JP2008226703A - Porous film - Google Patents
Porous film Download PDFInfo
- Publication number
- JP2008226703A JP2008226703A JP2007064989A JP2007064989A JP2008226703A JP 2008226703 A JP2008226703 A JP 2008226703A JP 2007064989 A JP2007064989 A JP 2007064989A JP 2007064989 A JP2007064989 A JP 2007064989A JP 2008226703 A JP2008226703 A JP 2008226703A
- Authority
- JP
- Japan
- Prior art keywords
- porous film
- weight
- polymer
- battery
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cell Separators (AREA)
Abstract
Description
本発明は、高耐熱性及び高シャットダウン応答性を両立した多孔質フィルム、該多孔質フィルムを用いてなる電池用セパレータ、該電池用セパレータを用いてなる非水電解液電池、に関する。 The present invention relates to a porous film having both high heat resistance and high shutdown response, a battery separator using the porous film, and a nonaqueous electrolyte battery using the battery separator.
リチウム等の軽金属を電極とする非水電解液電池は、エネルギー密度が高く自己放電も少ないため、電子機器の高性能化、小型化等を背景として利用範囲を大きく広げてきている。このような非水電解液電池の電極としては帯状の正極、負極、及びセパレータを積層し捲回して構成することにより、広い有効電極面積を確保した渦巻状捲回体が用いられている。 Non-aqueous electrolyte batteries using light metals such as lithium as electrodes have high energy density and low self-discharge, and thus have a wide range of applications against the background of high performance and miniaturization of electronic devices. As the electrode of such a non-aqueous electrolyte battery, a spiral wound body that secures a wide effective electrode area by stacking and winding a belt-like positive electrode, a negative electrode, and a separator is used.
セパレータは、基本的には両極の短絡を防止するとともに、その微多孔構造によりイオンを透過させて電池反応を可能とするものであるが、誤接続等により異常電流が発生した場合に電池内部温度の上昇に伴い重合体が熱変形して微多孔を塞ぎ電池反応を停止させる、いわゆるシャットダウン機能(SD機能)を有するものが安全性向上の観点から採用されている。このようなSD機能を有するセパレータとしては、例えば、ポリエチレン製微多孔膜やポリエチレンとポリプロピレンとの多層構造の微多孔膜等が知られている。 The separator basically prevents short-circuiting between the two electrodes and allows the battery reaction by allowing ions to permeate through its microporous structure. However, if an abnormal current occurs due to misconnection or the like, the internal temperature of the battery A polymer having a so-called shutdown function (SD function) in which the polymer is thermally deformed to block the micropores and stop the cell reaction as the temperature rises is adopted from the viewpoint of improving safety. As such a separator having the SD function, for example, a polyethylene microporous film, a microporous film having a multilayer structure of polyethylene and polypropylene, and the like are known.
しかしながら、昨今のリチウムイオン二次電池等の進歩により、上記シャットダウン機能のみならず、耐熱的な要素、すなわち、シャットダウン後にさらに温度が上昇した時に、セパレータ自身が溶融破膜(メルトダウン)、又は可塑化され破断する状態が起こり得ることを考慮するとより高い温度で対応できることが望まれている。特に、高容量化された電池や電池内部抵抗の低減がすすむと、発熱が大きくなる要素が増すため、ますます重要である。 However, due to recent advances in lithium ion secondary batteries and the like, not only the above-mentioned shutdown function, but also a heat-resistant element, that is, when the temperature further rises after shutdown, the separator itself melts or breaks down. In view of the possibility that a broken state may occur, it is desired to be able to cope with a higher temperature. In particular, if the capacity of the battery is increased or the internal resistance of the battery is reduced, the factors that increase the heat generation increase, which is more important.
さらに近年、上記非水電解液電池の用途が格段に広がりを見せており、様々な危険状況を想定して電池を設計する必要が出てきた。その安全性を確認する指標として、例えば、電池を150℃の高温状態に曝しても、すぐには煙を発生する等の非定常状態にならないといった厳しい条件が設定されている。かかる異常な温度上昇が起こった際に、内部の2つの電極が短絡した場合、蓄積されていたエネルギーが瞬時に放出されるため、非常に危険である。 Furthermore, in recent years, the use of the non-aqueous electrolyte battery has been greatly expanded, and it has become necessary to design the battery assuming various dangerous situations. As an index for confirming the safety, for example, severe conditions are set such that even if the battery is exposed to a high temperature state of 150 ° C., it does not immediately become an unsteady state such as generating smoke. When such an abnormal temperature rise occurs, if the two internal electrodes are short-circuited, the stored energy is instantaneously released, which is extremely dangerous.
また、電池の容量増大はとどまることが無く、よりエネルギーの蓄積が大きくなっている。それゆえ、異常な温度上昇が起こってもセパレータが自身の形状を維持し、電池の2つの電極の電気絶縁性を保ち続ける事は大変重要である。 In addition, the increase in the capacity of the battery does not stop, and the energy storage is larger. Therefore, it is very important for the separator to maintain its shape even when an abnormal temperature rise occurs and to keep the electrical insulation between the two electrodes of the battery.
上記問題に鑑みて、例えば、特許文献1では、低融点ポリエチレンと高融点ポリプロピレンからなる単膜を積層化することにより、高強度かつ優れた高温特性を有する微孔性多孔膜を得る方法が開示されているが、積層のためセパレータの内部抵抗が高くなり、高出力用途等高性能電池に対するセパレータとしては不向きである。 In view of the above problems, for example, Patent Document 1 discloses a method for obtaining a microporous porous film having high strength and excellent high-temperature characteristics by laminating a single film made of low melting point polyethylene and high melting point polypropylene. However, because of the lamination, the internal resistance of the separator is high, and it is not suitable as a separator for high-performance batteries such as high-power applications.
一方、ポリオレフィン多孔質フィルムでは、構成重合体の融点以上でメルトダウンが起こり、強度低下や流動が生じて破膜、電気絶縁機能を失う現象が起きる場合がある。このため、高温での電池の安全性を向上するためには、高温での破膜を確実に抑制する必要がある。 On the other hand, in the case of a polyolefin porous film, meltdown may occur above the melting point of the constituent polymer, and a phenomenon may occur in which the strength is reduced or the flow is lost, resulting in loss of the film breaking or electrical insulation function. For this reason, in order to improve the safety | security of the battery at high temperature, it is necessary to suppress the film breakage at high temperature reliably.
ポリオレフィン多孔質フィルムの安全性を高めるための方法として、ガラス繊維の不織布等をポリオレフィン含有多孔質フィルムに積層させる方法(特許文献2)の他、製膜後に重合させる等の手法で架橋させた高分子化合物を用いるもの方法(特許文献3及び4)、シラン架橋剤を用いる方法(特許文献5)、酸化による方法(特許文献6)が挙げられる。 As a method for enhancing the safety of a polyolefin porous film, a method of laminating a nonwoven fabric of glass fiber or the like on a polyolefin-containing porous film (Patent Document 2), or a method of crosslinking by a technique such as polymerization after film formation Examples include a method using a molecular compound (Patent Documents 3 and 4), a method using a silane cross-linking agent (Patent Document 5), and a method using oxidation (Patent Document 6).
しかし、上記方法は、適用可能な基材が限られること、大がかりな設備が必要となること、架橋と同時に起こるポリオレフィンの劣化により強度低下する等の問題があり、実用化は困難であった。 However, the above-described method has problems such as limited applicable base materials, large-scale equipment, and a decrease in strength due to degradation of polyolefin that occurs simultaneously with crosslinking, and is difficult to put into practical use.
また、特許文献7では電子線等の電離放射線を照射する方法が開示されているが、ポリオレフィンの強度が低下すると共に、シャットダウン成分も電離放射線で架橋してしまうため、十分な耐熱性と十分なシャットダウン特性を両立できないという問題点があった。 Patent Document 7 discloses a method of irradiating ionizing radiation such as an electron beam. However, since the strength of polyolefin is lowered and the shutdown component is also cross-linked by ionizing radiation, sufficient heat resistance and sufficient There was a problem that the shutdown characteristics could not be compatible.
