[go: up one dir, main page]

JP2008180178A - Rotary compressor and refrigeration cycle equipment - Google Patents

Rotary compressor and refrigeration cycle equipment Download PDF

Info

Publication number
JP2008180178A
JP2008180178A JP2007015169A JP2007015169A JP2008180178A JP 2008180178 A JP2008180178 A JP 2008180178A JP 2007015169 A JP2007015169 A JP 2007015169A JP 2007015169 A JP2007015169 A JP 2007015169A JP 2008180178 A JP2008180178 A JP 2008180178A
Authority
JP
Japan
Prior art keywords
eccentric
shaft
roller
rotary compressor
shaft portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007015169A
Other languages
Japanese (ja)
Inventor
Takuya Hirayama
卓也 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Japan Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007015169A priority Critical patent/JP2008180178A/en
Publication of JP2008180178A publication Critical patent/JP2008180178A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】本発明は、回転軸の偏心部の偏心量を大きくして、主軸部と副軸部の軸径を細くすることなく偏心部軸径を小さくでき、回転軸の強度信頼性を確保し、かつローラの偏心部に対する組み付けを円滑に行えて作業性の向上を図れる回転式圧縮機および、この回転式圧縮機を備えて冷凍効率の向上化を得る冷凍サイクル装置を提供する。
【解決手段】主軸受9に枢支される主軸部4a、副軸受10に枢支される副軸部4b、主軸部と副軸部との間に偏心して設けられ偏心ローラ15が係合する偏心部4cを備えた回転軸4と、偏心ローラが周面に接触しながら偏心移動するシリンダ室8を備えたシリンダ7とを具備する回転式圧縮機において、主軸部の軸径をφD1、副軸部の軸径をφD2、偏心部の軸径をφD3、偏心部の偏心量をEとしたとき、φD3<φD1+2×E…(1)と、φD3<φD2+2×E…(2)の両式を満足するとともに、副軸部に、偏心ローラを偏心部に組み付ける際の逃げ部Lを備えた。
【選択図】 図1
An object of the present invention is to increase the amount of eccentricity of an eccentric part of a rotating shaft, to reduce the diameter of the eccentric part without reducing the diameter of the main shaft part and the auxiliary shaft part, and to ensure the strength reliability of the rotating shaft. In addition, there are provided a rotary compressor capable of smoothly assembling an eccentric part of a roller and improving workability, and a refrigeration cycle apparatus provided with the rotary compressor and capable of improving refrigeration efficiency.
A main shaft portion 4a pivotally supported by a main bearing 9, a subshaft portion 4b pivotally supported by a sub bearing 10, and an eccentric roller 15 provided between the main shaft portion and the sub shaft portion and engaged with each other. In a rotary compressor including a rotating shaft 4 having an eccentric portion 4c and a cylinder 7 having a cylinder chamber 8 in which an eccentric roller moves eccentrically while contacting the peripheral surface, the shaft diameter of the main shaft portion is φD1, When the shaft diameter of the shaft portion is φD2, the shaft diameter of the eccentric portion is φD3, and the amount of eccentricity of the eccentric portion is E, both of φD3 <φD1 + 2 × E (1) and φD3 <φD2 + 2 × E (2) And an escape portion L for assembling the eccentric roller to the eccentric portion.
[Selection] Figure 1

Description

本発明は、圧縮機構部を改良した回転式圧縮機と、この回転式圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。   The present invention relates to a rotary compressor having an improved compression mechanism, and a refrigeration cycle apparatus including the rotary compressor and constituting a refrigeration cycle.

圧縮機と、凝縮器と、膨張装置および蒸発器とを冷媒管を介して連通し、冷凍サイクルを構成する冷凍サイクル装置において、上記圧縮機として、いわゆる回転式圧縮機(「ロータリ式圧縮機」と呼ばれる)が多用されている。
この種の回転式圧縮機において、摩擦ロスを低減し圧縮効率を向上するために、回転軸の摺動部分で最も径の大きい偏心部(クランク部)の直径を極力、小径化することが望ましい。それとともに、シリンダの厚みを、より縮小化し、偏心部の偏心量を大きくとって回転軸の摺動損失の低減を得るとよい。
In a refrigeration cycle apparatus that constitutes a refrigeration cycle by connecting a compressor, a condenser, an expansion device, and an evaporator via a refrigerant pipe, a so-called rotary compressor (“rotary compressor”) is used as the compressor. Is often used).
In this type of rotary compressor, in order to reduce friction loss and improve compression efficiency, it is desirable to reduce the diameter of the eccentric portion (crank portion) having the largest diameter at the sliding portion of the rotating shaft as much as possible. . At the same time, it is preferable to reduce the sliding loss of the rotating shaft by further reducing the thickness of the cylinder and increasing the amount of eccentricity of the eccentric portion.

上記回転軸は、主軸受に枢支される主軸部と、副軸受に枢支される副軸部と、これら主軸部と副軸部との間に設けられ偏心ローラが嵌合する偏心部とを備えている。通常、主軸部の軸径φD1と副軸部の軸径φD2は互いに等しく設定されていて、偏心部の軸径をφD3とし、偏心部の主軸部と副軸部の軸芯に対する偏心量をEとしたとき、
φD3 < φD1(=φD2) + E
と設定することにより、偏心部とシリンダ室の直径が縮小化して、上述の有利な条件が得られる。
The rotating shaft includes a main shaft portion pivotally supported by the main bearing, a subshaft portion pivotally supported by the sub-bearing, and an eccentric portion provided between the main shaft portion and the sub-shaft portion and fitted with an eccentric roller. It has. Normally, the shaft diameter φD1 of the main shaft portion and the shaft diameter φD2 of the sub shaft portion are set to be equal to each other, the shaft diameter of the eccentric portion is φD3, and the amount of eccentricity of the eccentric main shaft portion and the sub shaft portion with respect to the shaft center is E When
φD3 <φD1 (= φD2) + E
By setting as above, the diameters of the eccentric part and the cylinder chamber are reduced, and the above-mentioned advantageous conditions are obtained.

しかしながら、上記の設定で偏心部に偏心ローラを嵌合すべく、主軸部端面からローラを挿入すると、ローラの挿入側端面が偏心部端面に当接した状態で、ローラの反挿入側端部は未だ主軸部から抜け出ない。たとえローラを径方向のどの位置に移動しても、偏心部に嵌合することができない。また、副軸部端面からローラを挿入すると、副軸部軸径φD2と主軸部軸径φD1が同じであるので、ローラを偏心部に組み付けることができない。   However, when the roller is inserted from the end surface of the main shaft portion in order to fit the eccentric roller to the eccentric portion with the above setting, the end portion on the non-insertion side of the roller is in a state where the insertion side end surface of the roller is in contact with the eccentric portion end surface. Still not coming out of the main shaft. Even if the roller is moved to any position in the radial direction, it cannot be fitted into the eccentric portion. Further, when the roller is inserted from the end surface of the countershaft portion, the subshaft portion shaft diameter φD2 and the main shaft portion shaft diameter φD1 are the same, so the roller cannot be assembled to the eccentric portion.

そこで、[特許文献1]には、副軸部の直径を主軸部の直径よりも小さくして、偏心部における反偏心方向側の外周面を主軸部外周面よりもへこませ、二つの偏心部を連接する連接部に主軸部の外径よりも小径の部分を設けるとともに、その小径部分の軸方向長さを主軸部に嵌合されるローラの高さ以上にする技術が開示されている。
特開2003−328972号公報
Therefore, in [Patent Document 1], the diameter of the sub-shaft portion is made smaller than the diameter of the main shaft portion, and the outer peripheral surface of the eccentric portion on the side opposite to the eccentric direction is recessed from the outer peripheral surface of the main shaft portion. A technique is disclosed in which a connecting portion connecting the portions is provided with a portion having a diameter smaller than the outer diameter of the main shaft portion, and the axial length of the small diameter portion is equal to or greater than the height of the roller fitted to the main shaft portion. .
JP 2003-328972 A

上記[特許文献1]のように構成すれば、ローラを副軸部端面から挿入して副軸部側の偏心部を通過させ、一旦、副軸部と主軸部との相互間(連接部)に位置できる。そして、ローラを主軸部側の偏心部に組み付けることが可能となり、そのあと、副軸部側の偏心部に別のローラを組み付ければ、容易に組み付け作業が完了する。   If it comprises like said [patent document 1], a roller will be inserted from a countershaft part end surface, the eccentric part by the side of a countershaft part will be passed, and once between a subshaft part and a main shaft part (connection part) Can be located. Then, the roller can be assembled to the eccentric portion on the main shaft portion side, and thereafter, if another roller is assembled to the eccentric portion on the auxiliary shaft portion side, the assembling operation is easily completed.

このように上記[特許文献1]の技術では、主軸部の軸径に偏心量の2倍をプラスした長さよりも偏心部の軸径を小(φD3<φD1+2×E)としながら、ローラを回転軸偏心部に容易に組み付けることが可能である。   As described above, in the technique of [Patent Document 1], the roller is rotated while the shaft diameter of the eccentric portion is smaller (φD3 <φD1 + 2 × E) than the length obtained by adding twice the amount of eccentricity to the shaft diameter of the main shaft portion. It can be easily assembled to the shaft eccentric part.

しかしながら、[特許文献1]では副軸部の直径を小さくする(φD3>φD2+2×E)ことが前提である。そのため、回転軸の摺動損失の低減を得るべく、偏心部の軸径を極力小径化するとともに、偏心部の偏心量を大きくとることの設定をなすと、副軸部の軸径φD2がより細くなり過ぎてしまい、特に副軸部の強度の信頼性に問題を残す結果となる。   However, [Patent Document 1] presupposes that the diameter of the sub-shaft portion is reduced (φD3> φD2 + 2 × E). For this reason, in order to reduce the sliding loss of the rotary shaft, the shaft diameter of the eccentric portion is made as small as possible and the eccentric amount of the eccentric portion is set to be large. It becomes too thin, and in particular results in a problem in reliability of the strength of the countershaft.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、回転軸の偏心部の偏心量を大として、主軸部と副軸部の軸径を細くすることなく偏心部軸径を小さくでき、回転軸の強度信頼性を確保し、かつローラの偏心部に対する組み付けを円滑に行えて作業性の向上を図れる回転式圧縮機および、この回転式圧縮機を備えて冷凍効率の向上化を得る冷凍サイクル装置を提供しようとするものである。   The present invention has been made on the basis of the above circumstances, and the object of the present invention is to increase the eccentric amount of the eccentric portion of the rotating shaft and reduce the eccentric portion shaft diameter without reducing the shaft diameter of the main shaft portion and the sub shaft portion. A rotary compressor that can reduce the size of the rotating shaft, ensure the reliability of the strength of the rotating shaft, and can smoothly assemble the eccentric part of the roller to improve workability, and improve the refrigeration efficiency with this rotary compressor. It is an object of the present invention to provide a refrigeration cycle apparatus that can achieve the conversion.

