[go: up one dir, main page]

JP2005054652A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2005054652A
JP2005054652A JP2003285647A JP2003285647A JP2005054652A JP 2005054652 A JP2005054652 A JP 2005054652A JP 2003285647 A JP2003285647 A JP 2003285647A JP 2003285647 A JP2003285647 A JP 2003285647A JP 2005054652 A JP2005054652 A JP 2005054652A
Authority
JP
Japan
Prior art keywords
pipe
gas
insertion hole
hermetic compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003285647A
Other languages
Japanese (ja)
Inventor
Hidenobu Shintaku
秀信 新宅
Yasushi Aeba
靖 饗場
Tetsushi Yonekawa
哲史 米川
Toshihiro Nishioka
敏浩 西岡
Kenji Shimada
賢志 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003285647A priority Critical patent/JP2005054652A/en
Priority to CNB2004100465819A priority patent/CN100344878C/en
Publication of JP2005054652A publication Critical patent/JP2005054652A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】 作動圧力が高いCO2等の冷媒を用いた場合や、密閉容器とガス管との接合部の強度を高め、接合部でガス漏れや破損を防止し、信頼性向上を実現する。
【解決手段】 密閉容器の隔壁に設けられた管挿入孔にろう付けにより勘合され接合され、密閉容器内に作動ガスを流入または流出させるガス管とを有し、ガス管は円管であって、部分的に円管部より外径が大きい異形部が設けられ、異径部が管挿入孔との接合部または接合部より内側に配置したことで、異径部がストッパーの作用をし、ガス管を密閉容器の隔壁に強固に接合することができる。
【選択図】 図2
PROBLEM TO BE SOLVED: To improve the reliability by using a refrigerant such as CO2 having a high operating pressure, or increasing the strength of a joint part between a sealed container and a gas pipe, preventing gas leakage or breakage at the joint part.
SOLUTION: A gas pipe is fitted into a pipe insertion hole provided in a partition wall of a hermetic container by brazing and joined, and a working gas flows into or out of the hermetic container, and the gas pipe is a circular pipe. In addition, a deformed part having a larger outer diameter than the circular pipe part is provided, and the different diameter part is disposed inside the joint part with the pipe insertion hole or the joint part, so that the different diameter part acts as a stopper, The gas pipe can be firmly joined to the partition wall of the sealed container.
[Selection] Figure 2

Description

本発明は、冷凍機器及び空調機器等に用いられる密閉型圧縮機に関し、特に、高圧の冷媒ガスである炭酸ガス等を、高圧に圧縮する密閉型圧縮機に好適な容器構造に係るものである。   The present invention relates to a hermetic compressor used for refrigeration equipment, air conditioning equipment, and the like, and particularly relates to a container structure suitable for a hermetic compressor that compresses carbon dioxide gas, which is a high-pressure refrigerant gas, to a high pressure. .

冷凍空調用の密閉型電動圧縮機としては、圧縮機構の方式がレシプロ式、ローリングピストン式およびスクロール式のものがあり、いずれの方法も家庭用、業務用の冷凍空調分野で使用されている。いずれの方式の圧縮機も、密閉容器内に、圧縮機構部と、その駆動用のシャフト、及び電動機等を収容して構成されている(例えば、特許文献1参照)。   As hermetic electric compressors for refrigerating and air-conditioning, there are reciprocating, rolling piston, and scroll types of compression mechanisms, and both methods are used in the field of refrigerating and air-conditioning for home use and business use. Both types of compressors are configured by accommodating a compression mechanism, a driving shaft, an electric motor, and the like in an airtight container (see, for example, Patent Document 1).

ここでは、HCFC系冷媒R22、またはHFC系R410A冷媒などであって作動圧力5MPa以下で使用している場合のスクロール圧縮機を例にとり、従来の技術を説明する。   Here, the conventional technology will be described by taking as an example a scroll compressor that is an HCFC refrigerant R22, an HFC R410A refrigerant, or the like and is used at an operating pressure of 5 MPa or less.

図6に従来のスクロール圧縮機の縦断面図を示す。   FIG. 6 shows a longitudinal sectional view of a conventional scroll compressor.

密閉容器1は、円筒状の胴シェル21と、その上端側と下端側に円周溶接された深皿状の上部鏡板22と底部鏡板23により構成されている。また、胴シェル21に設けられた管挿入孔21aに吸入外管24が、上部鏡板22に設けられた管挿入孔22aは吐出管16が、各々挿入されろう付で結合されている。吸入管11は、吸入外管24に挿入され円周ろう付けされ固定されている。また、導入端子25は上部鏡板22に抵抗溶接などで接合されている。   The sealed container 1 includes a cylindrical shell shell 21, a deep dish-shaped upper end plate 22 and a bottom end plate 23 which are circumferentially welded to the upper end side and the lower end side thereof. Further, a suction outer tube 24 is connected to a tube insertion hole 21a provided in the body shell 21, and a discharge tube 16 is connected to the tube insertion hole 22a provided in the upper end plate 22 by brazing. The suction pipe 11 is inserted into the suction outer pipe 24 and is brazed and fixed circumferentially. The introduction terminal 25 is joined to the upper end plate 22 by resistance welding or the like.