セパレータ等に使用される多孔質フィルムには、膜強度が強く、かつ電池等が高温になった場合にセパレータの細孔が閉塞してイオン透過性をなくすシャットダウン機能を素早く発現させ、さらに、溶融等による破膜を確実に抑制する必要がある。 The porous film used for separators, etc. has a strong film strength, and when the battery becomes hot, the separator pores close and the ion-permeability is lost quickly. It is necessary to suppress the film breakage due to the above.
そこで、本発明は、高耐熱性及び高シャットダウン応答性を両立した多孔質フィルム、該多孔質フィルムを用いてなる電池用セパレータ、該電池用セパレータを用いてなる非水電解液電池を提供することを目的とする。 Accordingly, the present invention provides a porous film that has both high heat resistance and high shutdown response, a battery separator using the porous film, and a nonaqueous electrolyte battery using the battery separator. With the goal.
本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す多孔質フィルムを用いることにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the object can be achieved by using a porous film shown below, and have completed the present invention.
本発明は、重量平均分子量50万以上のポリオレフィン、分子内に二重結合を有する重合体、及び融点が140℃以下のポリプロピレンを含有し、紫外線照射又は電子線照射により架橋され、ゲル分率が10%以上である多孔質フィルム、に関する。 The present invention contains a polyolefin having a weight average molecular weight of 500,000 or more, a polymer having a double bond in the molecule, and a polypropylene having a melting point of 140 ° C. or less, and is crosslinked by ultraviolet irradiation or electron beam irradiation, and has a gel fraction. The present invention relates to a porous film that is 10% or more.
本発明における多孔質フィルムを用いることにより、高強度で、高温での耐破膜性に優れた多孔質フィルムを得ることができる。 By using the porous film in the present invention, it is possible to obtain a porous film having high strength and excellent resistance to tearing at high temperatures.
本発明は、シャットダウン指標が10以下の多孔質フィルム、に関する。シャットダウン指標が10以下であると、温度の上昇幅が小さく、膜自体を溶融させることがないため、高シャットダウン応答性を有し、電池の安全性を向上させることができる。 The present invention relates to a porous film having a shutdown index of 10 or less. When the shutdown index is 10 or less, the temperature rise is small and the film itself is not melted, so that it has high shutdown response and can improve the safety of the battery.
本発明は、前記多孔質フィルムを用いてなる電池用セパレータ、に関する。前記多孔質フィルムを使用しているため、高強度で、高温での耐破膜性に優れたセパレータを提供することができる。 The present invention relates to a battery separator using the porous film. Since the porous film is used, it is possible to provide a separator having high strength and excellent resistance to film breakage at high temperatures.
本発明は、前記電池用セパレータを用いてなる非水電解液電池、に関する。前記電解液電池は、高シャットダウン応答性を有するため、安全性の高い電池を提供することができる。 The present invention relates to a non-aqueous electrolyte battery using the battery separator. Since the electrolyte battery has a high shutdown response, a highly safe battery can be provided.
本発明の多孔質フィルムは、(第1成分)重量平均分子量50万以上のポリオレフィンと、(第2成分)分子内に二重結合を有する重合体、及び(第3成分)融点が140℃以下のポリプロピレンを含有する。 The porous film of the present invention comprises (first component) a polyolefin having a weight average molecular weight of 500,000 or more, (second component) a polymer having a double bond in the molecule, and (third component) a melting point of 140 ° C. or less. Of polypropylene.
本発明の多孔質フィルムは、第1成分である重量平均分子量50万以上の超高分子量ポリオレフィンを含有するが、好ましくは重量平均分子量が50万〜300万が好ましく、より好ましくは50〜200万である。なお、50万未満であると、膜の強度が十分に得られなくなる。前記超高分子量ポリオレフィンを含有することにより、多孔化の際の延伸効果で高強度化され、高度な架橋ネットワークの構築により高耐熱化を図ることができる。 The porous film of the present invention contains an ultrahigh molecular weight polyolefin having a weight average molecular weight of 500,000 or more as the first component, preferably a weight average molecular weight of 500,000 to 3,000,000, more preferably 500 to 2,000,000. It is. In addition, when it is less than 500,000, the strength of the film cannot be obtained sufficiently. By containing the ultra-high molecular weight polyolefin, the strength is increased by the stretching effect at the time of porosity formation, and the heat resistance can be increased by constructing an advanced cross-linking network.
本発明において、第1成分の配合量は、高強度、及び高耐熱性発現の観点から、多孔質フィルムに対して、20〜90重量%が好ましく、より好ましくは30〜80重量%である。なお、20重量%未満であると、多孔質フィルムの高強度化及び高耐熱化を図ることができなくなり、90重量%を超えると、シャットダウン特性が得られにくくなる。 In the present invention, the blending amount of the first component is preferably 20 to 90% by weight, more preferably 30 to 80% by weight, based on the porous film, from the viewpoint of high strength and high heat resistance. In addition, when it is less than 20% by weight, it becomes impossible to achieve high strength and high heat resistance of the porous film, and when it exceeds 90% by weight, it becomes difficult to obtain shutdown characteristics.
更に、第2成分を含有することで、紫外線照射時に、架橋反応が効率的に進行し、架橋により高温時の耐被膜性が向上する。さらに、併用効果として、超高分子量ポリオレフィンとの架橋により3次元ネットワーク化が発達し、さらなる高強度化、耐破膜性向上にも貢献できる。 Further, by containing the second component, the crosslinking reaction efficiently proceeds upon irradiation with ultraviolet rays, and the coating resistance at a high temperature is improved by the crosslinking. Furthermore, as a combined effect, a three-dimensional network is developed by crosslinking with ultra-high molecular weight polyolefin, which can contribute to further increase in strength and resistance to film breakage.
第2成分は、ポリマー主鎖及び/または側鎖に二重結合を含有する重合体であり、その二重結合の一部が水素やハロゲン等の添加によって消失されていてもよく、また二重結合の一部の水素原子が他の置換基に置き換わった誘導体であってもよい。当該重合体としては、二重結合のα位に水素原子が結合しているものが好ましく、具体的には、例えば、ポリノルボルネン、ポリブタジエン、ポリイソプレン、天然ゴム、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、EPDM(エチレンプロピレンジエンターポリマー)、ポリクロロプレン等が挙げられる。上記の通り、これらの二重結合の一部が改質されていても良く、2種類以上の混合物でも良い。 The second component is a polymer containing a double bond in the polymer main chain and / or side chain, and part of the double bond may be lost by the addition of hydrogen, halogen or the like. A derivative in which a part of the hydrogen atoms of the bond is replaced with another substituent may be used. The polymer preferably has a hydrogen atom bonded to the α-position of the double bond, specifically, for example, polynorbornene, polybutadiene, polyisoprene, natural rubber, acrylonitrile butadiene rubber, styrene butadiene rubber, EPDM (ethylene propylene diene terpolymer), polychloroprene, etc. are mentioned. As described above, some of these double bonds may be modified, or a mixture of two or more types may be used.
また、第2成分として、ポリノルボルネン、ポリブタジエン、ポリイソプレン、及びEPDMからなる群より選ばれる1種以上であることがより好ましい。これらの重合体は耐熱性向上のための架橋反応を好適に発現させることができる。原料供給の観点、及び分散性の観点から、特にポリノルボルネン、ポリブタジエン、EPDMが更に好ましい。 The second component is more preferably at least one selected from the group consisting of polynorbornene, polybutadiene, polyisoprene, and EPDM. These polymers can suitably develop a crosslinking reaction for improving heat resistance. In particular, polynorbornene, polybutadiene, and EPDM are more preferable from the viewpoint of raw material supply and dispersibility.