上記目的を満足するため本発明の回転式圧縮機は、主軸受に枢支される主軸部、副軸受に枢支される副軸部、主軸部と副軸部との間に偏心して設けられローラが係合する偏心部を備えた回転軸と、ローラを収容し回転軸の回転にともなってローラが周面に接触しながら偏心移動するシリンダ室を備えたシリンダとを具備し、主軸部の軸径をφD1、副軸部の軸径をφD2、偏心部の軸径をφD3、偏心部の偏心量をEとしたとき、
φD3 < φD1 + 2×E ……(1)
φD3 < φD2 + 2×E ……(2)
の(1)、(2)式を満足するように設定するとともに、回転軸の主軸部と副軸部、もしくはローラの少なくともいずれか1つに、ローラを主軸部もしくは副軸部を介して偏心部に組み付ける際の逃げ手段を備えた。
In order to satisfy the above object, the rotary compressor of the present invention is provided eccentrically between the main shaft portion pivotally supported by the main bearing, the subshaft portion pivotally supported by the sub-bearing, and the main shaft portion and the sub-shaft portion. A rotating shaft having an eccentric portion with which the roller engages, and a cylinder having a cylinder chamber that accommodates the roller and moves eccentrically while contacting the peripheral surface as the rotating shaft rotates. When the shaft diameter is φD1, the shaft diameter of the auxiliary shaft portion is φD2, the shaft diameter of the eccentric portion is φD3, and the eccentric amount of the eccentric portion is E,
φD3 <φD1 + 2 × E (1)
φD3 <φD2 + 2 × E (2)
(1) and (2) are satisfied and at least one of the main shaft portion and the sub-shaft portion or the roller of the rotating shaft is eccentrically arranged via the main shaft portion or the sub-shaft portion. Equipped with escape means when assembled to the part.

上記目的を満足するため本発明の冷凍サイクル装置は、上述の回転式圧縮機とともに、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成する。   In order to satisfy the above object, the refrigeration cycle apparatus of the present invention comprises a condenser, an expansion device, and an evaporator together with the rotary compressor described above to constitute a refrigeration cycle.

本発明の回転式圧縮機によれば、偏心部を極力小径化して回転軸にかかる荷重と摩擦力を低減し、回転軸の偏心部相互間距離を短縮化して、圧縮性能の向上化と高信頼性が図れる等の効果を奏する。
さらに、本発明の冷凍サイクル装置によれば、上記回転式圧縮機を備えて、冷凍サイクル効率の向上と、高信頼性を得られる効果を奏する。
According to the rotary compressor of the present invention, the eccentric portion is made as small as possible to reduce the load and frictional force applied to the rotating shaft, the distance between the eccentric portions of the rotating shaft is shortened, and the compression performance is improved and improved. There are effects such as reliability.
Furthermore, according to the refrigeration cycle apparatus of the present invention, the rotary compressor is provided, and the effects of improving the refrigeration cycle efficiency and obtaining high reliability are achieved.

以下、本発明における第1の実施の形態を、図面にもとづいて説明する。
図1は、回転式圧縮機Aの断面構造と、この回転式圧縮機Aを備えた冷凍サイクル装置の概略の構成図である。(なお、図面上の煩雑さを避けるために、説明をしても符号を付していない一部の構成部品については、図示していない。もしくは、図示しているが図面上に符号を付していない。以下、同じ)
はじめに、冷凍サイクル装置の構成から説明すると、回転式圧縮機Aと、凝縮器Bと、電子膨張弁等の膨張装置Cと、蒸発器Dおよび図示しない気液分離器を備えていて、これら構成部品は順次、冷媒管Pを介して連通される。後述するように、回転式圧縮機Aで圧縮された冷媒ガスは冷媒管Pに導かれ、以上の構成部品の順に循環して冷凍サイクル作用をなし、再び回転式圧縮機Aに吸込まれるようになっている。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a sectional structure of a rotary compressor A and a refrigeration cycle apparatus including the rotary compressor A. (In order to avoid complications in the drawings, some components that are not denoted by reference numerals are not shown in the drawings. (The same applies hereinafter)
First, the configuration of the refrigeration cycle apparatus will be described. The rotary compressor A, the condenser B, the expansion device C such as an electronic expansion valve, the evaporator D, and a gas-liquid separator (not shown) are provided. The components are sequentially communicated via the refrigerant pipe P. As will be described later, the refrigerant gas compressed by the rotary compressor A is guided to the refrigerant pipe P and circulates in the order of the above components to form a refrigeration cycle, and is sucked into the rotary compressor A again. It has become.

上記回転式圧縮機Aにおいて、図中1は、上端が開口する有底筒状のケース本体1aと、このケース本体1aの上端開口部を、溶接手段等を用いて塞ぐカップ状の蓋ケース1bとからなる密閉ケースである。
蓋ケース1bの軸芯位置に冷媒管Pが垂直に接続され、この開口端は蓋ケース1bを貫通して密閉ケース1内部に突出している。回転式圧縮機Aで圧縮された冷媒ガスは、突出冷媒管Pから上記凝縮器Bに導かれるようになっている。一方、ケース本体1aの下部には、冷媒管Pが水平状態で接続されている。冷媒ガスは気液分離器から上記水平冷媒管Pを介して回転式圧縮機Aに吸込まれるようになっている。
In the rotary compressor A, reference numeral 1 in the drawing denotes a bottomed cylindrical case main body 1a having an open upper end, and a cup-shaped lid case 1b that closes the upper end opening of the case main body 1a using welding means or the like. It is a sealed case consisting of
The refrigerant pipe P is vertically connected to the axial center position of the lid case 1b, and this open end projects through the lid case 1b and protrudes into the sealed case 1. The refrigerant gas compressed by the rotary compressor A is led from the protruding refrigerant pipe P to the condenser B. On the other hand, the refrigerant pipe P is connected in a horizontal state to the lower part of the case body 1a. The refrigerant gas is sucked into the rotary compressor A through the horizontal refrigerant pipe P from the gas-liquid separator.

上記密閉ケース1内の下部には圧縮機構部2が収容され、この圧縮機構部2の上部に電動機部3が収容される。これら圧縮機構部2と電動機部3は回転軸4を介して連結されていて、後述するように、電動機部3により回転軸4を介して圧縮機構部2が駆動されるようになっている。   A compression mechanism portion 2 is accommodated in the lower portion of the sealed case 1, and an electric motor portion 3 is accommodated in the upper portion of the compression mechanism portion 2. The compression mechanism section 2 and the electric motor section 3 are connected via a rotating shaft 4, and the compression mechanism section 2 is driven by the electric motor section 3 via the rotating shaft 4 as will be described later.

上記電動機部3は、たとえばブラシレスDC同期モータ(ACモータもしくは商用モータでもよい)が用いられる。電動機部3は密閉ケース1内周面に焼きばめ等の工程を経て固定されるステータ5と、このステータ5の軸芯側に所定の間隙を存して配置されるロータ6とから構成される。上記回転軸4はロータ6の軸芯に沿って嵌着固定される。   For example, a brushless DC synchronous motor (which may be an AC motor or a commercial motor) is used as the electric motor unit 3. The electric motor unit 3 includes a stator 5 that is fixed to the inner peripheral surface of the sealed case 1 through a process such as shrink fitting, and a rotor 6 that is disposed with a predetermined gap on the axial center side of the stator 5. The The rotating shaft 4 is fitted and fixed along the axis of the rotor 6.

ステータ5の外周面に軸方向に沿い、周方向に所定の間隙を存して複数の凹溝が設けられ、かつケース本体1a内周面との間に細条の間隙が形成される。上記凹溝および間隙は、圧縮機構部2で圧縮された冷媒ガスが流通する流通路である。   A plurality of concave grooves are provided along the axial direction on the outer circumferential surface of the stator 5 with a predetermined gap in the circumferential direction, and a narrow gap is formed between the inner circumferential surface of the case body 1a. The concave groove and the gap are flow passages through which the refrigerant gas compressed by the compression mechanism unit 2 flows.

つぎに、上記圧縮機構部2について説明する。
図中7はケース本体1a内周面に圧入状態で嵌め込まれ、ケース本体1a外周面からスポット溶接等の手段で取付け固定されるシリンダである。このシリンダ7は軸芯に沿って孔部8が貫通して設けられ、略リング状をなしている。
Next, the compression mechanism unit 2 will be described.
In the figure, reference numeral 7 denotes a cylinder that is fitted into the inner peripheral surface of the case main body 1a in a press-fitted state and is attached and fixed from the outer peripheral surface of the case main body 1a by means such as spot welding. This cylinder 7 is provided with a hole 8 extending along the axis, and has a substantially ring shape.

上記シリンダ7の上面で孔部8を塞ぐ位置に、主軸受9が取付けボルトaを介して取付け固定される。さらに、シリンダ7の下面で孔部8を塞ぐ位置に、副軸受10が取付けボルトbを介して取付け固定される。シリンダ7の孔部8は、主軸受9と副軸受10とに囲まれる空間室であり、シリンダ室8が形成される。   A main bearing 9 is attached and fixed via a mounting bolt a at a position where the hole 8 is closed on the upper surface of the cylinder 7. Further, the auxiliary bearing 10 is attached and fixed via the attachment bolt b at a position where the hole 8 is blocked by the lower surface of the cylinder 7. The hole 8 of the cylinder 7 is a space chamber surrounded by the main bearing 9 and the auxiliary bearing 10, and the cylinder chamber 8 is formed.

上記気液分離器から回転式圧縮機Aに延出される冷媒管Pは、密閉ケース1壁を貫通してシリンダ7周面に接続される。シリンダ7の冷媒管Pが接続される部位とシリンダ室8との間に亘って吸込み通路が設けられる。したがって、上記冷媒管Pは密閉ケース1を貫通し、シリンダ7の吸込み通路を介してシリンダ室8に連通する。   The refrigerant pipe P extending from the gas-liquid separator to the rotary compressor A passes through the wall of the sealed case 1 and is connected to the circumferential surface of the cylinder 7. A suction passage is provided between a portion of the cylinder 7 to which the refrigerant pipe P is connected and the cylinder chamber 8. Therefore, the refrigerant pipe P penetrates the sealed case 1 and communicates with the cylinder chamber 8 through the suction passage of the cylinder 7.

上記主軸受9は、軸芯に沿って電動機部3側へ突出し、回転軸4一部を回転自在に枢支する軸受部9aと、この軸受部9a下端に一体に形成され上記取付けボルトaによってシリンダ7上面に直接、取付け固定される鍔部9bからなる。上記軸受部9aに枢支される回転軸4部位を、「主軸部4a」と呼ぶ。   The main bearing 9 protrudes toward the electric motor unit 3 along the shaft core, and is integrally formed at a lower end of the bearing unit 9a with a bearing unit 9a that pivotally supports a part of the rotating shaft 4, and is attached by the mounting bolt a. It consists of a flange 9b that is directly attached and fixed to the upper surface of the cylinder 7. The rotating shaft 4 portion pivotally supported by the bearing portion 9a is referred to as a “main shaft portion 4a”.

