heat treatment, but the strength of the aluminum foil is reduced by annealing depending on the temperature and time. Therefore, it is desirable to use an aluminum foil having a tensile strength of 50 N / mm 2 or more.

また本発明は、表面に耐電圧が2.1V以上の酸化物層を備えたシート状の集電体の両面にリチウムニッケル複合酸化物を含む合剤層を有した非水電解質二次電池用極板であって、前記極板の一方における合剤層の最大厚みをA、最小厚みをBとした場合の第一の厚み比率B/A、極板の他方における合剤層の最大厚みをC、最小厚みをDとした場合の第二の厚み比率D/Cがいずれも0.5以上であり、電池の特性向上、安定化を奏することができる。   The present invention also provides a nonaqueous electrolyte secondary battery having a mixture layer containing a lithium nickel composite oxide on both surfaces of a sheet-like current collector having an oxide layer having a withstand voltage of 2.1 V or more on the surface. A first thickness ratio B / A when the maximum thickness of the mixture layer on one of the electrode plates is A and the minimum thickness is B, and the maximum thickness of the mixture layer on the other of the electrode plates C and the second thickness ratio D / C when the minimum thickness is D are both 0.5 or more, and the battery characteristics can be improved and stabilized.

また、合剤層が水を溶媒として塗布されるものであって、強アルカリ性での塗工においても集電体が腐食されることなく、電池の特性向上を達成することができる。   In addition, the mixture layer is applied using water as a solvent, and the battery characteristics can be improved without corrosion of the current collector even in application with strong alkalinity.

以下、本発明を、図面を参照しながら説明する。   Hereinafter, the present invention will be described with reference to the drawings.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は腐食反応が進行した場合の合剤塗工後正極断面の模式図である。このように腐食進行による水素ガスの発泡によって合剤中に空洞9が生じ、塗工密度が低下する。また合剤と集電体界面には腐食による新たな酸化膜層8の形成が起こり、これらの要因によって極板抵抗が増加する。   FIG. 1 is a schematic diagram of a cross section of a positive electrode after coating with a mixture when a corrosion reaction has progressed. Thus, voids 9 are generated in the mixture due to foaming of hydrogen gas due to the progress of corrosion, and the coating density is lowered. Further, a new oxide film layer 8 is formed due to corrosion at the interface between the mixture and the current collector, and the electrode plate resistance increases due to these factors.

図2は本発明の極板断面の模式図であり、表面に一定厚みの酸化膜をあらかじめ付与したアルミ箔上に合剤を塗工したものである。このように本発明の正極では付与した酸化膜によって腐食反応抑制効果があり合剤中の空洞が生じず、より均一な合剤層を得ることができる。なお、付与した酸化膜はアルカリによって浸食作用を受けるが集電体素地にペーストが到達しないため新規酸化膜が腐食によって生成されない。   FIG. 2 is a schematic view of a cross section of the electrode plate of the present invention, in which a mixture is applied on an aluminum foil having a surface with an oxide film having a certain thickness provided in advance. As described above, in the positive electrode of the present invention, the applied oxide film has an effect of suppressing the corrosion reaction, and voids in the mixture are not generated, and a more uniform mixture layer can be obtained. Although the applied oxide film is eroded by alkali, the paste does not reach the current collector base, so that a new oxide film is not generated by corrosion.

図3に非水電解質二次電池用極板断面の模式図を示す。本発明は図1に示されるように極板の一方の合剤層における最大厚みをA、最小厚みをBとした場合のそれら比率B/A、極板の他方における合剤層の最大厚みをC、最小厚みをDとした場合の第二の厚み比率D/Cがいずれも0.5以上である極板を用いることで充放電反応の均一化が図られ、非水電解質二次電池の特性向上、安定化を達成することが可能となる。   FIG. 3 shows a schematic diagram of a cross section of the electrode plate for a non-aqueous electrolyte secondary battery. In the present invention, as shown in FIG. 1, the maximum thickness in one mixture layer of the electrode plate is A, the ratio B / A when the minimum thickness is B, the maximum thickness of the mixture layer in the other electrode plate. C, the use of an electrode plate having a second thickness ratio D / C where the minimum thickness is D is 0.5 or more, the charge / discharge reaction is made uniform, and the non-aqueous electrolyte secondary battery It is possible to achieve improved characteristics and stabilization.

なお、本実施の形態においては極板の他方の合剤層における最大厚みC、最小厚みDの比率D/Cの具体的な数値については省略するが、本発明の特徴を満たすものであり、本発明を妨げるものではない。また、厚みの測定に際し合剤層中に空洞を有する場合には、空洞部分を除いた部分で厚みを測定するものとする。   In the present embodiment, the specific value of the ratio D / C of the maximum thickness C and the minimum thickness D in the other mixture layer of the electrode plate is omitted, but satisfies the characteristics of the present invention. This does not hinder the present invention. In addition, when the mixture layer has a cavity when measuring the thickness, the thickness is measured at a portion excluding the cavity portion.

図4は本発明の極板を用いて作製したリチウム二次電池の断面図であり、正極、負極、セパレータ、非水電解液、そしてその他部材から構成される。以下、各要素について詳しく説明する。   FIG. 4 is a cross-sectional view of a lithium secondary battery produced using the electrode plate of the present invention, and is composed of a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte, and other members. Hereinafter, each element will be described in detail.

正極は集電体であるアルミ箔上に正極活物質、導電材および結着剤などの正極合剤層によって構成されている。まず正極活物質、導電材、結着剤さらには粘度調整等の目的で溶媒を混練して正極合剤ペーストを作製し、その正極合剤ペーストを、アルミニウム箔の集電体に塗布、乾燥させる。その後必要に応じてプレス、スリット加工することにより所定の寸法に加工し、シート状の正極を作製する。   The positive electrode is composed of a positive electrode mixture layer such as a positive electrode active material, a conductive material and a binder on an aluminum foil as a current collector. First, a positive electrode active material, a conductive material, a binder, and a solvent are kneaded for the purpose of adjusting viscosity to produce a positive electrode mixture paste, and the positive electrode mixture paste is applied to an aluminum foil current collector and dried. . Thereafter, the sheet is processed into a predetermined size by pressing and slitting as necessary to produce a sheet-like positive electrode.

正極活物質にはLiCoO2、LiNiO2、Li2MnO4などのリチウム金属複合酸化物が使用されるが、上記Co、NiまたはMnの一部をさらにCo、Mn、Al等で置換したもの、Liで置換したものなど、他元素置換タイプのものをも使用することが可能であり、これら正極活物質はリチウムを吸蔵、放出可能であって、充放電反応が可能である活物質であれば上記に限定されるものではない。ただし、特にLiNiO2系を活物質として用い、水を溶媒としてペーストを作製すると、LiOHの溶出が強く、この合剤ペーストはpH12程度の強いアルカリ性を示すため、特にこの活物質を使用した場合に効果を発揮する。 Lithium metal composite oxides such as LiCoO 2 , LiNiO 2 , Li 2 MnO 4 are used for the positive electrode active material, but a part of the above Co, Ni or Mn is further substituted with Co, Mn, Al, etc. Other element substitution types such as those substituted with Li can also be used, and these positive electrode active materials can be used as long as they are active materials capable of occluding and releasing lithium and capable of charge / discharge reactions. It is not limited to the above. However, particularly when LiNiO 2 system is used as an active material and a paste is prepared using water as a solvent, the elution of LiOH is strong, and this mixture paste exhibits a strong alkalinity of about pH 12. Therefore, particularly when this active material is used. Demonstrate the effect.

また、導電材は正極合剤の充放電反応を効率的に行うために電気伝導性を高めるためのものであり、例えば、アセチレンブラック、ケッチェンブラック、または黒鉛等の炭素材料を単体、もしくは複合して用いることができる。   In addition, the conductive material is for enhancing electrical conductivity in order to efficiently perform the charge / discharge reaction of the positive electrode mixture. For example, a carbon material such as acetylene black, ketjen black, or graphite is used alone or in combination. Can be used.

また、結着剤は合剤同士の接着、および合剤と芯材の間の接着機能を持たせるものであり、例えば、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVdF)などを用いる。水を溶媒とする場合にはPTFEの水溶性ディスパージョンが特に用いられる。増粘剤としては例えばカルボキシメチルセルロース等の水溶性高分子を用いることができる。   In addition, the binder has a bonding function between the mixture and an adhesion function between the mixture and the core material. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or the like is used. When water is used as a solvent, a water-soluble dispersion of PTFE is particularly used. As the thickener, for example, a water-soluble polymer such as carboxymethyl cellulose can be used.

また、これらの材料を混練して合剤ペーストを作製するが、合剤混合比は電池の使用適性に応じて任意に調整することが可能である。   In addition, a mixture paste is prepared by kneading these materials, and the mixture mixture ratio can be arbitrarily adjusted according to the suitability of the battery.

一方、負極は集電体である銅箔上に負極活物質と結着剤などの負極合剤層によって構成されており、正極と同様に合剤ペーストを作製し、その合剤ペーストを銅箔に塗布、乾燥させ、その後必要に応じてプレス、スリット加工することにより所定の寸法に加工し、シート状の負極を得る。   On the other hand, the negative electrode is composed of a negative electrode active material and a negative electrode mixture layer such as a binder on a copper foil as a current collector, and a mixture paste is prepared in the same manner as the positive electrode. Then, it is processed into a predetermined size by pressing and slitting as necessary to obtain a sheet-like negative electrode.

負極活物質にはリチウムイオンを吸蔵、放出可能な材料が用いられ、例えば、天然黒鉛、人造黒鉛、コークス等の炭素材料を用いることができる。金属リチウムを用いることも可能であるが充放電効率が悪いなどの問題がある。結着剤としては、PVdFやスチレンブタジエンゴム(SBR)等を用い、これら活物質および結着剤を分散させる溶媒にはN−メチル−2−ピロリドン(NMP)等の有機溶媒もしくは水を用いることができる。   As the negative electrode active material, a material capable of inserting and extracting lithium ions is used. For example, a carbon material such as natural graphite, artificial graphite, or coke can be used. Although metallic lithium can be used, there are problems such as poor charge / discharge efficiency. As the binder, PVdF, styrene butadiene rubber (SBR) or the like is used, and an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water is used as a solvent for dispersing these active materials and the binder. Can do.

セパレータは正極と負極間の絶縁、さらには電解液を保持するなどの機能を持つものであり、このセパレータにはポリエチレン、ポリプロピレン、あるいはそれら積層品等の薄い微多孔膜を用いることができ、その必要機能を得るものであればこれらに限定されるものではない。   The separator has a function of insulating between the positive electrode and the negative electrode and further holding an electrolyte solution, and the separator can be a thin microporous film such as polyethylene, polypropylene, or a laminate thereof. The present invention is not limited to these as long as the necessary functions are obtained.

電解液はリチウム塩を有機溶媒に溶解したものであり、有機溶媒としては、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネートなどの単独もしくは混合系を用いる。また、リチウム塩としては、LiPF6、LiBF4 、LiClO4等を用いることができる。 The electrolytic solution is obtained by dissolving a lithium salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. A mixed system is used. As the lithium salt, LiPF 6 , LiBF 4 , LiClO 4 or the like can be used.

以上のように構成されるリチウム二次電池であるが、その形状は円筒型、角型、あるいは積層型などのいずれの形状であってもよく、正極および負極をセパレータを介して積層させて電極群を作製し、正極集電体および負極集電体に外部への集電端子を接続して、電池外装ケースに挿入し、電解液を注入し、密閉して電池を作製する。   Although it is a lithium secondary battery comprised as mentioned above, the shape may be any shape, such as a cylindrical shape, a square shape, or a laminated type, and an electrode is formed by laminating a positive electrode and a negative electrode via a separator. A group is prepared, a current collector terminal to the outside is connected to the positive electrode current collector and the negative electrode current collector, inserted into a battery outer case, an electrolyte is injected, and the battery is sealed to produce a battery.

本発明のより具体的な実施の形態として、種々の極板を用いて作製した17500型円筒電池について以下説明する。   As a more specific embodiment of the present invention, a 17500 type cylindrical battery manufactured using various electrode plates will be described below.

(実施例1)
NiSO4水溶液に、所定比率のCoおよびAlの硫酸塩を加え、飽和水溶液を調製し、この飽和水溶液を撹拌しながら水酸化ナトリウムを溶解したアルカリ溶液をゆっくりと滴下し中和することによって三元系の水酸化ニッケルNi0.7Co0.2Al0.1(OH)2の沈殿物を共沈法により生成させた。この沈殿物をろ過、水洗し、80℃で乾燥を行った。得られた水酸化ニッケルは平均粒径約10μmであった。
(Example 1)
A ternary solution is prepared by adding a predetermined ratio of Co and Al sulfate to an aqueous NiSO 4 solution to prepare a saturated aqueous solution, and slowly dropping and neutralizing an alkaline solution in which sodium hydroxide is dissolved while stirring the saturated aqueous solution. A precipitate of nickel hydroxide Ni 0.7 Co 0.2 Al 0.1 (OH) 2 was produced by coprecipitation. The precipitate was filtered, washed with water, and dried at 80 ° C. The obtained nickel hydroxide had an average particle size of about 10 μm.

その後、得られたNi0.7Co0.2Al0.1(OH)2を大気中900℃で10時間の熱処理を行い、酸化ニッケルNi0.7Co0.2Al0.1Oを得た。得られた酸化ニッケルは粉末X線回折により単一相の酸化ニッケルであることを確認した。そして、Ni、Co、Alの原子数の和とLiの原子数が等量になるように水酸化リチウム1水和物を加え、乾燥空気中800℃で10時間の熱処理を行うことにより、組成式LiNi0.7Co0.2Al0.12で表されるリチウムニッケル複合酸化物を正極活物質として得た。 Thereafter, the obtained Ni 0.7 Co 0.2 Al 0.1 (OH) 2 was heat-treated in the atmosphere at 900 ° C. for 10 hours to obtain nickel oxide Ni 0.7 Co 0.2 Al 0.1 O. The obtained nickel oxide was confirmed to be single phase nickel oxide by powder X-ray diffraction. Then, lithium hydroxide monohydrate is added so that the sum of the number of atoms of Ni, Co, and Al and the number of atoms of Li are equal, and a heat treatment is performed at 800 ° C. for 10 hours in dry air. A lithium nickel composite oxide represented by the formula LiNi 0.7 Co 0.2 Al 0.1 O 2 was obtained as a positive electrode active material.

なお、得られたリチウムニッケル複合酸化物は粉末X線回折により単一相の六方晶層状構造であると共に、CoおよびAlが固溶していることを確認した。そして粉砕、分級の処理を経て正極活物質粉末とした。平均粒径9.5μm、BET法による比表面積は0.4m2/gであった。 The obtained lithium nickel composite oxide was confirmed by powder X-ray diffraction to have a single-phase hexagonal layered structure, and Co and Al were dissolved. Then, a positive electrode active material powder was obtained through pulverization and classification. The average particle size was 9.5 μm, and the specific surface area by the BET method was 0.4 m 2 / g.

導電剤にはアセチレンブラック、結着剤としてはPTFE水溶性ディスパージョン液、増粘剤としてCMCを用い、これら活物質、導電剤、結着剤、増粘剤とを固形分比率で88:9:2:1重量%の配合比で調整し、さらに水を溶媒として上記固形分重量比に対し75%混練して正極合剤ペーストを作製した。作製したペーストのpHを20℃の環境下にてpHメーター(HORIBA製F−22II)により測定した結果、pH11.9の強いアルカリ性を示した。   Acetylene black is used as the conductive agent, PTFE water-soluble dispersion liquid is used as the binder, and CMC is used as the thickener. These active materials, conductive agent, binder, and thickener are in a solid content ratio of 88: 9. The mixture was adjusted to a mixing ratio of 2: 1% by weight, and 75% of the solid content was mixed with water as a solvent to prepare a positive electrode mixture paste. As a result of measuring the pH of the prepared paste with a pH meter (F-22II manufactured by HORIBA) in an environment of 20 ° C., it showed strong alkalinity of pH 11.9.

アルミ箔表面に酸化膜を形成するために本実施例ではアルミ箔の熱処理を実施した。アルミ箔基材には合金1N30、調質H18、厚み20μmのアルミ箔を使用した。このアルミ箔を乾燥炉で大気雰囲気中にて250℃で15時間熱処理したアルミ箔を正極集電体として使用した。なお、その酸化膜厚みを示す表面酸化膜耐電圧の測定方法については後述する。   In this embodiment, heat treatment of the aluminum foil was performed in order to form an oxide film on the surface of the aluminum foil. As the aluminum foil base material, an alloy 1N30, tempered H18, and 20 μm thick aluminum foil was used. An aluminum foil obtained by heat-treating this aluminum foil in an air atmosphere at 250 ° C. for 15 hours in a drying furnace was used as a positive electrode current collector. A method for measuring the surface oxide film withstand voltage indicating the oxide film thickness will be described later.

上記正極合剤ペーストをアルミ箔正極集電体両面に塗布し、乾燥した後、圧延、スリット加工を施し、厚み0.080mm、合剤幅37mm、長さ380mmの正極板を作製した。   The positive electrode mixture paste was applied to both sides of an aluminum foil positive electrode current collector, dried, and then rolled and slitted to produce a positive electrode plate having a thickness of 0.080 mm, a mixture width of 37 mm, and a length of 380 mm.

また、この極板を樹脂で固め、断面研磨を実施した後、レーザー顕微鏡にて断面観察し、一方の合剤層の最大厚みと最小厚みを測定し、厚み比率B/Aを算出した。   Moreover, after this electrode plate was hardened with resin and cross-section polishing was performed, the cross-section was observed with a laser microscope, the maximum thickness and the minimum thickness of one mixture layer were measured, and the thickness ratio B / A was calculated.

負極は活物質として人造黒鉛を用い、結着剤にはSBR水溶性ディスパージョンを用いた。増粘剤にはCMCを用い、活物質、結着剤、増粘剤とをそれぞれ固形分比率で96:
3:1重量%の割合で調整し、さらに水を溶媒として上記固形分重量に対して100%配合し、混練して負極合剤ペーストを作製した。これを厚み10μmの銅箔の両面に塗布し、乾燥した後、圧延、スリット加工を施し、厚み79μm、合剤幅37mm、長さ400mmの負極板を作製した。
For the negative electrode, artificial graphite was used as the active material, and SBR water-soluble dispersion was used as the binder. CMC is used as the thickener, and the active material, the binder, and the thickener are each 96:
The mixture was adjusted at a ratio of 3: 1% by weight, and 100% of the solid content was blended with water as a solvent, and kneaded to prepare a negative electrode mixture paste. This was applied to both sides of a 10 μm thick copper foil, dried, and then rolled and slitted to produce a negative electrode plate having a thickness of 79 μm, a mixture width of 37 mm, and a length of 400 mm.

以上の正極および負極にアルミおよびニッケルの集電リードを接合した後、残存水分の除去を目的として、それぞれ大気中で100℃10時間、80℃10時間乾燥炉で乾燥させた。その後厚み27μmのポリエチレン製セパレータ(東燃化学(株)製E27MMS)を介して正極と負極を捲回した群を作製した。その群を電池ケースに挿入し、負極リードをケース底部に抵抗溶接し、正極リードを封口板にレーザー溶接した。そしてケース内にエチレンカーボネイト(EC)とエチルメチルカーボネイト(EMC)を体積比1:3の配合比で混合した混合溶媒に、溶質として六フッ化リン酸リチウム(LiPF6)を1mol/dm3の濃度で溶解した電解液を注入後、封口板でケースを封口し17500電池を作製し、この電池を電池Aとした。 After the aluminum and nickel current collector leads were joined to the positive electrode and the negative electrode, they were dried in a drying furnace at 100 ° C. for 10 hours and 80 ° C. for 10 hours, respectively, for the purpose of removing residual moisture. Thereafter, a group in which the positive electrode and the negative electrode were wound through a 27 μm-thick polyethylene separator (E27MMS manufactured by Tonen Chemical Co., Ltd.) was produced. The group was inserted into the battery case, the negative electrode lead was resistance welded to the bottom of the case, and the positive electrode lead was laser welded to the sealing plate. Then, in the case, 1 mol / dm 3 of lithium hexafluorophosphate (LiPF 6 ) was used as a solute in a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a mixing ratio of 1: 3 . After injecting the electrolytic solution dissolved at a concentration, the case was sealed with a sealing plate to produce a 17500 battery.

(実施例2)
熱処理を250℃で30時間行った以外は電池Aと同様にして作製した電池を電池Bとした。
(Example 2)
A battery produced in the same manner as Battery A was designated as Battery B, except that the heat treatment was performed at 250 ° C. for 30 hours.

(実施例3)
熱処理を250℃で50時間行った以外は電池Aと同様にして作製した電池を電池Cとした。
(Example 3)
A battery produced in the same manner as Battery A was designated as Battery C, except that the heat treatment was performed at 250 ° C. for 50 hours.

(実施例4)
熱処理を250℃で100時間行った以外は電池Aと同様にして作製した電池を電池Dとした。
Example 4
A battery produced in the same manner as Battery A except that the heat treatment was performed at 250 ° C. for 100 hours was designated as Battery D.

(実施例5)
熱処理を250℃で120時間行った以外は電池Aと同様にして作製した電池を電池Eとした。
(Example 5)
Battery E was prepared in the same manner as Battery A except that heat treatment was performed at 250 ° C. for 120 hours.

(比較例1)
熱処理を250℃で10時間行った以外は電池Aと同様にして作製した電池を電池Fとした。
(Comparative Example 1)
A battery produced in the same manner as Battery A was designated as Battery F except that the heat treatment was performed at 250 ° C. for 10 hours.

(比較例2)
熱処理を250℃で8時間行った以外は電池Aと同様にして作製した電池を電池Gとした。
(Comparative Example 2)
A battery G was prepared in the same manner as Battery A except that the heat treatment was performed at 250 ° C. for 8 hours.

(比較例3)
アルミ箔に熱処理を行わなかったこと以外は電池Aと同様にして作製した電池を電池Hとした。
(Comparative Example 3)
A battery produced in the same manner as battery A except that no heat treatment was performed on the aluminum foil was designated as battery H.

各電池の酸化膜耐電圧の測定手順を以下に示す。   The measurement procedure of the oxide film withstand voltage of each battery is shown below.

ステンレス槽にアジピン酸アンモニウム(150g/dm3)水溶液を入れ、試験温度を25℃とし、幅1cm、長さ5cmの熱処理したアルミ箔を試験極とし、対極をステンレス槽、そして参照極を白金とした。ポテンショスタットを使用して試験極の電位(vs白金極)を20mV/secの速度で掃引し、その間に流れる電流を測定し、電流−電位曲線を得た。図5に電池Aに使用したアルミ箔の電流−電位曲線を示す。図4に示される
ように電位を徐々に増加させていくと、急激に電流値が増大する電流立ち上がり部が認められる。電流−電位曲線におけるこの電流立ち上がり部を直線近似し、その直線と横軸(電位軸)との交点を外挿法によって求め、この交点の電位を立ち上がり電位とした。この電位はアルミ表面の酸化膜厚みに依存しており、この電位と標準水素電極電位との電位差を酸化膜耐電圧とした。
Put an aqueous solution of ammonium adipate (150 g / dm 3 ) in a stainless steel bath, set the test temperature to 25 ° C., heat treated aluminum foil of 1 cm width and 5 cm length as the test electrode, the counter electrode as the stainless steel bath, and the reference electrode as platinum. did. The potential of the test electrode (vs platinum electrode) was swept at a rate of 20 mV / sec using a potentiostat, and the current flowing during that time was measured to obtain a current-potential curve. FIG. 5 shows a current-potential curve of the aluminum foil used in battery A. As shown in FIG. 4, when the potential is gradually increased, a current rising portion in which the current value increases rapidly is recognized. The current rising portion in the current-potential curve is approximated by a straight line, the intersection of the straight line and the horizontal axis (potential axis) is obtained by extrapolation, and the potential at this intersection is taken as the rising potential. This potential depends on the thickness of the oxide film on the aluminum surface, and the potential difference between this potential and the standard hydrogen electrode potential was defined as the oxide film withstand voltage.

以上の方法により測定した各電池のアルミ箔の酸化膜耐電圧とそのアルミ箔の引っ張り強度を表1に示す。引っ張り強度は今田製作所製引張圧縮試験機(SV−301―E―SM)を用い、幅15mmの試験片について測定した。表1から明らかなように熱処理時間を長くすることにより酸化膜耐電圧は高くなっており、これは酸化膜厚みが厚くなっていることを示す。また熱処理時間とともにアルミ箔の引っ張り強度は低下傾向になる。   Table 1 shows the oxide film withstand voltage and tensile strength of the aluminum foil of each battery measured by the above method. The tensile strength was measured on a test piece having a width of 15 mm using a tensile compression tester (SV-301-E-SM) manufactured by Imada Seisakusho. As is apparent from Table 1, the withstand voltage of the oxide film is increased by increasing the heat treatment time, which indicates that the thickness of the oxide film is increased. Further, the tensile strength of the aluminum foil tends to decrease with the heat treatment time.

Figure 2005259682
Figure 2005259682

また、上記電池A〜電池Hの極板に関して、表2に合剤層の厚み比率B/Aを示す。なお、厚み比率は処理時間とともに増加傾向にある。   Moreover, regarding the electrode plates of the batteries A to H, Table 2 shows the thickness ratio B / A of the mixture layer. Note that the thickness ratio tends to increase with the processing time.

Figure 2005259682
Figure 2005259682

これらのアルミ箔を使用して得られた正極合剤塗布乾燥後の合剤塗工密度と、上記方法により測定した酸化膜耐電圧との関係を図4に示す。   FIG. 4 shows the relationship between the mixture coating density after applying and drying the positive electrode mixture obtained using these aluminum foils and the oxide film withstand voltage measured by the above method.

図6は腐食反応が生じないペットフィルム上に上記各種合剤を塗布乾燥させた合剤層の密度を測定し、その密度に対する比率で各合剤密度をプロットしたものである。図4からわかるように酸化膜耐電圧を高くすることで、腐食反応抑制効果により除々に合剤塗工密度が増加しており、耐電圧2.1V以上で比率80%以上の塗工密度が得られている。その時の合剤層厚み比率は0.5以上である。   FIG. 6 shows the density of a mixture layer obtained by applying and drying the above-mentioned various mixtures on a pet film on which no corrosion reaction occurs, and plotting the density of each mixture by the ratio to the density. As can be seen from FIG. 4, by increasing the withstand voltage of the oxide film, the coating density of the mixture gradually increases due to the effect of inhibiting the corrosion reaction. Has been obtained. The mixture layer thickness ratio at that time is 0.5 or more.

次いで、上記各種電池について、25℃の環境下、40mAの定電流で充電上限電圧4.2V、放電下限電圧3.0Vの条件下で充放電を3サイクル繰り返した。容量はいずれ
も200mAh前後であった。そしてこれらの電池の直流内部抵抗を測定するために以下の手順に従い、電流―電圧特性試験を行った。
Next, charging and discharging were repeated for 3 cycles under the conditions of a charge upper limit voltage of 4.2 V and a discharge lower limit voltage of 3.0 V at a constant current of 40 mA in the environment of 25 ° C. All the capacities were around 200 mAh. In order to measure the DC internal resistance of these batteries, a current-voltage characteristic test was performed according to the following procedure.

ここで、25℃の環境下でそれぞれの電池を60%の充電状態まで定電流充電を行い、200〜2000mAの範囲で種々の定電流で10秒間充電および放電パルスを電池に印加し、各パルス印加後の10秒目の電圧を測定し、電流値に対してプロットした。また、放電パルス側の各電圧プロットを最小二乗法による直線近似を実施し、その傾きの値を直流内部抵抗とした。   Here, each battery was charged at a constant current up to 60% charge under an environment of 25 ° C., and charged and discharged pulses were applied to the battery for 10 seconds at various constant currents in the range of 200 to 2000 mA. The voltage at 10 seconds after application was measured and plotted against the current value. Each voltage plot on the discharge pulse side was linearly approximated by the method of least squares, and the slope value was defined as the DC internal resistance.

その結果得られた内部抵抗と合剤塗布前アルミ箔酸化膜耐電圧との関係を図6に示す。図7は熱処理していないアルミ箔を用いて作製した電池Hの電池抵抗を100としてプロットしており、アルミ箔未処理品の電池に対して、酸化膜耐電圧が2.8Vで抵抗が最低値を示しており、さらに耐電圧を上げていくと抵抗が上昇傾向を示している。   FIG. 6 shows the relationship between the internal resistance obtained as a result and the withstand voltage of the aluminum foil oxide film before application of the mixture. FIG. 7 plots the battery resistance of the battery H produced using the unheated aluminum foil as 100, and the oxide film withstand voltage is 2.8 V and the resistance is the lowest for the battery of the untreated aluminum foil. It shows a value, and the resistance increases as the withstand voltage is further increased.

すなわち、酸化膜厚を厚くしていくと腐食反応抑制効果により合剤塗工密度が増加し、2.1V以上で80%以上の塗工密度、厚み比率0.5以上が得られており、電池抵抗も2.1Vを境に大きく低減している。一方、耐電圧2.0V以下では塗工密度は80%以下ではあるものの、電池Hと比較して腐食抑制による密度向上効果はあるが、電池内部抵抗は大きく低減していない。これは付与した酸化膜により腐食反応が抑制されるが、酸化膜厚が十分でないため、凹凸や酸化膜欠陥などの弱い部分から腐食反応がある程度進み、その反応による新規酸化膜形成と初期に付与した酸化膜による抵抗バランスが電池Hの状態と大きくかわらず、結果的に電池抵抗の低減には至らなかったものと推測される。合剤厚み比率も0.3以下と腐食の影響を大きく受けている。   That is, when the oxide film thickness is increased, the mixture coating density is increased due to the corrosion reaction suppressing effect, and a coating density of 80% or more and a thickness ratio of 0.5 or more are obtained at 2.1V or more. Battery resistance is also greatly reduced at 2.1V. On the other hand, when the withstand voltage is 2.0 V or less, the coating density is 80% or less, but compared with the battery H, there is an effect of improving density by inhibiting corrosion, but the battery internal resistance is not greatly reduced. Corrosion reaction is suppressed by the applied oxide film, but since the oxide film thickness is not enough, the corrosion reaction proceeds to some extent from weak parts such as irregularities and oxide film defects, and new oxide film formation by that reaction and initial application It is presumed that the resistance balance due to the oxidized film was not greatly different from the state of the battery H, and as a result, the battery resistance was not reduced. The mixture thickness ratio is 0.3 or less, which is greatly affected by corrosion.

それに対して、耐圧2.1V以上では初期酸化膜が十分であり、ほとんど新規に形成される酸化膜が無く、結果的に抵抗低減に至っているものと推測される。また耐電圧3.0V以上では塗工密度は高いが、電池抵抗が増加傾向にある。これは付与した酸化膜厚が厚くなりすぎ、その影響によって逆にアルミ箔の抵抗が増加し電池抵抗の上昇につながったものと推測する。   On the other hand, when the breakdown voltage is 2.1 V or more, the initial oxide film is sufficient, almost no oxide film is newly formed, and it is assumed that the resistance is reduced as a result. Further, when the withstand voltage is 3.0 V or more, the coating density is high, but the battery resistance tends to increase. This is presumed that the applied oxide film thickness is too thick, and the resistance of the aluminum foil is increased due to the influence, leading to an increase in battery resistance.

以上の結果から、アルミ箔酸化膜耐電圧は2.1V以上であることが腐食抑制に対して効果があり、電池性能向上の効果があるといえる。そしてさらには2.1V以上3.0V以下の酸化膜耐電圧であることが好ましい。その際の合剤層厚み比率が0.5以上である。   From the above results, it can be said that the withstand voltage of the aluminum foil oxide film is 2.1 V or more has an effect on inhibiting corrosion and an effect of improving battery performance. Further, the withstand voltage of the oxide film is preferably 2.1 V or more and 3.0 V or less. The mixture layer thickness ratio at that time is 0.5 or more.

また熱処理時間を長くすると引っ張り強度が低下しており、電池Eでは製造時のアルミ箔の取り扱いが難しくなってきていることから、引っ張り強度としては50N/mm2以上が好ましいと考えられる。 Further, when the heat treatment time is lengthened, the tensile strength is lowered, and in the battery E, it is difficult to handle the aluminum foil at the time of manufacture. Therefore, it is considered that the tensile strength is preferably 50 N / mm 2 or more.

以上のことから本発明の集電体を用いて製造した正極板を用いることにより、特性の良好なリチウム二次電池を得ることができることがわかった。なお、上記範囲を得る方法としては本実施例に記載する熱処理方法および正極活物質の組成等に限定されるものではなく、その範囲の数値が得られるものであれば同様な効果を得ることができる。また、酸化物層としてアルミニウムの酸化物以外にケイ素やチタニウムなどの酸化物を用いても同様な効果を得ることができる。   From the above, it was found that a lithium secondary battery having good characteristics can be obtained by using a positive electrode plate manufactured using the current collector of the present invention. The method for obtaining the above range is not limited to the heat treatment method and the composition of the positive electrode active material described in this example, and the same effect can be obtained as long as the numerical value within the range can be obtained. it can. The same effect can be obtained by using oxides such as silicon and titanium in addition to the oxide of aluminum as the oxide layer.

本発明の極板はリチウム二次電池の正極用極板として有用である。   The electrode plate of the present invention is useful as a positive electrode plate for a lithium secondary battery.

従来の合剤塗布時の正極板断面の模式図Schematic diagram of the cross section of the positive electrode plate when applying a conventional mixture 本発明の実施例に係る合剤塗布時の正極板断面の模式図Schematic diagram of a cross section of a positive electrode plate during mixture application according to an embodiment of the present invention 本発明の実施例に係る非水電解質二次電池用極板の断面図Sectional drawing of the electrode plate for nonaqueous electrolyte secondary batteries which concerns on the Example of this invention 本発明の極板を用いて作製したリチウム二次電池の断面図Sectional drawing of the lithium secondary battery produced using the electrode plate of this invention 電池Aに使用したアルミ箔のポテンショスタットによる電流−電位曲線図Current-potential curve of aluminum foil potentiostat used for battery A アルミ箔表面酸化膜耐電圧と合剤塗工密度の関係を示す図The figure which shows the relation between the withstand voltage of aluminum foil surface oxide film and the mixture coating density アルミ箔表面酸化膜耐電圧と電池抵抗との関係を示す図Diagram showing the relationship between the withstand voltage of the aluminum foil surface oxide film and the battery resistance

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 ケース
5 封口板
6 合剤層
7 集電体素地
8 集電体表面酸化膜層
9 空洞
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Case 5 Sealing plate 6 Mixture layer 7 Current collector base 8 Current collector surface oxide film layer 9 Cavity

Claims (9)

表面に耐電圧が2.1V以上の酸化物層を備えた非水電解質二次電池用集電体。 A current collector for a non-aqueous electrolyte secondary battery having an oxide layer with a withstand voltage of 2.1 V or more on the surface. 表面にアルミニウム酸化物層を有するアルミニウムからなる請求項1に記載の非水電解質二次電池用集電体。 The current collector for a non-aqueous electrolyte secondary battery according to claim 1, comprising aluminum having an aluminum oxide layer on a surface thereof. 前記アルミニウムの引っ張り強度が50N/mm2以上である請求項2に記載の非水電解質二次電池用集電体。 The current collector for a non-aqueous electrolyte secondary battery according to claim 2, wherein the aluminum has a tensile strength of 50 N / mm 2 or more. 表面に耐電圧が2.1V以上の酸化物層を備えた非水電解質二次電池用集電体の両面にリチウムニッケル複合酸化物を含む合剤層を有した非水電解質二次電池用極板であって、前記極板の一方の面における合剤層の最大厚み(A)と最小厚み(B)の厚み比率B/A、および前記極板の他方の面における合剤層の最大厚み(C)と最小厚み(D)の厚み比率D/Cのいずれもが0.5以上である非水電解質二次電池用極板。 Non-aqueous electrolyte secondary battery electrode having a mixture layer containing a lithium-nickel composite oxide on both surfaces of a non-aqueous electrolyte secondary battery current collector having an oxide layer with a withstand voltage of 2.1 V or more on the surface The thickness ratio B / A of the maximum thickness (A) and the minimum thickness (B) of the mixture layer on one surface of the electrode plate, and the maximum thickness of the mixture layer on the other surface of the electrode plate An electrode plate for a non-aqueous electrolyte secondary battery in which the thickness ratio D / C between (C) and the minimum thickness (D) is 0.5 or more. 前記合剤層の溶媒が水である請求項4に記載の非水電解質二次電池用極板。 The electrode plate for a nonaqueous electrolyte secondary battery according to claim 4, wherein the solvent of the mixture layer is water. 集電体表面に耐電圧が2.1V以上の酸化物層を形成する工程と、アルカリ性ペーストを集電体に塗布して極板を形成する工程と、極板を乾燥させる工程とを有する非水電解質二次電池用極板の製造方法。 A step of forming an oxide layer having a withstand voltage of 2.1 V or more on the surface of the current collector, a step of forming an electrode plate by applying an alkaline paste to the current collector, and a step of drying the electrode plate Manufacturing method of electrode plate for water electrolyte secondary battery. アルカリ性ペーストのpHが10以上である請求項6に記載の非水電解質二次電池用極板の製造方法。 The method for producing an electrode plate for a nonaqueous electrolyte secondary battery according to claim 6, wherein the pH of the alkaline paste is 10 or more. 集電体が表面にアルミニウム酸化物層を有するアルミニウムからなる請求項6に記載の非水電解質二次電池用極板の製造方法。 The method for producing an electrode plate for a nonaqueous electrolyte secondary battery according to claim 6, wherein the current collector is made of aluminum having an aluminum oxide layer on the surface. アルミニウムの引っ張り強度が50N/mm2以上である請求項8に記載の非水電解質二次電池用極板の製造方法。 The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to claim 8, wherein the tensile strength of aluminum is 50 N / mm 2 or more.
JP2005008795A 2004-02-10 2005-01-17 Non-aqueous electrolyte secondary battery current collector, electrode plate for non-aqueous electrolyte secondary battery using the same, and method for producing electrode plate for non-aqueous electrolyte secondary battery Pending JP2005259682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008795A JP2005259682A (en) 2004-02-10 2005-01-17 Non-aqueous electrolyte secondary battery current collector, electrode plate for non-aqueous electrolyte secondary battery using the same, and method for producing electrode plate for non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004033192 2004-02-10
JP2005008795A JP2005259682A (en) 2004-02-10 2005-01-17 Non-aqueous electrolyte secondary battery current collector, electrode plate for non-aqueous electrolyte secondary battery using the same, and method for producing electrode plate for non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005259682A true JP2005259682A (en) 2005-09-22

Family

ID=35085171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008795A Pending JP2005259682A (en) 2004-02-10 2005-01-17 Non-aqueous electrolyte secondary battery current collector, electrode plate for non-aqueous electrolyte secondary battery using the same, and method for producing electrode plate for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005259682A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273106A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2008251264A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and lithium ion secondary battery
JP2008251265A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2009009778A (en) * 2007-06-27 2009-01-15 Furukawa Sky Kk Cathode plate of lithium ion battery, its manufacturing method, and lithium ion battery using it
JP2009032597A (en) * 2007-07-27 2009-02-12 Sumitomo Electric Ind Ltd Lithium battery
JP2009170183A (en) * 2008-01-11 2009-07-30 Sumitomo Electric Ind Ltd Lithium battery
JP2010245069A (en) * 2009-04-01 2010-10-28 Nippon Chemicon Corp Electric double-layer capacitor
KR101297888B1 (en) 2008-01-08 2013-08-19 주식회사 엘지화학 Anode for battery, method for manufacturing thereof, and lithium secondary battery comprising the same
JP5506663B2 (en) * 2008-04-01 2014-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR101497907B1 (en) * 2012-04-19 2015-03-03 주식회사 엘지화학 The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
JP5906374B2 (en) * 2008-09-18 2016-04-20 パナソニックIpマネジメント株式会社 Capacitor and manufacturing method thereof
US11024855B2 (en) 2013-07-01 2021-06-01 Envision Aesc Energy Devices Ltd. Electrode for use in a nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213339A (en) * 1996-02-05 1997-08-15 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JPH11162470A (en) * 1997-11-25 1999-06-18 Toyo Alum Kk Aluminum foil for current collector, its manufacture current collector, secondary battery and electric double layer capacitor
JPH11219709A (en) * 1998-02-02 1999-08-10 Shin Kobe Electric Mach Co Ltd Positive electrode plate for non-aqueous electrolyte battery
JP2001110404A (en) * 1999-10-07 2001-04-20 Matsushita Electric Ind Co Ltd Battery and manufacturing method thereof
JP2001345096A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Battery electrode manufacturing apparatus and battery electrode manufacturing method
JP2003151625A (en) * 2001-10-20 2003-05-23 Samsung Sdi Co Ltd Non-aqueous electrolyte with excellent overcharge safety and lithium battery using the same
JP2003157852A (en) * 2001-11-19 2003-05-30 Denso Corp Method of manufacturing positive electrode for lithium battery and positive electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213339A (en) * 1996-02-05 1997-08-15 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JPH11162470A (en) * 1997-11-25 1999-06-18 Toyo Alum Kk Aluminum foil for current collector, its manufacture current collector, secondary battery and electric double layer capacitor
JPH11219709A (en) * 1998-02-02 1999-08-10 Shin Kobe Electric Mach Co Ltd Positive electrode plate for non-aqueous electrolyte battery
JP2001110404A (en) * 1999-10-07 2001-04-20 Matsushita Electric Ind Co Ltd Battery and manufacturing method thereof
JP2001345096A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Battery electrode manufacturing apparatus and battery electrode manufacturing method
JP2003151625A (en) * 2001-10-20 2003-05-23 Samsung Sdi Co Ltd Non-aqueous electrolyte with excellent overcharge safety and lithium battery using the same
JP2003157852A (en) * 2001-11-19 2003-05-30 Denso Corp Method of manufacturing positive electrode for lithium battery and positive electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273106A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2008251264A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and lithium ion secondary battery
JP2008251265A (en) * 2007-03-29 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2009009778A (en) * 2007-06-27 2009-01-15 Furukawa Sky Kk Cathode plate of lithium ion battery, its manufacturing method, and lithium ion battery using it
JP2009032597A (en) * 2007-07-27 2009-02-12 Sumitomo Electric Ind Ltd Lithium battery
KR101297888B1 (en) 2008-01-08 2013-08-19 주식회사 엘지화학 Anode for battery, method for manufacturing thereof, and lithium secondary battery comprising the same
JP2009170183A (en) * 2008-01-11 2009-07-30 Sumitomo Electric Ind Ltd Lithium battery
JP5506663B2 (en) * 2008-04-01 2014-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
US9559362B2 (en) 2008-04-01 2017-01-31 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP5906374B2 (en) * 2008-09-18 2016-04-20 パナソニックIpマネジメント株式会社 Capacitor and manufacturing method thereof
JP2010245069A (en) * 2009-04-01 2010-10-28 Nippon Chemicon Corp Electric double-layer capacitor
KR101497907B1 (en) * 2012-04-19 2015-03-03 주식회사 엘지화학 The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
US11024855B2 (en) 2013-07-01 2021-06-01 Envision Aesc Energy Devices Ltd. Electrode for use in a nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell

Similar Documents

Publication Publication Date Title
JP5060289B2 (en) Nonaqueous electrolyte secondary battery electrode, nonaqueous electrolyte secondary battery, and automobile, electric tool or stationary device equipped with the same
EP3151319B1 (en) Electrode material, manufacturing method for same, and lithium battery
JP5622525B2 (en) Lithium ion secondary battery
KR20110102832A (en) Nonaqueous electrolyte secondary battery
US10199689B2 (en) Nonaqueous electrolyte secondary battery
JP2013182712A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5843107B2 (en) Method for producing non-aqueous electrolyte secondary battery
US11967700B2 (en) Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle and a rock salt layer
JP2020102348A (en) Lithium-ion battery manufacturing method and lithium-ion battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
EP3075019A1 (en) Lithium-ion secondary battery and manufacturing method thereof
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP2005063674A (en) Nonaqueous electrolyte secondary battery
CN112689916A (en) Storage element
JP2005259682A (en) Non-aqueous electrolyte secondary battery current collector, electrode plate for non-aqueous electrolyte secondary battery using the same, and method for producing electrode plate for non-aqueous electrolyte secondary battery
JP5620499B2 (en) Non-aqueous electrolyte battery
JP2005197073A (en) Positive electrode for lithium secondary battery
KR101993034B1 (en) Positive electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
US11962000B2 (en) Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids
JP2005327489A (en) Positive electrode for storage element
JP2013109931A (en) Electrode for nonaqueous electrolytic secondary battery use, and nonaqueous electrolytic secondary battery
JP5644732B2 (en) Nonaqueous electrolyte secondary battery
JP2009037891A (en) Lithium ion secondary battery
JP2007103246A (en) Non-aqueous electrolyte secondary battery
JP2007207461A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515