前記EPDMについては、共重合性に優れたエチリデンノルボルネンを原料に用いた種類が好ましく、中でも分子量が高く、残存二重結合量の多い方が好適である。 Regarding the EPDM, a type using ethylidene norbornene having excellent copolymerizability as a raw material is preferable, and among them, a higher molecular weight and a larger residual double bond amount are preferable.
第2成分の配合量は、多孔質フィルム中1〜20重量%が好ましく、より好ましくは1〜15重量%、更に好ましくは1〜10重量%である。該配合量が1重量%未満であると、架橋構造付与による十分な耐熱性を得ることができない。一方、20重量%を越えると、電池用セパレータとしての多孔質フィルムの特性を維持することができない。 The blending amount of the second component is preferably 1 to 20% by weight in the porous film, more preferably 1 to 15% by weight, and still more preferably 1 to 10% by weight. When the blending amount is less than 1% by weight, sufficient heat resistance due to imparting a crosslinked structure cannot be obtained. On the other hand, if it exceeds 20% by weight, the characteristics of the porous film as a battery separator cannot be maintained.
本発明の第3成分として、融点が140℃以下のポリプロピレンを含有する。このような、ポリプロピレンとして、例えば、メタロセン触媒による超低融点のメタロセンランダム共重合体(日本ポリケム社製、商品名:ウィンテック、融点:125℃)を挙げることとができる。前記共重合体は、融点が低く、通常リチウムイオン電池用のセパレータで必要とされる温度でのシャットダウン特性が確保できる。通常は低密度ポリエチレンや高密度ポリエチレン等がシャットダウン成分として使用されることが一般的であるが、前記低密度ポリエチレンや高密度ポリエチレン等を使用した場合、紫外線や電子線照射の際に、架橋成分(例えば、分子内に二重結合を有する重合体)と架橋反応を起こし、その結果、高温になっても溶融による流動性が発現せず、十分なシャットダウン機能を発現することができない。 As a 3rd component of this invention, melting | fusing point contains the polypropylene of 140 degrees C or less. Examples of such polypropylene include a metallocene random copolymer having a very low melting point by a metallocene catalyst (manufactured by Nippon Polychem, trade name: Wintech, melting point: 125 ° C.). The copolymer has a low melting point, and can ensure shutdown characteristics at a temperature usually required for a separator for a lithium ion battery. Usually, low-density polyethylene or high-density polyethylene is generally used as a shutdown component. However, when the low-density polyethylene or high-density polyethylene is used, a cross-linking component is used upon irradiation with ultraviolet rays or electron beams. (For example, a polymer having a double bond in the molecule) undergoes a cross-linking reaction. As a result, fluidity due to melting does not appear even at a high temperature, and a sufficient shutdown function cannot be exhibited.
本発明の第3成分を使用した場合、紫外線照射や電子線照射による架橋反応を起こす成分との反応がほとんど起こらないため、高温での融解による流動性が損なわれず、十分なシャットダウン特性を確保することができる。 When the third component of the present invention is used, there is almost no reaction with a component that causes a crosslinking reaction by ultraviolet irradiation or electron beam irradiation, so fluidity due to melting at high temperature is not impaired, and sufficient shutdown characteristics are ensured. be able to.
第3成分の配合量は、十分な空孔率を有し、電池用セパレータとしての多孔質フィルムの特性を維持する観点から、多孔質フィルム中5〜79重量%が好ましく、より好ましくは10〜50重量%である。 The blending amount of the third component is preferably 5 to 79% by weight, more preferably 10 to 10% by weight in the porous film from the viewpoint of having sufficient porosity and maintaining the characteristics of the porous film as a battery separator. 50% by weight.
次に、本発明による多孔質フィルムの製造方法について説明する。 Next, the manufacturing method of the porous film by this invention is demonstrated.
本発明による多孔質フィルムの製造には、湿式成膜法に関する公知の方法を利用することができる。例えば、重合体成分を溶媒と混合し、混練、加熱溶融しながらシート状に成形した後、冷却してゲル化(固化)させ、加熱下で圧延や延伸により一軸方向以上に延伸し、溶媒を加熱除去することにより製造することができる。なお、膜の均一性や強度の観点から、同時二軸延伸にて製膜することが好ましい。また、混練、加熱溶融の際には、酸化反応が進行しないように、酸化防止剤を使用するのが好ましい。 For the production of the porous film according to the present invention, a known method relating to a wet film forming method can be used. For example, a polymer component is mixed with a solvent, kneaded, formed into a sheet while being heated and melted, cooled to be gelled (solidified), stretched in a uniaxial direction or more by rolling or stretching under heating, It can be manufactured by removing by heating. In addition, it is preferable to form into a film by simultaneous biaxial stretching from a viewpoint of the uniformity and intensity | strength of a film | membrane. Moreover, it is preferable to use an antioxidant so that the oxidation reaction does not proceed during kneading and heating and melting.
前記溶媒としては、例えば、ノナン、デカン、ウンデカン、ドデカン、デカリン、流動パラフィン等の脂肪族または環式の炭化水素、沸点がこれらに対応する鉱油留分等があげられ、流動パラフィン等の脂環式炭化水素を多く含む不揮発性溶媒が好ましい。 Examples of the solvent include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, liquid paraffin, and mineral oil fractions having boiling points corresponding to these, and alicyclic rings such as liquid paraffin. Nonvolatile solvents rich in the formula hydrocarbon are preferred.
本発明の多孔質フィルムに用いられる重合体成分と溶媒(混合物)の配合量は、重合体成分の種類、溶解性、混練温度等により異なるため、一概には決定できないが、得られるスラリー状の混合物を溶解混練してシート状に成形できる程度であれば特に限定されない。例えば、重合体成分の配合量は、混合物に対して、5〜30重量%が好ましく、10〜25重量%がより好ましい。 The blending amount of the polymer component and the solvent (mixture) used in the porous film of the present invention differs depending on the type of polymer component, solubility, kneading temperature, etc. There is no particular limitation as long as the mixture can be melt-kneaded and formed into a sheet. For example, the blending amount of the polymer component is preferably 5 to 30% by weight and more preferably 10 to 25% by weight with respect to the mixture.
前記溶媒の配合量は、得られる多孔質フィルムの強度を向上させる観点から、混合物に対して、70〜95重量%が好ましく、より好ましくは、75〜90重量%である。なお、前記範囲内であれば、重合体成分を十分に溶媒に溶解させて、伸び切り状態近くまで混練することができ、ポリマー鎖の十分な絡み合いを得られる。 From the viewpoint of improving the strength of the resulting porous film, the amount of the solvent is preferably 70 to 95% by weight, more preferably 75 to 90% by weight, based on the mixture. In addition, if it is in the said range, a polymer component can fully be melt | dissolved in a solvent, and it can knead | mix to near the extended state, and sufficient entanglement of a polymer chain can be obtained.
なお、前記混合物には、必要に応じて、酸化防止剤、紫外線吸収剤、染料、造核剤、顔料、帯電防止剤の添加剤を、本発明の目的を損なわない範囲で添加することが出来る。 In addition, antioxidants, ultraviolet absorbers, dyes, nucleating agents, pigments, and antistatic additives can be added to the mixture as necessary, as long as the object of the present invention is not impaired. .
溶解混練物をシート状に成形する工程は、特に限定されず、公知の方法により行うことができるが、バンバリーミキサー、ニーダー等を用いてバッチ式で混練りし、次いで、冷却された金属板に挟み込み冷却して、急冷結晶化によりシート状成形物にしても良い。また、Tダイ等を取り付けた押出し機等を用いて、シート状成形物を得てもよい。なお、混練は適当な温度条件下であればよく、特に限定されないが、好ましくは100℃〜200℃である。 The step of forming the melt-kneaded material into a sheet is not particularly limited and can be carried out by a known method, but it is kneaded batch-wise using a Banbury mixer, a kneader, etc., and then cooled onto a cooled metal plate. The sheet may be cooled by sandwiching and formed into a sheet-like molded product by rapid crystallization. Moreover, you may obtain a sheet-like molded object using the extruder etc. which attached T dies etc. In addition, kneading | mixing should just be on suitable temperature conditions, Although it does not specifically limit, Preferably it is 100 to 200 degreeC.
