[go: up one dir, main page]

JP2008244056A - Manufacturing method of silicon carbide semiconductor device - Google Patents

Manufacturing method of silicon carbide semiconductor device Download PDF

Info

Publication number
JP2008244056A
JP2008244056A JP2007081065A JP2007081065A JP2008244056A JP 2008244056 A JP2008244056 A JP 2008244056A JP 2007081065 A JP2007081065 A JP 2007081065A JP 2007081065 A JP2007081065 A JP 2007081065A JP 2008244056 A JP2008244056 A JP 2008244056A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide semiconductor
manufacturing
semiconductor device
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007081065A
Other languages
Japanese (ja)
Inventor
Shozo Shikama
省三 鹿間
Yoshinori Matsuno
吉徳 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007081065A priority Critical patent/JP2008244056A/en
Publication of JP2008244056A publication Critical patent/JP2008244056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain the manufacturing method of a silicon carbide semiconductor device equipped with a Schottky electrode having stabilized characteristics. <P>SOLUTION: The front surface side of an N<SP>-</SP>low concentration layer 2, in which the Schottky electrode is formed, is arranged so as to be contacted with the susceptor 11 of a heat treatment device through a thermal oxidation film 5. Namely, the lamination structure of an N<SP>+</SP>high concentration substrate 1 and the N<SP>-</SP>low concentration layer 2 is arranged under a state that the whole surface of the thermal oxidation film 5 is contacted with the susceptor 11. Under this state of arrangement, an ohmic electrode 7 formed of a metal is formed on the rear surface of the N<SP>+</SP>high concentration substrate 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、炭化珪素を材料とし、ショットキ電極を有する炭化珪素半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a silicon carbide semiconductor device using silicon carbide as a material and having a Schottky electrode.

従来のショットキ電極を有する炭化珪素半導体装置、例えばショットキバリアダイオードでは電極を形成する際の製造方法は主要な工程は以下の内容で行われていた。すなわち、炭化珪素層全体(炭化珪素半導体基体)を酸化した後、裏面の酸化膜を除去して金属膜を堆積させ、これを熱処理することによりオーミック電極を形成し、その後ショットキ電極を形成していた。   In a conventional silicon carbide semiconductor device having a Schottky electrode, such as a Schottky barrier diode, the main steps of the manufacturing method for forming the electrode are as follows. That is, after the entire silicon carbide layer (silicon carbide semiconductor substrate) is oxidized, the oxide film on the back surface is removed and a metal film is deposited, and this is heat-treated to form an ohmic electrode, and then a Schottky electrode is formed. It was.

このような製造方法は、例えば、特許文献1に開示されている。この製造方法では、裏面にオーミック電極を形成するために少なくとも900℃以上の高温の熱処理が必要である。このため、このような高温の熱処理によりショットキバリアの性能劣化を防止するため、必ず、オーミック電極形成後にショットキ電極を形成してした。   Such a manufacturing method is disclosed in Patent Document 1, for example. In this manufacturing method, a high-temperature heat treatment of at least 900 ° C. is necessary to form an ohmic electrode on the back surface. Therefore, in order to prevent the performance deterioration of the Schottky barrier by such high-temperature heat treatment, the Schottky electrode is always formed after the ohmic electrode is formed.

特開2006−202883号公報(段落[0044],図6)JP 2006-202883 A (paragraph [0044], FIG. 6)

このような従来の炭化珪素半導体装置の製造方法においては、一般的にショットキ電極が形成される(0001)面での酸化速度が遅いため、ショットキ電極が直接形成される炭化珪素半導体層上に保護膜として形成される二酸化珪素膜等の熱酸化膜の膜厚が薄く、オーミック電極形成の際の熱処理等の工程において、上記炭化珪素半導体層におけるショットキ電極形成面が金属元素による汚染を被りやすい。このため、炭化珪素半導体装置の特性異常が起こりやすいという問題点があった。   In such a conventional method for manufacturing a silicon carbide semiconductor device, since the oxidation rate is generally slow on the (0001) plane where the Schottky electrode is formed, the silicon carbide semiconductor layer on which the Schottky electrode is directly formed is protected. A thermal oxide film such as a silicon dioxide film formed as a film is thin, and the Schottky electrode formation surface of the silicon carbide semiconductor layer is likely to be contaminated with a metal element in a process such as a heat treatment when forming an ohmic electrode. For this reason, there has been a problem that characteristic abnormality of the silicon carbide semiconductor device is likely to occur.

この発明は、上記のような問題を解決するためになされたものであり、安定した特性を有する、ショットキ電極を備えた炭化珪素半導体装置の製造方法を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a method for manufacturing a silicon carbide semiconductor device having a Schottky electrode having stable characteristics.

この発明に係る請求項1記載の炭化珪素半導体装置の製造方法は、(a) 炭化珪素半導体基体の一方主面上の全面に絶縁膜を形成するステップと、(b) 前記絶縁膜の全表面を接触させてサセプタ上に前記炭化珪素半導体基体を配置し、この配置状態で前記炭化珪素半導体基体の他方主面上に金属からなるオーミック電極を形成するステップと、(c) 前記絶縁膜の少なくとも一部を除去して前記炭化珪素半導体基体の一方主面の少なくとも一部を露出させた後、当該露出面上にショットキ電極を形成するステップとを備える。   According to a first aspect of the present invention, there is provided a method for manufacturing a silicon carbide semiconductor device comprising: (a) a step of forming an insulating film on the entire main surface of the silicon carbide semiconductor substrate; and (b) an entire surface of the insulating film. And placing the silicon carbide semiconductor substrate on a susceptor and forming an ohmic electrode made of metal on the other main surface of the silicon carbide semiconductor substrate in this arrangement, and (c) at least the insulating film Forming a Schottky electrode on the exposed surface after removing a part of the silicon carbide semiconductor substrate to expose at least a part of the one main surface.