上記主軸受鍔部9bのシリンダ室8と対向する部位には、吐出弁機構が設けられる。この吐出弁機構は鍔部9b上面において開口し、鍔部9b上面と軸受部9a上端に亘って設けられるバルブカバー12で覆われる。
上記副軸受10は、軸芯に沿って密閉ケース1底部側へ突出し、回転軸4下端部を回転自在に枢支する軸受部10aと、この軸受部10a下端に一体に形成され、上記取付けボルトbによってシリンダ7下面に取付け固定される鍔部10bからなる。上記軸受部10aに枢支される回転軸4部位を、「副軸部4b」と呼ぶ。
A discharge valve mechanism is provided at a portion facing the cylinder chamber 8 of the main bearing collar 9b. This discharge valve mechanism opens on the upper surface of the flange 9b and is covered with a valve cover 12 provided over the upper surface of the flange 9b and the upper end of the bearing 9a.
The auxiliary bearing 10 projects toward the bottom of the sealed case 1 along the shaft core, and is integrally formed at the lower end of the bearing 10a and the bearing 10a that pivotally supports the lower end of the rotary shaft 4, and the mounting bolt It consists of a flange 10b that is attached and fixed to the lower surface of the cylinder 7 by b. The rotating shaft 4 portion pivotally supported by the bearing portion 10a is referred to as a “sub shaft portion 4b”.

後述する理由により、副軸受10の鍔部10bの厚みは、主軸受9の鍔部9bの厚みよりも大に形成されている。一方、副軸受10の鍔部10bに吐出弁機構が設けられ、下端開口部はバルブカバー13で覆われる。
上記回転軸4において、主軸部4aと副軸部4bとの間には、補助逃げ部fと、偏心部4cおよび連結部4dが、上部から下部側に順に連設される。これら補助逃げ部f等については後述するが、ここでは偏心部4cだけ説明する。すなわち、偏心部4cは回転軸4の軸芯とは所定距離Eだけ偏心して設けられ、上記シリンダ室8内に収容される。
For the reason described later, the thickness of the flange portion 10b of the auxiliary bearing 10 is formed larger than the thickness of the flange portion 9b of the main bearing 9. On the other hand, a discharge valve mechanism is provided on the flange portion 10 b of the auxiliary bearing 10, and the lower end opening is covered with a valve cover 13.
In the rotating shaft 4, an auxiliary escape portion f, an eccentric portion 4c, and a connecting portion 4d are connected in order from the upper portion to the lower portion between the main shaft portion 4a and the sub shaft portion 4b. Although these auxiliary escape parts f etc. are mentioned later, only the eccentric part 4c is demonstrated here. That is, the eccentric portion 4 c is provided eccentrically by a predetermined distance E from the axis of the rotating shaft 4 and is accommodated in the cylinder chamber 8.

上記偏心部4c周面には偏心ローラ15が嵌合されている。偏心ローラ15の高さ寸法(軸方向長さ)Hは、シリンダ室8の高さ寸法と同一、もしくは僅かに小に設定されている。また、偏心ローラ15の高さ寸法Hと、上記偏心部4cの軸径φD3の割合は、0.8以下(H/φD3<0.8)に設定されている。
後述するように、回転軸4の回転にともなって偏心部4cはシリンダ室8において偏心回転するが、それにともなって上記偏心ローラ15の周面一部がシリンダ室8周面に接触しながら移動するようになっている。
An eccentric roller 15 is fitted on the circumferential surface of the eccentric portion 4c. The height dimension (axial length) H of the eccentric roller 15 is set to be the same as or slightly smaller than the height dimension of the cylinder chamber 8. Further, the ratio of the height dimension H of the eccentric roller 15 to the shaft diameter φD3 of the eccentric portion 4c is set to 0.8 or less (H / φD3 <0.8).
As will be described later, the eccentric portion 4c rotates eccentrically in the cylinder chamber 8 along with the rotation of the rotating shaft 4, and accordingly, a part of the peripheral surface of the eccentric roller 15 moves while contacting the peripheral surface of the cylinder chamber 8. It is like that.

上記シリンダ7にはブレード室17が設けられ、このブレード室17にはブレード18とばね部材19が収容される。ブレード18の先端部は平面視で略半円状に形成され、この先端部が偏心ローラ15周面に軸方向に沿って線接触するよう圧縮ばねである上記ばね部材19によって弾性的に押圧される。   A blade chamber 17 is provided in the cylinder 7, and a blade 18 and a spring member 19 are accommodated in the blade chamber 17. The tip of the blade 18 is formed in a substantially semicircular shape in plan view, and is elastically pressed by the spring member 19 which is a compression spring so that the tip is in line contact with the circumferential surface of the eccentric roller 15 along the axial direction. The

上記回転軸4が回転し、偏心部4cが偏心回転して偏心ローラ15がシリンダ室8周面に沿って移動するとき、ブレード18は偏心ローラ15とばね部材19の付勢力によりブレード室17に沿って往復動する。したがって、偏心ローラ15の回転角度にかかわらず、ブレード18先端が偏心ローラ15周面に接触してシリンダ室8を二室に仕切る。   When the rotating shaft 4 rotates, the eccentric portion 4c rotates eccentrically, and the eccentric roller 15 moves along the circumferential surface of the cylinder chamber 8, the blade 18 is moved to the blade chamber 17 by the urging force of the eccentric roller 15 and the spring member 19. Reciprocate along. Therefore, regardless of the rotation angle of the eccentric roller 15, the tip of the blade 18 comes into contact with the circumferential surface of the eccentric roller 15 to partition the cylinder chamber 8 into two chambers.

ブレード18先端がシリンダ室8内へ最も突出する部位にあるとき、ブレード18後端はブレード室17内に位置する。偏心ローラ15がシリンダ室8とブレード18先端に密接し、ブレード18が最も後退したとき、ブレード18後端とブレード室17端面との間の距離は、ばね部材19の最大圧縮長さよりも僅かに大になるよう設計されている。   When the leading end of the blade 18 is at the most protruding portion into the cylinder chamber 8, the rear end of the blade 18 is located in the blade chamber 17. When the eccentric roller 15 is in close contact with the cylinder chamber 8 and the tip of the blade 18 and the blade 18 is most retracted, the distance between the rear end of the blade 18 and the end surface of the blade chamber 17 is slightly smaller than the maximum compression length of the spring member 19. Designed to be large.

このようにして構成される圧縮機構部2において、そのほとんど大部分が密閉ケース1内底部に形成される油溜り部20の潤滑油中に浸漬状態にある。副軸部4bの下端面は副軸受10とバルブカバー13から露出し、ここに給油ポンプが設けられる。回転軸4には給油ポンプと連通する給油通路が圧縮機構部2の各摺接部に対し分岐して設けられる。   In the compression mechanism portion 2 configured as described above, most of the compression mechanism portion 2 is immersed in the lubricating oil of the oil reservoir 20 formed on the inner bottom portion of the sealed case 1. The lower end surface of the auxiliary shaft portion 4b is exposed from the auxiliary bearing 10 and the valve cover 13, and an oil supply pump is provided here. The rotary shaft 4 is provided with an oil supply passage communicating with the oil supply pump that branches from the sliding contact portions of the compression mechanism portion 2.

上記摺接部として、たとえば回転軸主軸部4aと主軸受9との間、回転軸副軸部4bと副軸受10との間、回転軸偏心部4cと偏心ローラ15との間、偏心ローラ15とシリンダ室8周面との間などがある。油溜り部20の潤滑油は回転軸4の回転にともなう給油ポンプにより汲み上げられ、給油通路を介して各摺接部へ導かれるようになっている。   As the sliding contact portion, for example, between the rotation shaft main shaft portion 4a and the main bearing 9, between the rotation shaft sub shaft portion 4b and the sub bearing 10, between the rotation shaft eccentric portion 4c and the eccentric roller 15, and the eccentric roller 15 And the cylinder chamber 8 circumferential surface. Lubricating oil in the oil reservoir 20 is pumped up by an oil pump accompanying the rotation of the rotating shaft 4 and guided to each sliding contact portion through an oil supply passage.

上記偏心部4cの軸方向長さは偏心ローラ15の高さ寸法よりも小であり、その分、偏心部4cの上下端面と偏心ローラ15の上下端面とはある程度の寸法差を有している。そして、偏心ローラ15の内径部で上下端角部は斜めに切削され、いわゆる面取り加工が施された面取り部Maとなっている。   The axial length of the eccentric portion 4c is smaller than the height dimension of the eccentric roller 15, and accordingly, there is a certain dimensional difference between the upper and lower end surfaces of the eccentric portion 4c and the upper and lower end surfaces of the eccentric roller 15. . The upper and lower end corners of the eccentric roller 15 are cut obliquely to form a chamfered portion Ma on which a so-called chamfering process is performed.

偏心部4c上端と偏心ローラ15上端に寸法差があり、補助逃げ部f下端が偏心ローラ15の内径部に挿入するので、偏心部4cが偏心する側とは反対側において、上記補助逃げ部fは主軸部4aから偏心部4cに亘って斜めに形成される。偏心ローラ15の内径部に面取り部Maが設けられることも相俟って、補助逃げ部fが偏心ローラ15内径部上端に接触することはない。   Since there is a dimensional difference between the upper end of the eccentric part 4c and the upper end of the eccentric roller 15, and the lower end of the auxiliary escape part f is inserted into the inner diameter part of the eccentric roller 15, the auxiliary escape part f is opposite to the side where the eccentric part 4c is eccentric. Is formed obliquely from the main shaft portion 4a to the eccentric portion 4c. Since the chamfered portion Ma is provided at the inner diameter portion of the eccentric roller 15, the auxiliary escape portion f does not contact the upper end of the inner diameter portion of the eccentric roller 15.

一方、上記連結部4dの軸芯と副軸部4bの軸芯は一致し、連結部4dの軸径は副軸部4bの軸径よりも小に設定されている。すなわち、連結部4dの周面は副軸部4bの周面と段差があり、全周に亘って後述する逃げ部(逃げ手段)Lが形成される。逃げ部Lの下端である、副軸部4bと連結部4dとの連設角部は、いわゆる面取り加工が施され、面取り部Mbとなっている。   On the other hand, the axis of the connecting portion 4d and the axis of the sub-shaft portion 4b coincide with each other, and the shaft diameter of the connecting portion 4d is set smaller than the shaft diameter of the sub-shaft portion 4b. That is, the peripheral surface of the connecting portion 4d is stepped from the peripheral surface of the sub-shaft portion 4b, and a later-described escape portion (escape means) L is formed over the entire circumference. A so-called chamfering process is performed on the connecting corner portion of the auxiliary shaft portion 4b and the connecting portion 4d, which is the lower end of the escape portion L, to form a chamfered portion Mb.