このようにして得られるシート状成形物の厚みとしては、特に限定されないが、2〜20mmが好ましく、ヒートプレス等の圧延処理により0.5〜3mmの厚みにしてもよい。ヒートプレス方法としては、特に限定されないが、例えば特開2000‐230072号公報に記載のベルトプレス機が好適に用いることが出来る。また、圧延処理の温度は100〜140℃が好ましい。 Although it does not specifically limit as thickness of the sheet-like molding obtained in this way, 2-20 mm is preferable and you may make it thickness of 0.5-3 mm by rolling processes, such as a heat press. The heat press method is not particularly limited, but for example, a belt press machine described in JP-A-2000-230072 can be suitably used. Moreover, the temperature of the rolling process is preferably 100 to 140 ° C.
なお、前記圧延処理は、延伸及び脱溶媒処理の前後に行なってもよい。例えば、前記シート状成形物を延伸処理と脱溶媒処理(延伸と脱溶媒の順序はいずれが先でもよい)を行なってから圧延処理に供してもよく、またシート状成形物をそのまま圧延処理してから延伸処理と脱溶媒処理(延伸と脱溶媒の順序はいずれが先でもよい)を行ってもよい。あるいは、延伸処理と脱溶媒処理の間に圧延処理を行なってもよく、例えば、圧延処理前に脱溶媒処理を行ない、圧延処理後に再度延伸処理と脱溶媒処理(延伸と脱溶媒の順序はいずれが先でもよい)を行って残存溶媒を除去する様態であってもよい。 In addition, you may perform the said rolling process before and after extending | stretching and a solvent removal process. For example, the sheet-like molded product may be subjected to a stretching treatment and a desolvation treatment (the order of stretching and desolvation may be any first) and then subjected to a rolling treatment. After that, stretching treatment and solvent removal treatment (the order of stretching and solvent removal may be any first) may be performed. Alternatively, a rolling process may be performed between the stretching process and the solvent removal process. For example, the solvent removal process is performed before the rolling process, and the stretching process and the solvent removal process are performed again after the rolling process. May be performed first) to remove the residual solvent.
前記シート状成形物の延伸処理の方式としては、特に限定されるものではなく、通常のテンター法、ロール法、インフレーション法またはこれらの方法の組み合わせであってもよく、公知の延伸方式をも適用することができる。二軸延伸の場合、縦横同時延伸または逐次延伸のいずれでもよい。膜の均一性、強度の観点から、特に同時二軸延伸にて製膜するのが好ましい。延伸処理の温度は、100℃〜140℃であることが好ましい。 The method for stretching the sheet-like molded product is not particularly limited, and may be a normal tenter method, roll method, inflation method, or a combination of these methods, and a known stretching method is also applied. can do. In the case of biaxial stretching, either longitudinal and transverse simultaneous stretching or sequential stretching may be used. In view of film uniformity and strength, it is particularly preferable to form the film by simultaneous biaxial stretching. It is preferable that the temperature of an extending | stretching process is 100 to 140 degreeC.
脱溶媒処理は、シート状成形物から溶媒を除去して多孔質構造を形成させる工程であり、溶媒除去が出来れば特に方法は限定されないが、例えば、シート状成形物を溶媒で洗浄して残留する溶媒を除去することにより行うことができる。 The solvent removal treatment is a step of removing the solvent from the sheet-like molded product to form a porous structure, and the method is not particularly limited as long as the solvent can be removed. For example, the sheet-like molded product is washed with a solvent to remain. This can be done by removing the solvent.
脱溶媒処理に用いる溶媒としては、ベンタン、ヘキサン、ヘプタン、デカン等の炭化水素、塩化メチレン、四塩化炭素等の塩素炭化水素、三フッ化エタン等のフッ化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メタノール、エタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類等の易揮発性溶媒があげられ、これらは単独または2種以上を混合して用いることができる。かかる溶媒を用いた洗浄方法は特に限定されず、例えば、シート状成形物を溶媒中に浸漬して溶媒を抽出する方法、溶媒をシート状成形物にシャワーする方法等が挙げられる。 Solvents used for the solvent removal treatment include hydrocarbons such as bentane, hexane, heptane and decane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as ethane trifluoride, diethyl ether, dioxane and the like. Examples include easily volatile solvents such as ethers, alcohols such as methanol and ethanol, and ketones such as acetone and methyl ethyl ketone, and these can be used alone or in admixture of two or more. The cleaning method using such a solvent is not particularly limited, and examples thereof include a method of extracting the solvent by immersing the sheet-shaped molded product in a solvent, a method of showering the solvent on the sheet-shaped molded product, and the like.
これらの公知の方法によって、前記ポリオレフィン組成物を製膜して多孔質フィルムを得、さらに紫外線照射または電子線照射により架橋剤の二重結合を全部または一部消失させる架橋処理を施す。なお、架橋方法としては簡便な紫外線照射が好ましい。 By these known methods, the polyolefin composition is formed into a porous film, and further subjected to a crosslinking treatment in which all or part of the double bonds of the crosslinking agent disappear by ultraviolet irradiation or electron beam irradiation. In addition, as a crosslinking method, simple ultraviolet irradiation is preferable.
紫外線架橋の場合、紫外線照射を行なう前に、光開始剤を多孔質フィルムに添加することが必要である。光開始剤としては特に限定されないが、ベンゾフェノンやベンゾイル安息香酸メチル等のベンゾフェノン系開始剤、ベンゾインエーテル、ベンジルジメチルケタール、α‐ヒドロキシアルキルフェノン等のアルキルフェノン系開始剤、アシルフォスフィンオキサイド等が単独あるいはブレンドで用いることが好ましく、特にベンゾフェノン系開始剤が高活性であり、より好ましい。 In the case of UV crosslinking, it is necessary to add a photoinitiator to the porous film before UV irradiation. The photoinitiator is not particularly limited, but benzophenone initiators such as benzophenone and methyl benzoylbenzoate, alkylphenone initiators such as benzoin ether, benzyldimethyl ketal and α-hydroxyalkylphenone, and acylphosphine oxide alone are used. Alternatively, it is preferably used in a blend, and a benzophenone-based initiator is particularly preferable because of its high activity.
光開始剤の添加方法は、ポリマー等の原料と共に混練する方法、溶液として塗布あるいは浸漬する方法が挙げられる。このときの光開始剤濃度は系(樹脂組成物)全体に対して0.5〜5%が好ましく、より好ましくは0.5〜2%である。0.5%未満であると光反応が不十分であり、架橋が十分に達成されない。また、5%を超えると光開始剤を添加しても光反応は促進されず、逆に過剰な光開始剤が紫外線の浸透を妨げて反応が阻害されるため好ましくない。 Examples of the method for adding the photoinitiator include a method of kneading with a raw material such as a polymer, and a method of applying or dipping as a solution. The photoinitiator concentration at this time is preferably 0.5 to 5%, more preferably 0.5 to 2%, based on the entire system (resin composition). If it is less than 0.5%, the photoreaction is insufficient and crosslinking is not sufficiently achieved. On the other hand, if it exceeds 5%, the photoreaction is not promoted even if a photoinitiator is added. Conversely, an excessive photoinitiator hinders the penetration of ultraviolet rays and inhibits the reaction, which is not preferable.