この発明に係る請求項2記載の炭化珪素半導体装置の製造方法は、(a) 炭化珪素半導体基体の一方主面上の全面に第1の絶縁膜を形成するステップと、(b) 前記第1の絶縁膜上に第2の絶縁膜を形成するステップと、(c) 前記第1及び第2の絶縁膜が前記炭化珪素半導体基体の一方主面上に形成された状態で、前記炭化珪素半導体基体の他方主面上に金属からなるオーミック電極を形成するステップと、(d) 前記第1及び第2の絶縁膜の少なくとも一部を除去して前記炭化珪素半導体基体の一方主面の少なくとも一部を露出させた後、当該露出面上にショットキ電極を形成するステップとをさらに備える。   According to a second aspect of the present invention, there is provided a silicon carbide semiconductor device manufacturing method comprising: (a) a step of forming a first insulating film on the entire main surface of the silicon carbide semiconductor substrate; and (b) the first Forming a second insulating film on the insulating film; and (c) the silicon carbide semiconductor in a state in which the first and second insulating films are formed on one main surface of the silicon carbide semiconductor substrate. Forming an ohmic electrode made of metal on the other main surface of the substrate; and (d) removing at least a part of the first and second insulating films to at least one of the one main surface of the silicon carbide semiconductor substrate. Forming a Schottky electrode on the exposed surface after exposing the portion.

請求項1記載の炭化珪素半導体装置の製造方法におけるステップ(b) は、絶縁膜の表面の全面を接触させてサセプタ上に炭化珪素半導体基体を配置した状態で、炭化珪素半導体基体の他方主面上に金属からなるオーミック電極を形成している。   The step (b) in the method for manufacturing a silicon carbide semiconductor device according to claim 1 includes the step of bringing the entire surface of the insulating film into contact with the silicon carbide semiconductor substrate on the susceptor and placing the other main surface of the silicon carbide semiconductor substrate on the susceptor. An ohmic electrode made of metal is formed thereon.

このため、オーミック電極形成時に飛散する金属原子は絶縁膜の表面に到達することはなく、まして炭化珪素半導体基体の一方主面側の領域に到達することはない。その結果、炭化珪素半導体基体の一方主面上に、ショットキ電極を形成した場合には良好なショットキ特性を得ることができ、良好な特性のオーミック電極を有する炭化珪素半導体装置を得ることができる効果を奏する。   For this reason, metal atoms scattered during the formation of the ohmic electrode do not reach the surface of the insulating film, and do not reach the region on the one main surface side of the silicon carbide semiconductor substrate. As a result, when a Schottky electrode is formed on one main surface of the silicon carbide semiconductor substrate, good Schottky characteristics can be obtained, and a silicon carbide semiconductor device having an ohmic electrode with good characteristics can be obtained. Play.

この発明における請求項2記載の炭化珪素半導体装置の製造方法のステップ(c) は、第1及び第2の絶縁膜が炭化珪素半導体基体の一方主面上に形成された状態で、前記炭化珪素半導体基体の他方主面上に金属からなるオーミック電極を形成している。   Step (c) of the method for manufacturing a silicon carbide semiconductor device according to claim 2 of the present invention includes the step of forming the silicon carbide with the first and second insulating films formed on one main surface of the silicon carbide semiconductor substrate. An ohmic electrode made of metal is formed on the other main surface of the semiconductor substrate.

したがって、ステップ(c) のオーミック電極の形成時に金属汚染を受けたとしても、金属原子は上記第1及び第2の絶縁膜の表面および内部に留まり、炭化珪素半導体基体の一方主面側の領域に到達することがない。その結果、特性が良好でばらつきの少ない、ショットキ電極を有する炭化珪素半導体装置を得ることができる効果を奏する。   Therefore, even if metal contamination is caused during the formation of the ohmic electrode in step (c), the metal atoms remain on the surfaces and inside of the first and second insulating films, and the region on the one main surface side of the silicon carbide semiconductor substrate. Never reach. As a result, it is possible to obtain a silicon carbide semiconductor device having a Schottky electrode with good characteristics and little variation.

<実施の形態1>
図1〜図3はこの発明の実施の形態1である炭化珪素半導体装置の製造方法の主要工程を示す断面図である。以下、これらの図を参照して実施の形態1による炭化珪素半導体装置の製造方法の説明を行う。
<Embodiment 1>
1 to 3 are sectional views showing main steps of the method for manufacturing the silicon carbide semiconductor device according to the first embodiment of the present invention. Hereinafter, a method for manufacturing the silicon carbide semiconductor device according to the first embodiment will be described with reference to these drawings.

まず、既存の工程(例えば、特許文献1の図4〜図6で示す工程(オーミック電極2の形成は除く))を経て、図1で示す構造を得る。   First, the structure shown in FIG. 1 is obtained through the existing steps (for example, the steps shown in FIGS. 4 to 6 of Patent Document 1 (excluding the formation of the ohmic electrode 2)).