密閉容器1の内部には、固定スクロール2aと可動スクロール3とから構成された圧縮機構部2、オルダム継手4を介して可動スクロール3を固定スクロール2aに対して旋回運動させるシャフト5と、固定スクロール2aを固定されシャフト5を回転自在に支持する軸受部材6を設けている。   Inside the hermetic container 1 are a compression mechanism portion 2 composed of a fixed scroll 2a and a movable scroll 3, a shaft 5 for rotating the movable scroll 3 with respect to the fixed scroll 2a via an Oldham coupling 4, and a fixed scroll. A bearing member 6 is provided that fixes the shaft 2a and rotatably supports the shaft 5.

シャフト5には電動機7の回転子7aが取り付けられており、胴シェル21に焼き嵌め固定された固定子7bとともに軸受部材6の下部に配設されている。   A rotor 7 a of an electric motor 7 is attached to the shaft 5, and is disposed below the bearing member 6 together with a stator 7 b that is shrink-fitted and fixed to the body shell 21.

密閉容器1の下方底部には潤滑油9を貯溜する油溜め10が設けられており、シャフト5の貫通穴13の下端より油溜め10の潤滑油9をシャフト5の回転に伴いオイルポンプ17で吸い上げ、ジャーナル軸受6a、偏芯軸受3a、および各摺動面へ供給する。   An oil sump 10 for storing the lubricating oil 9 is provided at the lower bottom of the sealed container 1, and the oil 9 in the oil sump 10 is removed from the lower end of the through hole 13 of the shaft 5 by the oil pump 17 as the shaft 5 rotates. Sucking up and supplying to the journal bearing 6a, the eccentric bearing 3a, and each sliding surface.

次に、以上のような構成を有する従来のスクロール圧縮機における、冷媒ガスの圧縮サイクルを説明する。空調機の熱交換器(図示せず)などを循環してきた低圧の冷媒ガスは吸入管11より圧縮機構部2に吸入される。   Next, the refrigerant gas compression cycle in the conventional scroll compressor having the above-described configuration will be described. The low-pressure refrigerant gas that has circulated through the heat exchanger (not shown) of the air conditioner is sucked into the compression mechanism 2 through the suction pipe 11.

吸入された冷媒ガスは、固定スクロール2aと可動スクロール3との間に形成された三日月状の圧縮空間(図示せず)に入り、可動スクロール3の旋回運動により三日月状の圧縮空間が外側から中央に向かって次第に縮小することで、冷媒ガスは圧縮され高圧ガスとなり吐出孔12より吐出される。   The sucked refrigerant gas enters a crescent-shaped compression space (not shown) formed between the fixed scroll 2 a and the movable scroll 3, and the crescent-shaped compression space is centered from the outside by the turning motion of the movable scroll 3. The refrigerant gas is compressed to become a high-pressure gas and is discharged from the discharge hole 12 by being gradually reduced toward.

吐出孔12より吐出された高圧ガスは、一旦密閉容器1内の固定スクロール2aの上方の吐出空間1aへ吐出され、ガス通路14を通じ、電動機7が収容された下部空間1bに
流れ、先のガス通路14とは別に設けられたガス通路15を通じ、上方の空間1cに流れ、吐出管16より、外部の図示しない熱交換器などの空調システムへ吐出される。そして、高圧ガスは該空調システムにおいて空調機の熱交換器などを循環し低圧ガスとなり、再び吸入管11より圧縮機に戻る周知の圧縮サイクルを構成する。
The high-pressure gas discharged from the discharge hole 12 is once discharged into the discharge space 1a above the fixed scroll 2a in the hermetic container 1 and flows through the gas passage 14 to the lower space 1b in which the electric motor 7 is accommodated. The gas flows through an upper space 1c through a gas passage 15 provided separately from the passage 14, and is discharged from the discharge pipe 16 to an external air conditioning system such as a heat exchanger (not shown). The high-pressure gas circulates in a heat exchanger or the like of the air conditioner in the air-conditioning system to become a low-pressure gas and constitutes a known compression cycle that returns to the compressor from the suction pipe 11 again.

しかしながら、地球環境への問題へ対応から、従来用いられていたR12等のCFC系やR22などのHCFC系冷媒より地球温暖化抑制に適した、高効率で地球温暖化係数の小さいHFC系冷媒(例えば、R410A,またはR32等を、主成分としたHFC系冷媒等)、あるいは地球温暖化係数がさらに小さい自然冷媒である、たとえは二酸化炭素(以後CO2と記す)等を冷媒に用いた機器の利用が進められている。これらの冷媒に対応するために、従来の構造の圧縮機では次のような課題が生じていた。
特開2002−161856号公報
However, in order to cope with global environmental problems, HFC refrigerants that are more efficient and have a lower global warming potential than conventional CFCs such as R12 and HCFC refrigerants such as R22, which are more suitable for suppressing global warming ( For example, an HFC refrigerant having R410A or R32 or the like as a main component, or a natural refrigerant having a smaller global warming potential, for example, carbon dioxide (hereinafter referred to as CO2) or the like. Use is in progress. In order to cope with these refrigerants, a compressor having a conventional structure has the following problems.
JP 2002-161856 A

これらの冷媒の多くは、冷媒の特性上、機器のシステム効率を高めるために、従来冷媒R22等より作動圧力が高く、そのため圧縮機構部や密閉容器には、その板厚を厚くする等の強化をする必要があった。   Many of these refrigerants have higher operating pressure than the conventional refrigerant R22 and the like in order to increase the system efficiency of the equipment due to the characteristics of the refrigerant. Therefore, the compression mechanism section and the sealed container are strengthened by increasing their plate thickness. It was necessary to do.