また、前記光開始剤を含む溶液を調製する際に使用する有機溶媒は、特に限定されることなく、適宜選択することができるが、例えば、アセトン、メチルエチルケトン、トルエン、メタノール、エタノール、ヘキサン等の有機溶剤を使用することが好ましい。 The organic solvent used when preparing the solution containing the photoinitiator is not particularly limited and can be appropriately selected. Examples thereof include acetone, methyl ethyl ketone, toluene, methanol, ethanol, hexane, and the like. It is preferable to use an organic solvent.
紫外線照射は、ポリオレフィンを延伸によって多孔質フィルムとした後に照射する。延伸前に照射した場合、充分な延伸倍率が達成される前に破断しやすくなる。また、延伸時に例えばノナン、デカン、ウンデカン、ドデカン、デカリン、流動パラフィン等の高沸点溶剤を用いている場合は、溶剤を低沸点溶剤に置換して後に乾燥させた後で照射することが好ましい。多孔質フィルム内に溶剤が大量に含まれる場合、光開始剤が溶媒で希釈され反応効率が低下する他、溶媒に対しても光反応が起こり好ましくない。 Ultraviolet irradiation is performed after making polyolefin into a porous film by stretching. When irradiated before stretching, it tends to break before a sufficient stretching ratio is achieved. Further, when a high-boiling solvent such as nonane, decane, undecane, dodecane, decalin, liquid paraffin or the like is used at the time of stretching, the irradiation is preferably performed after the solvent is replaced with a low-boiling solvent and then dried. When a large amount of a solvent is contained in the porous film, the photoinitiator is diluted with the solvent to reduce the reaction efficiency, and a photoreaction occurs with the solvent, which is not preferable.
多孔質フィルムの架橋度は、光開始剤の量と紫外線の照射量によってコントロールすることが可能である。架橋度はゲル分率により調製でき、本発明においてはゲル分率が10%以上であり、好ましくは10〜95%の範囲であり、より好ましくは、30〜80%である。ゲル分率が10%未満では、十分な架橋構造が取れず、高強度化、あるいは耐破膜性向上が期待できない。 The degree of crosslinking of the porous film can be controlled by the amount of photoinitiator and the amount of ultraviolet irradiation. The degree of crosslinking can be adjusted by the gel fraction. In the present invention, the gel fraction is 10% or more, preferably 10 to 95%, and more preferably 30 to 80%. If the gel fraction is less than 10%, a sufficient cross-linked structure cannot be obtained, and an increase in strength or an improvement in film resistance cannot be expected.
更に、多孔質フィルムの強度の低下抑制と、多孔質フィルムの昇温による空孔率、通気度の悪化抑制の観点から、240〜400nmの波長分布の紫外線を用いることが好ましい。前記紫外線を照射することにより、多孔質フィルムの高強度化、高耐熱化が実現でき、高温時の耐破膜性が大きく向上する。 Furthermore, it is preferable to use ultraviolet rays having a wavelength distribution of 240 to 400 nm from the viewpoint of suppressing the decrease in the strength of the porous film and suppressing the deterioration of the porosity and air permeability due to the temperature rise of the porous film. By irradiating the ultraviolet rays, the porous film can be increased in strength and heat resistance, and the film resistance at high temperatures is greatly improved.
紫外線照射による架橋処理により、高温時の耐破膜性が向上する理由は、必ずしも明白ではないが、紫外線処理で生じたポリマーラジカルが二重結合に付加し、その際に二重結合を有する重合体同士、あるいはその重合体とその他の重合体成分との間で架橋反応が起こること、あるいは、主鎖における二重結合の消失によってポリマー鎖自体のガラス転移温度が大きく上昇するであろうこと、ポリオレフィンが混練される際に、非常に長いポリオレフィン高分子鎖同士、あるいは架橋成分と直鎖のポリオレフィンが複雑に絡み合うことにより擬似的な架橋が起こって硬化に寄与しているため等が考えられる。 The reason why the film-breaking resistance at high temperature is improved by the crosslinking treatment by ultraviolet irradiation is not necessarily clear, but the polymer radical generated by the ultraviolet treatment is added to the double bond, and the double bond having a double bond is formed at that time. A cross-linking reaction may occur between the polymers or between the polymer and other polymer components, or the glass transition temperature of the polymer chain itself will greatly increase due to the disappearance of the double bond in the main chain, It is conceivable that when polyolefin is kneaded, pseudo-crosslinking occurs due to complicated entanglement between very long polyolefin polymer chains or a cross-linking component and a linear polyolefin, thereby contributing to curing.
また、前記架橋処理工程に続いて、熱収縮の防止のために一般に多孔質フィルムをヒートセット(熱固定)しても良い。該ヒートセットする際の温度は、例えば110〜140℃で0.5〜2時間程度行えばよい。 Further, following the crosslinking treatment step, the porous film may generally be heat set (heat-fixed) to prevent thermal shrinkage. What is necessary is just to perform the temperature at the time of this heat setting at about 110 to 140 degreeC for about 0.5 to 2 hours, for example.
本発明の多孔質フィルムの厚みとしては1〜60μm、好ましくは5〜50μmが望ましい。その通気度としては、例えばJIS P8117に準拠した方法で100〜1000秒/100cc、好ましくは100〜600秒/100ccが望ましい。そのシャットダウン温度としては150℃以下、好ましくは140℃以下が望ましい。 The thickness of the porous film of the present invention is 1 to 60 μm, preferably 5 to 50 μm. The air permeability is, for example, 100 to 1000 seconds / 100 cc, preferably 100 to 600 seconds / 100 cc by a method based on JIS P8117. The shutdown temperature is 150 ° C. or lower, preferably 140 ° C. or lower.
このような本発明による多孔質フィルムは、高強度で、高温での耐破膜性に優れる非水電解質電池用セパレータとして、電池の様々な大きさや用途に対してより安全性を向上させることが期待できる。 Such a porous film according to the present invention, as a separator for non-aqueous electrolyte batteries having high strength and excellent tear resistance at high temperatures, can improve safety for various sizes and uses of batteries. I can expect.
本発明の多孔質フィルムは、従来のセパレータと同様に、正極と負極の間に介在せしめた状態で用いて電池を組み立てることが出来る。この際の正極、負極、電池ケース、電解液等の材質やこれら構成要素の配置構造も何ら格別なことは要求されず、従来と同様で良く、例えば特開昭63−205048号公報に示される通りであってよい。 Like the conventional separator, the porous film of the present invention can be used in the state of being interposed between the positive electrode and the negative electrode to assemble a battery. In this case, the material of the positive electrode, the negative electrode, the battery case, the electrolytic solution, etc. and the arrangement structure of these components are not required to be special, and may be the same as the conventional one, for example, as disclosed in JP-A-63-205048. May be street.
次に、本発明の非水電解液電池について説明する。当該非水電解液電池は、以上の如き多孔質フィルムからなる電池用セパレータを用いてなり、その構造は、例えば帯状の負極、正極及びセパレータを積層捲回して得た捲回型電極体を電池缶に収納し、これに電解液を注入し、さらに電池上下の絶縁板等必要な部材を市販の電池に準じて適宜配して構成したものである。 Next, the nonaqueous electrolyte battery of the present invention will be described. The non-aqueous electrolyte battery uses a battery separator made of the porous film as described above, and has a structure in which, for example, a wound electrode body obtained by laminating and winding a strip-like negative electrode, a positive electrode, and a separator is a battery. The battery is housed in a can, and an electrolytic solution is injected therein. Further, necessary members such as insulating plates above and below the battery are appropriately arranged according to a commercially available battery.
