[go: up one dir, main page]

JP2008156248A - Method for producing hydroxy compound - Google Patents

Method for producing hydroxy compound Download PDF

Info

Publication number
JP2008156248A
JP2008156248A JP2006344194A JP2006344194A JP2008156248A JP 2008156248 A JP2008156248 A JP 2008156248A JP 2006344194 A JP2006344194 A JP 2006344194A JP 2006344194 A JP2006344194 A JP 2006344194A JP 2008156248 A JP2008156248 A JP 2008156248A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
water
compound
hydroxy compound
chlorinated hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344194A
Other languages
Japanese (ja)
Inventor
Tetsuya Suzuta
哲也 鈴田
Toshiaki Ui
利明 宇井
Carlos Knapp
カルロス クナップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006344194A priority Critical patent/JP2008156248A/en
Publication of JP2008156248A publication Critical patent/JP2008156248A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】炭化水素化合物をヒドロキシ化合物に変換するヒドロキシ化合物の製造方法であって、基本的に副生物を発生せず、よって副生物や排水の処理を必要とせず、目的物であるヒドロキシ化合物のみを極めて効率的かつ経済的に製造することができるという優れた特徴を有するヒドロキシ化合物の製造方法を提供する。
【解決手段】塩素化工程、加水分解工程、塩酸分離工程、塩化水素分離工程、水分離工程、酸化工程および塩素分離工程を含む。炭化水素としては、メタン、エタン、プロピレンのような飽和、不飽和炭化水素や、ベンゼン、トルエン、キシレンのような芳香族炭化水素や、それらの化合物の芳香環がニトロ基、アミノ基、アルキル基(メチル基を除く。)等の置換基で置換されていてもよい。更に、上記の単環式芳香族化合物の他に、ナフタレン環、アントラセン環等の多環式芳香族化合物であってもよい。
【選択図】図1
The present invention relates to a method for producing a hydroxy compound, which converts a hydrocarbon compound into a hydroxy compound, which basically does not generate by-products, and therefore does not require treatment of by-products or wastewater, and only the target hydroxy compound. It is possible to provide a method for producing a hydroxy compound having an excellent feature that can be produced very efficiently and economically.
A chlorination step, a hydrolysis step, a hydrochloric acid separation step, a hydrogen chloride separation step, a water separation step, an oxidation step, and a chlorine separation step are included. Hydrocarbons include saturated and unsaturated hydrocarbons such as methane, ethane, and propylene, aromatic hydrocarbons such as benzene, toluene, and xylene, and aromatic rings of these compounds are nitro, amino, and alkyl groups. It may be substituted with a substituent such as (excluding a methyl group). Further, in addition to the monocyclic aromatic compound, a polycyclic aromatic compound such as a naphthalene ring or an anthracene ring may be used.
[Selection] Figure 1

Description

本発明は、ヒドロキシ化合物の製造方法に関するものである。更に詳しくは、本発明は、炭化水素化合物をヒドロキシ化合物に変換するヒドロキシ化合物の製造方法であって、基本的に副生物を発生せず、よって副生物や排水の処理を必要とせず、目的物であるヒドロキシ化合物のみを極めて効率的かつ経済的に製造することができるという優れた特徴を有するヒドロキシ化合物の製造方法に関するものである。   The present invention relates to a method for producing a hydroxy compound. More specifically, the present invention relates to a method for producing a hydroxy compound for converting a hydrocarbon compound into a hydroxy compound, which basically does not generate by-products, and therefore does not require treatment of by-products or waste water, and is a target product. It is related with the manufacturing method of the hydroxy compound which has the outstanding characteristic that only the hydroxy compound which is can be manufactured very efficiently and economically.

たとえばベンゼンのような炭化水素と塩化水素と酸素から塩素化炭化水素化合物であるモノクロルベンゼンを経由して、間接的にフェノールのようなヒドロキシ化合物を製造する方法はRaschigプロセスと呼ばれ公知である。このプロセスは、ベンゼンと塩化水素と酸素より、オキシクロリネーション法によりモノクロルベンゼンを製造し、モノクロルベンゼンを加水分解してフェノールを製造するとともに、副生する塩化水素は回収してモノクロルベンゼン製造用のオキシクロリネーション法に用いるというプロセスである(たとえば、特許文献1参照)。   For example, a method for producing a hydroxy compound such as phenol indirectly from a hydrocarbon such as benzene, hydrogen chloride, and oxygen via monochlorobenzene, which is a chlorinated hydrocarbon compound, is known as Raschig process. In this process, monochlorobenzene is produced from benzene, hydrogen chloride and oxygen by the oxychlorination method, monochlorobenzene is hydrolyzed to produce phenol, and by-produced hydrogen chloride is recovered to produce monochlorobenzene. It is a process of using for the oxychlorination method (for example, refer patent document 1).

また、オキシクロリネーション法を用いず、塩素を用いた塩素化反応によりモノクロルベンゼンを製造し、塩素化および加水分解で副生する塩化水素を回収し、酸化反応で塩素を製造し再利用するというプロセスも提案されている(特許文献2)。   Also, without using the oxychlorination method, monochlorobenzene is produced by chlorination reaction using chlorine, hydrogen chloride produced as a by-product by chlorination and hydrolysis is recovered, and chlorine is produced and reused by oxidation reaction. A process has also been proposed (Patent Document 2).

ここで、加水分解で生成する塩化水素は未反応の塩素化炭化水素、水およびヒドロキシ化合物との混合物として得られるが、塩化水素および水は塩酸として塩素化炭化水素化合物およびヒドロキシ化合物から分離回収することができる。一方この塩酸から塩化水素を取り出し、酸化して塩素を製造する場合、塩化水素と水は共沸混合物を形成するため、塩化水素と水を単純な蒸留のみで完全に分離するのが難しいという問題があった。具体的には、回収塩酸中の塩化水素濃度が蒸留圧力下での塩化水素と水の共沸組成より大きい場合は塔頂から高純度の塩化水素を回収することができるが、塔底では共沸組成までしか塩化水素濃度を低減できない。また回収塩酸中の塩化水素濃度が蒸留圧力下での塩化水素と水の共沸組成より小さい場合は、塔頂に水を分離することができるが、塔底ではやはり共沸組成を越えて塩化水素濃度を高めることはできない。この共沸混合物を有効に利用する方法として、共沸混合物を酸化または加水分解の原料として使用する方法がある(たとえば特許文献3)。   Here, hydrogen chloride produced by hydrolysis is obtained as a mixture with unreacted chlorinated hydrocarbon, water and hydroxy compound, but hydrogen chloride and water are separated and recovered from chlorinated hydrocarbon compound and hydroxy compound as hydrochloric acid. be able to. On the other hand, when hydrogen chloride is extracted from hydrochloric acid and oxidized to produce chlorine, hydrogen chloride and water form an azeotrope, making it difficult to completely separate hydrogen chloride and water by simple distillation. was there. Specifically, when the concentration of hydrogen chloride in the recovered hydrochloric acid is higher than the azeotropic composition of hydrogen chloride and water under the distillation pressure, high-purity hydrogen chloride can be recovered from the top of the column, but at the bottom, The hydrogen chloride concentration can only be reduced to the boiling composition. In addition, when the concentration of hydrogen chloride in the recovered hydrochloric acid is smaller than the azeotropic composition of hydrogen chloride and water under the distillation pressure, water can be separated at the top of the column. The hydrogen concentration cannot be increased. As a method of effectively using this azeotrope, there is a method of using the azeotrope as a raw material for oxidation or hydrolysis (for example, Patent Document 3).