例えば、図6に示す上記圧縮機の構成のように、密閉容器1の内壁(電動機7が収容された空間)に吐出圧力が作用する場合は、密閉容器1の板厚は(R22等の吐出圧力の使用範囲が約5MPa未満の冷媒ガス、胴シェル21の内径が約110mmの場合)、約3mm程度で構成されていたが、CO2冷媒では、吐出圧力の使用範囲が約15Mpaとなり、R22冷媒に対応した密閉容器1の材料と同等強度の材料を用いた場合、胴シェルの板厚は2倍以上の約8mmが必要となる。   For example, when the discharge pressure acts on the inner wall of the sealed container 1 (the space in which the electric motor 7 is accommodated) as in the configuration of the compressor shown in FIG. The pressure use range is less than about 5 MPa, and the shell shell 21 has an inner diameter of about 110 mm). However, in the case of CO2 refrigerant, the discharge pressure use range is about 15 Mpa, and the R22 refrigerant When the material having the same strength as the material of the closed container 1 corresponding to the above is used, the plate thickness of the shell is required to be about 8 mm, which is twice or more.

また、密閉容器1の板厚だけでなく、その密閉容器1への吸入管24、吐出管16の接合にも、より強固な接合が要求される。その接合について、従来の構成で、CO2ガスに対応すべく密閉容器1の板厚を厚くした場合を、図7を用いて説明する。   Further, not only the thickness of the sealed container 1 but also the joining of the suction pipe 24 and the discharge pipe 16 to the sealed container 1 is required to be stronger. The case where the plate | board thickness of the airtight container 1 is made thick with the conventional structure so that it may respond to CO2 gas is demonstrated using FIG.

図7は、板厚t1の上部鏡板22に吐出管16が接合される部分の断面図である。その接合は、図7のように、吐出管16は管径(図中d0)が略均一な円管で、上部鏡板22の所定の位置にあけられた管挿入孔22aに挿入され、両者をろう付け接合する。   FIG. 7 is a cross-sectional view of a portion where the discharge pipe 16 is joined to the upper end plate 22 having a plate thickness t1. As shown in FIG. 7, the discharge pipe 16 is a circular pipe having a substantially uniform pipe diameter (d0 in the figure) and is inserted into a pipe insertion hole 22a formed at a predetermined position of the upper end plate 22, Join with brazing.

ここでの管挿入孔22aの直径d1は、上部鏡板22の外面側から内面側に渡って略均一であり、また吐出管16の直径d0よりわずかに大きくなるようにドリル等であけられている。   The diameter d1 of the tube insertion hole 22a here is substantially uniform from the outer surface side to the inner surface side of the upper end plate 22, and is drilled so as to be slightly larger than the diameter d0 of the discharge tube 16. .

また、ろう付けでは、ろう材が吸入外管24の直径d0と管挿入孔21aの直径d1の隙間に侵入固化し両者が接合されるが、その接合は、両者の隙間で固化したろう材と、隙間よりはみ出し固化したろう材により形成された接合部31で行われる。   In brazing, the brazing material enters and solidifies into the gap between the diameter d0 of the suction outer pipe 24 and the diameter d1 of the pipe insertion hole 21a, and the both are joined. This is performed at the joint 31 formed of the brazing material that has been solidified by protruding from the gap.

しかしながら、図7に示す構成でのろう付け接合では、CO2冷媒の高い作動圧力に耐えられるだけの十分な接合強度が得られなかった。   However, in the brazing joining in the configuration shown in FIG. 7, a joining strength sufficient to withstand the high operating pressure of the CO 2 refrigerant cannot be obtained.

そこで強い接合強度を得る為に、溶接で固定する方法もあるが、吐出管16を上部鏡板22に円周溶接する際、ろう付けによる場合より多大の熱が局部的に加わる為、溶接部近辺が局部的に高温となりその後冷やされた時、その熱により上部鏡板22が変形し、導入端子25の接合に支障をきたす等の課題が生じていた。   Therefore, in order to obtain a strong joint strength, there is a method of fixing by welding. However, when the discharge pipe 16 is circumferentially welded to the upper end plate 22, a greater amount of heat is locally applied than in the case of brazing. When the temperature is locally raised and cooled, the upper end plate 22 is deformed by the heat, causing problems such as hindering the joining of the introduction terminal 25.

本発明は、上記のような従来の課題を解決するものであり、CO2等の作動圧力が高い冷媒ガス(流体含む)を用いた場合でも、上部鏡板22などに吸入管や吐出管を、容易に強固に接合する事ができるため、生産性および信頼性の高い密閉型圧縮機を提供することを目的とする。   The present invention solves the above-described conventional problems, and even when a refrigerant gas (including fluid) having a high operating pressure such as CO 2 is used, an intake pipe and a discharge pipe can be easily attached to the upper end plate 22 and the like. It is an object of the present invention to provide a hermetic compressor with high productivity and reliability.

上記の目的を達成するために本発明は、密閉容器と、前記密閉容器内に設けられた、作動ガスを吸入し圧縮する圧縮機構部と、前記圧縮機構部を駆動する駆動軸と、及び前記駆動軸を回転駆動する電動機と、密閉容器の隔壁に設けられた管挿入孔にろう付けにより勘合され接合され、密閉容器内に作動ガスを流入または流出させるガス管とを有し、ガス管は円管であって、部分的に円管部より外径が大きい異形部が設けられ、異径部が管挿入孔との接合部または接合部より内側に配置したものである。   In order to achieve the above object, the present invention provides a hermetic container, a compression mechanism that is provided in the hermetic container and sucks and compresses the working gas, a drive shaft that drives the compression mechanism, and the An electric motor that rotates the drive shaft, and a gas pipe that is fitted and joined by brazing into a pipe insertion hole provided in a partition wall of the sealed container, and allows the working gas to flow into or out of the sealed container. It is a circular pipe, and a deformed part having an outer diameter partially larger than that of the circular pipe part is provided, and the different diameter part is arranged on the inner side of the joint part or the joint part with the pipe insertion hole.

本発明によれば、CO2などの作動圧力が高い冷媒を用いる場合でも、密閉容器にガス管を強固に接合できるため、信頼性の高い密閉型圧縮機が実現できる。   According to the present invention, even when a refrigerant having a high operating pressure such as CO 2 is used, the gas pipe can be firmly joined to the sealed container, so that a highly reliable hermetic compressor can be realized.

以下に、本発明の実施の形態について図面を参照しながら説明する。尚、本発明の一実施の形態で用いたスクロール圧縮機の構成において、図6で説明した従来の技術の例と同一機能部品については同一番号を使用し、同一の構成および作用の説明は省く。   Embodiments of the present invention will be described below with reference to the drawings. In the configuration of the scroll compressor used in one embodiment of the present invention, the same reference numerals are used for the same functional parts as those in the prior art example described in FIG. 6, and the description of the same configuration and operation is omitted. .

また、本発明の実施の形態におけるスクロール圧縮機は、二酸化炭素を冷媒(以後CO2と記載)に用いた場合を例に説明するが、これに限るものではなく、従来用いられている冷媒でも作動圧力が5MPaを超えて使用する場合や、HFC系冷媒R410A、R32、またはハイドロカーボン(HC))等や、それより低い従来のHCFC22などの冷媒を用いた場合にも同様に適用可能であり、同様の効果を得ることができる。   Further, the scroll compressor according to the embodiment of the present invention will be described by taking an example in which carbon dioxide is used as a refrigerant (hereinafter referred to as CO2). It is also applicable to the case where the pressure exceeds 5 MPa, the case where HFC refrigerant R410A, R32, or hydrocarbon (HC)) or the like, or a lower refrigerant such as conventional HCFC22 is used, Similar effects can be obtained.

(実施の形態1)
本発明の実施の形態1について、図1及び図2を用いて説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to FIGS.

図1は、本発明の実施の形態1におけるスクロール圧縮機の縦断面図態を示したものである。図2は、本発明の実施の形態1における説明に用いる主要部の断面図である。   1 is a longitudinal sectional view of a scroll compressor according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the main part used for the description in the first embodiment of the present invention.

図1において、密閉容器1は、図6の従来構成と同じように円筒状の胴シェル21と、その上端側と下端側に円周溶接された上部鏡板22と底部鏡板23により構成されている。胴シェル21に冷媒ガスの吸入管11が、上部鏡板22には吐出管16が接合されている。作動ガスにCO2を用いるため、密閉容器1の板厚は、従来より厚くなっており、また上部鏡板22、底部鏡板23の形状は、強度的に有利なように従来より深いドーム型となっている。   In FIG. 1, the sealed container 1 includes a cylindrical shell 21, and an upper end plate 22 and a bottom end plate 23 that are circumferentially welded to the upper end side and the lower end side thereof, as in the conventional configuration of FIG. 6. . A refrigerant gas suction pipe 11 is joined to the body shell 21, and a discharge pipe 16 is joined to the upper end plate 22. Since CO2 is used as the working gas, the plate thickness of the sealed container 1 is thicker than before, and the shapes of the upper end plate 22 and the bottom end plate 23 are deeper than the conventional one so as to be advantageous in terms of strength. Yes.

冷媒の特性にあわせ圧縮部の吸込容積等の変更はあるが、圧縮機構2は従来例と同じ動作をし、冷媒ガスは、吸入管11から吸入され、吐出管16から吐出されるまでの間、密閉容器1内では従来と同じ流れ動作をする。   Although there is a change in the suction volume of the compression unit in accordance with the characteristics of the refrigerant, the compression mechanism 2 operates in the same manner as the conventional example, and the refrigerant gas is sucked from the suction pipe 11 and discharged from the discharge pipe 16. In the airtight container 1, the same flow operation as in the prior art is performed.

図1の構成と従来構成との違いは、吐出管16を上部鏡板22に接合する部分の構成にある。その接合部分について図2を用いて説明する。   The difference between the configuration of FIG. 1 and the conventional configuration is the configuration of the portion where the discharge pipe 16 is joined to the upper end plate 22. The joint portion will be described with reference to FIG.

図2は、吐出管16が管挿入孔22aに挿入され上部鏡板22にろう付けで接合された
様子を示した断面図である。
FIG. 2 is a cross-sectional view showing a state where the discharge pipe 16 is inserted into the pipe insertion hole 22a and joined to the upper end plate 22 by brazing.

図2に示すように、吐出管16は、直径d0の部分と、直径d0からd2となるすり鉢状の異径部16aを有する構成となっている。管挿入孔22aの直径d1は、吐出管16の直径d0部分よりわずかに大きく、異径部16aより小さい構成されている。   As shown in FIG. 2, the discharge pipe 16 has a configuration having a diameter d0 portion and a mortar-shaped different-diameter portion 16a having diameters d0 to d2. The diameter d1 of the tube insertion hole 22a is slightly larger than the diameter d0 portion of the discharge tube 16, and is smaller than the different diameter portion 16a.

この断面を有する吐出管16は、管挿入孔22aに内側より挿入され、異径部16aが管挿入孔22a内端部に当てた状態でろう付け接合される。   The discharge tube 16 having this cross section is inserted into the tube insertion hole 22a from the inside, and is brazed and joined in a state where the different diameter portion 16a is in contact with the inner end of the tube insertion hole 22a.

胴シェル21の内部に高圧がかかると、吐出管16には上部鏡板22から引き剥がされる方向の力が(図の上方に)作用するが、異径部16aがストッパーの作用をするため、従来の接合部31aだけの場合より接合力が著しく向上する。   When a high pressure is applied to the inside of the shell shell 21, a force in the direction of peeling from the upper end plate 22 acts on the discharge pipe 16 (upward in the figure). However, the different diameter portion 16a acts as a stopper. The joining force is remarkably improved as compared with the case of only the joining portion 31a.

したがって、本構成を用いる事で、従来では、十分な接合強度を得られなかったろう付けによる吐出管16と上部鏡板22の接合部において、十分な接合強度を得ることが容易に可能となる。   Therefore, by using this configuration, it is possible to easily obtain a sufficient joint strength at the joint portion between the discharge pipe 16 and the upper end plate 22 by brazing, which has conventionally not been able to obtain a sufficient joint strength.

また、図3に示すように吐出管16の異径部16aが管挿入孔22aに収容され接合される構成を用いてもよい。即ち、図3では管挿入孔22aの断面が、吐出管16の異径部16aに沿った形に構成されている。このような構成を用いても、従来では、十分な接合強度を得られなかったろう付けによる接合部において、十分な接合強度を得ることが容易に可能となる。   Moreover, as shown in FIG. 3, you may use the structure by which the different diameter part 16a of the discharge pipe 16 is accommodated in the pipe insertion hole 22a, and is joined. That is, in FIG. 3, the cross section of the tube insertion hole 22 a is configured along the different diameter portion 16 a of the discharge tube 16. Even if such a configuration is used, it is possible to easily obtain a sufficient joint strength in a joint portion by brazing, which has not been able to obtain a sufficient joint strength conventionally.

このような管挿入孔22aの断面形状は、ドリルなどで直径d1の孔をあけ、内側面より傾斜をつけた面取りドリルなどでを直径d3となるすり鉢状の断面を形成できるが、外側面よりプレス加工を用いることで形成する事もできる。即ち、本実施例のように板厚5mm以上の鉄板にプレス加工で孔を打ち抜く場合、プレス型の凸型、凹型のかみ合わせの隙間を幾分大きく取ることで、凸型での打ち抜き方向の上方側(図の右方)はほぼ直径d1で抜かれるが、打ち抜き方向下流側(図の左方側)では、応力関係からd1より外側に最大応力が作用するようになり、その結果、途中から直径d1から直径d3のすり鉢状となる断面形状を形成する事ができる。このプレス方法によれば、上記断面形状を有する管挿入孔22aが容易に形成できるため、生産性向上が実現できる。   The cross-sectional shape of the tube insertion hole 22a is such that a mortar-shaped cross section having a diameter d3 can be formed with a chamfering drill or the like having a diameter d1 formed by a drill or the like and inclined from the inner surface. It can also be formed by using press working. That is, when punching a hole in a steel plate having a thickness of 5 mm or more by press working as in this embodiment, the clearance between the press mold convex and concave molds is made somewhat larger so The side (right side of the figure) is pulled out with a diameter d1, but on the downstream side in the punching direction (left side of the figure), the maximum stress is applied outside d1 due to the stress relationship. A cross-sectional shape having a mortar shape having a diameter d1 to a diameter d3 can be formed. According to this pressing method, the tube insertion hole 22a having the above-mentioned cross-sectional shape can be easily formed, so that productivity can be improved.

尚、上記実施の形態1では、吐出管16と上部鏡板22部の接合部を説明したが、それに限らず、上記構成を、吸入外管24と胴シェル21の接合などにも適用することで、同様の効果が実現できる。   In the first embodiment, the joint between the discharge pipe 16 and the upper end plate 22 has been described. However, the present invention is not limited to this, and the above configuration is also applied to the joint between the suction outer pipe 24 and the trunk shell 21. A similar effect can be realized.

このように、上記実施の形態1の構成によれば、ろう付けによる簡単な構成で確実に、作動ガスである冷媒を流入または流出させる、吸入外管24または吐出管16を、胴シェル21または上部鏡板22に強固に接合することができるため、CO2などの作動圧力の高い冷媒を用い運転した場合でも接合部の破壊やガス漏れなどを防止することが可能となり、安価に、スクロールなどの密閉型圧縮機の信頼性を向上することができる。   As described above, according to the configuration of the first embodiment, the suction outer pipe 24 or the discharge pipe 16 that allows the refrigerant that is the working gas to flow in or out with a simple configuration by brazing is securely connected to the trunk shell 21 or Since it can be firmly joined to the upper end plate 22, it is possible to prevent breakage of the joint and gas leakage even when operating with a refrigerant having a high operating pressure such as CO 2. The reliability of the mold compressor can be improved.

尚、上記実施の形態1では、異径部をすり鉢状に設けたが、その断面形状は、上記で説明したようにストッパーとして作用が得られる形状であれば、上記実施例と同様の動作を実現でき接合強度を向上できるため、同様の効果が得られることは言うまでもない。また、図3の管挿入孔22aの断面部をすり鉢状としたが、この形状もこれに限らず、吐出管16の異径部形状16aに近い形状であれば、同様の効果を実現できる。   In the first embodiment, the different diameter portion is provided in the shape of a mortar. However, if the cross-sectional shape is a shape that can function as a stopper as described above, the same operation as in the above example is performed. Needless to say, the same effect can be obtained because it can be realized and the bonding strength can be improved. Moreover, although the cross-sectional part of the tube insertion hole 22a in FIG. 3 is a mortar shape, this shape is not limited to this, and the same effect can be realized if the shape is close to the different diameter portion shape 16a of the discharge pipe 16.

(実施の形態例2)
次に、本発明の実施の形態2について、図4を用いて説明する。図4は、本発明の実施の形態2における主要部の縦断面図を示したものである。構成要素は図2と同様である。
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described with reference to FIG. FIG. 4 shows a longitudinal sectional view of a main part in the second embodiment of the present invention. The components are the same as in FIG.

実施の形態1との違いは、吐出管16の設置角度である。図4では、吐出管16を胴シェル21の円筒中心と同方向に設置した構成を示したが、この場合、上部鏡板22の曲面に管挿入孔22aが設けられると、管挿入孔22aは幾何学的に長孔となり円形とならない。このような管挿入孔22aをプレスやドリル等で形成する場合、プレス型の片当たり、ドリルでは工具の逃げなどが生じ、製作上の問題や、プレス型などの工具の寿命が短くなる。   The difference from the first embodiment is the installation angle of the discharge pipe 16. FIG. 4 shows a configuration in which the discharge pipe 16 is installed in the same direction as the center of the cylinder of the shell shell 21. In this case, if the pipe insertion hole 22a is provided on the curved surface of the upper end plate 22, the pipe insertion hole 22a is geometric. It becomes a long hole and does not become circular. When such a tube insertion hole 22a is formed by a press, a drill, or the like, the tool of the press die is struck by a piece of the press die, and manufacturing problems and the life of the tool such as the press die are shortened.

これらの課題に対応する為、本実施の形態2では、図4に示すように吐出管16を角度α傾けて、管挿入孔22aが設けられる上部鏡板22の接線Aに対し、吐出管16の軸Bを略垂直(α≒90°)となる構成としている。吐出管16は、図2と同様の断面形状で、直径d0の部分と直径がd0からd2となるすり鉢状の部分を有しており、ろう付け接合されると、図2と同様に異径部16aがストッパーとして作用するため、吐出管16の接合強度が十分に確保される。   In order to cope with these problems, in the second embodiment, the discharge pipe 16 is inclined at an angle α as shown in FIG. The axis B is configured to be substantially vertical (α≈90 °). The discharge pipe 16 has a cross-sectional shape similar to that in FIG. 2 and has a portion having a diameter d0 and a mortar-shaped portion having a diameter from d0 to d2. When brazed and joined, the discharge pipe 16 has a different diameter as in FIG. Since the part 16a acts as a stopper, the joining strength of the discharge pipe 16 is sufficiently ensured.

尚、上記構成によれば、管挿入孔22aをプレス加工で形成する際に、プレス型がプレスされる上部鏡板22に対し垂直に当たり、プレス型へのダメージが少なくなるため、プレス型の寿命を長くできる。   According to the above configuration, when the tube insertion hole 22a is formed by pressing, the press die hits perpendicularly to the upper end plate 22 to be pressed, and damage to the press die is reduced. Can be long.

尚、この構成のように、吐出管16が導入端子25の反対側に傾く事で、導入端子25または端子カバー26との距離(図中のt5)が大きく取れるため、作業性が向上すると言う効果を有する。したがって、生産性の向上が可能となる。   In addition, since the discharge pipe 16 is inclined to the opposite side of the introduction terminal 25 as in this configuration, the distance from the introduction terminal 25 or the terminal cover 26 (t5 in the figure) can be increased, so that workability is improved. Has an effect. Therefore, productivity can be improved.

また、図5に示すように吐出管16の異径部16aが管挿入孔22aに収容され接合される構成を用いてもよい。即ち、図5では管挿入孔22aの断面が、吐出管16の異径部16aに沿った形に構成され、異径部16aがろう付けされると同時にストッパーの作用をするため、従来では、十分な接合強度を得られなかったろう付けによる接合部において、十分な接合強度を得ることが容易に可能となる。   Moreover, as shown in FIG. 5, you may use the structure by which the different diameter part 16a of the discharge pipe 16 is accommodated in the pipe insertion hole 22a, and is joined. That is, in FIG. 5, the cross section of the tube insertion hole 22a is configured along the different diameter portion 16a of the discharge tube 16, and since the different diameter portion 16a is brazed and acts as a stopper, conventionally, It is possible to easily obtain a sufficient joint strength at a joint portion by brazing in which a sufficient joint strength cannot be obtained.

尚、上記実施の形態1、及び2では、電動機7は吐出ガスの圧力がかかる空間に収容される構成を例に説明したが、接合強度が向上しているため、当然それより低い圧力が密閉容器1の内にかかる構成でも問題なく使用できる。即ち、密閉容器1の内壁よりかかる圧力が、吸入ガスの圧力以上の圧力となる構成であっても、上記形態1,2と同様の効果が得られる。   In the first and second embodiments, the electric motor 7 has been described as an example of a configuration that is accommodated in a space to which the pressure of the discharge gas is applied. However, since the bonding strength is improved, the lower pressure is naturally sealed. Even the configuration in the container 1 can be used without any problem. That is, even if the pressure applied from the inner wall of the hermetic container 1 is higher than the pressure of the suction gas, the same effects as those of the first and second embodiments can be obtained.

尚、上記実施の形態1、及び2では、CO2冷媒を用いた場合を例に説明したが、CO2冷媒に限定するものではなく、作動圧力がCO2冷媒同等以下、またはそれ以上となる冷媒を用いる場合でも、上記同様に効果を得られることはいうまでもない。   In the first and second embodiments, the case where the CO2 refrigerant is used has been described as an example. However, the present invention is not limited to the CO2 refrigerant, and a refrigerant whose operating pressure is equal to or lower than the CO2 refrigerant is used. Even in this case, it goes without saying that the same effect as described above can be obtained.

以上のように、本発明にかかる密閉型圧縮機は、密閉容器にガス管を強固に接合できるため、信頼性の高い密閉型圧縮機が実現できるので、二酸化炭素冷媒等のように密閉容器内が高圧となる密閉型圧縮機の用途に適用できる。   As described above, since the hermetic compressor according to the present invention can firmly join the gas pipe to the hermetic container, a highly reliable hermetic compressor can be realized. It can be applied to the use of a hermetic compressor with a high pressure.

本発明の実施の形態1による密閉型圧縮機の縦断面図1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention. 本発明の実施の形態1による主要部の断面図Sectional drawing of the principal part by Embodiment 1 of this invention 吐出管接合部の別形態例の断面図Cross-sectional view of another example of discharge pipe joint 本発明の実施の形態2による吐出管の接合部の断面図Sectional drawing of the junction part of the discharge pipe by Embodiment 2 of this invention 吐出管接合部の別形態例の断面図Cross-sectional view of another example of discharge pipe joint 従来のスクロール圧縮機の縦断面図Longitudinal sectional view of a conventional scroll compressor 従来の主要部の断面図Cross-sectional view of conventional main part

符号の説明Explanation of symbols

1 密閉容器
2 圧縮機構
6 旋回スクロール
7 固定スクロール
11 吸入管
16 吐出管
21 胴シェル
22 上部鏡板
22a 管挿入孔
23 底部鏡板
24 吸入外管
25 導入端子
31 接合部
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism 6 Orbiting scroll 7 Fixed scroll 11 Suction pipe 16 Discharge pipe 21 Trunk shell 22 Upper end plate 22a Pipe insertion hole 23 Bottom end plate 24 Inhalation outer pipe 25 Introduction terminal 31 Joint part

Claims (5)

密閉容器と、前記密閉容器内に設けられた、作動ガスを吸入し圧縮する圧縮機構部と、前記圧縮機構部を駆動する駆動軸と、前記駆動軸を回転駆動する電動機と、前記密閉容器の隔壁に設けられた管挿入孔にろう付けにより勘合され接合され、前記密閉容器内に作動ガスを流入または流出させるガス管とを有し、前記ガス管は円管であって、部分的に円管部より外径が大きい異形部が設けられ、前記異径部が前記管挿入孔との接合部または接合部より内側に配置されたことを、特徴とする密閉型圧縮機。 An airtight container, a compression mechanism that is provided in the airtight container and sucks and compresses the working gas, a drive shaft that drives the compression mechanism, an electric motor that rotationally drives the drive shaft, A gas pipe that is fitted and joined to a pipe insertion hole provided in the partition wall by brazing, and that allows the working gas to flow into or out of the sealed container. The gas pipe is a circular pipe, and is partially circular A hermetic compressor characterized in that a deformed portion having an outer diameter larger than that of the pipe portion is provided, and the different diameter portion is disposed on the inner side of the joint portion or the joint portion with the tube insertion hole. 電動機が、前記圧縮機構部より吐出される作動ガスの圧力以上となる圧力空間に設けられたことを特徴とする請求項1記載の密閉型圧縮機。 The hermetic compressor according to claim 1, wherein the electric motor is provided in a pressure space that is equal to or higher than a pressure of the working gas discharged from the compression mechanism. ガス管が隔壁の鏡版に設けられ、前記ガス管の軸線が前記鏡板の法線と略並行に設けられたことを特徴とする請求項1または2記載の密閉型圧縮機。 3. The hermetic compressor according to claim 1, wherein a gas pipe is provided on a mirror plate of the partition wall, and an axis of the gas pipe is provided substantially in parallel with a normal line of the end plate. 作動ガスが、二酸化炭素を主成分とすることを特徴とする請求項1から3いずれかに記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 3, wherein the working gas contains carbon dioxide as a main component. 圧縮機構部がスクロール型であることを特徴とする請求項1から4いずれかに記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 4, wherein the compression mechanism section is of a scroll type.
JP2003285647A 2003-07-30 2003-08-04 Hermetic compressor Pending JP2005054652A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003285647A JP2005054652A (en) 2003-08-04 2003-08-04 Hermetic compressor
CNB2004100465819A CN100344878C (en) 2003-07-30 2004-06-11 Sealed electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285647A JP2005054652A (en) 2003-08-04 2003-08-04 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2005054652A true JP2005054652A (en) 2005-03-03

Family

ID=34365216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285647A Pending JP2005054652A (en) 2003-07-30 2003-08-04 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP2005054652A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092590A (en) * 2005-09-28 2007-04-12 Mitsubishi Electric Corp Hermetic refrigerant compressor and method of manufacturing hermetic refrigerant compressor
JP2008002285A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Scroll expander
JP2008255919A (en) * 2007-04-06 2008-10-23 Matsushita Electric Ind Co Ltd Hermetic compressor and manufacturing method thereof
JP2011099449A (en) * 2010-12-22 2011-05-19 Mitsubishi Electric Corp Manufacturing method of hermetically-sealed refrigerant compressor
JPWO2018142505A1 (en) * 2017-02-01 2019-11-07 三菱電機株式会社 Compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092590A (en) * 2005-09-28 2007-04-12 Mitsubishi Electric Corp Hermetic refrigerant compressor and method of manufacturing hermetic refrigerant compressor
JP2008002285A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Scroll expander
JP2008255919A (en) * 2007-04-06 2008-10-23 Matsushita Electric Ind Co Ltd Hermetic compressor and manufacturing method thereof
JP2011099449A (en) * 2010-12-22 2011-05-19 Mitsubishi Electric Corp Manufacturing method of hermetically-sealed refrigerant compressor
JPWO2018142505A1 (en) * 2017-02-01 2019-11-07 三菱電機株式会社 Compressor

Similar Documents

Publication Publication Date Title
JP5117503B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP4875484B2 (en) Multistage compressor
JP5528379B2 (en) Rotary compressor
CN106030113B (en) There are two the rotary compressors of cylinder for tool
JP2008180178A (en) Rotary compressor and refrigeration cycle equipment
JP5542675B2 (en) Rotary compressor
EP2418386B1 (en) Rotary compressor
JP2003214370A (en) Rotary compressor
JP2005054652A (en) Hermetic compressor
JP2006097549A (en) Compressor
JP7191194B2 (en) Rolling piston type compressor and refrigeration cycle equipment
JP2005048682A (en) Hermetic compressor
JP2003254276A (en) Rotary compressor
JP6088916B2 (en) Hermetic electric compressor
JP6743407B2 (en) Scroll compressor and air conditioner including the same
JP6762113B2 (en) Scroll compressor and air conditioner
JPH06264881A (en) Rotary compressor
JP4033756B2 (en) Hermetic electric compressor
JP5003405B2 (en) Manufacturing method of scroll compressor
WO2016016917A1 (en) Scroll compressor
EP1808602B1 (en) Muffler installation structure for compressor
JP2006132332A (en) Fluid machinery
JP4910440B2 (en) Compressor
CN101392744B (en) Closed type compressor and its manufacturing method and refrigerator-freezer
JP2002317767A (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060210

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A977 Report on retrieval

Effective date: 20080319

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708