電解液としては、例えば、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては、特に限定されるものではないが、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート、ジエチルカーボネート、プロピオン酸メチル、酢酸ブチル等のエステル類、アセトニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジメトキシメタン、ジメトキシプロパン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、4−メチル−1,3−ジオキソラン等のエーテル類、更にはスルフォラン等の単独又は2種類以上の混合溶媒が使用できる。 As the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolytic solution and this is dissolved in an organic solvent is used. Examples of the organic solvent include, but are not limited to, esters such as propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, dimethyl carbonate, diethyl carbonate, methyl propionate, and butyl acetate. Nitriles such as acetonitrile, ethers such as 1,2-dimethoxyethane, 1,2-dimethoxymethane, dimethoxypropane, 1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyl-1,3-dioxolane Furthermore, a single solvent such as sulfolane or a mixed solvent of two or more kinds can be used.
正極シートとしては、例えばリチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウム、クロム酸化物等の金属酸化物、二硫化モリブデン等の金属窒化物、コバルト酸リチウム等が活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレン等の結着剤等を適宜添加した合剤を、ステンレス鋼製網等の集電材料を芯材として成形体に仕上げたものが用いられる。 Examples of positive electrode sheets include metal oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, vanadium pentoxide, and chromium oxide, metal nitrides such as molybdenum disulfide, and lithium cobalt oxide. Is used as an active material, a mixture obtained by appropriately adding a conductive additive or a binder such as polytetrafluoroethylene to these positive electrode active materials, and a molded body using a current collecting material such as a stainless steel net as a core material The finished product is used.
負極シートとしては、アルカリ金属又はアルカリ金属を含む化合物をステンレス鋼製網等の集電材料と一体化したものが用いられる。その際のアルカリ金属として、例えばリチウム、ナトリウム、カリウム等が挙げられ、アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズ、マグネシウム等の合金、更にはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物、硫化物との化合物等が挙げられる。負極に炭素材料を用いる場合、炭素材料としては、リチウムイオンをドープ、脱ドープできるものであればよく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭等を用いることができる。 As the negative electrode sheet, one obtained by integrating an alkali metal or a compound containing an alkali metal with a current collecting material such as a stainless steel net is used. Examples of the alkali metal at that time include lithium, sodium, potassium and the like, and examples of the compound containing the alkali metal include alkali metals and alloys such as aluminum, lead, indium, potassium, cadmium, tin, magnesium, and further alkali. Examples thereof include a compound of a metal and a carbon material, a compound of a low potential alkali metal and a metal oxide, and a sulfide. When a carbon material is used for the negative electrode, the carbon material may be any material that can be doped and dedoped with lithium ions. For example, graphite, pyrolytic carbons, cokes, glassy carbons, and firing organic polymer compounds Bodies, mesocarbon microbeads, carbon fibers, activated carbon, and the like can be used.
本発明を実施例、比較例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、各種特性については、下記要領にて測定を行なった。 The present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited to only such examples. Various characteristics were measured as follows.
(重量平均分子量)
ウォーターズ社製のゲル浸透クロマトグラフ[GPC−150C]を用い、溶媒にo−ジクロロベンゼンを、また、カラムとして昭和電工(株)製の[Shodex−80M]を用いて135℃で測定する。データ処理は、TRC社製データ収集システムを用いて行なった。分子量はポリスチレンを基準として算出した。
(Weight average molecular weight)
A gel permeation chromatograph [GPC-150C] manufactured by Waters is used, and o-dichlorobenzene is used as a solvent, and [Shodex-80M] manufactured by Showa Denko KK is used as a column at 135 ° C. Data processing was performed using a data collection system manufactured by TRC. The molecular weight was calculated based on polystyrene.
(フィルム厚)
1/10000シックネスゲージにより測定した。本発明においては、実施例及び比較例全てにおいて、30μmの多孔質フィルムを得た。
(Film thickness)
It was measured with a 1/10000 thickness gauge. In the present invention, a porous film of 30 μm was obtained in all of the examples and comparative examples.
(空孔率)
測定対象の多孔質フィルムを直径6cmの円状に切り抜き、その体積(cm3)と重量(g)、多孔質フィルムにおける重合体成分の平均密度(g/cm3)を求め、得られた結果から次式を用いて計算した。
空孔率(体積%)=100×(体積−重量/平均密度)/体積
(Porosity)
A porous film to be measured was cut out into a circle having a diameter of 6 cm, and its volume (cm 3 ) and weight (g) were determined, and the average density (g / cm 3 ) of the polymer components in the porous film was obtained. Was calculated using the following formula.
Porosity (volume%) = 100 × (volume−weight / average density) / volume
(シャットダウン指標)
25mmφの筒状の試験室を有し、試験室が密閉可能なSUS製のセルを用い、下部電極はφ20mm、上部電極は10mmφの白金板(厚さ1.0mm)を使用した。24mmφに打ち抜いた測定試料を電解質に浸漬して電解質を合浸し、電極間に挟み、セルにセットした。電極はセルに設けられたばねにて一定の面圧がかかるようにした。電解質はプロピレンカーボネートとジメトキシエタンを容量比で1:1の割合で混合した溶媒に、ホウフッ化リチウムを1.0mol/Lの濃度になるように溶解したものを用いた。このセルに熱伝対温度計と、抵抗計を接続して温度と抵抗を測定できるようにし、180℃恒温器中へ投入し、温度と抵抗を測定した。100〜150℃における平均昇温速度は10℃/分であった。この測定により、抵抗が10Ω・cm2のときの温度T10と、抵抗が1000Ω・cm2の時の温度T1000の差から、シャットダウン指標を求めた。
シャットダウン指標=T1000−T10
(Shutdown index)
A SUS cell having a cylindrical test chamber of 25 mmφ and capable of sealing the test chamber was used, a platinum electrode (thickness: 1.0 mm) of 10 mmφ was used for the lower electrode and the upper electrode was φ20 mm. A measurement sample punched to 24 mmφ was immersed in an electrolyte, soaked in the electrolyte, sandwiched between electrodes, and set in a cell. A certain surface pressure was applied to the electrode by a spring provided in the cell. The electrolyte used was a solution in which lithium borofluoride was dissolved to a concentration of 1.0 mol / L in a solvent in which propylene carbonate and dimethoxyethane were mixed at a volume ratio of 1: 1. A thermocouple thermometer and a resistance meter were connected to the cell so that the temperature and resistance could be measured. The temperature and resistance were measured by placing the cell in a 180 ° C. thermostat. The average temperature increase rate at 100 to 150 ° C. was 10 ° C./min. This measurement temperature T 10 when the resistance is 10 [Omega · cm 2, resistance from the difference between the temperature T 1000 when the 1000 [Omega] · cm 2, was determined shutdown indicator.
Shutdown index = T 1000 −T 10
(ゲル分率の測定)
4cm角に切り出した多孔質フィルムを5cm×10cmの金属メッシュで挟み込み5cm角のサンプルとした。このサンプルの初期重量(P0)を測定し、100mlのm‐キシレン(沸点139℃)中に浸漬し、5時間沸騰させた。その後、サンプルを取り出し後、洗浄し乾燥処理した後の重量(P1)を測定して、重量変化からゲル分率(R)を下記の式により算出した。
R(%)=100×(P1/P0)
(Measurement of gel fraction)
A porous film cut into a 4 cm square was sandwiched between 5 cm × 10 cm metal meshes to form a 5 cm square sample. The initial weight (P 0 ) of this sample was measured, immersed in 100 ml of m-xylene (boiling point 139 ° C.) and boiled for 5 hours. Thereafter, the weight (P 1 ) after the sample was taken out, washed and dried was measured, and the gel fraction (R) was calculated from the change in weight according to the following formula.
R (%) = 100 × (P 1 / P 0 )
(耐熱破膜試験)
14cm角に切り出した多孔質フィルムを所定の破膜試験治具(外枠10cm角、内枠7cm角切抜き)に全周囲をクリップで固定した後、160℃の乾燥機内に投入し、多孔質フィルムは破膜するまでの時間(分)を計測した。
(Heat-resistant film breakage test)
A porous film cut into a 14 cm square is fixed to a predetermined film-breaking test jig (outer frame 10 cm square, inner frame 7 cm square cut out) with a clip, and then put into a dryer at 160 ° C. Measured the time (minutes) to break.