図1に示すように、炭化珪素半導体より形成され、低抵抗のN+高濃度基板1の表面に炭化珪素半導体より構成されるN-低濃度層2を形成し、N+高濃度基板1及びN-低濃度層2からなる積層構造(炭化珪素半導体基体)を得る。そして、N-低濃度層2の表面内に耐圧構造を得るべくガードリング領域となるP型注入領域3を選択的に形成する。 As shown in FIG. 1, an N low concentration layer 2 made of a silicon carbide semiconductor is formed on the surface of a low resistance N + high concentration substrate 1, and the N + high concentration substrate 1 and A laminated structure (silicon carbide semiconductor substrate) composed of the N low concentration layer 2 is obtained. Then, a P-type implantation region 3 serving as a guard ring region is selectively formed in the surface of the N low concentration layer 2 in order to obtain a breakdown voltage structure.

その後、P型注入領域3を含むN-低濃度層2の表面上(炭化珪素半導体基体の一方主面上)に保護膜となる熱酸化膜5を形成する。この場合、熱酸化膜5は二酸化珪素膜を意味する。 Thereafter, a thermal oxide film 5 serving as a protective film is formed on the surface of N low concentration layer 2 including P-type implantation region 3 (on one main surface of the silicon carbide semiconductor substrate). In this case, the thermal oxide film 5 means a silicon dioxide film.

次に、図2に示すように、金属膜で形成されるオーミック電極7の面が上向きに、つまりショットキ電極が形成されるN―低濃度層2の表面側(図中下側)が熱酸化膜5を介して熱処理装置のサセプタ11に接するように配置する。すなわち、熱酸化膜5の全表面をサセプタ11に接触させた状態で、N+高濃度基板1及びN-低濃度層2の積層構造を配置する。 Next, as shown in FIG. 2, the surface of the ohmic electrode 7 formed of a metal film faces upward, that is, the surface side (the lower side in the figure) of the N-low concentration layer 2 where the Schottky electrode is formed is thermally oxidized. The film 5 is disposed so as to be in contact with the susceptor 11 of the heat treatment apparatus. That is, the stacked structure of the N + high concentration substrate 1 and the N low concentration layer 2 is disposed in a state where the entire surface of the thermal oxide film 5 is in contact with the susceptor 11.

なお、サセプタ11はウェハを保持する一般的なサセプタを意味する。例えば、カーボン製のものにSiCコートしたものが考えられる。実施の形態1の製造方法は、清浄に保ちたい面(N-低濃度層2のショットキ電極接触面)に形成される熱酸化膜5の全表面をサセプタ11と接触させることにより、清浄に保つことが目的である。なお、サセプタ11の表面の材質に不純物が混ざっていたり汚染されていたりして熱処理時にウエハを汚染するようなことがない構造が望ましい。 The susceptor 11 means a general susceptor that holds a wafer. For example, a carbon product coated with SiC can be considered. In the manufacturing method of the first embodiment, the entire surface of the thermal oxide film 5 formed on the surface to be kept clean (the Schottky electrode contact surface of the N low concentration layer 2) is brought into contact with the susceptor 11 to keep it clean. Is the purpose. It is desirable that the surface material of the susceptor 11 does not contaminate the wafer during heat treatment because impurities are mixed or contaminated.

そして、この配置状態で、N+高濃度基板1の裏面(図2では上側、炭化珪素半導体基体の他方正面)上に金属で形成されるオーミック電極7を形成する。その後、オーミック電極7の形成をAr等の不活性ガス雰囲気下で熱処理を行うことにより、N+高濃度基板1の裏面とオーミック電極7とはオーミック接触となる。 Then, in this arrangement state, ohmic electrode 7 made of metal is formed on the back surface of N + high concentration substrate 1 (upper side in FIG. 2, the other front surface of the silicon carbide semiconductor substrate). Thereafter, the back surface of the N + high concentration substrate 1 and the ohmic electrode 7 are brought into ohmic contact by forming the ohmic electrode 7 by heat treatment in an inert gas atmosphere such as Ar.

その後、図3に示すように、熱酸化膜5の一部を除去して開口部を設け、P型注入領域3を含むN-低濃度層2の表面の一部を露出させる。この際、熱酸化膜5を全て除去してN-低濃度層2の表面の全てを露出させても良い。そして、P型注入領域3を含むN-低濃度層2の露出面上にショットキ電極8を形成する。以下、必要に応じて、Al電極、パッシベーション膜等を形成することにより、ショットキ電極8を有する炭化珪素半導体装置を完成する。 Thereafter, as shown in FIG. 3, a part of the thermal oxide film 5 is removed to provide an opening, and a part of the surface of the N low concentration layer 2 including the P-type implantation region 3 is exposed. At this time, all of the thermal oxide film 5 may be removed to expose the entire surface of the N low concentration layer 2. Then, a Schottky electrode 8 is formed on the exposed surface of the N low concentration layer 2 including the P-type implantation region 3. Thereafter, an Al electrode, a passivation film, and the like are formed as necessary to complete the silicon carbide semiconductor device having the Schottky electrode 8.

このように、実施の形態1の炭化珪素半導体装置の製造方法では、図2に示すように、ショットキ電極が形成されるN-低濃度層2の表面側(炭化珪素半導体基体の一方主面側)に形成される熱酸化膜5の全表面が熱処理装置のサセプタ11に接するように配置した状態で、オーミック電極7を形成している。このため、オーミック電極7の形成時に熱処理装置内で飛散している金属原子は熱酸化膜5の表面に到達することはなく、ましてN-低濃度層2に到達することはない。 Thus, in the method for manufacturing the silicon carbide semiconductor device of the first embodiment, as shown in FIG. 2, the surface side of N low concentration layer 2 on which the Schottky electrode is formed (one main surface side of the silicon carbide semiconductor substrate) The ohmic electrode 7 is formed in such a state that the entire surface of the thermal oxide film 5 formed in (1) is in contact with the susceptor 11 of the heat treatment apparatus. For this reason, the metal atoms scattered in the heat treatment apparatus during the formation of the ohmic electrode 7 do not reach the surface of the thermal oxide film 5, and do not reach the N low concentration layer 2.