このようにして、回転軸4に主軸部4a等が設けられ、上記副軸受10の軸芯に沿うとともに連結部4dに対向する部位に凹陥部gが設けられる。副軸受10の鍔部10bの厚みが主軸受9の鍔部9bの厚みよりも大であるのは、上記連結部4dを収容する凹陥部gを備えるためである。   In this way, the main shaft portion 4a and the like are provided on the rotating shaft 4, and the recessed portion g is provided at a site along the axis of the auxiliary bearing 10 and facing the connecting portion 4d. The reason why the thickness of the flange portion 10b of the auxiliary bearing 10 is larger than the thickness of the flange portion 9b of the main bearing 9 is to provide the recessed portion g that accommodates the connecting portion 4d.

つぎに、圧縮機構部2における主要部の構成について説明する。
回転軸4に設けられる主軸部4aの軸径をφD1、副軸部4bの軸径をφD2、偏心部4cの軸径をφD3とし、偏心部4cの偏心量をEとしたとき、下記(1)式および(2)式を満足するように設定されている。
φD3 < φD1 + 2×E ……(1)
φD3 < φD2 + 2×E ……(2)
そして、連結部4dの全周に亘って逃げ部Lが形成されるうえに、逃げ部Lである連結部4bの軸長をZ、偏心ローラ15の高さ寸法(軸長)をH、偏心ローラ15内径部に設けられる面取り部Maの軸方向長さをCr、逃げ部L下端の面取り部Mbにおける軸方向長さをCfとしたとき、下記(3)式が満足するように設定されている。
Z ≧ H − Cr − Cf ……(3)
なお、上記面取り部Ma,Mbの大きさはゼロを含むものであって、したがって面取り部Ma,Mbが全く存在していない場合にも適用される。
Below, the structure of the principal part in the compression mechanism part 2 is demonstrated.
When the shaft diameter of the main shaft portion 4a provided on the rotating shaft 4 is φD1, the shaft diameter of the auxiliary shaft portion 4b is φD2, the shaft diameter of the eccentric portion 4c is φD3, and the eccentric amount of the eccentric portion 4c is E (1) ) And (2).
φD3 <φD1 + 2 × E (1)
φD3 <φD2 + 2 × E (2)
The escape portion L is formed over the entire circumference of the connecting portion 4d, the axial length of the connecting portion 4b, which is the escape portion L, is Z, the height dimension (axial length) of the eccentric roller 15 is H, and eccentric. When the axial length of the chamfered portion Ma provided on the inner diameter portion of the roller 15 is Cr and the axial length of the chamfered portion Mb at the lower end of the escape portion L is Cf, the following formula (3) is set to be satisfied. Yes.
Z ≧ H-Cr-Cf (3)
Note that the sizes of the chamfered portions Ma and Mb include zero, and therefore, the chamfered portions Ma and Mb are also applied when no chamfered portions Ma and Mb exist.

つぎに、このようにして構成される回転式圧縮機と冷凍サイクル装置の作用を説明する。
回転式圧縮機Aにおける電動機部3に通電すると回転軸4が回転駆動され、圧縮機構部2を構成するシリンダ室8内において偏心ローラ15が偏心移動する。シリンダ室8ではブレード18で仕切られ、かつ冷媒管Pと連通する一方室に、蒸発器Dで蒸発し気液分離器で分離された冷媒ガスが冷媒管Pを介して吸込まれる。
Next, the operation of the rotary compressor and the refrigeration cycle apparatus configured as described above will be described.
When the motor unit 3 in the rotary compressor A is energized, the rotary shaft 4 is rotationally driven, and the eccentric roller 15 moves eccentrically in the cylinder chamber 8 constituting the compression mechanism unit 2. In the cylinder chamber 8, the refrigerant gas evaporated by the evaporator D and separated by the gas-liquid separator is sucked through the refrigerant pipe P into one chamber which is partitioned by the blade 18 and communicates with the refrigerant pipe P.

偏心ローラ15が偏心移動を継続すると、冷媒ガスが吸込まれた側の室の容積が減少し、圧力が上昇する。その室の容積が所定の容積になったとき、圧縮された冷媒ガスは所定圧力まで上昇する。同時に主軸受9と副軸受10に設けられる吐出弁機構が開放され、圧縮されて高温高圧化した冷媒ガスはバルブカバー12,13内へ吐出される。   When the eccentric roller 15 continues the eccentric movement, the volume of the chamber on the side where the refrigerant gas is sucked decreases, and the pressure increases. When the volume of the chamber reaches a predetermined volume, the compressed refrigerant gas rises to a predetermined pressure. At the same time, the discharge valve mechanisms provided in the main bearing 9 and the sub-bearing 10 are opened, and the refrigerant gas compressed to high temperature and pressure is discharged into the valve covers 12 and 13.

圧縮された冷媒ガスは各バルブカバー12,13から直接的、もしくは間接的に密閉ケース1内の圧縮機構部2と電動機部3との間の空間部へ導出される。そして、圧縮された冷媒ガスは電動機部3に設けられる冷媒ガス流通路を流通し、電動機部3の上部側における密閉ケース1内に充満する。   The compressed refrigerant gas is led out from the valve covers 12 and 13 directly or indirectly to the space between the compression mechanism 2 and the electric motor 3 in the sealed case 1. The compressed refrigerant gas flows through the refrigerant gas flow passage provided in the electric motor unit 3 and fills the sealed case 1 on the upper side of the electric motor unit 3.

冷媒ガスは回転式圧縮機A上端に接続される冷媒管Pへ吐出され、凝縮器Bに導かれて凝縮液化し、膨張装置Cに導かれて断熱膨張し、蒸発器Dに導かれて蒸発し、周囲から蒸発潜熱を奪って冷凍作用をなす。蒸発した冷媒は気液分離器に導かれて気液分離され、ガス分のみが気液分離器から冷媒管Pを介して回転式圧縮機Aに導かれる。   The refrigerant gas is discharged to the refrigerant pipe P connected to the upper end of the rotary compressor A, led to the condenser B to be condensed and liquefied, led to the expansion device C and adiabatically expanded, and led to the evaporator D to evaporate. Then, it takes away the latent heat of vaporization from the surroundings and performs a freezing action. The evaporated refrigerant is guided to the gas-liquid separator to be gas-liquid separated, and only the gas component is guided from the gas-liquid separator to the rotary compressor A through the refrigerant pipe P.

そして冷媒ガスは、回転式圧縮機Aの圧縮機構部2を構成するシリンダ7の吸込み通路を介してシリンダ室8に導かれる。上記偏心ローラ15の偏心移動にともなって再び圧縮され、所定圧まで上昇したところで吐出弁機構から吐出される。以下、上述の作用を繰り返す。   The refrigerant gas is guided to the cylinder chamber 8 through the suction passage of the cylinder 7 constituting the compression mechanism unit 2 of the rotary compressor A. When the eccentric roller 15 is moved eccentrically, it is compressed again and discharged from the discharge valve mechanism when it reaches a predetermined pressure. Thereafter, the above-described operation is repeated.

その一方で、回転軸4の回転にともなって給油ポンプは油溜り部20の潤滑油を吸上げ、給油通路を介して回転軸4と主軸受9との間などの各摺接部へ給油する。各摺接部においては、油溜り部20から充分な量の潤滑油が導かれ、潤滑性を保持する。各摺接部に給油された潤滑油は、再び元の油溜り部20に集溜される。   On the other hand, as the rotary shaft 4 rotates, the oil supply pump sucks up the lubricating oil in the oil reservoir 20 and supplies it to the sliding contact portions such as between the rotary shaft 4 and the main bearing 9 through the oil supply passage. . In each sliding contact portion, a sufficient amount of lubricating oil is guided from the oil reservoir portion 20 to maintain lubricity. The lubricating oil supplied to each sliding contact portion is collected again in the original oil reservoir 20.

なお、回転式圧縮機Aとして、摩擦ロスを低減し効率を向上するために、回転軸4の摺動部分で最も径の大きい偏心部4cの直径を極力小径化することが望ましい。それにともない、シリンダ7の厚みを、より縮小化して、偏心部4cの偏心量を大きくとり、回転軸4の摺動損失の低減を得るとよい。   In the rotary compressor A, it is desirable to reduce the diameter of the eccentric portion 4c having the largest diameter at the sliding portion of the rotating shaft 4 as much as possible in order to reduce friction loss and improve efficiency. Accordingly, the thickness of the cylinder 7 may be further reduced, and the eccentric amount of the eccentric portion 4c may be increased to reduce the sliding loss of the rotating shaft 4.

上述したように、主軸部4aの軸径φD1、副軸部4bの軸径φD2、偏心部4cの軸径φD3、偏心部4cの偏心量Eとしたとき、下記(1)式および(2)式を満足するように設定されている。
φD3 < φD1 + 2×E ……(1)
φD3 < φD2 + 2×E ……(2)
このことにより、偏心部4cの偏心量を大きくとっても、主軸受9に回転自在に嵌合する主軸部4aの軸径φD1と、副軸受10に回転自在に嵌合する副軸部4bの軸径φD2を細くすることなく、偏心部4cの直径を小さくできる。
As described above, when the shaft diameter φD1 of the main shaft portion 4a, the shaft diameter φD2 of the auxiliary shaft portion 4b, the shaft diameter φD3 of the eccentric portion 4c, and the eccentric amount E of the eccentric portion 4c, the following equations (1) and (2) It is set to satisfy the formula.
φD3 <φD1 + 2 × E (1)
φD3 <φD2 + 2 × E (2)
Thus, even if the eccentric amount of the eccentric portion 4c is large, the shaft diameter φD1 of the main shaft portion 4a that is rotatably fitted to the main bearing 9 and the shaft diameter of the sub shaft portion 4b that is rotatably fitted to the sub bearing 10 The diameter of the eccentric portion 4c can be reduced without reducing φD2.

したがって、主軸受9と副軸受10に対する回転軸4の主軸部4aと副軸部4bの軸信頼性を保ちつつ、偏心部4cの摺動径を小さくでき、摺動損失を低減できるので、信頼性が高く、高性能である回転式圧縮機Aを得る。そして、この回転式圧縮機Aを備えて冷凍サイクルを構成する冷凍サイクル装置は、冷凍効率の向上化を得られる。   Therefore, while maintaining the shaft reliability of the main shaft portion 4a and the sub shaft portion 4b of the rotary shaft 4 with respect to the main bearing 9 and the sub bearing 10, the sliding diameter of the eccentric portion 4c can be reduced and the sliding loss can be reduced. A rotary compressor A having high performance and high performance is obtained. And the refrigerating-cycle apparatus which comprises this rotary compressor A and comprises a refrigerating cycle can obtain the improvement of refrigerating efficiency.

さらに、偏心ローラ15の高さ寸法Hと、上記偏心部4cの軸径φD3の割合を0.8以下(H/φD3<0.8)に設定したので、偏心ローラ15の高さ寸法Hを小さくして、主軸部4aと副軸部4bとの距離を短縮でき、回転軸4の撓み量低減による信頼性の向上と、騒音・振動の低減が得られ、回転式圧縮機Aの小型化が可能となる。   Furthermore, since the ratio of the height dimension H of the eccentric roller 15 and the shaft diameter φD3 of the eccentric portion 4c is set to 0.8 or less (H / φD3 <0.8), the height dimension H of the eccentric roller 15 is set to The distance between the main shaft portion 4a and the sub shaft portion 4b can be shortened to improve the reliability by reducing the amount of deflection of the rotating shaft 4, and to reduce noise and vibration, and to reduce the size of the rotary compressor A. Is possible.

上記偏心ローラ15を回転軸4の偏心部4cに組み付ける際に、副軸部4b側に全周を逃げ部Lとした連結部4dを備え、逃げ部Lの軸長Z、偏心ローラ15の高さ寸法H、面取り部Maの軸方向長さCr、面取り部Mbの軸方向長さCfとしたとき、(3)式が満足するように設定されている。
Z ≧ H − Cr − Cf ……(3)
以上の設定から、偏心ローラ15を副軸部4b端面側から挿入し、連結部4dを介して偏心部4cに組み付け易くなり、偏心部4cに対する偏心ローラ15の組立て作業性の向上を図ることができる。
なお説明すると、主軸部4a端面から偏心ローラ15の内径部を挿入することは可能であるが、偏心ローラ15の挿入側端面が偏心部4c端面に当接しても、偏心ローラ15のほとんど大部分は主軸部4aに挿入したままであるので、その位置から偏心ローラ15を径方向に移動することができない。
When the eccentric roller 15 is assembled to the eccentric portion 4c of the rotating shaft 4, a connecting portion 4d having the entire circumference as a relief portion L is provided on the side of the auxiliary shaft portion 4b, the axial length Z of the relief portion L, the height of the eccentric roller 15 When the height dimension H, the axial length Cr of the chamfered portion Ma, and the axial length Cf of the chamfered portion Mb are set, the equation (3) is set to be satisfied.
Z ≧ H-Cr-Cf (3)
From the above settings, the eccentric roller 15 can be inserted from the end surface side of the sub-shaft portion 4b, and can be easily assembled to the eccentric portion 4c via the connecting portion 4d, and the assembly workability of the eccentric roller 15 with respect to the eccentric portion 4c can be improved. it can.
In other words, it is possible to insert the inner diameter portion of the eccentric roller 15 from the end surface of the main shaft portion 4a. However, even if the insertion side end surface of the eccentric roller 15 abuts on the end surface of the eccentric portion 4c, most of the eccentric roller 15 is inserted. Is still inserted in the main shaft portion 4a, and the eccentric roller 15 cannot be moved in the radial direction from that position.

一方、この実施の形態では、副軸部4bと偏心部4cとの間に、全周に逃げ部Lを備え、かつ(3)式で設定される連結部4dを設けている。そこで、偏心ローラ15を副軸部4b端面側から挿入し、副軸部4bを挿通して連結部4dに至り、偏心ローラ15と連結部4dが正しく対向した位置で、偏心ローラ15を偏心部4cの偏心方向へ移動する。   On the other hand, in this embodiment, a connecting portion 4d is provided between the auxiliary shaft portion 4b and the eccentric portion 4c. Therefore, the eccentric roller 15 is inserted from the end surface side of the sub shaft portion 4b, reaches the connecting portion 4d through the sub shaft portion 4b, and at the position where the eccentric roller 15 and the connecting portion 4d face each other correctly, the eccentric roller 15 is moved to the eccentric portion. It moves in the eccentric direction of 4c.

すなわち、偏心ローラ15内径部を逃げ部Lに接触させ、偏心ローラ15内径部を偏心部4c周面に正しく対向してから、偏心ローラ15を軸方向に沿って移動し、この内径部を偏心部4cに嵌入する。   That is, the eccentric roller 15 is brought into contact with the escape portion L, and the eccentric roller 15 is correctly opposed to the circumferential surface of the eccentric portion 4c, and then the eccentric roller 15 is moved along the axial direction. It fits into the part 4c.

上記条件と、偏心ローラ15に面取り部Maを設けるとともに、副軸部4bに面取り部Mbを設けているから、偏心ローラ15内径部の上下端が連結部4dの上下端および偏心部4cの下端に引っ掛ることがなく、偏心ローラ15を偏心部4cに円滑に嵌入することができる。   Since the chamfered portion Ma is provided in the eccentric roller 15 and the chamfered portion Mb is provided in the counter shaft portion 4b, the upper and lower ends of the inner diameter portion of the eccentric roller 15 are the upper and lower ends of the connecting portion 4d and the eccentric portion 4c. The eccentric roller 15 can be smoothly inserted into the eccentric portion 4c without being caught by the eccentric portion 4c.

副軸部4bを偏心部4cにより近づけた形態にして、主軸部4aと副軸部4bとの距離が小さくなる。そのため、実際の圧縮運転時において回転軸4の撓み量の低減を図れることとなり、信頼性の向上と、振動・騒音の低減化を得られ、回転式圧縮機自体Aの小型化に結び付けられる。   The auxiliary shaft portion 4b is brought closer to the eccentric portion 4c, and the distance between the main shaft portion 4a and the auxiliary shaft portion 4b is reduced. As a result, the amount of deflection of the rotating shaft 4 can be reduced during actual compression operation, and reliability can be improved and vibration and noise can be reduced, leading to a reduction in the size of the rotary compressor A itself.

なお、回転式圧縮機Aを構成する圧縮機構部2の基本構成は上述のごとくであり、変更しないことを前提とし、偏心部4cに偏心ローラ15を組み付ける際の作業性向上を考慮すると、他の実施の形態が考えられる。すなわち、H/φD3<0.8の関係および上記(1)式と(2)式を前提とし、上記逃げ部Lの構造と、上記(3)式に代って、以下に述べるような設定であってもよい。   The basic structure of the compression mechanism part 2 constituting the rotary compressor A is as described above, and it is premised that the compression mechanism part 2 is not changed, and considering the improvement in workability when the eccentric roller 15 is assembled to the eccentric part 4c, The following embodiments are possible. That is, on the premise of the relationship of H / φD3 <0.8 and the above equations (1) and (2), the structure of the relief portion L and the setting as described below instead of the above equation (3) It may be.

図2(A)は、第2の実施の形態での回転式圧縮機Aの一部断面図、図2(B)は図2(A)のS−S線に沿う横断面図である。(図1と同一構成部品については、同番号を付して新たな説明を省略する)
図2(A)に示すように、副軸部4bと偏心部4cとの間に設けられる連結部4d1の軸長は極く短く、かつ軸径は副軸部軸径φD2よりも僅かに小さく形成される。上記連結部4d1の偏心部4c側端面から副軸部4b端面側に亘って、長さZaの範囲で逃げ部(逃げ手段)22が設けられる。
FIG. 2A is a partial cross-sectional view of the rotary compressor A according to the second embodiment, and FIG. 2B is a cross-sectional view taken along the line SS of FIG. 2A. (The same components as those in FIG. 1 are denoted by the same reference numerals and new description is omitted.)
As shown in FIG. 2A, the axial length of the connecting portion 4d1 provided between the auxiliary shaft portion 4b and the eccentric portion 4c is extremely short, and the shaft diameter is slightly smaller than the auxiliary shaft portion shaft diameter φD2. It is formed. An escape portion (escape means) 22 is provided in the range of length Za from the end surface on the eccentric portion 4c side of the connecting portion 4d1 to the end surface side of the auxiliary shaft portion 4b.

図2(B)に示すように、上記逃げ部22は偏心部4cの中心位置Oaを中心とし、偏心部4cの偏心方向とは反対側の周面一部を、偏心部4c周面と同一面になる曲率半径で切削加工してなるものである。上記逃げ部22が設けられる範囲(角度θ)は、副軸部4bの中心Obから120°以下とする。   As shown in FIG. 2B, the escape portion 22 is centered on the center position Oa of the eccentric portion 4c, and a part of the peripheral surface opposite to the eccentric direction of the eccentric portion 4c is the same as the peripheral surface of the eccentric portion 4c. It is formed by cutting with a curvature radius that becomes a surface. The range (angle θ) in which the relief portion 22 is provided is 120 ° or less from the center Ob of the auxiliary shaft portion 4b.

なお、上記逃げ部22周面は、偏心部4cの周面よりも内側に位置するような加工であってもよいが、少なくとも偏心部4c周面よりも外側に突出するような逃げ部周面であってはならない。   In addition, although the above-mentioned clearance part 22 peripheral surface may be processed so that it may be located inside the peripheral surface of the eccentric part 4c, at least the relief part peripheral surface that protrudes outward from the peripheral part 4c peripheral surface Should not be.

再び図2(A)に示すように、逃げ部22の下端(副軸部4bの下端側)角部は面取り加工が施された面取り部Mcとなっている。連結部4d1と連設される副軸部4bの上端角部に面取り部Mbが設けられ、偏心ローラ15の内径部上下端にも面取り部Maが設けられることは変りがない。   As shown in FIG. 2A again, the corner of the lower end of the escape portion 22 (the lower end side of the auxiliary shaft portion 4b) is a chamfered portion Mc that has been chamfered. There is no change in that the chamfered portion Mb is provided at the upper end corner portion of the auxiliary shaft portion 4b provided continuously with the connecting portion 4d1, and the chamfered portion Ma is also provided at the upper and lower ends of the inner diameter portion of the eccentric roller 15.

上記逃げ部22の軸方向長さをZa、偏心ローラ15の高さをH、偏心ローラ15内径部の面取り部Maにおける軸方向長さをCr、逃げ部22の面取り部Mcにおける軸方向長さをCgとしたとき、下記(4)式が満足するように設定されている。
Za ≧ H − Cr − Cg ……(4)
偏心ローラ15の組み付け時は、副軸部4b端面側から偏心ローラ15内径部を挿入し、偏心ローラ15を逃げ部22に正しく対向させる。そして偏心ローラ15を偏心部4cの偏心方向へ平行移動し、偏心ローラ15の内径部一部を逃げ部22周面に接触させる。その状態のまま、偏心ローラ15を軸方向に沿って移動し偏心部4cに嵌入する。
The axial length of the escape portion 22 is Za, the height of the eccentric roller 15 is H, the axial length of the chamfered portion Ma of the inner diameter portion of the eccentric roller 15 is Cr, and the axial length of the chamfered portion Mc of the escape portion 22. Is set so that the following expression (4) is satisfied.
Za ≧ H—Cr—Cg (4)
When the eccentric roller 15 is assembled, the inner diameter portion of the eccentric roller 15 is inserted from the end surface side of the auxiliary shaft portion 4b, and the eccentric roller 15 is correctly opposed to the escape portion 22. Then, the eccentric roller 15 is translated in the eccentric direction of the eccentric portion 4c, and a part of the inner diameter portion of the eccentric roller 15 is brought into contact with the circumferential surface of the escape portion 22. In this state, the eccentric roller 15 is moved along the axial direction and fitted into the eccentric portion 4c.

このとき、上記(4)式を設定しているとともに偏心ローラ15に面取り部Ma、逃げ部22に面取り部Mcをそれぞれ設けているので、偏心ローラ15内径部の上下端部が逃げ部22の上下端部と偏心部4cの端部に引っ掛ることがなく、偏心ローラ15を偏心部4cに円滑に対向し、嵌入することができる。   At this time, since the equation (4) is set and the chamfered portion Ma is provided on the eccentric roller 15 and the chamfered portion Mc is provided on the escape portion 22, the upper and lower end portions of the inner diameter portion of the eccentric roller 15 are located on the escape portion 22. The eccentric roller 15 can be smoothly opposed and fitted into the eccentric portion 4c without being caught by the upper and lower end portions and the end portions of the eccentric portion 4c.

先に第1の実施の形態で説明したものよりも、副軸部4bがさらに偏心部4cに近づき、主軸部4aと副軸部4bとの距離がさらに短くなる。そのため、回転軸4の撓み量のより低減を図り、信頼性のより向上と、振動・騒音のより低減化を得られ、回転式圧縮機自体Aのより小型化に結び付けられる。   The auxiliary shaft portion 4b further approaches the eccentric portion 4c, and the distance between the main shaft portion 4a and the auxiliary shaft portion 4b is further shortened than that described in the first embodiment. Therefore, the amount of deflection of the rotating shaft 4 can be further reduced, and the reliability can be further improved and the vibration and noise can be further reduced, which leads to the miniaturization of the rotary compressor A itself.

上記逃げ部22の中心を偏心部4cの中心Oa位置と略同一としたから、逃げ部22を偏心部4cと同軸で加工でき、製造性が向上する。逃げ部22を中心Obから120°以下の範囲に設けたから、軸負荷力を受ける副軸部4bおよび連結部4d1の軸面積を充分に確保でき、軸信頼性を損なうことがない。   Since the center of the escape portion 22 is substantially the same as the position of the center Oa of the eccentric portion 4c, the escape portion 22 can be processed coaxially with the eccentric portion 4c, and the productivity is improved. Since the escape portion 22 is provided in a range of 120 ° or less from the center Ob, the shaft areas of the auxiliary shaft portion 4b and the connecting portion 4d1 that receive the axial load force can be sufficiently secured, and the shaft reliability is not impaired.

つぎに、第2の実施の形態における前提条件を同一(以下の実施の形態についても同じ)として、第3の実施の形態について説明する。
図3(A)は、第3の実施の形態での回転式圧縮機Aの一部断面図、図3(B)は図3(A)のT−T線に沿う横断面図である。
図3(A)に示すように、副軸部4bと偏心部4cとの間に設けられる連結部4d2の軸長Zbは極く短く、かつ軸径は副軸部4b軸径φD2よりも僅かに小さく形成される。さらに、連結部4d2における偏心部4cの偏心方向とは反対側の周面に、ローラ逃げ部24が設けられている。
Next, the third embodiment will be described assuming that the preconditions in the second embodiment are the same (the same applies to the following embodiments).
3A is a partial cross-sectional view of the rotary compressor A according to the third embodiment, and FIG. 3B is a transverse cross-sectional view taken along the line TT in FIG. 3A.
As shown in FIG. 3A, the axial length Zb of the connecting portion 4d2 provided between the auxiliary shaft portion 4b and the eccentric portion 4c is extremely short, and the shaft diameter is slightly smaller than the auxiliary shaft portion 4b shaft diameter φD2. It is formed small. Further, a roller escape portion 24 is provided on the peripheral surface of the connecting portion 4d2 opposite to the eccentric direction of the eccentric portion 4c.

このローラ逃げ部24は、連結部4d2の軸方向長さの全長に亘って設けられていて、したがってローラ逃げ部24の軸長はZbである。特に図3(B)に示すように、ローラ逃げ部24の中心位置Oaは連結部4d2の中心位置Obとは異なり、上記偏心部4cの中心Oaと一致した位置にある。   The roller escape portion 24 is provided over the entire length of the connecting portion 4d2 in the axial direction. Therefore, the axial length of the roller escape portion 24 is Zb. In particular, as shown in FIG. 3B, the center position Oa of the roller escape portion 24 is different from the center position Ob of the connecting portion 4d2, and is at a position coincident with the center Oa of the eccentric portion 4c.

上記ローラ逃げ部24は、偏心部4c周面一部と同一曲面を形成することとなり、互いに連設状態となる。なお、ローラ逃げ部24が設けられる範囲(角度:θ)は、ここでも約120°以下とする。   The roller escape portion 24 forms the same curved surface as a part of the peripheral surface of the eccentric portion 4c, and is in a continuous state. The range (angle: θ) in which the roller escape portion 24 is provided is also about 120 ° or less here.

一方、上記偏心ローラ15の内径部で、この下端面から所定の長さBに亘って、副軸逃げ部25が設けられる。この副軸逃げ部25は、上記副軸部4bの周面と同一の曲率半径で凹陥形成される。あるいは、より大なる曲率半径であってもよく、少なくとも同一の曲率半径よりも小なる曲率半径であってはならない。   On the other hand, a counter shaft escape portion 25 is provided in the inner diameter portion of the eccentric roller 15 from the lower end surface to a predetermined length B. The auxiliary shaft relief portion 25 is recessed with the same radius of curvature as the peripheral surface of the auxiliary shaft portion 4b. Alternatively, the radius of curvature may be larger, and it should not be at least a radius of curvature smaller than the same radius of curvature.

結果的に、上記副軸逃げ部25は副軸部4bの周面と同一面を形成し、もしくは副軸部4周面よりも外側に位置する面に構成される。なお、副軸逃げ部25が設けられる範囲(角度:θ)を約120°以下とすることは、同様である。特に、副軸逃げ部25における上端側の角部は面取り加工される面取り部Mdとなっている。   As a result, the countershaft relief portion 25 is formed on the same surface as the peripheral surface of the subshaft portion 4b, or a surface positioned on the outer side of the peripheral surface of the subshaft portion 4. In addition, it is the same that the range (angle: θ) in which the auxiliary shaft relief portion 25 is provided is about 120 ° or less. In particular, the corner portion on the upper end side of the countershaft relief portion 25 is a chamfered portion Md to be chamfered.

上記連結部4d2の軸方向長さをZb、偏心ローラ15の高さ寸法をH、副軸逃げ部25の軸方向長さをB、副軸逃げ部25の面取り部Mdにおける軸方向長さをCh、ローラ逃げ部24の面取り部Mbにおける軸方向長さCfとしたとき、下記(5)式が満足するように設定されている。
Zb ≧ (H−B) Ch − Cf ……(5)
以上の設定から、副軸部4b端面側から偏心ローラ15の内径部を挿入し、偏心ローラ15上端部が連結部4d2に対向したところで、連結部4d2のローラ逃げ部24と偏心ローラ15の副軸逃げ部25とが対向するよう、偏心ローラ15を周方向に回動調整する。
The axial length of the connecting portion 4d2 is Zb, the height dimension of the eccentric roller 15 is H, the axial length of the auxiliary shaft escape portion 25 is B, and the axial length of the chamfered portion Md of the auxiliary shaft escape portion 25 is the axial length. When Ch is the axial length Cf of the chamfered portion Mb of the roller escape portion 24, the following equation (5) is satisfied.
Zb ≧ (H−B) Ch−Cf (5)
From the above setting, the inner diameter portion of the eccentric roller 15 is inserted from the end surface side of the auxiliary shaft portion 4b, and when the upper end portion of the eccentric roller 15 faces the connecting portion 4d2, the roller escape portion 24 of the connecting portion 4d2 and the auxiliary roller 15 of the eccentric roller 15 become auxiliary. The eccentric roller 15 is rotated and adjusted in the circumferential direction so as to face the shaft escape portion 25.

そして、偏心ローラ15を偏心部4cの偏心方向へ移動して、偏心ローラ15の副軸逃げ部25を副軸部4b周面一部に密接し、かつ副軸逃げ部25から上部を連結部4d2のローラ逃げ部24に密接する。この状態のまま偏心ローラ15を偏心部4cの軸方向に沿って移動し、偏心部4cに嵌入する。   Then, the eccentric roller 15 is moved in the eccentric direction of the eccentric portion 4c, the auxiliary shaft escape portion 25 of the eccentric roller 15 is brought into close contact with a part of the peripheral surface of the auxiliary shaft portion 4b, and the upper portion from the auxiliary shaft escape portion 25 is connected to the connecting portion. The roller escape portion 24 of 4d2 is in close contact. In this state, the eccentric roller 15 is moved along the axial direction of the eccentric portion 4c, and is fitted into the eccentric portion 4c.

このとき、上記(5)式を設定しているので、偏心ローラ15内径部が偏心部4cに引っ掛ることがなく、偏心ローラ15を偏心部4cに対して円滑に対向させることができる。しかも、偏心ローラ15内径部の上下端部を面取り加工した面取り部Maとしたので、より円滑に偏心ローラ15内径部を偏心部4cに対向させることができる。   At this time, since the formula (5) is set, the inner diameter portion of the eccentric roller 15 is not caught by the eccentric portion 4c, and the eccentric roller 15 can be smoothly opposed to the eccentric portion 4c. Moreover, since the upper and lower end portions of the inner diameter portion of the eccentric roller 15 are the chamfered portions Ma, the inner diameter portion of the eccentric roller 15 can be more smoothly opposed to the eccentric portion 4c.

したがって、先に説明した構成のものと同様、副軸部4bがさらに偏心部4cに近づいた形態になって、主軸部4aと副軸部4bとの距離がさらに短縮する。そのため、回転軸4の撓み量のより低減を図り、信頼性のより向上と、振動・騒音のより低減化を得られ、回転式圧縮機A自体のより小型化に結び付けられる。   Therefore, like the configuration described above, the auxiliary shaft portion 4b is further brought closer to the eccentric portion 4c, and the distance between the main shaft portion 4a and the auxiliary shaft portion 4b is further shortened. Therefore, the amount of bending of the rotating shaft 4 can be further reduced, reliability can be improved, vibration and noise can be further reduced, and the rotary compressor A itself can be further downsized.

ローラ逃げ部24の中心を偏心部4c中心Oa位置と略同一としたから、ローラ逃げ部24を偏心部4cと同軸で加工でき、製造性が向上する。副軸逃げ部25を偏心部4c中心Oaから120°以下の範囲に設けたから、偏心ローラ15を介して偏心部4cが軸負荷力を受けても、軸面積を充分に確保でき、軸信頼性を損なうことがない。   Since the center of the roller escape portion 24 is substantially the same as the position of the eccentric portion 4c center Oa, the roller escape portion 24 can be processed coaxially with the eccentric portion 4c, and the productivity is improved. Since the auxiliary shaft relief portion 25 is provided within a range of 120 ° or less from the center portion Oa of the eccentric portion 4c, even if the eccentric portion 4c receives the axial load force via the eccentric roller 15, a sufficient shaft area can be secured and the shaft reliability can be secured. Will not be damaged.

図4(A)(B)は、第4の実施の形態を説明する回転式圧縮機Aの、互いに異なる一部平面図である。
図4(A)は、偏心ローラ15とブレード18aとが一体構造化される、いわゆるスイングタイプの圧縮機構部2Aを備えている。この種の構造を備えることにより、偏心ローラ15の自転を確実に規制して、偏心運動だけを行わせ、圧縮効率の向上を図ることができる。
FIGS. 4A and 4B are partial plan views of the rotary compressor A illustrating the fourth embodiment, which are different from each other.
FIG. 4A includes a so-called swing type compression mechanism 2A in which the eccentric roller 15 and the blade 18a are integrally formed. By providing this type of structure, the rotation of the eccentric roller 15 can be reliably restricted, and only the eccentric motion can be performed, so that the compression efficiency can be improved.

この場合にも、先に図3(A)(B)にて説明したように、副軸部4bと偏心部4cとの間に連結部4d2を備え、この連結部4d2にローラ逃げ部24を設ける。ブレード18aが一体に連設される偏心ローラ15には、副軸逃げ部25を設ける。
偏心ローラ15を副軸部4b端面側から挿入し、偏心ローラ15内径部の副軸逃げ部24から上の部分が連結部4d2に対向したところで、連結部4d2のローラ逃げ部24と偏心ローラ15の副軸逃げ部25とが直状に対向するよう、偏心ローラ15を周方向に回動調整する。
Also in this case, as described above with reference to FIGS. 3A and 3B, the connecting portion 4d2 is provided between the auxiliary shaft portion 4b and the eccentric portion 4c, and the roller escape portion 24 is provided in the connecting portion 4d2. Provide. The eccentric roller 15 to which the blade 18a is integrally connected is provided with a countershaft relief portion 25.
The eccentric roller 15 is inserted from the end surface side of the auxiliary shaft portion 4b, and when the portion above the auxiliary shaft escape portion 24 of the inner diameter portion of the eccentric roller 15 faces the connection portion 4d2, the roller escape portion 24 of the connection portion 4d2 and the eccentric roller 15 The eccentric roller 15 is rotated and adjusted in the circumferential direction so that the countershaft relief portion 25 of the countershaft faces the straight shaft.

さらに、偏心ローラ15を偏心部4cの偏心方向へ移動して、偏心ローラ15の副軸逃げ部24を副軸部4b周面一部に密接させ、副軸逃げ部25から上端面に亘る内径部をローラ逃げ部24に密接する。そのうえで、偏心ローラ15を軸方向に沿って移動し、偏心部4cに嵌入する。   Further, the eccentric roller 15 is moved in the eccentric direction of the eccentric portion 4c so that the auxiliary shaft escape portion 24 of the eccentric roller 15 is in close contact with a part of the peripheral surface of the auxiliary shaft portion 4b, and the inner diameter extending from the auxiliary shaft escape portion 25 to the upper end surface. The portion is brought into close contact with the roller escape portion 24. Then, the eccentric roller 15 is moved along the axial direction and is fitted into the eccentric portion 4c.

すなわち、ブレード18aが一体化した偏心ローラ15の偏心部4cに対する組立ては変りがないが、上記偏心ローラ15の副軸逃げ部25と連結部4d2のローラ逃げ部24は、図に示すようにシリンダ7に設けられるガス吸込み通路28側に設ける。なお、29は上記吐出弁機構に対向して設けられる吐出ポートである。   That is, there is no change in the assembly of the eccentric roller 15 with the blade 18a integrated with the eccentric portion 4c, but the auxiliary shaft relief portion 25 of the eccentric roller 15 and the roller relief portion 24 of the connecting portion 4d2 are cylinders as shown in the figure. 7 is provided on the gas suction passage 28 side. Reference numeral 29 denotes a discharge port provided to face the discharge valve mechanism.

したがって、実際の圧縮作用時に、シリンダ室8がブレード18aによって吸込み室mと圧縮室nとに仕切られる状態で、吸込み室mに副軸逃げ部を25設けたので、偏心ローラ15を介して偏心部4cに軸負荷力がほとんどかからずにすみ、偏心部4cの軸信頼性を損なうことはない。   Accordingly, since the cylinder chamber 8 is partitioned into the suction chamber m and the compression chamber n by the blade 18a during the actual compression action, the suction chamber m is provided with 25 countershaft relief portions. The axial load force is hardly applied to the portion 4c, and the shaft reliability of the eccentric portion 4c is not impaired.

図4(B)は、偏心ローラ15のブレード18が接する周面に沿って凹状に形成した凹部15aを設け、この凹部15aに先端を円弧状に形成したブレード18を当接させる、いわゆるヒンジドブレードタイプと呼ばれる圧縮機構部2Bを備えている。図4(A)のスイングタイプのものと同様、偏心ローラ15自転を規制して偏心運動だけ行わせ、圧縮効率の向上を図ることができる。   FIG. 4B shows a so-called hinged structure in which a concave portion 15a formed in a concave shape is provided along the peripheral surface with which the blade 18 of the eccentric roller 15 contacts, and the blade 18 whose tip is formed in an arc shape is brought into contact with the concave portion 15a. A compression mechanism 2B called a blade type is provided. Similar to the swing type of FIG. 4A, the eccentric roller 15 can be restrained from rotating so that only the eccentric motion is performed, and the compression efficiency can be improved.

この場合も、連結部4d2のローラ逃げ部24と偏心ローラ15の副軸逃げ部25を吸込み室m側に設けることとする。したがって、偏心ローラ15を介して偏心部4cに軸負荷力がほとんどかからずにすみ、偏心部4cの軸信頼性を損なうことはない。   Also in this case, the roller escape portion 24 of the connecting portion 4d2 and the counter shaft escape portion 25 of the eccentric roller 15 are provided on the suction chamber m side. Therefore, almost no axial load force is applied to the eccentric portion 4c via the eccentric roller 15, and the shaft reliability of the eccentric portion 4c is not impaired.

図5は、第5の実施の形態を説明する回転式圧縮機Aの一部断面図である。副軸部4bの一部と連結部4d2全体とに亘って、ローラ逃げ部24aが設けられる。また、偏心ローラ15内径部の下端から上端側中途部に亘って副軸逃げ部25aが設けられる。   FIG. 5 is a partial cross-sectional view of a rotary compressor A for explaining the fifth embodiment. A roller escape portion 24a is provided across a part of the countershaft portion 4b and the entire connecting portion 4d2. Further, a counter shaft escape portion 25a is provided from the lower end of the inner diameter portion of the eccentric roller 15 to the middle portion on the upper end side.

先に図3(A)で説明したローラ逃げ部24を連結部4d2のみに設けるのではなく、ローラ逃げ部24aを副軸部4b側へ延長し、その分、偏心ローラ15に設けられる副軸逃げ部25aの長さを短縮化した構成であり、基本的には第2の実施の形態とほとんど同様であり、したがって同様の効果を得られる。   The roller escape portion 24 described above with reference to FIG. 3 (A) is not provided only in the connecting portion 4d2, but the roller escape portion 24a is extended toward the auxiliary shaft portion 4b, and the auxiliary shaft provided in the eccentric roller 15 correspondingly. This is a configuration in which the length of the escape portion 25a is shortened, and is basically the same as that of the second embodiment, and therefore the same effect can be obtained.

図6は、第6の実施の形態を説明する多筒型回転式圧縮機Aaの一部断面図である。電動機部3に回転軸4を介して連結される圧縮機構部2Cは、主軸受部を一体に設けたフレーム9Aに、それぞれシリンダ室8を備えた2つのシリンダ7A,7Bが中間仕切り板30を介して取付けられる。   FIG. 6 is a partial cross-sectional view of a multi-cylinder rotary compressor Aa illustrating a sixth embodiment. The compression mechanism portion 2C connected to the electric motor portion 3 via the rotary shaft 4 includes a frame 9A in which a main bearing portion is integrally provided, and two cylinders 7A and 7B each having a cylinder chamber 8 are provided with an intermediate partition plate 30. Mounted through.

この場合においても、偏心ローラ15の高さ寸法H/偏心部4cの軸径φD3<0.8の関係および、先に説明した(1)式および(2)式を満足することを前提として、先に第2の実施の形態(図2)で説明したように、副軸部4bと連結部4dに亘って逃げ部22が設けられる。特に図示していないが、偏心ローラ15内径部と逃げ部22に面取り部を設けておくことにより、上記した(4)式が成立する。   Even in this case, on the premise that the relationship of the height dimension H of the eccentric roller 15 / the shaft diameter φD3 <0.8 of the eccentric portion 4c and the expressions (1) and (2) described above are satisfied. As described previously in the second embodiment (FIG. 2), the escape portion 22 is provided across the auxiliary shaft portion 4b and the connecting portion 4d. Although not shown in particular, the above formula (4) is established by providing chamfered portions on the inner diameter portion of the eccentric roller 15 and the escape portion 22.

先に副軸部4b端面側から挿入した偏心ローラ15を逃げ部22を利用して下部側の偏心部4cに嵌入でき、さらに中間連結部31を介して上部側の偏心部4cに嵌入する。後から副軸部4bに挿入した偏心ローラ15は、下部側の偏心部4cに嵌入できる。   The eccentric roller 15 previously inserted from the end surface side of the auxiliary shaft portion 4b can be fitted into the lower-side eccentric portion 4c using the escape portion 22, and further fitted into the upper-side eccentric portion 4c via the intermediate connecting portion 31. The eccentric roller 15 inserted into the auxiliary shaft portion 4b afterwards can be fitted into the eccentric portion 4c on the lower side.

したがって、多筒型回転式圧縮機Aaにおいても、単気筒型の回転式圧縮機Aと何ら変ることなく、各偏心ローラ15をそれぞれ偏心部4cに嵌入でき、先に説明したものと同様の作用効果を得られることとなる。   Therefore, even in the multi-cylinder rotary compressor Aa, each eccentric roller 15 can be fitted into the eccentric portion 4c without changing from the single cylinder rotary compressor A, and the same action as described above can be achieved. An effect will be acquired.

なお、上記第1の実施の形態から第6の実施の形態では、偏心ローラ15を副軸部4b端面側から挿入して偏心部4cに嵌入するようにしたが、これに限定されることはなく、主軸部4a側端面から偏心ローラ15を挿入して偏心部4cに嵌入するようにしてもよい。この場合は、上記逃げ部と関連事項は全て副軸部4b側から主軸部4a側へ変更することとなる。   In the first to sixth embodiments, the eccentric roller 15 is inserted from the end surface side of the auxiliary shaft portion 4b and fitted into the eccentric portion 4c. However, the present invention is not limited to this. Alternatively, the eccentric roller 15 may be inserted from the end surface on the main shaft portion 4a side and fitted into the eccentric portion 4c. In this case, all of the clearance part and the related matters are changed from the auxiliary shaft part 4b side to the main shaft part 4a side.

また、2の実施の形態から第6の実施の形態においては、偏心ローラ15の高さ寸法Hと、偏心部4cの軸径φD3の割合を0.8以下(H/φD3<0.8)に設定してあり、偏心ローラ15の高さ寸法Hを小さくして、主軸部4aと副軸部4bとの距離を短縮でき、回転軸4の撓み量低減による信頼性の向上と、騒音・振動の低減が得られ、回転式圧縮機A(多気筒型回転式圧縮機Aa)の小型化が可能となる。   In the second to sixth embodiments, the ratio of the height dimension H of the eccentric roller 15 and the shaft diameter φD3 of the eccentric portion 4c is 0.8 or less (H / φD3 <0.8). The height H of the eccentric roller 15 can be reduced, the distance between the main shaft portion 4a and the sub shaft portion 4b can be shortened, reliability can be improved by reducing the amount of deflection of the rotating shaft 4, and noise / Vibration can be reduced, and the rotary compressor A (multi-cylinder rotary compressor Aa) can be downsized.

さらに、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。   Furthermore, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明における第1の実施の形態に係る、回転式圧縮機の縦断面図と、空気調和機の冷凍サイクル構成図。The longitudinal cross-sectional view of the rotary compressor based on 1st Embodiment in this invention, and the refrigerating cycle block diagram of an air conditioner. 同第2の実施の形態に係る、回転式圧縮機の一部縦断面図と、S−S線に沿う横断面図。The partial longitudinal cross-sectional view of the rotary compressor based on the said 2nd Embodiment, and the cross-sectional view which follows an SS line. 同第3の実施の形態に係る、回転式圧縮機の一部縦断面図と、T−T線に沿う横断面図。The partial longitudinal cross-sectional view of the rotary compressor based on the said 3rd Embodiment, and the cross-sectional view which follows a TT line. 同第4の実施の形態に係る、互いに異なる構成の一部平面図。The partial top view of a mutually different structure based on the said 4th Embodiment. 同第5の実施の形態に係る、回転式圧縮機の一部縦断面図。The partial longitudinal cross-sectional view of the rotary compressor based on the said 5th Embodiment. 同第6の実施の形態に係る、多筒型回転式圧縮機の一部縦断面図。The partial longitudinal cross-sectional view of the multi-cylinder rotary compressor based on the said 6th Embodiment.

符号の説明Explanation of symbols

9…主軸受、4a…主軸部、10…副軸受、4b…副軸部、15…偏心ローラ、4c…偏心部、4…回転軸、8…シリンダ室、7…シリンダ、L…逃げ部、22…逃げ部、24…ローラ逃げ部、25…副軸逃げ部、A…回転式圧縮機、B…凝縮器、C…膨張装置、D…蒸発器。   DESCRIPTION OF SYMBOLS 9 ... Main bearing, 4a ... Main shaft part, 10 ... Sub bearing, 4b ... Sub shaft part, 15 ... Eccentric roller, 4c ... Eccentric part, 4 ... Rotating shaft, 8 ... Cylinder chamber, 7 ... Cylinder, L ... Escape part, DESCRIPTION OF SYMBOLS 22 ... Escape part, 24 ... Roller escape part, 25 ... Secondary shaft escape part, A ... Rotary compressor, B ... Condenser, C ... Expansion device, D ... Evaporator.

Claims (4)

主軸受に枢支される主軸部と、副軸受に枢支される副軸部および、これら主軸部と副軸部との間に偏心して設けられローラが係合する偏心部を備えた回転軸と、
この回転軸の上記偏心部に係合する上記ローラを収容し、回転軸の回転にともなってローラが周面に接触しながら偏心移動するシリンダ室を備えたシリンダとを具備する回転式圧縮機において、
上記回転軸における上記主軸部の軸径をφD1、上記副軸部の軸径をφD2、上記偏心部の軸径をφD3、上記偏心部の偏心量をEとしたとき、
φD3 < φD1 + 2×E ……(1)
φD3 < φD2 + 2×E ……(2)
の(1)、(2)式を満足するように設定するとともに、
上記回転軸の主軸部と副軸部、もしくは上記ローラの少なくともいずれか1つに、上記ローラを上記主軸部もしくは副軸部を介して上記偏心部に組み付ける際の逃げ手段を備えたことを特徴とする回転式圧縮機。
A rotary shaft having a main shaft portion pivotally supported by the main bearing, a subshaft portion pivotally supported by the sub-bearing, and an eccentric portion which is eccentrically provided between the main shaft portion and the sub-shaft portion and engages with the roller. When,
A rotary compressor that includes the cylinder that houses the roller that engages with the eccentric portion of the rotating shaft and includes a cylinder chamber in which the roller moves eccentrically while contacting the peripheral surface as the rotating shaft rotates. ,
When the shaft diameter of the main shaft portion of the rotating shaft is φD1, the shaft diameter of the auxiliary shaft portion is φD2, the shaft diameter of the eccentric portion is φD3, and the amount of eccentricity of the eccentric portion is E,
φD3 <φD1 + 2 × E (1)
φD3 <φD2 + 2 × E (2)
In order to satisfy the expressions (1) and (2),
At least one of the main shaft portion and the sub shaft portion of the rotating shaft or the roller is provided with a relief means when the roller is assembled to the eccentric portion via the main shaft portion or the sub shaft portion. And rotary compressor.
上記逃げ手段は、上記回転軸における主軸部と副軸部のいずれか一方で、上記偏心部の偏心方向とは反対側である反偏心側に、上記偏心部周面と同一、もしくは偏心部周面よりも内側に位置するよう設けられることを特徴とする請求項1記載の回転式圧縮機。   The escape means is either the main shaft portion or the sub-shaft portion of the rotating shaft, and on the opposite side opposite to the eccentric direction of the eccentric portion, is the same as the eccentric portion peripheral surface or the eccentric portion circumference. The rotary compressor according to claim 1, wherein the rotary compressor is provided so as to be located inside the surface. 上記逃げ手段は、上記ローラの内径部で、上記主軸部および副軸部のいずれか一方の軸部の周面と同一、もしくは軸部の周面よりも外側に位置するよう設けられることを特徴とする請求項1記載の回転式圧縮機。   The escape means is provided at the inner diameter portion of the roller so as to be located on the same or the outer peripheral surface of the shaft portion of either the main shaft portion or the sub shaft portion. The rotary compressor according to claim 1. 上記請求項1もしくは請求項3に記載の回転式圧縮機と、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成することを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the rotary compressor according to claim 1, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle.
JP2007015169A 2007-01-25 2007-01-25 Rotary compressor and refrigeration cycle equipment Pending JP2008180178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015169A JP2008180178A (en) 2007-01-25 2007-01-25 Rotary compressor and refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015169A JP2008180178A (en) 2007-01-25 2007-01-25 Rotary compressor and refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
JP2008180178A true JP2008180178A (en) 2008-08-07

Family

ID=39724258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015169A Pending JP2008180178A (en) 2007-01-25 2007-01-25 Rotary compressor and refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP2008180178A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001966A1 (en) 2010-07-02 2012-01-05 パナソニック株式会社 Rotary compressor
CN102889209A (en) * 2012-09-27 2013-01-23 广东美芝精密制造有限公司 Compression pump body, rotary compressor and refrigerating circulating device
CN103742411A (en) * 2013-12-23 2014-04-23 广东美芝制冷设备有限公司 Compressor, air conditioner and water heater
CN104454535A (en) * 2014-12-08 2015-03-25 广东美芝制冷设备有限公司 Rotary type compressor and refrigeration system
CN104747444A (en) * 2015-04-01 2015-07-01 广东美芝制冷设备有限公司 Rotary compressor and refrigeration cycle device
CN105134603A (en) * 2015-08-05 2015-12-09 广东美芝制冷设备有限公司 Compressor
CN106321617A (en) * 2016-10-26 2017-01-11 上海日立电器有限公司 Crankshaft and rotary compressor
JP2017020359A (en) * 2015-07-07 2017-01-26 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus
EP3770378A1 (en) * 2019-07-24 2021-01-27 LG Electronics Inc. Rotary compressor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074600B2 (en) 2010-07-02 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Rotary compressor
WO2012001966A1 (en) 2010-07-02 2012-01-05 パナソニック株式会社 Rotary compressor
CN102889209A (en) * 2012-09-27 2013-01-23 广东美芝精密制造有限公司 Compression pump body, rotary compressor and refrigerating circulating device
CN102889209B (en) * 2012-09-27 2015-05-20 广东美芝精密制造有限公司 Compression pump body, rotary compressor and refrigerating circulating device
CN103742411A (en) * 2013-12-23 2014-04-23 广东美芝制冷设备有限公司 Compressor, air conditioner and water heater
CN104454535A (en) * 2014-12-08 2015-03-25 广东美芝制冷设备有限公司 Rotary type compressor and refrigeration system
CN104454535B (en) * 2014-12-08 2016-07-06 广东美芝制冷设备有限公司 Rotary compressor and refrigeration system
CN104747444A (en) * 2015-04-01 2015-07-01 广东美芝制冷设备有限公司 Rotary compressor and refrigeration cycle device
JP2017020359A (en) * 2015-07-07 2017-01-26 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus
CN105134603A (en) * 2015-08-05 2015-12-09 广东美芝制冷设备有限公司 Compressor
CN106321617A (en) * 2016-10-26 2017-01-11 上海日立电器有限公司 Crankshaft and rotary compressor
CN106321617B (en) * 2016-10-26 2023-10-31 上海海立电器有限公司 Crankshaft and rotary compressor
EP3770378A1 (en) * 2019-07-24 2021-01-27 LG Electronics Inc. Rotary compressor
US11313367B2 (en) 2019-07-24 2022-04-26 Lg Electronics Inc. Rotary compressor with roller oil groove

Similar Documents

Publication Publication Date Title
JP5117503B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP4875484B2 (en) Multistage compressor
JP2008180178A (en) Rotary compressor and refrigeration cycle equipment
KR100866439B1 (en) Rotary-type compression apparatus and refrigeration cycle apparatus using it
WO2013065706A1 (en) Sealed rotary compressor and refrigeration cycle device
JP2008240667A (en) Rotary compressor
JP2009062931A (en) Rotary compressor and refrigeration cycle apparatus
JP2012215158A (en) Compressor, refrigeration cycle apparatus having the compressor thereon
JP2008157146A (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus.
JP2006177227A (en) Rotary type two-stage compressor
JP3230741B2 (en) Compressor
JP4617964B2 (en) Fluid machinery
JP2008151075A (en) Hermetic compressor and refrigeration cycle apparatus
JP3941809B2 (en) Compressor muffler mounting structure
JP5355361B2 (en) Hermetic rotary compressor
JP4595942B2 (en) Compressor
JP2006161818A (en) Scroll compressor
JP2010265830A (en) Hermetic compressor and refrigeration cycle equipment
JP5423538B2 (en) Rotary compressor
JP2005054652A (en) Hermetic compressor
JP2017082841A (en) Bearing structure and scroll compressor
JP2005344683A (en) Hermetic compressor
JP3940808B2 (en) Compressor
JP2017008819A (en) Rotary compressor
JP5011963B2 (en) Rotary fluid machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528