(実施例1)
ポリノルボルネン重合体(日本ゼオン製ノーソレックスNB)3重量%、ポリプロピレン(日本ポリケム製、ウィンテックWFX4TA、融点125℃)19.4重量%、重量平均分子量100万の超高分子量ポリエチレン(融点137℃)77.6重量%からなる重合体組成物17重量部と流動パラフィン83重量部とをスラリー状に均一に混合し、160℃の温度で二軸押出機にて溶解混練りし、厚さ4mmのシート状に押出を行った。
Example 1
Polynorbornene polymer (Norsolex NB manufactured by Nippon Zeon Co., Ltd.) 3% by weight, polypropylene (manufactured by Nippon Polychem, Wintech WFX4TA, melting point 125 ° C.) 19.4% by weight, ultra high molecular weight polyethylene (melting point 137 ° C.) having a weight average molecular weight of 1 million ) 17 parts by weight of a polymer composition consisting of 77.6% by weight and 83 parts by weight of liquid paraffin were uniformly mixed in a slurry state, melted and kneaded in a twin screw extruder at a temperature of 160 ° C. The sheet was extruded into a sheet.
これらの混練物を一定テンション下で引取り、一旦10℃の冷却水にて冷却されたロールにて冷却成形した後、設定温度115℃のベルトプレス機にて1mmのシートに成型した。 These kneaded materials were taken out under a constant tension, and once cooled and formed with a roll cooled with cooling water at 10 ° C., they were formed into 1 mm sheets with a belt press machine having a set temperature of 115 ° C.
その後、設定温度123℃で同時二軸延伸し、さらに脱溶剤処理をヘプタンで行い、厚み30μmの多孔質フィルムを得た。その後、この多孔質フィルムを濃度1重量%のベンゾフェノン/ヘキサン溶液に1分間浸漬し、その後風乾させた。 Then, simultaneous biaxial stretching was performed at a set temperature of 123 ° C., and the solvent removal treatment was further performed with heptane to obtain a porous film having a thickness of 30 μm. Thereafter, this porous film was immersed in a benzophenone / hexane solution having a concentration of 1% by weight for 1 minute and then air-dried.
この多孔質フィルムを、コンペア式高圧水銀照射装置(アイグラフィックス社製UE021‐203C、発光長250nm、出力2kW、15m/min)にて搬送しながら、多孔質フィルム表裏を紫外線照射(熱線カットフィルターを装着することで、500nm以上の波長をカットした紫外線を照射)した。 While this porous film is being conveyed by a compare-type high-pressure mercury irradiation device (UE021-203C made by Eye Graphics, emission length 250 nm, output 2 kW, 15 m / min), the front and back of the porous film are irradiated with ultraviolet rays (heat ray cut filter) By irradiating with UV light with a wavelength of 500 nm or more cut off.
紫外線照射後、直ちに多孔質フィルムを126℃で2時間加熱して熱固定し、架橋した多孔質フィルムを得た。 Immediately after UV irradiation, the porous film was heated and fixed at 126 ° C. for 2 hours to obtain a crosslinked porous film.
(実施例2)
EPDM重合体(住友化学(株)製エスブレン5527F)10重量%、ポリプロピレン(日本ポリケム製、ウィンテックWFX4TA、融点125℃)27重量%、重量平均分子量100万の超高分子量ポリエチレン(融点137℃)63重量%からなる重合体組成物17重量部と流動パラフィン83重量部とをスラリー状に均一に混合して使用した以外は、実施例1と同様にして架橋した多孔質フィルムを得た。
(Example 2)
EPDM polymer (Esbrene 5527F manufactured by Sumitomo Chemical Co., Ltd.) 10% by weight, polypropylene (manufactured by Nippon Polychem, Wintech WFX4TA, melting point 125 ° C.) 27% by weight, ultra high molecular weight polyethylene having a weight average molecular weight of 1 million (melting point 137 ° C.) A crosslinked porous film was obtained in the same manner as in Example 1 except that 17 parts by weight of the polymer composition consisting of 63% by weight and 83 parts by weight of liquid paraffin were uniformly mixed and used in the form of a slurry.
(実施例3)
EPDM重合体(住友化学(株)製エスブレン5527F)10重量%、ポリプロピレン(日本ポリケム製、ウィンテックWFX4TA、融点125℃)18重量%、重量平均分子量100万の超高分子量ポリエチレン(融点137℃)72重量%からなる重合体組成物17重量部と流動パラフィン83重量部とをスラリー状に均一に混合して使用した以外は、実施例1と同様にして架橋した多孔質フィルムを得た。
(Example 3)
EPDM polymer (Esbrene 5527F manufactured by Sumitomo Chemical Co., Ltd.) 10% by weight, polypropylene (manufactured by Nippon Polychem, Wintech WFX4TA, melting point 125 ° C.) 18% by weight, ultra high molecular weight polyethylene having a weight average molecular weight of 1 million (melting point 137 ° C.) A crosslinked porous film was obtained in the same manner as in Example 1 except that 17 parts by weight of a polymer composition comprising 72% by weight and 83 parts by weight of liquid paraffin were mixed and used in a slurry state.
(実施例4)
EPDM重合体(住友化学(株)製エスブレン5527F)10重量%、ポリプロピレン(日本ポリケム製、ウィンテックWFX4TA、融点125℃)9重量%、重量平均分子量100万の超高分子量ポリエチレン(融点137℃)81重量%からなる重合体組成物17重量部と流動パラフィン83重量部とをスラリー状に均一に混合して使用した以外は、実施例1と同様にして架橋した多孔質フィルムを得た。
Example 4
EPDM polymer (Esbrene 5527F manufactured by Sumitomo Chemical Co., Ltd.) 10% by weight, polypropylene (manufactured by Nippon Polychem, Wintech WFX4TA, melting point 125 ° C.) 9% by weight, ultra high molecular weight polyethylene (melting point 137 ° C.) having a weight average molecular weight of 1 million A crosslinked porous film was obtained in the same manner as in Example 1 except that 17 parts by weight of the polymer composition consisting of 81% by weight and 83 parts by weight of liquid paraffin were mixed and used in a slurry state.
(比較例1)
実施例1で、ポリプロピレン(日本ポリケム製、ウィンテックWFX4TA、融点125℃)に代えて、高密度ポリエチレン(三井化学製ハイゼックス3000B、密度0.96g/cm3、融点137℃ )を使用した以外は、実施例1と同様にして多孔質フィルムを得た。
(Comparative Example 1)
In Example 1, instead of polypropylene (manufactured by Nippon Polychem, Wintech WFX4TA, melting point 125 ° C.), high density polyethylene (Mitsui Chemicals Hi-Zex 3000B, density 0.96 g / cm 3 , melting point 137 ° C. ) Was used in the same manner as in Example 1 except that a porous film was obtained.
(比較例2)
実施例1において、得られた多孔質フィルムに紫外線照射を行わなかった以外は.実施例1と同様にして多孔質フィルムを得た。
(Comparative Example 2)
In Example 1, except that the obtained porous film was not irradiated with ultraviolet rays. A porous film was obtained in the same manner as in Example 1.
以上の実施例、比較例で得られた多孔質フィルムの特性を表1に示した。 Table 1 shows the characteristics of the porous films obtained in the above Examples and Comparative Examples.
表1の結果より、本発明における実施例で得られた多孔質フィルムは、ゲル分率が高く、160℃における破膜時間も60分を超え、シャットダウン指標も小さいため、高耐熱性及び高シャットダウン応答性を両立した多孔質フィルムを得られることが確認できた。 From the results in Table 1, the porous films obtained in the examples of the present invention have a high gel fraction, a film breaking time at 160 ° C. of more than 60 minutes, and a small shutdown index. It was confirmed that a porous film having both responsiveness could be obtained.