この方法は酸化で生成した水を加水分解に利用する、あるいは加水分解で生成した塩化水素を酸化に利用する上で、塩化水素と水の完全な分離を必要としないという利点があるが、一方加水分解あるいは酸化の原料に反応生成物が混入することになるため反応が進行しにくくなるという問題があった。   This method has the advantage that it does not require complete separation of hydrogen chloride and water when water produced by oxidation is used for hydrolysis or hydrogen chloride produced by hydrolysis is used for oxidation. Since the reaction product is mixed in the raw material for hydrolysis or oxidation, there is a problem that the reaction is difficult to proceed.

米国特許第3221063号明細書U.S. Pat. No. 3,322,063 特開2006−131617号公報JP 2006-131617 A 特開2006−306833号公報JP 2006-306833 A

かかる状況において、本発明が解決しようとする課題は、炭化水素化合物をヒドロキシ化合物に変換するヒドロキシ化合物の製造方法であって、基本的に副生物を発生せず、よって副生物や排水の処理を必要とせず、目的物であるヒドロキシ化合物のみを極めて効率的かつ経済的に製造することができるという優れた特徴を有するヒドロキシ化合物の製造方法を提供する点にある。   In such a situation, the problem to be solved by the present invention is a method for producing a hydroxy compound for converting a hydrocarbon compound into a hydroxy compound, which basically does not generate a by-product, and therefore treats the by-product and waste water. Therefore, the present invention provides a method for producing a hydroxy compound having an excellent characteristic that only the target hydroxy compound can be produced very efficiently and economically.

すなわち、本発明は、下記の工程を含むヒドロキシ化合物の製造方法に係るものである。
塩素化工程:炭化水素化合物と塩素を反応させて、塩素化炭化水素化合物と塩化水素を得る工程
加水分解工程:上記塩素化工程で得た塩素化炭化水素化合物と水を反応させてヒドロキシ化合物と塩化水素を生成させ、塩素化炭化水素化合物、水、ヒドロキシ化合物、塩化水素からなる混合物を得る工程
塩酸分離工程:上記加水分解工程で得た混合物を、塩化水素と水を主とする部分と、塩素化炭化水素化合物及びヒドロキシ化合物を主とする部分に分離し、塩化水素と水を主とする部分を下記水分離工程または塩化水素分離工程に供給する工程
塩化水素分離工程:下記水分離工程の圧力より高い圧力の下、該圧力における塩化水素と水の共沸組成よりも塩化水素に富む組成を有する塩化水素と水の混合物を蒸留に付し、塔頂より塩化水素を得てこれを下記酸化工程に供給し、塔底より塩化水素と水の混合物を得てこの少なくとも一部を水分離工程へ供給する工程
水分離工程:上記塩化水素分離工程より低い圧力の下、該圧力における水と塩化水素の共沸組成よりも水に富む組成を有する塩化水素と水の混合物を蒸留に付し、塔頂より水を得てこの少なくとも一部を上記加水分解工程へ供給し、塔底より塩化水素と水の混合物を得てこの少なくとも一部を塩化水素分離工程に供給する工程
酸化工程:上記塩化水素分離工程で得た塩化水素を酸素と反応させて塩素と水を生成させ、塩化水素、酸素、塩素、水からなる混合物を得る工程
塩素分離工程:上記酸化工程で得た混合物を、塩素を主とする部分、酸素を主とする部分、塩化水素と水を主とする部分に分離し、酸素を主とする部分の少なくとも一部を酸化工程に供給し、塩素を主とする部分を上記塩素化工程に供給し、塩化水素と水を主とする部分を上記塩化水素分離工程または水分離工程に供給する工程
That is, the present invention relates to a method for producing a hydroxy compound including the following steps.
Chlorination step: a step in which a hydrocarbon compound and chlorine are reacted to obtain a chlorinated hydrocarbon compound and hydrogen chloride Hydrolysis step: a reaction between the chlorinated hydrocarbon compound obtained in the chlorination step and water to produce a hydroxy compound A step of producing hydrogen chloride to obtain a mixture comprising a chlorinated hydrocarbon compound, water, a hydroxy compound, and hydrogen chloride Hydrochloric acid separation step: The mixture obtained in the hydrolysis step is divided into a portion mainly composed of hydrogen chloride and water; A process of separating a chlorinated hydrocarbon compound and a hydroxy compound into main parts and supplying a main part of hydrogen chloride and water to the following water separation process or hydrogen chloride separation process. Hydrogen chloride separation process: Under a pressure higher than the pressure, a mixture of hydrogen chloride and water having a composition richer in hydrogen chloride than the azeotropic composition of hydrogen chloride and water at the pressure is subjected to distillation, and hydrogen chloride is removed from the top of the column. Supplying the mixture to the following oxidation step, obtaining a mixture of hydrogen chloride and water from the bottom of the column and supplying at least a part thereof to the water separation step. Water separation step: Under a pressure lower than that of the hydrogen chloride separation step, Subjecting a mixture of hydrogen chloride and water having a composition richer in water than the azeotropic composition of water and hydrogen chloride at a pressure to distillation, obtaining water from the top of the tower, and supplying at least a portion thereof to the hydrolysis step; A step of obtaining a mixture of hydrogen chloride and water from the bottom of the column and supplying at least a part thereof to the hydrogen chloride separation step. Oxidation step: reacting hydrogen chloride obtained in the hydrogen chloride separation step with oxygen to produce chlorine and water. A process of obtaining a mixture of hydrogen chloride, oxygen, chlorine and water Chlorine separation process: The mixture obtained in the above oxidation process is composed mainly of chlorine, oxygen mainly, hydrogen chloride and water. Separated into parts, mainly oxygen At least a portion of the minute is supplied to the oxidation step, a portion composed mainly of chlorine fed to the chlorination step, supplying a portion mainly containing hydrogen chloride and water in the hydrogen chloride separation step or water separation step

本発明により、炭化水素化合物をヒドロキシ化合物に変換するヒドロキシ化合物の製造方法であって、基本的に副生物を発生せず、よって副生物や排水の処理を必要とせず、目的物であるヒドロキシ化合物のみを極めて効率的かつ経済的に製造することができるという優れた特徴を有するヒドロキシ化合物の製造方法を提供することができる。   According to the present invention, a hydroxy compound is produced by converting a hydrocarbon compound into a hydroxy compound, which basically generates no by-products, and therefore does not require treatment of by-products or waste water, and is a target hydroxy compound. Thus, it is possible to provide a method for producing a hydroxy compound having an excellent feature that it can be produced very efficiently and economically.

本発明の塩素化工程は、炭化水素と塩素を反応させ、塩素化炭化水素と塩化水素を得る工程である。   The chlorination step of the present invention is a step of reacting hydrocarbon and chlorine to obtain chlorinated hydrocarbon and hydrogen chloride.

炭化水素としては、メタン、エタン、プロピレンのような飽和、不飽和炭化水素や、ベンゼン、トルエン、キシレンのような芳香族炭化水素や、それらの化合物の芳香環がニトロ基、アミノ基、アルキル基(メチル基を除く。)等の置換基で置換されていてもよい。更に、上記の単環式芳香族化合物の他に、ナフタレン環、アントラセン環等の多環式芳香族化合物であってもよい。   Hydrocarbons include saturated and unsaturated hydrocarbons such as methane, ethane, and propylene, aromatic hydrocarbons such as benzene, toluene, and xylene, and aromatic rings of these compounds are nitro, amino, and alkyl groups. It may be substituted with a substituent such as (excluding a methyl group). Further, in addition to the monocyclic aromatic compound, a polycyclic aromatic compound such as a naphthalene ring or an anthracene ring may be used.