その結果、N-低濃度層2の表面上に、ショットキ電極を形成した場合には良好なショットキ特性を得ることができ、オーミック電極7の形成時に生じる金属原子の影響を受けない、良好な特性のオーミック電極を有する炭化珪素半導体装置を得ることができる。 As a result, N - low concentration layer 2 on the surface, in the case of forming the Schottky electrode can be obtained a good Schottky characteristic is not affected by the metal atoms occurring during the formation of the ohmic electrode 7, good characteristics A silicon carbide semiconductor device having an ohmic electrode can be obtained.

<実施の形態2>
図4〜図10はこの発明の実施の形態2である炭化珪素半導体装置の製造方法を示す断面図である。以下、これらの図を参照して実施の形態2の炭化珪素半導体装置の製造方法の処理手順を説明する。
<Embodiment 2>
4 to 10 are sectional views showing a method for manufacturing the silicon carbide semiconductor device according to the second embodiment of the present invention. Hereinafter, the procedure of the method for manufacturing the silicon carbide semiconductor device of the second embodiment will be described with reference to these drawings.

まず、図4に示すように、低抵抗のN+高濃度基板1上に低濃度のN-低濃度層2を形成して、N+高濃度基板1及びN-低濃度層2よりなる積層構造(炭化珪素半導体基体)を得る。 First, as shown in FIG. 4, the low-resistance N + high concentration substrate 1 on the low concentration of N - to form a low concentration layer 2, N + high concentration substrate 1 and N - laminate consisting of the low concentration layer 2 A structure (silicon carbide semiconductor substrate) is obtained.

そして、図5に示すように、N-低濃度層2上に、フォトリソグラフィ技術を用いて所定のパターンの開口部4aをもつフォトレジスト4を形成する。次に、上部よりAl(アルミ)またはB(ボロン)のイオン注入を行った後、フォトレジスト4を除去し、さらに1500℃以上の熱処理を行うことにより、ガードリング効果を発揮するP型注入領域3を選択的に形成する。 Then, as shown in FIG. 5, a photoresist 4 having an opening 4a having a predetermined pattern is formed on the N low concentration layer 2 by using a photolithography technique. Next, after performing ion implantation of Al (aluminum) or B (boron) from the top, the photoresist 4 is removed, and further, a heat treatment at 1500 ° C. or higher is performed, whereby a P-type implantation region that exhibits a guard ring effect. 3 is formed selectively.

その後、図6に示すように、熱酸化処理を行い、P型注入領域3を含むN-低濃度層2上(炭化珪素半導体基体の一方主面上)に熱酸化膜5aを形成するとともに、N+高濃度基板1上(図中下側、炭化珪素半導体基体の他方主面上)に熱酸化膜5bを形成する。 Thereafter, as shown in FIG. 6, a thermal oxidation process is performed to form a thermal oxide film 5a on the N low concentration layer 2 including the P-type implantation region 3 (on one main surface of the silicon carbide semiconductor substrate), Thermal oxide film 5b is formed on N + high concentration substrate 1 (the lower side in the figure, on the other main surface of the silicon carbide semiconductor substrate).

さらに、図6に示すように、CVD法あるいはPVD法を用いて、熱酸化膜5a上に保護絶縁膜6a、熱酸化膜5b上に保護絶縁膜6bを形成する。保護絶縁膜6a,6bとしては例えば、金属原子を透過させにくい性質を有する二酸化珪素膜もしくは窒化珪素膜が考えられる。なお、図6では保護絶縁膜6a,6bを共に形成する工程を示したが、保護絶縁膜6aのみ選択的に形成することもできる。   Further, as shown in FIG. 6, a protective insulating film 6a is formed on the thermal oxide film 5a and a protective insulating film 6b is formed on the thermal oxide film 5b by using a CVD method or a PVD method. As the protective insulating films 6a and 6b, for example, a silicon dioxide film or a silicon nitride film having a property of hardly transmitting metal atoms can be considered. Note that FIG. 6 illustrates the step of forming the protective insulating films 6a and 6b together, but only the protective insulating film 6a can be selectively formed.

二酸化珪素膜は半導体産業においては最も一般的な絶縁膜であるため、二酸化珪素膜を用いることにより、保護絶縁膜6a,6bを簡便に形成することができる効果を奏する。   Since the silicon dioxide film is the most common insulating film in the semiconductor industry, the protective insulating films 6a and 6b can be easily formed by using the silicon dioxide film.

さらに、保護絶縁膜6a,6bとして用いる二酸化珪素膜として、リンを含むPSG(Phospho-Silicate Glass)膜を用いることができる。この場合、高いNa(ナトリウム)に対するゲッタリング効果がさらに期待できる効果を奏する。なお、Naは炭化珪素半導体装置の製造方法の工程全般において発生し易い材質(汚染源)であることが一般的に知られている。   Furthermore, as a silicon dioxide film used as the protective insulating films 6a and 6b, a PSG (Phospho-Silicate Glass) film containing phosphorus can be used. In this case, there is an effect that a gettering effect for high Na (sodium) can be further expected. It is generally known that Na is a material (contamination source) that is likely to be generated in the entire process of the method for manufacturing a silicon carbide semiconductor device.

また、保護絶縁膜6a,6bとして窒化珪素膜を用いることにより、Naをはじめとする金属原子の進入を妨げることができる効果を発揮することができる。   Further, by using silicon nitride films as the protective insulating films 6a and 6b, it is possible to exert an effect capable of preventing the entry of metal atoms including Na.

続いて、図7に示すように、N+高濃度基板1の裏面の熱酸化膜5b及び保護絶縁膜6bを除去することによりN+高濃度基板1を露出させる。その後、N+高濃度基板1の下部にスパッタリング法によりNi膜を成膜し、Ar雰囲気中で1000℃の熱処理を加える。その結果、N+高濃度基板1の裏面(炭化珪素半導体基体の他方主面)上にオーミック電極7が形成される。 Subsequently, as shown in FIG. 7, to expose the N + high concentration substrate 1 by removing the N + high backside of concentration substrate 1 of the thermal oxide film 5b and the protective insulating film 6b. Thereafter, a Ni film is formed under the N + high concentration substrate 1 by a sputtering method, and a heat treatment at 1000 ° C. is performed in an Ar atmosphere. As a result, ohmic electrode 7 is formed on the back surface of N + high concentration substrate 1 (the other main surface of the silicon carbide semiconductor substrate).

その後、図8に示すように、熱酸化膜5a及び保護絶縁膜6aの一部を除去して開口部12を設け、P型注入領域3を含むN-低濃度層2の表面の一部を露出させる。この際、熱酸化膜5a及び保護絶縁膜6aを全て除去してN-低濃度層2の表面の全てを露出させても良い。 Thereafter, as shown in FIG. 8, a part of the thermal oxide film 5a and the protective insulating film 6a is removed to provide an opening 12, and a part of the surface of the N low concentration layer 2 including the P-type implantation region 3 is formed. Expose. At this time, all of the thermal oxide film 5a and the protective insulating film 6a may be removed to expose the entire surface of the N low concentration layer 2.

次に、図9に示すように、N-低濃度層2(P型注入領域3の一部を含む)の露出面上から保護絶縁膜6aの一部上にかけてショットキ電極8を形成し、ショットキ電極8上にAl電極9を形成する。ショットキ電極8及びAl電極9は、例えば、スパッタリング、電子ビーム蒸着などの方法により形成する。 Next, as shown in FIG. 9, a Schottky electrode 8 is formed from the exposed surface of the N low concentration layer 2 (including a part of the P-type implantation region 3) to a part of the protective insulating film 6a. An Al electrode 9 is formed on the electrode 8. The Schottky electrode 8 and the Al electrode 9 are formed by a method such as sputtering or electron beam evaporation.

最後に、図10に示すように、ポリイミド等の絶縁膜を全面に堆積させた後、Al電極9の中央部を開口させることにより、パッシベーション膜10を形成する。   Finally, as shown in FIG. 10, after an insulating film such as polyimide is deposited on the entire surface, the central portion of the Al electrode 9 is opened to form the passivation film 10.

このように、実施の形態2の炭化珪素半導体装置の製造方法では、N+高濃度基板1の裏面へのオーミック電極7の形成時において、N-低濃度層2上は熱酸化膜5a及び保護絶縁膜6aによって保護されている。すなわち、熱酸化膜5a(数十nm程度の膜厚)と保護絶縁膜6aとによって合わせて総計数百nm〜数μm程度の膜厚を確保することができる。 Thus, in the method for manufacturing the silicon carbide semiconductor device of the second embodiment, when forming ohmic electrode 7 on the back surface of N + high concentration substrate 1, thermal oxide film 5 a and protective film are formed on N low concentration layer 2. It is protected by the insulating film 6a. That is, a total film thickness of about 100 nm to several μm can be ensured by the thermal oxide film 5a (film thickness of about several tens of nm) and the protective insulating film 6a.

さらに、保護絶縁膜6aを金属原子を透過させ難い性質を有する二酸化珪素膜や窒化珪素膜で形成している。   Further, the protective insulating film 6a is formed of a silicon dioxide film or a silicon nitride film having a property that it is difficult for metal atoms to pass therethrough.

このように、N-低濃度層2上を十分な膜厚で、かつ金属原子の透過させ難さ性質を有するショットキ電極用保護膜(熱酸化膜5a及び保護絶縁膜6a)で覆うことができる。このため、製造工程途中(主としてオーミック電極7の形成時)に金属汚染を受けたとしても、金属原子は上記ショットキ電極用保護膜の表面および内部に留まりN-低濃度層2に到達することがなく、N-低濃度層2を清浄に保つことができる。その結果、特性が良好でばらつきの少ない、ショットキ電極を有する炭化珪素半導体装置を得ることができる。 Thus, N - low concentration layer 2 over a sufficient thickness, and can be covered with a protective film for a Schottky electrode (thermal oxide film 5a and the protective insulating film 6a) having transmitted was difficulty nature of the metal atom . Therefore, also the production process halfway (mainly during the formation of the ohmic electrode 7) as receiving the metal contamination, metal atoms N remains on the surface and inside of the Schottky electrode protective film - to reach the low concentration layer 2 no, N - can be kept low concentration layer 2 clean. As a result, a silicon carbide semiconductor device having a Schottky electrode with good characteristics and little variation can be obtained.

<実施の形態3>
図11及び図12はこの発明の実施の形態3である炭化珪素半導体装置の製造方法の主要工程を示す断面図である。以下、これらの図を参照して実施の形態3による炭化珪素半導体装置の製造方法の説明を行う。
<Embodiment 3>
11 and 12 are cross sectional views showing the main steps of the method for manufacturing the silicon carbide semiconductor device according to the third embodiment of the present invention. Hereinafter, a method for manufacturing a silicon carbide semiconductor device according to the third embodiment will be described with reference to these drawings.

まず、図4〜図7で示した実施の形態2の工程(但し、オーミック電極7の形成工程は除く)を経て、図11で示す構造を得る。   First, the structure shown in FIG. 11 is obtained through the steps of the second embodiment shown in FIGS. 4 to 7 (except for the step of forming the ohmic electrode 7).

次に、図12に示すように、オーミック電極7の面が上向きに、つまりショットキ電極が形成されるN―低濃度層2の表面側(図中下側)が熱酸化膜5a及び保護絶縁膜6aを介して熱処理装置のサセプタ11に接するように配置する。すなわち、保護絶縁膜6aの全表面がサセプタ11に接触するようにして配置する。   Next, as shown in FIG. 12, the surface of the ohmic electrode 7 faces upward, that is, the surface side (lower side in the figure) of the N− low concentration layer 2 where the Schottky electrode is formed is the thermal oxide film 5a and the protective insulating film. It arrange | positions so that the susceptor 11 of a heat processing apparatus may be contacted via 6a. In other words, the protective insulating film 6 a is arranged so that the entire surface thereof is in contact with the susceptor 11.

そして、図12に示すように、上記状態で、N+高濃度基板1の裏面にオーミック電極7を形成する。その後、オーミック電極7の形成をAr等の不活性ガス雰囲気下で熱処理を行うことにより、N+高濃度基板1の裏面とオーミック電極7とはオーミック接触となる。 Then, as shown in FIG. 12, the ohmic electrode 7 is formed on the back surface of the N + high concentration substrate 1 in the above state. Thereafter, the back surface of the N + high concentration substrate 1 and the ohmic electrode 7 are brought into ohmic contact by forming the ohmic electrode 7 by heat treatment in an inert gas atmosphere such as Ar.

その後、図3で示した実施の形態1の工程と同様(熱酸化膜5が熱酸化膜5a及び保護絶縁膜6aに置き換わる点のみ異なる)を経て、熱酸化膜5a及び保護絶縁膜6aを開口することにより露出した、P型注入領域3を含むN-低濃度層2の露出面上にショットキ電極8を形成する。以下、必要に応じて、Al電極、パッシベーション膜等を形成することにより、ショットキ電極8を有する炭化珪素半導体装置を完成する。 Thereafter, the thermal oxide film 5a and the protective insulating film 6a are opened through the same steps as in the first embodiment shown in FIG. 3 (only the thermal oxide film 5 is replaced with the thermal oxide film 5a and the protective insulating film 6a). A Schottky electrode 8 is formed on the exposed surface of the N low concentration layer 2 including the P-type implantation region 3 exposed by this. Thereafter, an Al electrode, a passivation film, and the like are formed as necessary to complete the silicon carbide semiconductor device having the Schottky electrode 8.

このように、実施の形態3の炭化珪素半導体装置の製造方法では、図12に示すように、ショットキ電極が形成されるN―低濃度層2の表面側が熱酸化膜5a及び保護絶縁膜6aを介して熱処理装置のサセプタ11に接するように配置した状態で、オーミック電極7を形成している。このため、熱処理装置内で飛散している金属原子は熱酸化膜5a及び保護絶縁膜6aの表面に到達することはなく、ましてN-低濃度層2に到達することはない。 Thus, in the method for manufacturing the silicon carbide semiconductor device of the third embodiment, as shown in FIG. 12, the surface side of the N− low concentration layer 2 where the Schottky electrode is formed has the thermal oxide film 5a and the protective insulating film 6a. The ohmic electrode 7 is formed in a state of being disposed so as to be in contact with the susceptor 11 of the heat treatment apparatus. For this reason, metal atoms scattered in the heat treatment apparatus do not reach the surfaces of the thermal oxide film 5a and the protective insulating film 6a, and do not reach the N low concentration layer 2.

その結果、実施の形態3の炭化珪素半導体装置の製造方法は、実施の形態1と同様、オーミック電極7の形成時に生じる金属原子の影響を受けない、良好な特性のオーミック電極を有する炭化珪素半導体装置を得ることができる。   As a result, the method of manufacturing the silicon carbide semiconductor device of the third embodiment is similar to that of the first embodiment, and the silicon carbide semiconductor having an ohmic electrode with good characteristics that is not affected by the metal atoms generated when the ohmic electrode 7 is formed. A device can be obtained.

さらに、実施の形態3の炭化珪素半導体装置の製造方法は、実施の形態2と同様、N-低濃度層2の一方主面上を十分な膜厚で、かつ金属原子の透過させ難さ性質を有する保護膜(熱酸化膜5a及び保護絶縁膜6a)で覆うことにより、特性が良好でばらつきの少ない、ショットキ電極を有する炭化珪素半導体装置を得ることができる。 Furthermore, the method for manufacturing the silicon carbide semiconductor device of the third embodiment has the property that it has a sufficient film thickness on one main surface of the N low concentration layer 2 and is difficult to transmit metal atoms, as in the second embodiment. By covering with a protective film (thermal oxide film 5a and protective insulating film 6a) having the above, a silicon carbide semiconductor device having a Schottky electrode with good characteristics and little variation can be obtained.

この発明に実施の形態1である炭化珪素半導体装置の製造方法の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the manufacturing method of the silicon carbide semiconductor device which is Embodiment 1 to this invention. 実施の形態1の炭化珪素半導体装置の製造方法の製造工程を示す断面図である。5 is a cross sectional view showing a manufacturing step of the method for manufacturing the silicon carbide semiconductor device of Embodiment 1. FIG. 実施の形態1の炭化珪素半導体装置の製造方法の製造工程を示す断面図である。5 is a cross sectional view showing a manufacturing step of the method for manufacturing the silicon carbide semiconductor device of Embodiment 1. FIG. この発明に実施の形態2である炭化珪素半導体装置の製造方法の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the manufacturing method of the silicon carbide semiconductor device which is Embodiment 2 in this invention. 実施の形態2の炭化珪素半導体装置の製造方法の製造工程を示す断面図である。FIG. 12 is a cross sectional view showing a manufacturing step of the method for manufacturing the silicon carbide semiconductor device of the second embodiment. 実施の形態2の炭化珪素半導体装置の製造方法の製造工程を示す断面図である。FIG. 12 is a cross sectional view showing a manufacturing step of the method for manufacturing the silicon carbide semiconductor device of the second embodiment. 実施の形態2の炭化珪素半導体装置の製造方法の製造工程を示す断面図である。FIG. 12 is a cross sectional view showing a manufacturing step of the method for manufacturing the silicon carbide semiconductor device of the second embodiment. 実施の形態2の炭化珪素半導体装置の製造方法の製造工程を示す断面図である。FIG. 12 is a cross sectional view showing a manufacturing step of the method for manufacturing the silicon carbide semiconductor device of the second embodiment. 実施の形態2の炭化珪素半導体装置の製造方法の製造工程を示す断面図である。FIG. 12 is a cross sectional view showing a manufacturing step of the method for manufacturing the silicon carbide semiconductor device of the second embodiment. 実施の形態2の炭化珪素半導体装置の製造方法の製造工程を示す断面図である。FIG. 12 is a cross sectional view showing a manufacturing step of the method for manufacturing the silicon carbide semiconductor device of the second embodiment. この発明に実施の形態3である炭化珪素半導体装置の製造方法の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the manufacturing method of the silicon carbide semiconductor device which is Embodiment 3 in this invention. 実施の形態3の炭化珪素半導体装置の製造方法の製造工程を示す断面図である。FIG. 14 is a cross sectional view showing a manufacturing step of the method for manufacturing the silicon carbide semiconductor device of Embodiment 3.

符号の説明Explanation of symbols

1 N+高濃度基板、2 N-低濃度層、5,5a,5b 熱酸化膜、6a,6b 保護絶縁膜、7 オーミック電極、8 ショットキ電極。 1 N + high concentration substrate, 2 N - low concentration layer, 5, 5a, 5b thermal oxide film, 6a, 6b protective insulating film, 7 ohmic electrode, 8 Schottky electrode.

Claims (6)

(a) 炭化珪素半導体基体の一方主面上の全面に絶縁膜を形成するステップと、
(b) 前記絶縁膜の全表面を接触させてサセプタ上に前記炭化珪素半導体基体を配置し、この配置状態で前記炭化珪素半導体基体の他方主面上に金属からなるオーミック電極を形成するステップと、
(c) 前記絶縁膜の少なくとも一部を除去して前記炭化珪素半導体基体の一方主面の少なくとも一部を露出させた後、当該露出面上にショットキ電極を形成するステップと、
を備える炭化珪素半導体装置の製造方法。
(a) forming an insulating film on the entire surface of the one main surface of the silicon carbide semiconductor substrate;
(b) placing the silicon carbide semiconductor substrate on a susceptor in contact with the entire surface of the insulating film, and forming an ohmic electrode made of metal on the other main surface of the silicon carbide semiconductor substrate in this arrangement; ,
(c) removing at least a portion of the insulating film to expose at least a portion of one main surface of the silicon carbide semiconductor substrate, and then forming a Schottky electrode on the exposed surface;
A method for manufacturing a silicon carbide semiconductor device comprising:
(a) 炭化珪素半導体基体の一方主面上の全面に第1の絶縁膜を形成するステップと、
(b) 前記第1の絶縁膜上に第2の絶縁膜を形成するステップと、
(c) 前記第1及び第2の絶縁膜が前記炭化珪素半導体基体の一方主面上に形成された状態で、前記炭化珪素半導体基体の他方主面上に金属からなるオーミック電極を形成するステップと、
(d) 前記第1及び第2の絶縁膜の少なくとも一部を除去して前記炭化珪素半導体基体の一方主面の少なくとも一部を露出させた後、当該露出面上にショットキ電極を形成するステップとを備える、
炭化珪素半導体装置の製造方法。
(a) forming a first insulating film over the entire main surface of the silicon carbide semiconductor substrate;
(b) forming a second insulating film on the first insulating film;
(c) forming an ohmic electrode made of a metal on the other main surface of the silicon carbide semiconductor substrate in a state where the first and second insulating films are formed on the one main surface of the silicon carbide semiconductor substrate. When,
(d) removing at least a portion of the first and second insulating films to expose at least a portion of one main surface of the silicon carbide semiconductor substrate, and then forming a Schottky electrode on the exposed surface. With
A method for manufacturing a silicon carbide semiconductor device.
請求項1記載の炭化珪素半導体装置の製造方法であって、
前記絶縁膜は積層される第1及び第2の絶縁膜を含み、
炭化珪素半導体装置の製造方法。
A method for manufacturing a silicon carbide semiconductor device according to claim 1,
The insulating film includes first and second insulating films stacked,
A method for manufacturing a silicon carbide semiconductor device.
請求項2あるいは請求項3記載の炭化珪素半導体装置の製造方法であって、
前記第2の絶縁膜は二酸化珪素膜を含む、
炭化珪素半導体装置の製造方法。
A method for manufacturing a silicon carbide semiconductor device according to claim 2 or 3,
The second insulating film includes a silicon dioxide film;
A method for manufacturing a silicon carbide semiconductor device.
請求項4記載の炭化珪素半導体装置の製造方法であって、
前記二酸化珪素膜はリンを含むPSG(Phospho-Silicate Glass)膜を含む、
炭化珪素半導体装置の製造方法。
A method for manufacturing a silicon carbide semiconductor device according to claim 4,
The silicon dioxide film includes a PSG (Phospho-Silicate Glass) film containing phosphorus,
A method for manufacturing a silicon carbide semiconductor device.
請求項2あるいは請求項3記載の炭化珪素半導体装置の製造方法であって、
前記第2の絶縁膜は窒化珪素膜を含む、
炭化珪素半導体装置の製造方法。
A method for manufacturing a silicon carbide semiconductor device according to claim 2 or 3,
The second insulating film includes a silicon nitride film;
A method for manufacturing a silicon carbide semiconductor device.
JP2007081065A 2007-03-27 2007-03-27 Manufacturing method of silicon carbide semiconductor device Pending JP2008244056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081065A JP2008244056A (en) 2007-03-27 2007-03-27 Manufacturing method of silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081065A JP2008244056A (en) 2007-03-27 2007-03-27 Manufacturing method of silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
JP2008244056A true JP2008244056A (en) 2008-10-09

Family

ID=39915055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081065A Pending JP2008244056A (en) 2007-03-27 2007-03-27 Manufacturing method of silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP2008244056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105868A (en) * 2011-11-14 2013-05-30 Sumitomo Electric Ind Ltd Method for manufacturing schottky barrier diode
JP2018046087A (en) * 2016-09-13 2018-03-22 豊田合成株式会社 Method for manufacturing semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362352A (en) * 1986-09-03 1988-03-18 Matsushita Electronics Corp Manufacture of semiconductor device
JPH04158551A (en) * 1990-10-22 1992-06-01 Seiko Epson Corp Manufacturing method of semiconductor device
JP2002252175A (en) * 2001-02-16 2002-09-06 Applied Materials Inc Vapor deposition apparatus and method
JP2006032457A (en) * 2004-07-13 2006-02-02 Shindengen Electric Mfg Co Ltd SiC semiconductor device and method of manufacturing SiC semiconductor device
JP2006156658A (en) * 2004-11-29 2006-06-15 Toshiba Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362352A (en) * 1986-09-03 1988-03-18 Matsushita Electronics Corp Manufacture of semiconductor device
JPH04158551A (en) * 1990-10-22 1992-06-01 Seiko Epson Corp Manufacturing method of semiconductor device
JP2002252175A (en) * 2001-02-16 2002-09-06 Applied Materials Inc Vapor deposition apparatus and method
JP2006032457A (en) * 2004-07-13 2006-02-02 Shindengen Electric Mfg Co Ltd SiC semiconductor device and method of manufacturing SiC semiconductor device
JP2006156658A (en) * 2004-11-29 2006-06-15 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105868A (en) * 2011-11-14 2013-05-30 Sumitomo Electric Ind Ltd Method for manufacturing schottky barrier diode
JP2018046087A (en) * 2016-09-13 2018-03-22 豊田合成株式会社 Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP4942134B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5928101B2 (en) Method for manufacturing SiC semiconductor device
JP6164220B2 (en) Manufacturing method of semiconductor device
JPWO2009054140A1 (en) Semiconductor device and manufacturing method thereof
JP2010165838A (en) Silicon carbide semiconductor device and method of manufacturing the same
JP2006024880A (en) Semiconductor device and manufacturing method thereof
JP2008117923A (en) Ohmic electrode for SiC semiconductor, method for producing ohmic electrode for SiC semiconductor, semiconductor device, and method for producing semiconductor device
JP2010272785A (en) Semiconductor device and manufacturing method thereof
JP5369581B2 (en) Back electrode for semiconductor device, semiconductor device, and method for manufacturing back electrode for semiconductor device
JP2019021689A (en) Manufacturing method of semiconductor device
WO2011030661A1 (en) Semiconductor device and process for production of semiconductor device
JP2006332358A (en) Silicon carbide semiconductor device and its manufacturing method
CN111710647B (en) Process for electroplating thick copper film on two sides of window opening
JP2008053291A (en) SiC semiconductor device and manufacturing method thereof
JP6160541B2 (en) Method for manufacturing silicon carbide semiconductor device
FR2837322A1 (en) SiCOI SUBSTRATE POWER SCHOTTKY DIODE AND METHOD FOR MAKING SAME
JP4091931B2 (en) SiC semiconductor device and method of manufacturing SiC semiconductor device
JP2008244056A (en) Manufacturing method of silicon carbide semiconductor device
JP2014078711A (en) Light emission diode and manufacturing method of the same
JP6648574B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6014321B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2008210938A (en) Semiconductor device and manufacturing method thereof
JP2007141950A (en) Silicon carbide semiconductor device and its fabrication process
JP5633328B2 (en) Manufacturing method of semiconductor device
JP6013817B2 (en) Junction Barrier Schottky Diode Manufacturing Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Effective date: 20111122

Free format text: JAPANESE INTERMEDIATE CODE: A02