一方、比較例1はシャットダウン指標が大きく、シャットダウン応答性が悪いことが確認され、比較例2はゲル分率が低く、破膜時間も非常に短く、耐熱性が劣ることが確認された。
On the other hand, Comparative Example 1 was confirmed to have a large shutdown index and poor shutdown response, and Comparative Example 2 was confirmed to have a low gel fraction, a very short film breaking time, and poor heat resistance.
Claims (4)
A non-aqueous electrolyte battery using the battery separator according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007064989A JP5198779B2 (en) | 2007-03-14 | 2007-03-14 | Porous film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007064989A JP5198779B2 (en) | 2007-03-14 | 2007-03-14 | Porous film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008226703A true JP2008226703A (en) | 2008-09-25 |
JP5198779B2 JP5198779B2 (en) | 2013-05-15 |
Family
ID=39845066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007064989A Expired - Fee Related JP5198779B2 (en) | 2007-03-14 | 2007-03-14 | Porous film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5198779B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010244874A (en) * | 2009-04-07 | 2010-10-28 | Panasonic Corp | Lithium ion secondary battery |
JP2015018813A (en) * | 2009-03-09 | 2015-01-29 | 旭化成イーマテリアルズ株式会社 | Polyolefin microporous membrane, method for producing the same, and laminated polyolefin microporous membrane |
WO2016164677A1 (en) * | 2015-04-10 | 2016-10-13 | Celgard, Llc | Improved microporous membranes, separators,lithium batteries, and related methods |
EP3276704A4 (en) * | 2015-03-23 | 2018-11-21 | NEC Energy Devices, Ltd. | Separator for lithium-ion secondary battery, and lithium-ion secondary battery |
JP2024518945A (en) * | 2021-05-07 | 2024-05-08 | エルジー・ケム・リミテッド | Crosslinked polyolefin porous support, crosslinked separator for lithium secondary battery including same, and lithium secondary battery including said separator |
DE102024100072A1 (en) * | 2023-11-14 | 2025-05-15 | GM Global Technology Operations LLC | Cross-linked polyolefin separators for lithium-ion cycling batteries and methods for producing the same |
JP7712391B2 (en) | 2021-05-07 | 2025-07-23 | エルジー・ケム・リミテッド | Crosslinked polyolefin porous support, crosslinked separator for lithium secondary battery including same, and lithium secondary battery including said separator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004339300A (en) * | 2003-05-14 | 2004-12-02 | Toray Ind Inc | Flame retardant crosslinked resin foam |
JP2004352863A (en) * | 2003-05-29 | 2004-12-16 | Nitto Denko Corp | Porous film |
-
2007
- 2007-03-14 JP JP2007064989A patent/JP5198779B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004339300A (en) * | 2003-05-14 | 2004-12-02 | Toray Ind Inc | Flame retardant crosslinked resin foam |
JP2004352863A (en) * | 2003-05-29 | 2004-12-16 | Nitto Denko Corp | Porous film |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015018813A (en) * | 2009-03-09 | 2015-01-29 | 旭化成イーマテリアルズ株式会社 | Polyolefin microporous membrane, method for producing the same, and laminated polyolefin microporous membrane |
US9356275B2 (en) | 2009-03-09 | 2016-05-31 | Asahi Kasei E-Materials Corporation | Laminated separator including inorganic particle and polyolefin layer for electricity storage device |
US10680223B2 (en) | 2009-03-09 | 2020-06-09 | Asahi Kasei E-Materials Corporation | Laminated separator, polyolefin microporous membrane, and separator for electricity storage device |
US9853272B2 (en) | 2009-03-09 | 2017-12-26 | Asahi Kasei E-Materials Corporation | Laminated polyolefin microporous membrane including propylene-α-olefin copolymer and method of producing the same |
US9882190B2 (en) | 2009-03-09 | 2018-01-30 | Asahi Kasei E-Materials Corporation | Laminated polymicroporous membrane including propylene copolymer and method of producing the same |
US9966583B2 (en) | 2009-03-09 | 2018-05-08 | Asahi Kasei E-Materials Corporation | Laminated polyolefin microporous membrane including propylene copolymer and method of producing the same |
JP2010244874A (en) * | 2009-04-07 | 2010-10-28 | Panasonic Corp | Lithium ion secondary battery |
US10637026B2 (en) | 2015-03-23 | 2020-04-28 | Envision Aesc Energy Devices, Ltd. | Separator for lithium ion secondary battery and lithium ion secondary battery |
EP3276704A4 (en) * | 2015-03-23 | 2018-11-21 | NEC Energy Devices, Ltd. | Separator for lithium-ion secondary battery, and lithium-ion secondary battery |
US10461293B2 (en) | 2015-04-10 | 2019-10-29 | Celgard, Llc | Microporous membranes, separators, lithium batteries, and related methods |
WO2016164677A1 (en) * | 2015-04-10 | 2016-10-13 | Celgard, Llc | Improved microporous membranes, separators,lithium batteries, and related methods |
US11196126B2 (en) | 2015-04-10 | 2021-12-07 | Celgard, Llc | Microporous membranes, separators, lithium batteries, and related methods |
JP2024518945A (en) * | 2021-05-07 | 2024-05-08 | エルジー・ケム・リミテッド | Crosslinked polyolefin porous support, crosslinked separator for lithium secondary battery including same, and lithium secondary battery including said separator |
JP7712391B2 (en) | 2021-05-07 | 2025-07-23 | エルジー・ケム・リミテッド | Crosslinked polyolefin porous support, crosslinked separator for lithium secondary battery including same, and lithium secondary battery including said separator |
DE102024100072A1 (en) * | 2023-11-14 | 2025-05-15 | GM Global Technology Operations LLC | Cross-linked polyolefin separators for lithium-ion cycling batteries and methods for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP5198779B2 (en) | 2013-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9340653B2 (en) | Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator | |
JP6823718B2 (en) | Polyolefin microporous membranes, separators for power storage devices, and power storage devices | |
KR101700007B1 (en) | Propylene resin micropore film, battery separator, battery and method of manufacturing propylene resin micropore film | |
KR101843806B1 (en) | Polyolefin microporous membrane, separator for battery, and battery | |
JPWO2011118660A1 (en) | Polyolefin microporous membrane, separator for nonaqueous secondary battery, nonaqueous secondary battery, and method for producing polyolefin microporous membrane | |
JP2008066193A (en) | Crosslinked fine porous membrane | |
US10340491B2 (en) | Method for manufacturing separation film and the separation film, and battery using same | |
JP6895570B2 (en) | Polyolefin microporous membrane and method for producing polyolefin microporous membrane | |
JP4206182B2 (en) | Microporous film | |
JP5198779B2 (en) | Porous film | |
KR20210056266A (en) | Cross-linked separator for lithium secondary batteries, comprising cross-linked polyolefin porous substrate, and Manufacturing method thereof | |
JP2009070620A (en) | Crosslinked fine porous membrane | |
JP2004204141A (en) | Porous film | |
JP2008222913A (en) | Porous film | |
JP6277225B2 (en) | Storage device separator | |
KR101674988B1 (en) | Method for manufacturing separator, the separator and battery using the separator | |
JP4189961B2 (en) | Porous film | |
KR102809746B1 (en) | Separator for lithium secondary battery comprising crosslinked polyolefin porous substrate and method for manufacturing the same | |
JP4916236B2 (en) | Method for producing porous film | |
CN116724371A (en) | Polyolefin microporous membrane, separator for battery, and secondary battery | |
JP2004263012A (en) | Porous film and separator for electric battery | |
JP2004189918A (en) | Porous film | |
JP5620228B2 (en) | Propylene resin microporous film, battery separator, battery, and method for producing propylene resin microporous film | |
JP2008115264A (en) | Porous film | |
JP2004204166A (en) | Porous film and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091116 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20091228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5198779 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |