[go: up one dir, main page]

JP2008260428A - 車両およびその制御方法 - Google Patents

車両およびその制御方法 Download PDF

Info

Publication number
JP2008260428A
JP2008260428A JP2007104919A JP2007104919A JP2008260428A JP 2008260428 A JP2008260428 A JP 2008260428A JP 2007104919 A JP2007104919 A JP 2007104919A JP 2007104919 A JP2007104919 A JP 2007104919A JP 2008260428 A JP2008260428 A JP 2008260428A
Authority
JP
Japan
Prior art keywords
power
motor
output
torque
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007104919A
Other languages
English (en)
Inventor
Masatoshi Kimata
雅俊 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007104919A priority Critical patent/JP2008260428A/ja
Priority to PCT/JP2008/057135 priority patent/WO2008133032A1/ja
Publication of JP2008260428A publication Critical patent/JP2008260428A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/06Limiting the traction current under mechanical overload conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/1843Overheating of driveline components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/1846Preventing of breakage of drive line components, e.g. parts of the gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】電動機の出力制限をより適正に実行して電動機の過熱を抑えつつドライバビリティの低下を抑制する。
【解決手段】ハイブリッド自動車20では、モータMG1,MG2のモータ温度T1,T2が第1温度Tref1以上になると回生トルク制限Trelim1,Trelim2がモータ温度T1,T2の上昇に応じて漸減させられ、モータ温度T1,T2が第1温度Tref1よりも高い第2温度Tref2以上になると力行トルク制限Texlim1,Texlim2がモータ温度T1,T2の上昇に応じて漸減させられる。これにより、モータ温度T1,T2が上昇していくような場合、回生トルク制限Trelim1,Trelim2が力行トルク制限Texlim1,Texlim2よりも先により小さな値に設定され、モータMG1,MG2による力行トルクの出力よりも回生トルクの出力が先に制限される。
【選択図】図5

Description

本発明は、車軸に力行トルクと回生トルクとを出力可能な電動機を含む車両およびその制御方法に関する。
従来から、この種の車両として、車両の推進力を出力するエンジンと、このエンジンの出力を補助するモータと、モータに電力を供給するバッテリとを備えたハイブリッド車両が知られている(例えば、特許文献1参照)。このハイブリッド車両では、加速要求がなされたときにバッテリ温度が所定温度以上である場合、バッテリ温度が高いほどバッテリからモータに電力を供給する時間を制限し、それによりバッテリの温度上昇に起因したモータ出力の低下を抑制している。また、ハイブリッド車両としては、ナビゲーションコントローラにより現在位置から目的地までの経路設定を行い、設定された経路の経路情報に基づいてハイブリッドコントローラにより経路走行時における原動機としてのエンジンや駆動用モータの発熱量を予測するものも知られている(例えば、特許文献2参照)。このハイブリッド車両では、予測されたエンジンや駆動用モータの発熱量に基づく温度が所定温度を超過することが予測される場合、事前にエンジンや駆動用モータの出力が制限されるか、事前にエンジンや駆動用モータが冷却される。
特開2004−104937号公報
上記従来のハイブリッド車両のように、モータの温度が所定温度を超えたような場合には、モータの更なる過熱によりその出力が低下しないようにモータの出力を制限することが好ましい。ただし、上記従来例のように比較的単純にモータの出力を制限すれば、必要以上にモータの出力が制限されてしまい、ドライバビリティを低下させてしまうおそれもある。
そこで、本発明は、電動機の出力制限をより適正に実行して電動機の過熱を抑えつつドライバビリティの低下を抑制することを目的とする。
本発明による車両およびその制御方法は、上述の目的を達成するために以下の手段を採っている。
本発明による車両は、
車軸に動力を入出力可能な電動機と、
前記電動機と電力をやり取り可能な蓄電手段と、
前記電動機の温度を取得する温度取得手段と、
前記取得された前記電動機の温度に基づいて前記電動機に出力させる力行トルクの上限値である力行トルク制限と前記電動機に出力させる回生トルクの上限値である回生トルク制限とを前記力行トルクの出力に比べて前記回生トルクの出力がより制限される傾向に設定するトルク制限設定手段と、
前記電動機に前記力行トルクを出力させる場合には前記電動機により出力される力行トルクが前記設定された力行トルク制限以下となるように前記電動機を制御すると共に、前記電動機に前記回生トルクを出力させる場合には前記電動機により出力される回生トルクが前記設定された回生トルク制限以下となるように前記電動機を制御する制御手段と、
を備えるものである。
この車両では、温度取得手段により取得された電動機の温度に基づいて電動機に出力させる力行トルクの上限値である力行トルク制限と電動機に出力させる回生トルクの上限値である回生トルク制限とが力行トルクの出力に比べて回生トルクの出力がより制限される傾向に設定される。そして、電動機に力行トルクを出力させる場合には、電動機により出力される力行トルクが設定された力行トルク制限以下となるように電動機が制御され、電動機に回生トルクを出力させる場合には、電動機により出力される回生トルクが設定された回生トルク制限以下となるように電動機が制御される。このように、電動機の温度に基づいて力行トルクの出力に比べて回生トルクの出力がより制限される傾向に電動機の力行トルク制限と回生トルク制限とを設定すれば、回生トルク制限に基づく電動機の回生動作(発電動作)の制限により電動機の過熱を抑制すると共に、電動機からの力行トルクの出力が力行トルク制限に基づいて制限され難くすることができる。従って、この車両では、電動機の出力制限をより適正に実行して電動機の過熱を抑えつつドライバビリティの低下を抑制することが可能となる。
この場合、前記トルク制限設定手段は、前記取得された前記電動機の温度が第1の温度以上になると前記回生トルク制限を前記電動機の温度の上昇に応じて漸減させると共に、前記取得された前記電動機の温度が前記第1の温度よりも高い第2の温度以上になると前記力行トルク制限を前記電動機の温度の上昇に応じて漸減させるものであってもよい。かかる構成のもとでは、電動機の温度が上昇していくような場合、回生トルク制限が力行トルク制限よりも先により小さな値に設定されることになり、それにより電動機による力行トルクの出力よりも電動機による回生トルクの出力を先に制限することが可能となる。従って、かかる構成によれば、回生トルク制限に基づく電動機の回生動作(発電動作)の制限により電動機の過熱を抑制すると共に、電動機からの力行トルクの出力が力行トルク制限に基づいて制限されて車軸に動力が出力され難くなることによるドライバビリティの低下を抑制することが可能となる。
また、上記車両は、内燃機関と、前記車軸または該車軸とは異なる他の車軸と前記内燃機関の機関軸とに接続されて前記内燃機関からの動力の少なくとも一部を用いて発電可能であると共に電力の入出力を伴って前記車軸または前記他の車軸に動力を入出力可能であり、かつ前記蓄電手段と電力をやり取り可能な電力動力入出力手段と、前記電力動力入出力手段に関連した温度を取得する第2の温度取得手段とを更に備えてもよく、前記トルク制限設定手段は、前記第2の温度取得手段により取得された温度に基づいて前記電力動力入出力手段についての前記力行トルク制限と前記回生トルク制限とを前記力行トルクの出力に比べて前記回生トルクの出力がより制限される傾向に設定し、前記制御手段は、前記電力動力入出力手段に前記力行トルクを出力させる場合には前記電力動力入出力手段により出力される力行トルクが前記設定された力行トルク制限以下となるように前記電力動力入出力手段を制御すると共に、前記電力動力入出力手段に前記回生トルクを出力させる場合には前記電力動力入出力手段により出力される回生トルクが前記設定された回生トルク制限以下となるように前記電力動力入出力手段を制御してもよい。このように、電力動力入出力手段についても、それに関連した温度に基づいて力行トルクの出力に比べて回生トルクの出力がより制限される傾向に力行トルク制限と回生トルク制限とを設定すれば、回生トルク制限に基づく電力動力入出力手段の発電動作の制限により電力動力入手力手段における過熱を抑制すると共に、電力動力入出力手段からの力行トルクの出力が力行トルク制限に基づいて制限され難くして電力動力入出力手段を用いた内燃機関の始動等を常時良好に実行することが可能となる。
また、前記電力動力入出力手段は、動力を入出力可能な発電用電動機と、前記車軸または前記他の車軸と前記内燃機関の前記機関軸と前記発電用電動機の回転軸との3軸に接続され、これら3軸のうちの何れか2軸に入出力される動力に基づく動力を残余の軸に入出力する3軸式動力入出力手段とを含んでもよく、前記トルク制限設定手段は、前記第2の温度取得手段により取得される前記発電用電動機の温度に基づいて前記発電用電動機についての前記力行トルク制限と前記回生トルク制限とを前記力行トルクの出力に比べて前記回生トルクの出力がより制限される傾向に設定し、前記制御手段は、前記発電用電動機に前記力行トルクを出力させる場合には前記発電用電動機により出力される力行トルクが前記設定された力行トルク制限以下となるように前記発電用電動機を制御すると共に、前記発電用電動機に前記回生トルクを出力させる場合には前記発電用電動機により出力される回生トルクが前記設定された回生トルク制限以下となるように前記発電用電動機を制御してもよい。
そして、上記車両は、運転者による制動要求操作に拘わらず任意の摩擦制動力を出力可能な摩擦制動手段を更に備えてもよい。これにより、回生トルク制限に基づいて電動機による回生制動が制限されている際に摩擦制動手段に摩擦制動力を出力させ、それによって運転者による制動要求操作に基づく制動力を良好に確保することが可能となる。
本発明による車両の制御方法は、
車軸に動力を入出力可能な電動機と、前記電動機と電力をやり取り可能な蓄電手段と、前記電動機の温度を取得する温度取得手段とを備えた車両の制御方法であって、
(a)前記温度取得手段により取得された前記電動機の温度に基づいて前記電動機に出力させる力行トルクの上限値である力行トルク制限と前記電動機に出力させる回生トルクの上限値である回生トルク制限とを前記力行トルクの出力に比べて前記回生トルクの出力がより制限される傾向に設定するステップと、
(b)前記電動機に前記力行トルクを出力させる場合には前記電動機により出力される力行トルクがステップ(a)にて設定された力行トルク制限以下となるように前記電動機を制御すると共に、前記電動機に前記回生トルクを出力させる場合には前記電動機により出力される回生トルクがステップ(a)にて設定された回生トルク制限以下となるように前記電動機を制御するステップと、
を含むものである。
この方法のように、電動機の温度に基づいて力行トルクの出力に比べて回生トルクの出力がより制限される傾向に電動機の力行トルク制限と回生トルク制限とを設定すれば、回生トルク制限に基づく電動機の回生動作(発電動作)の制限により電動機の過熱を抑制すると共に、電動機からの力行トルクの出力が力行トルク制限に基づいて制限され難くすることができる。従って、この方法によれば、電動機の出力制限をより適正に実行して電動機の過熱を抑えつつドライバビリティの低下を抑制することが可能となる。
次に、本発明を実施するための最良の形態を実施例を用いて説明する。
図1は、本発明の実施例に係る車両としてのハイブリッド自動車20の概略構成図である。同図に示すハイブリッド自動車20は、エンジン22と、エンジン22のクランクシャフト(機関軸)26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された車軸としてのリングギヤ軸32aに連結された減速ギヤ35と、この減速ギヤ35に接続されたモータMG2と、ハイブリッド自動車20の全体をコントロールするハイブリッド用電子制御ユニット(以下、「ハイブリッドECU」という)70と、摩擦制動力を出力可能な制動手段である電子制御式油圧ブレーキユニット(以下、単に「ブレーキユニット」という)90等とを備えるものである。
エンジン22は、ガソリンや軽油といった炭化水素系の燃料の供給を受けて動力を出力する内燃機関であり、エンジン用電子制御ユニット(以下、「エンジンECU」という)24による燃料噴射量や点火時期、吸入空気量等の制御を受けている。エンジンECU24には、エンジン22に対して設けられて当該エンジン22の運転状態を検出する各種センサからの信号が入力される。そして、エンジンECU24は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号や上記センサからの信号等に基づいてエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッドECU70に出力する。
動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。機関側回転要素としてのキャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、車軸側回転要素としてのリングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、動力分配統合機構30は、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側とにそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構37およびデファレンシャルギヤ38を介して最終的に駆動輪である車輪39a,39bに出力される。
モータMG1およびモータMG2は、何れも発電機として作動すると共に電動機として作動可能な周知の同期発電電動機として構成されており、インバータ41,42を介して二次電池であるバッテリ50と電力のやり取りを行なう。インバータ41,42とバッテリ50とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2の何れか一方により発電される電力を他方のモータで消費できるようになっている。従って、バッテリ50は、モータMG1,MG2の何れかから生じた電力や不足する電力により充放電されることになり、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されないことになる。モータMG1,MG2は、何れもモータ用電子制御ユニット(以下、「モータECU」という)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や、図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流等が入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号等が出力される。また、モータECU40は、回転位置検出センサ43,44から入力した信号に基づいて図示しない回転数算出ルーチンを実行し、モータMG1,MG2の回転子の回転数Nm1,Nm2を計算している。更に、モータECU40には、モータMG1の温度を検出する温度センサ45からのモータ温度T1やモータMG2の温度を検出する温度センサ46からのモータ温度T2が入力される。また、モータECU40は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号等に基づいてモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッドECU70に出力する。
バッテリ50は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧、バッテリ50の出力端子に接続された電力ライン54に取り付けられた図示しない電流センサからの充放電電流、バッテリ50に取り付けられた温度センサ51からのバッテリ温度Tb等が入力されている。また、バッテリECU52は、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッドECU70やエンジンECU24に出力する。実施例のバッテリECU52は、バッテリ50を管理するために電流センサにより検出された充放電電流の積算値に基づいて残容量SOCを算出したり、当該残容量SOCに基づいてバッテリ50の充放電要求パワーPb*を算出したり、残容量SOCと電池温度Tbとに基づいてバッテリ50の充電に許容される電力である充電許容電力としての入力制限Winとバッテリ50の放電に許容される電力である放電許容電力としての出力制限Woutとを算出したりする。なお、バッテリ50の入出力制限Win,Woutは、バッテリ温度Tbに基づいて入出力制限Win,Woutの基本値を設定すると共に、バッテリ50の残容量(SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定可能である。
ハイブリッドECU70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に各種処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッドECU70には、イグニッションスイッチ(スタートスイッチ)80からのイグニッション信号やシフトレバー81の操作位置であるシフトポジションSPを検出するシフトポジションセンサ82からのシフトポジションSP、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc、ブレーキペダル85の踏み込み量(ストローク)を検出するブレーキペダルストロークセンサ86からのブレーキペダルストロークBS、車速センサ87からの車速V等が入力ポートを介して入力される。そして、ハイブリッドECU70は、上述したように、エンジンECU24やモータECU40、バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40、バッテリECU52と各種制御信号やデータのやり取りを行なう。なお、実施例のハイブリッド自動車20では、シフトレバー81のシフトポジションSPとして、駐車時に用いる駐車ポジション(Pポジション)、後進走行用のリバースポジション(Rポジション)、中立のニュートラルポジション(Nポジション)、通常の前進走行用のドライブポジション(Dポジション:第1のシフトポジション)に加えて、所定条件下でアクセルオフとなったときにDポジション選択時に比べて大きな制動力が得られるようにするブレーキポジション(Bポジション)が用意されている。
ブレーキユニット90は、マスタシリンダ91や油圧式(流体圧式)のブレーキアクチュエータ92、駆動輪たる車輪39a,39bや図示しない他の車輪に対して設けられ、各車輪に取り付けられたブレーキディスクを挟持して対応する車輪に摩擦制動力を付与可能なブレーキパッドを駆動するホイールシリンダ93a〜93d、ホイールシリンダ93a〜93dごとに設けられて対応するホイールシリンダの油圧(ホイールシリンダ圧)を検出するホイールシリンダ圧センサ94a〜94d、ブレーキアクチュエータ92を制御するブレーキ用電子制御ユニット(以下、「ブレーキECU」という)95等を含む。ブレーキアクチュエータ92は、図示しない油圧発生源としてのポンプやアキュムレータ、マスタシリンダ91とホイールシリンダ93a〜93dとの連通状態を制御するマスタシリンダカットソレノイドバルブ、ブレーキペダル85の踏み込み量に応じてペダル踏力に対する反力を創出するストロークシミュレータ等を有し、運転者によるブレーキペダル85の踏み込み操作とは無関係に、車輪39a,39bや他の車輪に摩擦制動力を作用させることが可能なものである。また、ブレーキECU95は、図示しない信号ラインを介して、マスタシリンダ圧を検出する図示しないマスタシリンダ圧センサからのマスタシリンダ圧や、ホイールシリンダ圧センサ94a〜94dからのホイールシリンダ圧、車速センサ87からの車速V、ブレーキペダルストロークセンサ86からのブレーキペダルストロークBS、図示しない車輪速センサからの車輪速、図示しない操舵角センサからの操舵角等を入力すると共に、ハイブリッドECU70等との間で通信により各種信号のやり取りを行う。
ブレーキECU95は、運転者によりブレーキペダル85が踏み込まれると、ブレーキペダルストロークセンサ86からのブレーキペダルストロークBSと所定の踏力設定用マップとを用いて運転者によりブレーキペダル85に加えられたペダル踏力Fpdを計算し、計算したペダル踏力Fpdに基づいて運転者により要求されている要求制動力BF*を設定する。更に、ブレーキECU95は、設定した要求制動力BF*と車速センサ87からの車速Vと所定の回生分配比設定用マップとを用いてモータMG2に対する要求回生制動力RBF*(=d×BF*)とブレーキユニット90(ブレーキアクチュエータ92)に対する要求摩擦制動力FBF*(=(1−d)×BF*)とを設定する。そして、ブレーキECU95は、要求回生制動力RBF*に所定の換算係数を乗じて得られる要求回生制動トルクRBTをハイブリッドECU70に送信すると共に、ハイブリッドECU70から送信される実際に出力される回生制動力を示す信号と要求摩擦制動力FBF*とに基づいてハイブリッド自動車20に作用させるべき制動力のうちのブレーキユニット90による分担分に応じた摩擦制動力が車輪39a,39bや他の車輪に作用するようにブレーキアクチュエータ92を制御する。なお、実施例において、要求制動力設定用マップは、運転者によるペダル踏力Fpdと要求制動力BF*との関係を規定するように予め定められてブレーキECU95のROMに記憶されている。図2に要求制動力設定用マップの一例を示す。また、実施例において、回生分配比設定用マップは、要求制動力BF*に対するモータMG2による回生制動力とブレーキユニット90による摩擦制動力との分配比dと車速Vとの関係を規定するように予め作成されてブレーキECU95のROMに記憶されている。図3に回生分配比設定用マップの一例を示す。図3の回生分配比設定用マップは、モータMG2の回転数Nm2に概ね比例して変化する車速Vが比較的高い高車速域に含まれる場合にはモータMG2により出力されるパワー(回転数Nm2×トルクTm2)が一定となることを示す相関曲線に従って要求回生制動力RBF*を設定し、車速Vが中速度域に含まれる場合には要求回生制動力RBF*をモータMG2の定格トルク等に基づく一定の値に設定し、車速Vが所定の回生禁止車速Vref以下になるとモータMG2の効率や発熱を考慮して要求回生制動力RBF*を値0まで車速Vに対して概ね比例して減少するように設定するものとして予め作成されている。そして、ブレーキECU95は、車速Vが回生禁止車速Vref以下になると、回生制動力を摩擦制動力にて置き換える置き換え条件が成立したとみなして、車速Vが低下するにつれて(時間の経過と共に)図3の回生分配比設定用マップに従って要求回生制動力RBF*を減少させると共に回生制動力がブレーキユニット90による摩擦制動力で速やかに置き換えられるように要求摩擦制動力FBF*を設定する。また、ブレーキECU95は、図示しないセンサにより検出される車輪速、車両前後および横方向の加速度、ヨーレート、操舵角といった各種パラメータに基づいていわゆるABS制御やトラクションコントロール(TRC)、車両安定化制御(VSC)等をも実行可能である。
上述のように構成された実施例のハイブリッド自動車20では、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動輪たる車輪39a,39bに連結された車軸としてのリングギヤ軸32aに出力すべき要求トルクTr*が計算され、この要求トルクTr*に対応する動力がリングギヤ軸32aに出力されるようにエンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御モードとしては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや、要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2から要求動力に見合う動力をリングギヤ軸32aに出力するように運転制御するモータ運転モード等がある。
ところで、上述のハイブリッド自動車20では、例えば連続した登坂路の走行等に際してモータMG1,MG2に比較的大きなトルク(力行トルクまたは回生トルク)を連続して出力させると、モータMG1,MG2の温度T1,T2が高まり、温度上昇による効率低下等に起因してモータMG1,MG2が本来の性能を発揮し得なくなるおそれがある。このため、実施例のハイブリッド自動車20では、モータMG1,MG2の過熱やそれに起因した性能低下を抑制すべく、図4のトルク制限設定ルーチンを実行してモータMG1に出力させる力行トルクの上限値である力行トルク制限Texlim1およびモータMG1に出力させる回生トルク(発電トルク)の上限値である回生トルク制限Trelim1とモータMG2に出力させる力行トルク(走行用トルク)の上限値である力行トルク制限Texlim2およびモータMG2に出力させる回生トルク(回生制動トルク)の上限値である回生トルク制限Trelim2とを設定し、これらの力行トルク制限Texlim1,Texlim2や回生トルク制限Trelim1,Trelim2を用いてモータMG1,MG2からのトルク出力を適宜制限することとしている。
図4のトルク制限設定ルーチンについて説明すると、このルーチンは、ハイブリッド自動車20のシステム起動がなされている間、上述のモータECU40により所定時間ごとに繰り返し実行されるものであり、モータECU40は、本ルーチンの開始に際して、まず温度センサ45,46からのモータ温度T1,T2を入力する(ステップS10)。次いで、ステップS10にて入力したモータ温度T1,T2に基づいてモータMG1,MG2の回生トルク制限Trelim1,Trelim2を設定する(ステップS12)。実施例では、モータ温度と回生トルク制限との関係が予め定められて回生トルク制限設定用マップとしてモータECU40の図示しないROMに記憶されており、モータMG1の回生トルク制限Trelim1としては、与えられたモータ温度T1に対応したものが回生トルク制限設定用マップから導出・設定され、モータMG2の回生トルク制限Trelim2としては、与えられたモータ温度T2に対応したものが回生トルク制限設定用マップから導出・設定される。回生トルク制限設定用マップの一例を図5(a)に示す。同図に示すように、実施例の回生トルク制限設定用マップは、モータ温度が予め定められた第1温度Tref1(例えば150℃程度)未満であれば回生トルク制限を制動トルクとして比較的大きな(値としては比較的小さい)所定値(実施例では負の一定値)Trerefに設定すると共にモータ温度が第1温度Tref1以上になると回生トルク制限をモータ温度に比例して制動トルクとして減少(値として増加)させるものとして作成されている。こうしてモータMG1,MG2の回生トルク制限Trelim1,Trelim2を設定したならば、ステップS10にて入力したモータ温度T1,T2に基づいてモータMG1,MG2の力行トルク制限Texlim1,Texlim2を設定する(ステップS14)。実施例では、モータ温度と力行トルク制限との関係が予め定められて力行トルク制限設定用マップとしてモータECU40の図示しないROMに記憶されており、モータMG1の力行トルク制限Texlim1としては、与えられたモータ温度T1に対応したものが力行トルク制限設定用マップから導出・設定され、モータMG2の力行トルク制限Texlim2としては、与えられたモータ温度T2に対応したものが力行トルク制限設定用マップから導出・設定される。力行トルク制限設定用マップの一例を図5(b)に示す。同図に示すように、実施例の力行トルク制限設定用マップは、モータ温度が上述の第1温度Tref1よりも高い温度として予め定められた第2温度Tref2(例えば170℃程度)未満であれば力行トルク制限を比較的大きな所定値(実施例では一定値)Texrefに設定すると共にモータ温度が第2温度Tref2以上になると力行トルク制限をモータ温度に比例して減少させるものとして作成されている。これにより、実施例のハイブリッド自動車20では、モータ温度T1,T2が上昇していくような場合、回生トルク制限Trelim1,Trelim2が力行トルク制限Texlim1,Texlim2よりも先に、すなわちモータ温度T1,T2が比較的低いうちから、より小さな値に設定されることになる。なお、上記所定値Treref,Texrefは、モータMG1,MG2の諸元等を考慮して任意に定めることができる。また、実施例では、モータMG1とモータMG2とで回生トルク制限設定用マップおよび力行トルク制限設定用マップを共用するものとしたが、回生トルク制限設定用マップおよび力行トルク制限設定用マップは、モータMG1とモータMG2とで異なるものとされてもよい。
次に、実施例のハイブリッド自動車20の動作、特に運転者によりアクセルペダル83の踏み込みが解除されると共にブレーキペダル85が踏み込まれたときの動作と、運転者によりアクセルペダル83が踏み込まれているときの動作とを説明する。
図6は、運転者によりアクセルペダル83の踏み込みが解除されると共にブレーキペダル85が踏み込まれているときにハイブリッドECU70により所定時間(例えば数msec)ごとに繰り返し実行される制動時制御ルーチンの一例を示すフローチャートである。図6の制動時制御ルーチンの開始に際して、ハイブリッドECU70のCPU72は、アクセルペダルポジションセンサ84からのアクセル開度Accやシフトポジションセンサ82からのシフトポジションSP、車速センサ87からの車速V、モータMG1,MG2の回転数Nm1,Nm2、バッテリ50の入出力制限Win,Wout、要求回生制動トルクRBT、モータMG2の回生トルク制限Trelim2といった制御に必要なデータの入力処理を実行する(ステップS100)。ここで、モータMG1,MG2の回転数Nm1,Nm2は、モータECU40から通信により入力するものとし、バッテリ50の入出力制限Win,Woutは、バッテリECU52から通信により入力するものとした。また、要求回生制動トルクRBTは、ブレーキECU95から通信により入力するものとし、回生トルク制限Trelim2は、図4のトルク制限設定ルーチンを経て設定されている値をモータECU40から通信により入力するものとした。ステップS100のデータ入力処理の後、入力したアクセル開度Accと車速VとシフトポジションSPとに基づいて、アクセルペダル83およびブレーキペダル85の双方の踏み込みが解除されているとき、すなわちアクセルオフ状態でブレーキ操作がなされていないときに車軸としてのリングギヤ軸32aに出力すべきアクセルオフ時要求駆動力としてのベーストルクTbを設定する(ステップS110)。実施例では、アクセル開度Accと車速VとシフトポジションSPとベーストルクTbとの関係が予め定められてベーストルク設定用マップとしてROM74に記憶されており、与えられたアクセル開度Accと車速VとシフトポジションSPとに対応したものがベーストルクTbとして当該マップから導出・設定される。図7にベーストルク設定用マップの一例を示す。同図からわかるように、実施例のハイブリッド自動車20において、ベーストルクTbは、シフトポジションSPの変更がなければ、基本的に車速Vに応じて定まることになる。次いで、設定したベーストルクTbにステップS100にて入力した要求回生制動トルクRBTを加算することにより車軸としてのリングギヤ軸32aに出力すべき要求トルク(要求制動トルク)Tr*を設定する(ステップS120)。
要求トルクTr*を設定したならば、エンジン22が停止されているか否かを判定し(ステップS130)、エンジン22が停止されていれば、エンジン22の目標回転数Ne*と目標トルクTe*とをそれぞれ値0に設定する(ステップS140)。また、ステップS130にてエンジン22が運転されていると判断された場合には、目標回転数Ne*を例えばエンジン22が実質的にトルクを出力しないように自立運転される際の自立回転数Ne0(例えばアイドル時の回転数)に設定すると共に目標トルクTe*を値0に設定する(ステップS150)。更に、モータMG1に対するトルク指令Tm1*を値0に設定した上で(ステップS160)、モータMG2から出力すべきトルクの仮の値である仮モータトルクTm2tmpを次式(1)に従い計算する(ステップS170)。続いて、バッテリ50の入出力制限Win,WoutとモータMG2の現在の回転数Nm2とを用いてモータMG2から出力してもよいトルクの上下限としてのトルク制限Tm2min,Tm2maxを次式(2)および式(3)に従い計算する(ステップS180)。そして、モータMG2に対するトルク指令Tm2*をステップS100にて入力した回生トルク制限Trelim2やトルク制限Tm2min,Tm2maxで仮モータトルクTm2tmpを制限した値として設定する(ステップS190)。すなわち、ステップS190では、次式(4)に示すように、仮モータトルクTm2tmpとトルク制限Tm2maxとの小さい方と、トルク制限Tm2minとの大きい方を求めた上で、求めた値と回生トルク制限Trelim2との大きい方(制動トルクとして小さい方)をトルク指令Tm2*として設定する。このようにしてモータMG2に対するトルク指令Tm2*を設定することにより、モータMG2により車軸としてのリングギヤ軸32aに出力されるトルクをバッテリ50の入出力制限Win,Woutの範囲内かつ制動トルクとして回生トルク制限Trelim2以下の値に設定することができる。こうしてエンジン22の目標回転数Ne*や目標トルクTe*、モータMG1,MG2に対するトルク指令Tm1*,Tm2*を設定したならば、エンジン22の目標回転数Ne*および目標トルクTe*をエンジンECU24に、モータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に、トルク指令Tm2*をブレーキECU95にそれぞれ送信し(ステップS200)、再度ステップS100以降の処理を実行する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、目標回転数Ne*と目標トルクTe*とを得るための制御を実行する。また、トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*に従ってモータMG1が駆動されると共にトルク指令Tm2*に従ってモータMG2が駆動されるようにインバータ41,42のスイッチング素子のスイッチング制御を行なう。更に、トルク指令Tm2*を受信したブレーキECU95は、トルク指令Tm2*にギヤ比Grを乗じた値がモータMG2により車軸としてのリングギヤ軸32aに実際に出力される回生制動トルクであるとみなして、トルク指令Tm2*に基づいてハイブリッド自動車20に作用させるべき要求制動力BF*のうちのブレーキユニット90による分担分に応じた要求摩擦制動力FBF*を設定(調整)する。
Tm2tmp=Tr*/Gr …(1)
Tm2min=Win/Nm2 …(2)
Tm2max=Wout/Nm2 …(3)
Tm2*=max(Trelim2,max(min(Tm2tmp,Tm2max),Tm2min)) …(4)
引き続き、運転者によりアクセルペダル83が踏み込まれているときのハイブリッド自動車20の動作を説明する。図8は、運転者によりアクセルペダル83が踏み込まれているときにハイブリッドECU70により所定時間(例えば数msec)ごとに繰り返し実行される駆動制御ルーチンの一例を示すフローチャートである。なお、ここでは、説明を簡単にするためにエンジン22が運転されている状態を例にとって図8の駆動制御ルーチンを説明する。本ルーチンの開始に際して、ハイブリッドECU70のCPU72は、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ87からの車速V、モータMG1,MG2の回転数Nm1,Nm2、充放電要求パワーPb*、バッテリ50の入出力制限Win,Wout、モータMG1の回生トルク制限Trelim1、モータMG2の力行トルク制限Texlim2といった制御に必要なデータの入力処理を実行する(ステップS300)。ここで、モータMG1,MG2の回転数Nm1,Nm2は、モータECU40から通信により入力するものとし、充放電要求パワーPb*や入出力制限Win,Woutは、バッテリECU52から通信により入力するものとした。また、回生トルク制限Trelim1や力行トルク制限Texlim2は、図4のトルク制限設定ルーチンを経て設定されている値をモータECU40から通信により入力するものとした。ステップS300のデータ入力処理の後、入力したアクセル開度Accと車速Vとに基づいて駆動輪である車輪39a,39bに連結された車軸としてのリングギヤ軸32aに出力すべき要求トルクTr*とエンジン22に要求される要求パワーPe*とを設定する(ステップS310)。実施例では、アクセル開度Accと車速Vと要求トルクTr*との関係が予め定められて要求トルク設定用マップとしてROM74に記憶されており、要求トルクTr*としては、与えられたアクセル開度Accと車速Vとに対応したものが当該マップから導出・設定される。図9に要求トルク設定用マップの一例を示す。また、実施例において、要求パワーPe*は、設定した要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものと充放電要求パワーPb*(ただし、放電側を正とする)とロスLossとの総和として計算される。なお、リングギヤ軸32aの回転数Nrは、図示するようにモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除するか、あるいは車速Vに換算係数kを乗じることによって求めることができる。更に、ステップS310にて設定したエンジン22に対する要求パワーPe*に基づいてエンジン22の目標運転ポイントである目標回転数Ne*と目標トルクTe*とを設定する(ステップS320)。実施例では、予め定められたエンジン22を効率よく動作させるための動作ラインと要求パワーPe*とに基づいてエンジン22の目標回転数Ne*と目標トルクTe*とを設定するものとした。図10に、エンジン22の動作ラインと目標回転数Ne*と目標トルクTe*との相関曲線とを例示する。同図に示すように、目標回転数Ne*と目標トルクTe*とは、動作ラインと要求パワーPe*(Ne*×Te*)が一定となることを示す相関曲線との交点から求めることができる。
エンジン22の目標回転数Ne*と目標トルクTe*とを設定したならば、目標回転数Ne*とリングギヤ軸32aの回転数Nr(Nm2/Gr)と動力分配統合機構30のギヤ比ρ(サンギヤ31の歯数/リングギヤ32の歯数)とを用いて次式(5)に従いモータMG1の目標回転数Nm1*を計算した上で、計算した目標回転数Nm1*と現在の回転数Nm1とに基づく次式(6)に従ってモータMG1から出力すべきトルクの仮の値である仮モータトルクTm1tmpを計算する(ステップS330)。ここで、式(5)は、動力分配統合機構30の回転要素に対する力学的な関係式である。動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図を図11に例示する。図中、左側のS軸はモータMG1の回転数Nm1に一致するサンギヤ31の回転数を示し、中央のC軸はエンジン22の回転数Neに一致するキャリア34の回転数を示し、右側のR軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。また、R軸上の2つの太線矢印は、モータMG1にトルクTm1を出力させたときにこのトルク出力によりリングギヤ軸32aに作用するトルクと、モータMG2にトルクTm2を出力させたときに減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示す(ただし、上向きを正、下向きを負のトルクとする)。モータMG1の目標回転数Nm1*を求めるための式(5)は、この共線図における回転数の関係を用いれば容易に導出することができる。そして、式(6)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式であり、式(2)中、右辺第2項の「k1」は比例項のゲインであり、右辺第3項の「k2」は積分項のゲインである。
Nm1*=Ne*・(1+ρ)/ρ-Nm2/(Gr・ρ) …(5)
Tm1tmp=-ρ・Te*/(1+ρ)+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt …(6)
続いて、次式(7)および(8)の双方を満たすモータMG1から出力してもよいトルクの上下限としてのトルク制限Tm1min,Tm1maxを次式(9)および(10)に従って設定する(ステップS340)。ここで、式(7)は、モータMG1やモータMG2によりリングギヤ軸32aに出力されるトルクの総和と要求トルクTr*とが一致することを示す関係式である。また、式(8)は、モータMG1とモータMG2とにより入出力される電力の総和が入出力制限Win,Woutの範囲内に含まれることを示す関係式である。トルク制限Tm1min,Tm1maxを導くための式(9)および(10)は、これら式(7)および(8)をトルクTm1について解くことにより得られる。そして、モータMG1に対するトルク指令Tm1*をステップS300にて入力した回生トルク制限Trelim1やトルク制限Tm1min,Tm1maxで仮モータトルクTm1tmpを制限した値として設定する(ステップS350)。すなわち、ステップS350では、次式(11)に示すように、仮モータトルクTm1tmpとトルク制限Tm1maxとの小さい方と、トルク制限Tm1minとの大きい方を求めた上で、求めた値と回生トルク制限Trelim1との大きい方(回生トルクとして小さい方)をトルク指令Tm1*として設定する。このようにしてモータMG1に対するトルク指令Tm1*を設定することにより、車軸としてのリングギヤ軸32aに出力するトルクをバッテリ50の入出力制限Win,Woutの範囲内かつ回生トルク(発電トルク)として回生トルク制限Trelim1以下の値に設定することができる。
-Tm1/ρ+Tm2・Gr=Tr*…(7)
Win≦Tm1・Nm1+Tm2・Nm2≦Wout…(8)
Tm1min=(Gr・Win-Tr*・Nm2)/(Gr・Nm1+Nm2/ρ) …(9)
Tm1max=(Gr・Wout-Tr*・Nm2)/(Gr・Nm1+Nm2/ρ) …(10)
Tm1*=max(Trelim1,max(min(Tm1tmp,Tm1max),Tm1min)) …(11)
上述のようにしてモータMG1に対するトルク指令Tm1*を設定したならば、要求トルクTr*とトルク指令Tm1*と動力分配統合機構30のギヤ比ρと減速ギヤ35のギヤ比Grとを用いてモータMG2から出力すべきトルクの仮の値である仮モータトルクTm2tmpを次式(12)に従い計算する(ステップS360)。更に、バッテリ50の入出力制限Win,WoutとステップS350にて設定したモータMG1に対するトルク指令Tm1*とモータMG1,MG2の現在の回転数Nm1,Nm2とを用いてモータMG2から出力してもよいトルクの上下限としてのトルク制限Tm2min,Tm2maxを次式(13)および式(14)に従い計算する(ステップS370)。そして、モータMG2に対するトルク指令Tm2*をステップS300にて入力した力行トルク制限Texlim2やトルク制限Tm2min,Tm2maxで仮モータトルクTm2tmpを制限した値として設定する(ステップS380)。すなわち、ステップS380では、次式(15)に示すように、仮モータトルクTm2tmpとトルク制限Tm2maxとの小さい方と、トルク制限Tm2minとの大きい方を求めた上で、求めた値と力行トルク制限Texlim2との小さい方をトルク指令Tm2*として設定する。このようにしてモータMG2に対するトルク指令Tm2*を設定することにより、車軸としてのリングギヤ軸32aに出力するトルクをバッテリ50の入出力制限Win,Woutの範囲内かつ力行トルク制限Texlim2以下の値として設定することができる。なお、式(12)は、図11の共線図から容易に導出することができる。こうしてエンジン22の目標回転数Ne*や目標トルクTe*、モータMG1,MG2に対するトルク指令Tm1*,Tm2*を設定したならば、エンジン22の目標回転数Ne*および目標トルクTe*をエンジンECU24に、モータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40にそれぞれ送信し(ステップS390)、再度ステップS300以降の処理を実行する。
Tm2tmp=(Tr*+Tm1*/ρ)/Gr …(12)
Tm2min=(Win-Tm1*・Nm1)/Nm2 …(13)
Tm2max=(Wout-Tm1*・Nm1)/Nm2 …(14)
Tm2*=min(Texlim2,max(min(Tm2tmp,Tm2max),Tm2min)) …(15)
以上説明したように、実施例のハイブリッド自動車20では、図4のトルク制限設定ルーチンを経て、温度センサ45,46により取得されたモータMG1,MG2のモータ温度T1,T2に基づいてモータMG1,MG2に出力させる力行トルクの上限値である力行トルク制限Texlim1,Texlim2とモータMG1,MG2に出力させる回生トルクの上限値である回生トルク制限Trelim1,Trelim2とが力行トルクの出力に比べて回生トルクの出力がより制限される傾向に設定される。そして、モータMG2に回生トルク(制動トルク)を出力させる図6の制動時制御ルーチンの実行時には、モータMG2により出力される回生トルクが制動トルクとして回生トルク制限Trelim2以下となるようにモータMG2が制御される(図6のステップS190等)。また、モータMG1に回生トルク(発電トルク)を出力させると共にモータMG2に力行トルク(走行用トルク)を出力させる図8の駆動制御ルーチンの実行時には、モータMG1により出力される回生トルクが発電トルクとして回生トルク制限Trelim1以下となると共にモータMG2により出力される力行トルクが力行トルク制限Texlim2以下となるようにモータMG1,MG2が制御される(図8のステップS350,S380等)。このように、モータMG1,MG2のモータ温度T1,T2に基づいて力行トルクの出力に比べて回生トルクの出力がより制限される傾向にモータMG1,MG2の力行トルク制限Texlim1,Texlim2と回生トルク制限Trelim1,Trelim2とを設定すれば、回生トルク制限Trelim1,Trelim2に基づくモータMG1,MG2の回生動作(発電動作)の制限によりモータMG1,MG2の過熱を抑制すると共に、特にモータMG2からの力行トルクの出力が力行トルク制限Texlim2に基づいて制限され難くすることができる。従って、ハイブリッド自動車20では、モータMG1,MG2の出力制限をより適正に実行してモータMG1,MG2の過熱を抑えつつドライバビリティの低下を抑制することが可能となる。
また、上記実施例では、回生トルク制限Trelim1,Trelim2や力行トルク制限Texlim1,Texlim2の設定に際して、モータMG1,MG2のモータ温度T1,T2が第1温度Tref1以上になるとそれまでの一定値Trerefから回生トルク制限Trelim1,Trelim2をモータ温度T1,T2の上昇に応じて漸減させる回生トルク制限設定用マップ(図5(a))と、モータ温度T1,T2が第1温度Tref1よりも高い第2温度Tref2以上になるとそれまでの一定値Texrefから力行トルク制限Texlim1,Texlim2をモータ温度T1,T2の上昇に応じて漸減させる力行トルク制限設定用マップ(図5(b))とが用いられる。これにより、モータ温度T1,T2が上昇していくような場合、回生トルク制限Trelim1,Trelim2が力行トルク制限Texlim1,Texlim2よりも先により小さな値に設定されることになり、それによりモータMG1,MG2による力行トルクの出力よりもモータMG1,MG2による回生トルクの出力を先に制限することが可能となる。従って、実施例のハイブリッド自動車20では、回生トルク制限Trelim1,Trelim2に基づくモータMG1,MG2の回生動作(発電動作)の制限によりモータMG1,MG2の過熱を抑制すると共に、モータMG1,MG2からの力行トルクの出力が力行トルク制限Texlim1,Texlim2に基づいて制限されて車軸としてのリングギヤ軸32aに走行用のトルクが出力され難くなることによるドライバビリティの低下を抑制することが可能となる。そして、実施例のハイブリッド自動車20は、運転者によるブレーキ操作に拘わらず任意の摩擦制動力を出力可能なブレーキユニット90を備えているので、回生トルク制限Trelim2に基づいてモータMG2による回生制動が制限されている際にブレーキユニット90に摩擦制動力を出力させ、それによって運転者によるブレーキ操作に基づく要求制動力BF*を良好に確保することが可能となる。また、主に発電機として機能するモータMG1についても、上述のようにして力行トルク制限Texlim1と回生トルク制限Trelim1とを設定することにより、回生トルク制限Trelimに基づくモータMG1の回生動作(発電動作)の制限によりモータMG1の過熱を抑制すると共に、バッテリ50からの放電を伴うモータMG1のクランキング(力行トルクの出力)によるエンジン22の始動を常時良好に実行することが可能となる。
なお、実施例のハイブリッド自動車20では、車軸としてのリングギヤ軸32aとモータMG2とがモータMG2の回転数を減速してリングギヤ軸32aに伝達する減速ギヤ35を介して連結されているが、減速ギヤ35の代わりに、例えばHi,Loの2段の変速段あるいは3段以上の変速段を有したモータMG2の回転数を変速してリングギヤ軸32aに伝達する変速機を採用してもよい。また、実施例のハイブリッド自動車20は、モータMG2の動力をリングギヤ軸32aに接続された車軸に出力するものであるが、本発明の適用対象は、これに限られるものでもない。すなわち、本発明は、図12に示す変形例としてのハイブリッド自動車20Aのように、モータMG2の動力をリングギヤ軸32aに接続された車軸(車輪39a,39bが接続された車軸)とは異なる車軸(図12における車輪39c,39dに接続された車軸)に出力するものに適用されてもよい。更に、実施例のハイブリッド自動車20は、エンジン22の動力を動力分配統合機構30を介して車輪39a,39bに接続される車軸としてのリングギヤ軸32aに出力するものであるが、本発明の適用対象はこれに限られるものでもない。すなわち、本発明は、図13に示す変形例としてのハイブリッド自動車20Bのように、エンジン22のクランクシャフトに接続されたインナーロータ232と車輪39a,39bに動力を出力する車軸に接続されたアウターロータ234とを有し、エンジン22の動力の一部を車軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えたものに適用されてもよい。
ここで、上記実施例や変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明しておく。すなわち、上記実施例および変形例では、リングギヤ軸32aに動力を入出力可能なモータMG2が「電動機」に相当し、モータMG2と電力をやり取り可能なバッテリ50が「蓄電手段」に相当し、モータMG2の温度を検出する温度センサ46が「温度取得手段」に相当し、図4のトルク制限設定ルーチンを実行するモータECU40が「トルク制限設定手段」に相当し、図6の制動時制御ルーチンや図8の駆動制御ルーチンを実行するハイブリッドECU70やエンジンECU24、モータECU40が「制御手段」に相当する。また、エンジン22が「内燃機関」に相当し、モータMG1および動力分配統合機構30の組み合わせや対ロータ電動機230が「電力動力入出力手段」に相当し、モータMG1の温度を検出する温度センサ45が「第2の温度取得手段」に相当し、モータMG1が「発電用電動機」に相当し、動力分配統合機構30が「3軸式動力入出力手段」に相当し、運転者によるブレーキ操作に拘わらず任意の摩擦制動力を出力可能なブレーキユニット90が「摩擦制動手段」に相当する。
なお、「電動機」や「発電用電動機」は、モータMG1,MG2のような同期発電電動機に限られず、誘導電動機といったような他の如何なる形式のものであっても構わない。「蓄電手段」は、バッテリ50のような二次電池に限られず、電動機と電力をやり取り可能なものであればキャパシタといったような他の如何なる形式のものであっても構わない。「温度取得手段」は、温度センサ45,46のようにモータMG1,MG2の温度を実測するものに限られず、電動機の温度を取得可能なものであれば、例えば電動機を冷却等するための冷却媒体の温度等に基づいて電動機の温度を推定するもの等、他の如何なる形式のものであっても構わない。「制御手段」は、電動機に力行トルクを出力させる場合には電動機により出力される力行トルクが設定された力行トルク制限以下となるように電動機を制御すると共に、電動機に回生トルクを出力させる場合には電動機により出力される回生トルクが設定された回生トルク制限以下となるように当該電動機を制御するものであれば、ハイブリッドECU70とモータECU40とブレーキECU95との組み合わせに限られるものではなく、単一の電子制御ユニットのような他の如何なる形式のものであっても構わない。「内燃機関」は、ガソリンや軽油といった炭化水素系の燃料の供給を受けて動力を出力するエンジン22に限られず、水素エンジンといったような他の如何なる形式のものであっても構わない。「電力動力入出力手段」は、所定の車軸と内燃機関の機関軸とに接続されて内燃機関からの動力の少なくとも一部を用いて発電可能であると共に電力の入出力を伴って車軸に動力を入出力可能であり、かつ蓄電手段と電力をやり取り可能なものであれば、モータMG1および動力分配統合機構30の組み合わせや対ロータ電動機230以外の他の如何なる形式のものであっても構わない。「摩擦制動手段」は、運転者による制動要求操作に拘わらず任意の摩擦制動力を出力可能なものであれば、電子制御式油圧ブレーキユニット90以外の他の如何なる形式のものであっても構わない。何れにしても、これら実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。すなわち、実施例はあくまで課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎず、課題を解決するための手段の欄に記載した発明の解釈は、その欄の記載に基づいて行なわれるべきものである。
以上、実施例を用いて本発明の実施の形態について説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、様々な変更をなし得ることはいうまでもない。
本発明の実施例に係る車両としてのハイブリッド自動車20の概略構成図である。 要求制動力設定用マップの一例を示す説明図である。 回生分配比設定用マップの一例を示す説明図である。 実施例のモータECU40により実行されるトルク制限設定ルーチンの一例を示すフローチャートである。 (a)は回生トルク制限設定用マップの一例を示す説明図であり、(b)は力行トルク制限設定用マップの一例を示す説明図である。 実施例のハイブリッドECU70により実行される制動時制御ルーチンの一例を示すフローチャートである。 ベーストルク設定用マップの一例を示す説明図である。 実施例のハイブリッドECU70により実行される駆動制御ルーチンの一例を示すフローチャートである。 要求トルク設定用マップの一例を示す説明図である。 エンジン22の動作ラインと目標回転数Ne*と目標トルクTe*との相関曲線とを例示する説明図である。 動力分配統合機構30の回転要素を力学的に説明するための共線図の一例を示す説明図である。 変形例のハイブリッド自動車20Aの概略構成図である。 変形例のハイブリッド自動車20Bの概略構成図である。
符号の説明
20,20A,20B ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、37 ギヤ機構、38 デファレンシャルギヤ、39a〜39d 車輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、45,46,51 温度センサ、50 バッテリ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、70 ハイブリッド用電子制御ユニット(ハイブリッドECU)、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルストロークセンサ、87 車速センサ、90 電子制御式油圧ブレーキユニット、91 マスタシリンダ、92 ブレーキアクチュエータ、93a〜93d ホイールシリンダ、94a〜94d ホイールシリンダ圧センサ、95 ブレーキ用電子制御ユニット(ブレーキECU)、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、MG1,MG2 モータ。

Claims (6)

  1. 車軸に動力を入出力可能な電動機と、
    前記電動機と電力をやり取り可能な蓄電手段と、
    前記電動機の温度を取得する温度取得手段と、
    前記取得された前記電動機の温度に基づいて前記電動機に出力させる力行トルクの上限値である力行トルク制限と前記電動機に出力させる回生トルクの上限値である回生トルク制限とを前記力行トルクの出力に比べて前記回生トルクの出力がより制限される傾向に設定するトルク制限設定手段と、
    前記電動機に前記力行トルクを出力させる場合には前記電動機により出力される力行トルクが前記設定された力行トルク制限以下となるように前記電動機を制御すると共に、前記電動機に前記回生トルクを出力させる場合には前記電動機により出力される回生トルクが前記設定された回生トルク制限以下となるように前記電動機を制御する制御手段と、
    を備える車両。
  2. 前記トルク制限設定手段は、前記取得された前記電動機の温度が第1の温度以上になると前記回生トルク制限を前記電動機の温度の上昇に応じて漸減させると共に、前記取得された前記電動機の温度が前記第1の温度よりも高い第2の温度以上になると前記力行トルク制限を前記電動機の温度の上昇に応じて漸減させる請求項1に記載の車両。
  3. 請求項1または2に記載の車両において、
    内燃機関と、
    前記車軸または該車軸とは異なる他の車軸と前記内燃機関の機関軸とに接続されて前記内燃機関からの動力の少なくとも一部を用いて発電可能であると共に電力の入出力を伴って前記車軸または前記他の車軸に動力を入出力可能であり、かつ前記蓄電手段と電力をやり取り可能な電力動力入出力手段と、
    前記電力動力入出力手段に関連した温度を取得する第2の温度取得手段とを更に備え、
    前記トルク制限設定手段は、前記第2の温度取得手段により取得された温度に基づいて前記電力動力入出力手段についての前記力行トルク制限と前記回生トルク制限とを前記力行トルクの出力に比べて前記回生トルクの出力がより制限される傾向に設定し、
    前記制御手段は、前記電力動力入出力手段に前記力行トルクを出力させる場合には前記電力動力入出力手段により出力される力行トルクが前記設定された力行トルク制限以下となるように前記電力動力入出力手段を制御すると共に、前記電力動力入出力手段に前記回生トルクを出力させる場合には前記電力動力入出力手段により出力される回生トルクが前記設定された回生トルク制限以下となるように前記電力動力入出力手段を制御する車両。
  4. 請求項3に記載の車両において、
    前記電力動力入出力手段は、動力を入出力可能な発電用電動機と、前記車軸または前記他の車軸と前記内燃機関の前記機関軸と前記発電用電動機の回転軸との3軸に接続され、これら3軸のうちの何れか2軸に入出力される動力に基づく動力を残余の軸に入出力する3軸式動力入出力手段とを含み、
    前記トルク制限設定手段は、前記第2の温度取得手段により取得される前記発電用電動機の温度に基づいて前記発電用電動機についての前記力行トルク制限と前記回生トルク制限とを前記力行トルクの出力に比べて前記回生トルクの出力がより制限される傾向に設定し、
    前記制御手段は、前記発電用電動機に前記力行トルクを出力させる場合には前記発電用電動機により出力される力行トルクが前記設定された力行トルク制限以下となるように前記発電用電動機を制御すると共に、前記発電用電動機に前記回生トルクを出力させる場合には前記発電用電動機により出力される回生トルクが前記設定された回生トルク制限以下となるように前記発電用電動機を制御する車両。
  5. 運転者による制動要求操作に拘わらず任意の摩擦制動力を出力可能な摩擦制動手段を更に備える請求項1から4の何れかに記載の車両。
  6. 車軸に動力を入出力可能な電動機と、前記電動機と電力をやり取り可能な蓄電手段と、前記電動機の温度を取得する温度取得手段とを備えた車両の制御方法であって、
    (a)前記温度取得手段により取得された前記電動機の温度に基づいて前記電動機に出力させる力行トルクの上限値である力行トルク制限と前記電動機に出力させる回生トルクの上限値である回生トルク制限とを前記力行トルクの出力に比べて前記回生トルクの出力がより制限される傾向に設定するステップと、
    (b)前記電動機に前記力行トルクを出力させる場合には前記電動機により出力される力行トルクがステップ(a)にて設定された力行トルク制限以下となるように前記電動機を制御すると共に、前記電動機に前記回生トルクを出力させる場合には前記電動機により出力される回生トルクがステップ(a)にて設定された回生トルク制限以下となるように前記電動機を制御するステップと、
    を含む車両の制御方法。
JP2007104919A 2007-04-12 2007-04-12 車両およびその制御方法 Pending JP2008260428A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007104919A JP2008260428A (ja) 2007-04-12 2007-04-12 車両およびその制御方法
PCT/JP2008/057135 WO2008133032A1 (ja) 2007-04-12 2008-04-11 車両およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104919A JP2008260428A (ja) 2007-04-12 2007-04-12 車両およびその制御方法

Publications (1)

Publication Number Publication Date
JP2008260428A true JP2008260428A (ja) 2008-10-30

Family

ID=39925491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104919A Pending JP2008260428A (ja) 2007-04-12 2007-04-12 車両およびその制御方法

Country Status (2)

Country Link
JP (1) JP2008260428A (ja)
WO (1) WO2008133032A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147393A1 (ja) * 2011-04-28 2012-11-01 三菱重工業株式会社 ハイブリッド型産業車両
CN104943682A (zh) * 2014-03-27 2015-09-30 福特全球技术公司 控制车辆牵引马达的扭矩
JP2015536128A (ja) * 2012-10-02 2015-12-17 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハーAvl Listgmbh ドライブトレインを稼動する方法
JP2017135907A (ja) * 2016-01-29 2017-08-03 スズキ株式会社 車両用制御装置
DE102017102457A1 (de) 2016-02-08 2017-08-10 Denso Corporation Hybridfahrzeugsteuervorrichtung
JP2018070058A (ja) * 2016-11-02 2018-05-10 トヨタ自動車株式会社 ハイブリッド自動車
CN108099694A (zh) * 2017-12-01 2018-06-01 重庆长安汽车股份有限公司 一种电动车辆及其电机控制系统与方法
WO2021020371A1 (ja) * 2019-07-31 2021-02-04 株式会社アドヴィックス 車両の制動制御装置
US20210268876A1 (en) * 2018-10-03 2021-09-02 Carrier Corporation Generator temperature control
US11312240B2 (en) * 2019-03-27 2022-04-26 Hyundai Motor Company Hybrid electric vehicle and braking control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3365301B2 (ja) * 1998-03-19 2003-01-08 トヨタ自動車株式会社 車両の制動エネルギー制御装置とその制御方法
JP4035930B2 (ja) * 1999-10-08 2008-01-23 トヨタ自動車株式会社 電動発電機を備えた車両の制御装置
JP2004364453A (ja) * 2003-06-06 2004-12-24 Aisin Aw Co Ltd 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232661A (ja) * 2011-04-28 2012-11-29 Mitsubishi Heavy Ind Ltd ハイブリッド型産業車両
CN103562034A (zh) * 2011-04-28 2014-02-05 力至优三菱叉车株式会社 混合动力型工业车辆
US9312685B2 (en) 2011-04-28 2016-04-12 Mitsubishi Nichiyu Forklift Co., Ltd. Hybrid industrial vehicle
WO2012147393A1 (ja) * 2011-04-28 2012-11-01 三菱重工業株式会社 ハイブリッド型産業車両
JP2015536128A (ja) * 2012-10-02 2015-12-17 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハーAvl Listgmbh ドライブトレインを稼動する方法
CN104943682B (zh) * 2014-03-27 2020-03-20 福特全球技术公司 控制车辆牵引马达的扭矩
CN104943682A (zh) * 2014-03-27 2015-09-30 福特全球技术公司 控制车辆牵引马达的扭矩
JP2017135907A (ja) * 2016-01-29 2017-08-03 スズキ株式会社 車両用制御装置
CN107020956A (zh) * 2016-01-29 2017-08-08 铃木株式会社 车辆用控制装置
DE102017102457A1 (de) 2016-02-08 2017-08-10 Denso Corporation Hybridfahrzeugsteuervorrichtung
DE102017102457B4 (de) 2016-02-08 2024-03-07 Denso Corporation Hybridfahrzeugsteuervorrichtung
JP2018070058A (ja) * 2016-11-02 2018-05-10 トヨタ自動車株式会社 ハイブリッド自動車
CN108099694A (zh) * 2017-12-01 2018-06-01 重庆长安汽车股份有限公司 一种电动车辆及其电机控制系统与方法
US20210268876A1 (en) * 2018-10-03 2021-09-02 Carrier Corporation Generator temperature control
US11312240B2 (en) * 2019-03-27 2022-04-26 Hyundai Motor Company Hybrid electric vehicle and braking control method thereof
WO2021020371A1 (ja) * 2019-07-31 2021-02-04 株式会社アドヴィックス 車両の制動制御装置
JP2021027603A (ja) * 2019-07-31 2021-02-22 株式会社アドヴィックス 車両の制動制御装置

Also Published As

Publication number Publication date
WO2008133032A1 (ja) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4232824B2 (ja) ハイブリッド自動車およびその制御方法
JP4258548B2 (ja) 車両およびその制御方法
JP4407741B2 (ja) 車両およびその制御方法
JP4201044B2 (ja) 車両およびその制御方法
JP2008260428A (ja) 車両およびその制御方法
JP2008265600A (ja) 車両およびその制御方法
JP2010115059A (ja) 車両およびその制御方法
JP4973320B2 (ja) 車両およびその制御方法
JP2010111182A (ja) ハイブリッド車およびその制御方法
JP2011097666A (ja) 自動車およびその制御方法
JP2009214580A (ja) ハイブリッド車およびその制御方法
JP2009166670A (ja) ハイブリッド自動車およびその制御方法
JP4285483B2 (ja) 車両およびその制御方法
JP5056453B2 (ja) 車両およびその制御方法
JP2007203998A (ja) 車両およびその制御方法
JP4924123B2 (ja) 車両およびその制御方法
JP4992810B2 (ja) ハイブリッド車およびその制御方法
JP4973514B2 (ja) 車両およびその制御方法
JP2008182855A (ja) 車両およびその制御方法
JP2009165326A (ja) 車両およびその制御方法
JP4784300B2 (ja) 自動車およびその制御方法
JP2008136308A (ja) 電源装置およびこれを搭載する車両並びに電源装置の制御方法
JP4916408B2 (ja) ハイブリッド車およびその制御方法
JP2012153165A (ja) ハイブリッド車両およびその制御方法
JP2011093457A (ja) 車両およびその制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216