塩素化炭化水素化合物としては、メチルクロライド、エチルクロライド、アリルクロライドのような鎖状炭化水素に塩素原子が一つ置換した塩素化炭化水素化合物や、四塩化炭素のような塩素原子が複数置換されたもの、モノクロルベンゼン、1,2−、1,3−又は1,4−ジクロルベンゼン、1,2,3−、1,2,4−又は1,3,5−トリクロルベンゼン、テトラクロルベンゼン、ペンタクロルベンゼン又はヘキサクロルベンゼン、モノ又はポリクロロトルエン、モノ又はポリクロロキシレン等の芳香族化合物に塩素原子が、一つ、または複数置換された化合物を挙げることができる。また、それらの化合物の芳香環がニトロ基、アミノ基、アルキル基(メチル基を除く。)等の置換基で置換されていてもよい。更に、上記の単環式芳香族化合物の他に、ナフタレン環、アントラセン環等の多環式芳香族化合物であってもよい。また、芳香環に直接塩素が置換された化合物のみならず、塩化ベンジル、クミルクロライドのように芳香環の置換基が塩素化されたものであってもよい。   As chlorinated hydrocarbon compounds, chlorinated hydrocarbon compounds in which one chlorine atom is substituted on a chain hydrocarbon such as methyl chloride, ethyl chloride, and allyl chloride, and multiple chlorine atoms such as carbon tetrachloride are substituted. Monochlorobenzene, 1,2-, 1,3- or 1,4-dichlorobenzene, 1,2,3-, 1,2,4- or 1,3,5-trichlorobenzene, tetrachlorobenzene In addition, aromatic compounds such as pentachlorobenzene or hexachlorobenzene, mono- or polychlorotoluene, mono- or polychloroxylene, and the like can be exemplified by compounds in which one or more chlorine atoms are substituted. Moreover, the aromatic ring of those compounds may be substituted with a substituent such as a nitro group, an amino group, or an alkyl group (excluding a methyl group). Further, in addition to the monocyclic aromatic compound, a polycyclic aromatic compound such as a naphthalene ring or an anthracene ring may be used. Further, not only compounds in which the aromatic ring is directly substituted with chlorine, but also those in which the aromatic ring substituents are chlorinated, such as benzyl chloride and cumyl chloride.

炭化水素化合物としてベンゼンを用い、塩素化炭化水素化合物であるモノクロルベンゼン又はジクロルベンゼンを得る方法が産業上の観点から特に重要である。   A method of obtaining monochlorobenzene or dichlorobenzene, which is a chlorinated hydrocarbon compound, using benzene as the hydrocarbon compound is particularly important from an industrial viewpoint.

用いる塩素については特に制限はなく、食塩の電気分解で生成する塩素、塩化水素の酸化により生成する塩素、塩酸および/または塩化水素を電解して生成する塩素等のいずれであってもよいが、その少なくとも一部として炭化水素化合物の塩素化および塩素化炭化水素の加水分解で生成する塩化水素の酸化により得られる塩素を用いる。   The chlorine to be used is not particularly limited, and may be any of chlorine generated by electrolysis of sodium chloride, chlorine generated by oxidation of hydrogen chloride, chlorine generated by electrolysis of hydrochloric acid and / or hydrogen chloride, etc. As at least a part thereof, chlorine obtained by chlorination of a hydrocarbon compound and oxidation of hydrogen chloride produced by hydrolysis of the chlorinated hydrocarbon is used.

本発明の加水分解工程は、上記塩素化工程で得た塩素化炭化水素化合物と水を反応させてヒドロキシ化合物と塩化水素を生成させ、塩素化炭化水素化合物、水、ヒドロキシ化合物、塩化水素からなる混合物を得る工程である。   In the hydrolysis step of the present invention, the chlorinated hydrocarbon compound obtained in the chlorination step is reacted with water to produce a hydroxy compound and hydrogen chloride, and consists of a chlorinated hydrocarbon compound, water, a hydroxy compound, and hydrogen chloride. This is a step of obtaining a mixture.

ヒドロキシ化合物としては、メタノール、エタノール、アリルアルコールのような鎖状炭化水素にヒドロキシ基が一つついたアルコール類や、ペンタエリトリトールのようなヒドロキシ基が複数個置換されたもの、フェノール、クレゾール、カテコール、レゾルシン、ハイドロキノン等の芳香族化合物にヒドロキシ基が一つ、または複数個置換された化合物を挙げることができる。また、それらの化合物の芳香環がニトロ基、アミノ基、アルキル基(メチル基を除く)等の置換基で置換されていてもよい。芳香族化合物の場合は、上記の単環式芳香族化合物の他に、ナフタレン環であるナフトール、アントラセン環等の多環式芳香族化合物であってもよい。また、芳香環に直接ヒドロキシ基が置換された化合物のみならず、ベンジルアルコール、クミルアルコールのように芳香環の置換基がヒドロキシ化されたものであってもよい。   Examples of the hydroxy compound include alcohols having a single hydroxy group in a chain hydrocarbon such as methanol, ethanol, and allyl alcohol, those substituted with a plurality of hydroxy groups such as pentaerythritol, phenol, cresol, catechol, An aromatic compound such as resorcin, hydroquinone or the like can be exemplified by a compound in which one or more hydroxy groups are substituted. Moreover, the aromatic ring of those compounds may be substituted with a substituent such as a nitro group, an amino group, or an alkyl group (excluding a methyl group). In the case of an aromatic compound, in addition to the above monocyclic aromatic compound, a polycyclic aromatic compound such as naphthol or anthracene ring which is a naphthalene ring may be used. Further, not only compounds in which an aromatic ring is directly substituted with a hydroxy group, but also those in which an aromatic ring substituent is hydroxylated, such as benzyl alcohol and cumyl alcohol.

加水分解工程に供給する原料は、塩素化炭化水素化合物と水であるが、加水分解工程の未反応水を反応で生成した塩化水素とともに塩酸として回収し、これらを異なる圧力条件での蒸留を組み合わせて分離することにより得られた水を原料として再利用することが本発明の特徴である。これにより加水分解工程で未反応の水が残存しても再利用することができ排水量が低減する。   The raw materials supplied to the hydrolysis process are chlorinated hydrocarbon compounds and water, but unreacted water from the hydrolysis process is recovered as hydrochloric acid together with hydrogen chloride produced by the reaction, and these are combined with distillation under different pressure conditions. It is a feature of the present invention that water obtained by separation is reused as a raw material. Thereby, even if unreacted water remains in the hydrolysis step, it can be reused and the amount of drainage is reduced.

塩素化炭化水素化合物が塩素化芳香族化合物であり、ヒドロキシ化合物がヒドロキシ芳香族化合物である場合、とりわけ塩素化炭化水素化合物がモノクロルベンゼンであり、ヒドロキシ化合物がフェノールである場合が産業上の観点から特に重要である。   From an industrial point of view, when the chlorinated hydrocarbon compound is a chlorinated aromatic compound and the hydroxy compound is a hydroxy aromatic compound, especially when the chlorinated hydrocarbon compound is monochlorobenzene and the hydroxy compound is phenol. Of particular importance.

塩素化炭化水素化合物と水を反応させる方法は、特に制限はなく、公知の方法を使用することができる。具体的な方法の例を示すと、次のとおりである。反応は、液相、気相いずれによっても実施される。気相反応の場合、反応形態としては、固定床、流動床、移動床のいずれでもよい。水と塩素化炭化水素のモル比(水/塩素化炭化水素)は通常0.5〜10であり、反応温度は160〜600℃であり、反応圧力は減圧、常圧、加圧いずれでもよいが、通常は常圧または加圧である。モノクロルベンゼン等の塩素化芳香族化合物の場合は、触媒として担持燐酸系触媒、担持銅系触媒を用いることができる。   The method for reacting the chlorinated hydrocarbon compound with water is not particularly limited, and a known method can be used. An example of a specific method is as follows. The reaction is carried out either in the liquid phase or in the gas phase. In the case of a gas phase reaction, the reaction form may be a fixed bed, a fluidized bed, or a moving bed. The molar ratio of water to chlorinated hydrocarbon (water / chlorinated hydrocarbon) is usually 0.5 to 10, the reaction temperature is 160 to 600 ° C., and the reaction pressure may be any of reduced pressure, normal pressure, and pressurized pressure. However, it is usually normal pressure or pressurization. In the case of a chlorinated aromatic compound such as monochlorobenzene, a supported phosphoric acid catalyst or a supported copper catalyst can be used as the catalyst.

加水分解反応は、結晶性メタロシリケート触媒および/または金属担持結晶性メタロシリケート触媒を用い手行うことが、加水分解反応の活性、選択性向上の観点から好ましい。   The hydrolysis reaction is preferably carried out manually using a crystalline metallosilicate catalyst and / or a metal-supported crystalline metallosilicate catalyst from the viewpoint of improving the activity and selectivity of the hydrolysis reaction.

結晶性メタロシリケート触媒としては、Siを必須成分として含み、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種または2種以上の金属元素を含み、Siと他金属原子比、Si/Me原子比(ここに、Meは、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種または2種以上の金属元素を示す)が、5以上である結晶性メタロシリケートがより好ましいが、Me成分を実質的に含まない二酸化ケイ素からなる結晶性シリケートでもよい。   The crystalline metallosilicate catalyst contains Si as an essential component, and includes Al, Cu, Ga, Fe, B, Zn, Cr, Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, and Bi. 1 or 2 or more metal elements selected from Nb, etc., Si and other metal atomic ratio, Si / Me atomic ratio (where Me is Al, Cu, Ga, Fe, B, Zn, Cr 1 or 2 or more metal elements selected from Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, Bi, Nb, etc.), a crystalline metallosilicate having 5 or more Is more preferable, but it may be a crystalline silicate composed of silicon dioxide substantially free of the Me component.

さらに、それらの結晶性メタロシリケート上に、上記Me成分をさらに担持したものを触媒として用いてもよい。   Further, a catalyst in which the above Me component is further supported on the crystalline metallosilicate may be used as a catalyst.

本発明の塩酸分離工程は、上記加水分解工程で得た混合物を、塩化水素と水を主とする部分と、塩素化炭化水素化合物及びヒドロキシ化合物を主とする部分に分離する工程である。   The hydrochloric acid separation step of the present invention is a step of separating the mixture obtained in the hydrolysis step into a portion mainly composed of hydrogen chloride and water and a portion mainly composed of a chlorinated hydrocarbon compound and a hydroxy compound.

加水分解工程で得た混合物は液化状態ではヒドロキシ化合物、未反応塩素化炭化水素化合物等の有機物を主とする油層と、未反応水、生成塩化水素を主とする塩酸層に油水分離するため、公知の油水分離操作により塩酸層を分離することができる。ヒドロキシ化合物はヒドロキシル基の親水性により通常水に溶解性を有するが、水中に塩化水素が溶解し塩酸となっていることにより、油層側に分配しやすくなる。油層と塩酸層の分離が不十分な場合は、塩酸との相互溶解度がより低い有機溶媒を用いた抽出操作により油層と塩酸層を分離してもよい。また、回収された塩酸層中に微量含まれるヒドロキシ化合物、塩素化炭化水素、有機溶媒等の有機物は、抽出、蒸留等の操作により、さらに除去することも可能である。上記の操作で得られた塩酸は、下記水分離工程または塩化水素分離工程に供給される。   In the liquefied state, the mixture obtained in the hydrolysis step is separated into an oil layer mainly composed of organic substances such as hydroxy compounds and unreacted chlorinated hydrocarbon compounds, and an unreacted water and a hydrochloric acid layer mainly composed of produced hydrogen chloride. The hydrochloric acid layer can be separated by a known oil-water separation operation. Hydroxy compounds are usually soluble in water due to the hydrophilicity of the hydroxyl group, but are easily distributed to the oil layer side because hydrogen chloride is dissolved in water to form hydrochloric acid. When the separation of the oil layer and the hydrochloric acid layer is insufficient, the oil layer and the hydrochloric acid layer may be separated by an extraction operation using an organic solvent having lower mutual solubility with hydrochloric acid. In addition, organic substances such as hydroxy compounds, chlorinated hydrocarbons, and organic solvents contained in trace amounts in the recovered hydrochloric acid layer can be further removed by operations such as extraction and distillation. The hydrochloric acid obtained by the above operation is supplied to the following water separation step or hydrogen chloride separation step.

本発明の塩化水素分離工程は、下記水分離工程の圧力より高い圧力の下、該圧力における塩化水素と水の共沸組成よりも塩化水素に富む組成を有する塩化水素と水の混合物を蒸留に付し、塔頂より塩化水素を得てこれを酸化工程に供給し、塔底より塩化水素と水の混合物を得てこの少なくとも一部を水分離工程に供給する工程である。   The hydrogen chloride separation step of the present invention is a distillation of a mixture of hydrogen chloride and water having a composition richer in hydrogen chloride than the azeotropic composition of hydrogen chloride and water at a pressure higher than the pressure of the water separation step described below. In this step, hydrogen chloride is obtained from the top of the column and supplied to the oxidation step, and a mixture of hydrogen chloride and water is obtained from the bottom of the column and at least a part thereof is supplied to the water separation step.

塩化水素分離工程の原料としては、上記塩酸分離工程、下記水分離工程、塩素回収工程で得られる主に塩化水素と水からなる部分を用いることができるが、蒸留塔に供給する全原料の平均組成は、蒸留塔の操作圧力下における塩化水素と水の共沸組成よりも塩化水素に富んでいる必要がある。蒸留塔の操作圧力は0.1〜1.0MPaが望ましく、より好ましくは0.1〜0.7MPaである。その際の塔底液中の塩化水素濃度は塔底の圧力下での共沸組成まで低減することができる。共沸組成での塩化水素濃度は0.1MPa時は21重量、1.0MPa時は13重量%である。操作圧力が低すぎると真空設備を必要とし設備費高となり残塩酸中の塩化水素濃度も大きくなって塩化水素回収率の低下となる。一方該操作圧力が高過ぎると残塩酸中の塩化水素濃度が小さくなり塩化水素回収率が高くなるが、塔底温度が高くなるため装置に用いることができる材料がタンタル等の高級材料に限定され、また、高温の加熱源が必要になる。蒸留塔の塔頂から得られる塩化水素は種々の用途に使用できるが、その少なくとも一部は下記酸化工程に供給され塩素の製造に使用される。生成した塩素は加水分解工程の原料である塩素化炭化水素化合物を製造するのための原料として用いることができる。   As the raw material for the hydrogen chloride separation step, a portion mainly composed of hydrogen chloride and water obtained in the hydrochloric acid separation step, the following water separation step, and the chlorine recovery step can be used, but the average of all the raw materials supplied to the distillation column The composition should be richer in hydrogen chloride than the azeotropic composition of hydrogen chloride and water under the operating pressure of the distillation column. The operation pressure of the distillation tower is desirably 0.1 to 1.0 MPa, and more preferably 0.1 to 0.7 MPa. The hydrogen chloride concentration in the column bottom liquid at that time can be reduced to an azeotropic composition under the column bottom pressure. The hydrogen chloride concentration in the azeotropic composition is 21% by weight at 0.1 MPa and 13% by weight at 1.0 MPa. If the operating pressure is too low, vacuum equipment is required and the equipment costs are high, and the concentration of hydrogen chloride in the residual hydrochloric acid increases, resulting in a decrease in the hydrogen chloride recovery rate. On the other hand, if the operating pressure is too high, the concentration of hydrogen chloride in the residual hydrochloric acid decreases and the hydrogen chloride recovery rate increases, but the column bottom temperature increases, so the materials that can be used in the apparatus are limited to high-grade materials such as tantalum. In addition, a high-temperature heating source is required. Hydrogen chloride obtained from the top of the distillation column can be used for various purposes, but at least a part of the hydrogen chloride is supplied to the following oxidation step and used for the production of chlorine. The produced chlorine can be used as a raw material for producing a chlorinated hydrocarbon compound that is a raw material for the hydrolysis step.

本発明における水分離工程は、上記塩化水素分離工程より低い圧力の下、該圧力における塩化水素と水の共沸組成よりも水に富む組成を有する塩化水素と水の混合物を蒸留に付し、塔頂より水を得てこれを上記加水分解工程に供給し、塔底より塩化水素と水の混合物を得てこの少なくとも一部を塩化水素分離工程に供給する工程である。   In the water separation step of the present invention, under a pressure lower than that of the hydrogen chloride separation step, a mixture of hydrogen chloride and water having a composition richer in water than the azeotropic composition of hydrogen chloride and water at the pressure is subjected to distillation. In this step, water is obtained from the top of the column and supplied to the hydrolysis step, and a mixture of hydrogen chloride and water is obtained from the bottom of the column and at least a part thereof is supplied to the hydrogen chloride separation step.

水分離工程の原料としては、上記塩酸分離工程、塩化水素分離工程、下記塩素回収工程で得られる主に塩化水素と水からなる部分を用いることができるが、蒸留塔に供給する全原料の平均組成は、蒸留塔の操作圧力下における塩化水素と水の共沸組成よりも水に富んでいる必要がある。蒸留塔の操作圧力は0.001〜0.1MPaが望ましく、より好ましくは0.003〜0.05MPaである。その際の塔底液中の塩化水素濃度は、塔底の圧力下での共沸組成まで高めることができる。塩化水素と水の共沸混合物は圧力が低い程塩化水素に富んだ組成となるため、本工程の操作圧力は塩化水素を濃縮する上では低い方が望ましい。一方塔頂から得られる水を回収し加水分解工程に供給するには、凝縮させ液としてポンプで昇圧する方法が有力だが、操作圧力が0.001MPaより小さいと通常の冷却水で凝縮させることが困難になる。   As the raw material for the water separation step, a portion mainly composed of hydrogen chloride and water obtained in the hydrochloric acid separation step, the hydrogen chloride separation step, and the following chlorine recovery step can be used, but the average of all the raw materials supplied to the distillation column The composition should be richer in water than the azeotropic composition of hydrogen chloride and water under the operating pressure of the distillation column. The operation pressure of the distillation tower is desirably 0.001 to 0.1 MPa, and more preferably 0.003 to 0.05 MPa. The hydrogen chloride concentration in the column bottom liquid at that time can be increased to an azeotropic composition under the column bottom pressure. Since the azeotropic mixture of hydrogen chloride and water has a composition richer in hydrogen chloride as the pressure is lower, the operation pressure in this step is preferably lower in concentrating the hydrogen chloride. On the other hand, in order to recover the water obtained from the top of the tower and supply it to the hydrolysis process, it is effective to condense and pressurize with a pump as a liquid, but if the operating pressure is less than 0.001 MPa, it can be condensed with ordinary cooling water. It becomes difficult.

本発明における酸化工程は、上記塩化水素分離工程で得た塩化水素を酸素と反応させて塩素と水を生成させ、塩化水素、酸素、塩素、水からなる混合物を得る工程である。   The oxidation step in the present invention is a step in which hydrogen chloride obtained in the hydrogen chloride separation step is reacted with oxygen to produce chlorine and water to obtain a mixture composed of hydrogen chloride, oxygen, chlorine and water.

塩化水素と酸素を反応させる方法については、特に制限はなく、公知の方法を使用することができる。具体的な方法の例を示すと、次のとおりである。塩化水素と酸素のモル比(塩化水素/酸素)は0.5〜2.0であり、反応温度は200〜500℃、好ましくは200〜380℃であり、反応圧力は0.1〜5MPaであり、空塔速度は0.7〜10m/sである。反応器としては、固定床反応器、流動床反応器、移動床反応器を用いることができる。反応には触媒として酸化クロム触媒、酸化ルテニウム触媒を用いることができる。   There is no restriction | limiting in particular about the method of making hydrogen chloride and oxygen react, A well-known method can be used. An example of a specific method is as follows. The molar ratio of hydrogen chloride to oxygen (hydrogen chloride / oxygen) is 0.5 to 2.0, the reaction temperature is 200 to 500 ° C., preferably 200 to 380 ° C., and the reaction pressure is 0.1 to 5 MPa. Yes, the superficial velocity is 0.7-10 m / s. As the reactor, a fixed bed reactor, a fluidized bed reactor, or a moving bed reactor can be used. In the reaction, a chromium oxide catalyst or a ruthenium oxide catalyst can be used as a catalyst.

本発明における塩素分離工程は、上記酸化工程の反応混合物を、塩素を主とする部分、未反応の酸素を主とする部分および未反応の塩化水素と水を主とする部分に分離し、酸素を主とする部分の少なくとも一部を酸化工程へ供給し、塩素を主とする部分を上記塩素化工程へ供給し、塩化水素と水を主とする部分を上記塩化水素分離工程または水分離工程に供給する工程である。   In the chlorine separation step of the present invention, the reaction mixture of the oxidation step is separated into a portion mainly composed of chlorine, a portion mainly composed of unreacted oxygen, and a portion mainly composed of unreacted hydrogen chloride and water. At least a part of the main part is supplied to the oxidation process, the main part of chlorine is supplied to the chlorination process, and the main part of hydrogen chloride and water is supplied to the hydrogen chloride separation process or water separation process. It is the process of supplying to.

酸化工程の反応混合物は、塩素、塩化水素、水および酸素を含んでいる。これらの成分を本工程で塩素、塩化水素および水からなる塩酸、酸素に分離し、回収するのである。   The reaction mixture of the oxidation step contains chlorine, hydrogen chloride, water and oxygen. These components are separated and recovered in this step into hydrochloric acid and oxygen consisting of chlorine, hydrogen chloride and water.

塩素分離工程を実施するには、たとえば吸収、凝縮、蒸留を用いればよい。塩化水素、水についてはについては、凝縮、または溶媒に吸収させ塩酸として分離、回収する。酸化工程での塩化水素の反応率が低く、未反応塩化水素が反応生成水に全量溶解しない場合は、塩化水素分離工程あるいは水分離工程の蒸留塔塔底より得られる塩酸を吸収液として用いることにより塩化水素を完全に溶解させてもよい。回収した塩酸は塩化水素分離工程、水分離工程のいずれかに供給し、これらの工程で塩化水素と水に分離してそれぞれ酸化工程、加水分解工程の原料として利用する。ここで回収塩酸中の塩化水素濃度が、水分離工程での蒸留塔操作圧力における塩化水素と水の共沸組成より大きい場合は、回収塩酸を塩化水素分離工程に供給するのが望ましい。また、ここで得られた塩素は、上記塩素化工程における炭化水素化合物の塩素化による塩素化炭化水素の製造に用いることができる。   In order to carry out the chlorine separation step, for example, absorption, condensation and distillation may be used. About hydrogen chloride and water, it is condensed or absorbed in a solvent and separated and recovered as hydrochloric acid. If the reaction rate of hydrogen chloride in the oxidation step is low and the entire amount of unreacted hydrogen chloride does not dissolve in the reaction product water, use hydrochloric acid obtained from the bottom of the distillation column in the hydrogen chloride separation step or water separation step as the absorbent. May completely dissolve the hydrogen chloride. The recovered hydrochloric acid is supplied to either the hydrogen chloride separation step or the water separation step, separated into hydrogen chloride and water in these steps, and used as a raw material for the oxidation step and the hydrolysis step, respectively. Here, when the concentration of hydrogen chloride in the recovered hydrochloric acid is larger than the azeotropic composition of hydrogen chloride and water at the distillation column operating pressure in the water separation step, it is desirable to supply the recovered hydrochloric acid to the hydrogen chloride separation step. Moreover, the chlorine obtained here can be used for production of chlorinated hydrocarbons by chlorination of hydrocarbon compounds in the chlorination step.

本発明においては、未反応炭化水素化合物の有効利用および下流の加水分解工程安定化の観点から、下記の塩素化炭化水素精製工程を用いることが好ましい。
塩素化炭化水素精製工程:上記塩素化工程で得られた塩素化炭化水素を精製する工程
塩素化工程で得られた塩素化炭化水素は塩素化工程での原料であった炭化水素や少量の副生物を含んでいる。かかる混合物より精製された塩素化炭化水素を分離回収することができる。一方、本工程で用いられた炭化水素は分離回収され、その少なくとも一部は塩素化工程へリサイクルされる。
In the present invention, from the viewpoint of effective utilization of unreacted hydrocarbon compounds and stabilization of the downstream hydrolysis process, it is preferable to use the following chlorinated hydrocarbon purification process.
Chlorinated hydrocarbon refining process: A process for purifying the chlorinated hydrocarbon obtained in the chlorination process The chlorinated hydrocarbon obtained in the chlorination process is composed of hydrocarbons and a small amount of by-products. Contains organisms. Chlorinated hydrocarbons purified from such a mixture can be separated and recovered. On the other hand, the hydrocarbons used in this step are separated and recovered, and at least a part thereof is recycled to the chlorination step.

塩素化炭化水素精製工程を実施するには、たとえば蒸留、抽出蒸留、吸着分離等を用いればよい。特に、沸点の異なる未反応炭化水素と塩素化炭化水素の場合は蒸留にて、塩素化炭化水素でも沸点の近い異性体間の分離には、抽出蒸留、吸着分離等が用いられる。   In order to carry out the chlorinated hydrocarbon purification step, for example, distillation, extractive distillation, adsorption separation or the like may be used. In particular, distillation is used for unreacted hydrocarbons and chlorinated hydrocarbons having different boiling points, and extractive distillation, adsorptive separation, or the like is used for separation between isomers having similar boiling points even for chlorinated hydrocarbons.

本発明においては、未反応塩素化炭化水素の有効利用およびヒドロキシ化合物高純度化の観点から、下記のヒドロキシ化合物精製工程を用いることが望ましい。
ヒドロキシ化合物精製工程:上記塩酸分離工程で得た塩素化炭化水素化合物およびヒドロキシ化合物を主とする部分を、塩素化炭化水素化合物を主とする部分とヒドロキシ化合物を主とする部分と不純物を主とする部分に分離し、塩素化炭化水素化合物を主とする部分の少なくとも一部を上記加水分解工程に供給する工程
In the present invention, from the viewpoint of effective utilization of unreacted chlorinated hydrocarbons and high purification of hydroxy compounds, it is desirable to use the following hydroxy compound purification step.
Hydroxy compound purification step: A portion mainly composed of chlorinated hydrocarbon compound and hydroxy compound obtained in the hydrochloric acid separation step, a portion mainly composed of chlorinated hydrocarbon compound, a portion mainly composed of hydroxy compound and impurities. Supplying the above hydrolysis step with at least a part of a portion mainly composed of a chlorinated hydrocarbon compound.

塩酸分離工程で得られた油層にはヒドロキシ化合物、未反応塩素化炭化水素化合物に加え加水分解で副生する炭化水素化合物などの不純物が少量含まれる。これらを本工程で塩素化炭化水素化合物を主とする部分、ヒドロキシ化合物を主とする部分、不純物を主とする部分に分離し、精製されたヒドロキシ化合物を得るとともに、塩素化炭化水素化合物は加水分解の原料としてリサイクルするのである。   The oil layer obtained in the hydrochloric acid separation step contains a small amount of impurities such as a hydroxy compound, an unreacted chlorinated hydrocarbon compound, and a hydrocarbon compound by-produced by hydrolysis. In this step, these are separated into a part mainly composed of chlorinated hydrocarbon compounds, a part mainly composed of hydroxy compounds, and a part mainly composed of impurities to obtain a purified hydroxy compound, and the chlorinated hydrocarbon compound is hydrolyzed. It is recycled as a raw material for decomposition.

ヒドロキシ化合物精製工程を実施するには、たとえば蒸留を用いればよい。その際、不純物を主とする部分は、含まれる不純物成分の沸点に応じて2つ以上の留分として分離回収してもよい。   For example, distillation may be used to carry out the hydroxy compound purification step. At that time, the portion mainly containing impurities may be separated and recovered as two or more fractions according to the boiling point of the impurity component contained.

本発明においては、下流の酸化工程安定化の観点から、下記の塩化水素精製工程を用いることが望ましい。
塩化水素精製工程:上記塩素化工程および塩化水素分離工程で得た塩化水素を主とする部分より炭化水素化合物、塩素化炭化水素化合物およびヒドロキシ化合物を主とする部分を分離して回収したのち、残りの塩化水素を上記酸化工程へ供給する工程
In the present invention, it is desirable to use the following hydrogen chloride purification step from the viewpoint of stabilizing the downstream oxidation step.
Hydrogen chloride refining step: After separating and recovering the main part of hydrocarbon compound, chlorinated hydrocarbon compound and hydroxy compound from the main part of hydrogen chloride obtained in the above chlorination step and hydrogen chloride separation step, Supplying the remaining hydrogen chloride to the oxidation process

本工程における精製方法としては、たとえば、冷却して気液分離し、気体として精製塩化水素を得る方法や、吸着により不純物を除去する方法が挙げられる。これら両方法を併用することもできる。   Examples of the purification method in this step include a method of cooling and gas-liquid separation to obtain purified hydrogen chloride as a gas, and a method of removing impurities by adsorption. Both of these methods can be used in combination.

実施例1
次に、炭化水素化合物としてベンゼンを用い、塩素化炭化水素化合物としてモノクロルベンゼンを用い、ヒドロキシ化合物としてフェノールを得る場合についての例について、図1のフローと表1〜3の物質収支を用いて具体的に説明する。
ベンゼン(流体番号2)と塩素(流体番号3)を塩素化工程(A)の反応熱を除去するための冷却器と凝縮器を備えた反応器に供給し、液相中で反応させてモノクロルベンゼンと塩化水素を生成させる。本実施例ではモノクロルベンゼンが塩素化工程の目的生成物であり、ジクロロベンゼン等の多塩素化物の生成を抑制するためにベンゼンを塩素に対して過剰に供給する。反応で発生する塩化水素にベンゼン、モノクロルベンゼンが同伴したガスは凝縮器にて冷却してベンゼン、モノクロルベンゼンに富む凝縮液を反応器に戻し、主に塩化水素からなるガス(流体番号4)を取り出して塩化水素生成工程(J)に供給する。反応器から得られる主に未反応ベンゼン、モノクロルベンゼンからなる液(流体番号5)は塩素化炭化水素精製工程(H)に供給し、蒸留によりベンゼンを主とする部分(流体番号7)、モノクロルベンゼンを主とする部分(流体番号8)および不純物を主とする部分(流体番号6および9)に分離する。分離されたベンゼンを主とする部分は塩素化工程の原料としてリサイクルし、モノクロルベンゼンを主とする部分は加水分解工程(B)に供給する。
Example 1
Next, an example of the case of using benzene as the hydrocarbon compound, monochlorobenzene as the chlorinated hydrocarbon compound, and obtaining phenol as the hydroxy compound will be specifically described using the flow of FIG. 1 and the material balance of Tables 1 to 3. I will explain it.
Benzene (fluid number 2) and chlorine (fluid number 3) are supplied to a reactor equipped with a condenser and a condenser for removing the heat of reaction in the chlorination step (A), and reacted in the liquid phase to monochloro. Generates benzene and hydrogen chloride. In this embodiment, monochlorobenzene is the target product of the chlorination process, and benzene is supplied excessively with respect to chlorine in order to suppress the production of polychlorinated products such as dichlorobenzene. Gas that is accompanied by benzene and monochlorobenzene with hydrogen chloride generated in the reaction is cooled in a condenser, and the condensate rich in benzene and monochlorobenzene is returned to the reactor. A gas mainly composed of hydrogen chloride (fluid number 4) is returned to the reactor. It takes out and supplies to a hydrogen chloride production | generation process (J). A liquid mainly composed of unreacted benzene and monochlorobenzene (fluid number 5) obtained from the reactor is supplied to the chlorinated hydrocarbon purification step (H), and a portion mainly composed of benzene (fluid number 7) by distillation, monochloro. It separates into a part mainly composed of benzene (fluid number 8) and a part mainly composed of impurities (fluid numbers 6 and 9). The separated main portion of benzene is recycled as a raw material for the chlorination step, and the main portion of monochlorobenzene is supplied to the hydrolysis step (B).

加水分解工程ではモノクロルベンゼン(流体番号10)と水(流体番号11)を加熱気化させた後、銅担持ゼオライト触媒を充填した反応器で加水分解反応を行わせ、フェノールと塩化水素を生成させる。この際、副反応によりベンゼンが生成する。ここで反応器に供給される水のモノクロルベンゼンに対するモル比(水/モノクロルベンゼン)は1.5であり、供給したモノクロルベンゼンの30%が反応によりフェノールおよびベンゼンに転化する。
生成したフェノール、塩化水素、ベンゼンおよび未反応のモノクロルベンゼン、水を含む反応混合物(流体番号12)は塩酸分離工程(C)に供給し、主にベントガスからなる部分(流体番号13)、主にフェノール、モノクロルベンゼン、ベンゼンからなる油層(流体番号14)および主に塩化水素、水からなる塩酸層(流体番号15)に分離する。得られる塩酸層中の塩化水素濃度は27重量%である
この塩酸層を、水分離工程から供給される塩化水素濃度23重量%の塩酸(流体番号24)、塩素分離工程から供給される塩化水素濃度30重量%の塩酸(流体番号35)と共に塩化水素分離工程(D)に供給し、加圧蒸留塔を用いて塩化水素ガスを放散させることにより、頂部から塩化水素を主とするガス(流体番号17)を、塔底から原料より塩化水素の濃度が17重量%まで減少した塩酸(18)を得る。この際、系外にパージされる流体(流体番号6,9,13,21,22および28)に流失する塩素分を補うため、外部から塩化水素濃度30重量%の新塩酸(流体番号38)を供給液に加える。
In the hydrolysis step, monochlorobenzene (fluid number 10) and water (fluid number 11) are heated and vaporized, and then subjected to a hydrolysis reaction in a reactor filled with a copper-supported zeolite catalyst to produce phenol and hydrogen chloride. At this time, benzene is produced by a side reaction. Here, the molar ratio of water supplied to the reactor to monochlorobenzene (water / monochlorobenzene) is 1.5, and 30% of the supplied monochlorobenzene is converted into phenol and benzene by the reaction.
The produced reaction mixture containing phenol, hydrogen chloride, benzene, unreacted monochlorobenzene and water (fluid number 12) is supplied to the hydrochloric acid separation step (C), and is mainly composed of vent gas (fluid number 13), mainly Separation into an oil layer (fluid number 14) composed of phenol, monochlorobenzene and benzene and a hydrochloric acid layer (fluid number 15) mainly composed of hydrogen chloride and water. The concentration of hydrogen chloride in the resulting hydrochloric acid layer is 27% by weight. This hydrochloric acid layer is divided into hydrochloric acid (fluid No. 24) having a hydrogen chloride concentration of 23% by weight supplied from the water separation step and hydrogen chloride supplied from the chlorine separation step. Gas (mainly hydrogen chloride) from the top (fluid) is supplied to the hydrogen chloride separation step (D) together with hydrochloric acid (fluid number 35) having a concentration of 30% by weight, and hydrogen chloride gas is diffused using a pressurized distillation column. No. 17) is obtained from the bottom of the column with hydrochloric acid (18) having a hydrogen chloride concentration reduced to 17% by weight from the raw material. At this time, fresh hydrochloric acid (fluid number 38) having a hydrogen chloride concentration of 30% by weight from the outside is used to compensate for the chlorine content that is lost to the fluid purged outside the system (fluid numbers 6, 9, 13, 21, 22, and 28). To the feed.

塔底から得られる塩酸の一部は水分離工程(E)に供給し、減圧蒸留塔を用いて分離を行い、頂部より水(流体番号19)を、塔底から塩化水素濃度が23重量%まで高められた塩酸(流体番号20)を得る。頂部より得られる水は不純物蓄積を避けるため一部を系外にパージし(流体番号21)、残り(流体番号11)を加水分解工程の原料としてリサイクルする。塔底から得られる塩酸は不純物蓄積を避けるため一部(流体番号22)を系外にパージし、更に一部(流体番号23)を塩素分離工程に供給して酸化工程の未反応塩化水素の吸収液として用い、残部(流体番号24)を塩化水素分離工程にリサイクルする。
塩酸分離工程で得られる油層はヒドロキシ化合物精製工程(I)に供給し、蒸留によってベンゼンを主とする留分(流体番号25)、モノクロルベンゼンを主とする留分(流体番号26)、フェノールを主とする留分(流体番号27)、その他の不純物を主とする留分(流体番号28)に分離する。ベンゼンを主とする留分は塩素化工程へリサイクルし反応原料として利用する。モノクロルベンゼンを主とする留分は加水分解工程へリサイクルし反応原料として利用する。
Part of the hydrochloric acid obtained from the bottom of the column is supplied to the water separation step (E) and separated using a vacuum distillation column. Water (fluid No. 19) is separated from the top, and the hydrogen chloride concentration from the bottom is 23% by weight. Hydrochloric acid (fluid no. 20) is obtained. A part of the water obtained from the top is purged outside the system to avoid accumulation of impurities (fluid number 21), and the rest (fluid number 11) is recycled as a raw material for the hydrolysis process. Hydrochloric acid obtained from the bottom of the column is partially purged (fluid number 22) outside the system in order to avoid impurity accumulation, and further part (fluid number 23) is supplied to the chlorine separation process to remove unreacted hydrogen chloride in the oxidation process. The remaining part (fluid number 24) is recycled to the hydrogen chloride separation step as an absorbent.
The oil layer obtained in the hydrochloric acid separation step is supplied to the hydroxy compound purification step (I), and by distillation, a fraction mainly containing benzene (fluid number 25), a fraction mainly containing monochlorobenzene (fluid number 26), and phenol. The main fraction (fluid number 27) and other impurities are separated into main fractions (fluid number 28). The benzene-based fraction is recycled to the chlorination process and used as a reaction raw material. A fraction mainly composed of monochlorobenzene is recycled to the hydrolysis process and used as a reaction raw material.

塩素化工程および塩化水素分離工程で得られる塩化水素を主とするガスはベンゼン、モノクロルベンゼン、水などの不純物を微量含んでおり、これを塩化水素精製工程(J)で冷却した後、活性炭を充填した塔を通過させることにより不純物を分離する。精製された塩化水素ガス(流体番号29)は酸化工程(F)に供給し、分離、回収した不純物(流体番号30)は塩酸分離工程にリサイクルする。
酸化工程では、精製塩化水素ガスを酸素(流体番号32)とルテニウム担持触媒を用いて気相で反応させ、塩素と水を生成させる。生成した塩素、水および未反応の塩化水素、酸素を含む反応ガス(流体番号33)は、塩素分離工程(G)に供給し、凝縮液化および蒸留により、酸素を主とするガス(流体番号34)、塩素を主とするガス(3)、塩化水素および水からなる塩酸(流体番号35)に分離する。ここで、塩化水素を水と共に液化して酸素、塩素と十分に分離し塩酸として回収するための吸収液として、水分離工程の蒸留塔の底部から得られる塩化水素濃度23重量%の塩酸の一部を用いる。酸素を主とするガスは、その一部(流体番号36)を不純物蓄積防止のためにパージし、残部(流体番号37)は酸化工程にリサイクルし、外部から供給される新酸素(流体番号31)とともに酸化反応原料として利用する。
上記の方法により、ベンゼン1.03molと酸素0.62molからフェノール1molが得られる。












































The gas mainly composed of hydrogen chloride obtained in the chlorination step and the hydrogen chloride separation step contains trace amounts of impurities such as benzene, monochlorobenzene, and water. After cooling this in the hydrogen chloride purification step (J), the activated carbon Impurities are separated by passing through a packed tower. Purified hydrogen chloride gas (fluid number 29) is supplied to the oxidation step (F), and the separated and recovered impurities (fluid number 30) are recycled to the hydrochloric acid separation step.
In the oxidation step, purified hydrogen chloride gas is reacted in the gas phase using oxygen (fluid number 32) and a ruthenium-supported catalyst to generate chlorine and water. The reaction gas (fluid number 33) containing the generated chlorine, water, unreacted hydrogen chloride, and oxygen is supplied to the chlorine separation step (G), and the gas mainly containing oxygen (fluid number 34) is obtained by condensation liquefaction and distillation. ), Hydrochloric acid (fluid number 35) composed mainly of chlorine (3), hydrogen chloride and water. Here, as an absorption liquid for liquefying hydrogen chloride together with water and sufficiently separating it from oxygen and chlorine and recovering it as hydrochloric acid, one of hydrochloric acid having a hydrogen chloride concentration of 23% by weight obtained from the bottom of the distillation column in the water separation step. Part. Part of the gas mainly composed of oxygen (fluid number 36) is purged to prevent accumulation of impurities, and the remaining part (fluid number 37) is recycled to the oxidation process, and new oxygen (fluid number 31) supplied from the outside is recycled. ) And as an oxidation reaction raw material.
By the above method, 1 mol of phenol is obtained from 1.03 mol of benzene and 0.62 mol of oxygen.












































Figure 2008156248
Figure 2008156248





Figure 2008156248
Figure 2008156248





Figure 2008156248
Figure 2008156248

本発明を実施するフローの例である。It is an example of the flow which implements this invention.

符号の説明Explanation of symbols

A:塩素化工程
B:加水分解工程
C:塩酸分離工程
D:塩化水素分離工程
E:水分離工程
F:酸化工程
G:塩素分離工程
H:塩素化炭化水素精製工程
I:ヒドロキシ化合物精製工程
J:塩化水素精製工程
A: Chlorination step B: Hydrolysis step C: Hydrochloric acid separation step D: Hydrogen chloride separation step E: Water separation step F: Oxidation step G: Chlorine separation step H: Chlorinated hydrocarbon purification step I: Hydroxy compound purification step J : Hydrogen chloride purification process

Claims (5)

下記の工程を含むヒドロキシ化合物の製造方法。
塩素化工程:炭化水素化合物と塩素を反応させて、塩素化炭化水素化合物と塩化水素を得る工程
加水分解工程:上記塩素化工程で得た塩素化炭化水素化合物と水を反応させてヒドロキシ化合物と塩化水素を生成させ、塩素化炭化水素化合物、水、ヒドロキシ化合物、塩化水素からなる混合物を得る工程
塩酸分離工程:上記加水分解工程で得た混合物を、塩化水素と水を主とする部分と、塩素化炭化水素化合物及びヒドロキシ化合物を主とする部分に分離し、塩化水素と水を主とする部分を下記水分離工程または塩化水素分離工程に供給する工程
塩化水素分離工程:下記水分離工程の圧力より高い圧力の下、該圧力における塩化水素と水の共沸組成よりも塩化水素に富む組成を有する塩化水素と水の混合物を蒸留に付し、塔頂より塩化水素を得てこれを下記酸化工程に供給し、塔底より塩化水素と水の混合物を得てこの少なくとも一部を水分離工程へ供給する工程
水分離工程:上記塩化水素分離工程より低い圧力の下、該圧力における水と塩化水素の共沸組成よりも水に富む組成を有する塩化水素と水の混合物を蒸留に付し、塔頂より水を得てこの少なくとも一部を上記加水分解工程へ供給し、塔底より塩化水素と水の混合物を得てこの少なくとも一部を塩化水素分離工程に供給する工程
酸化工程:上記塩素化工程および塩化水素分離工程で得た塩化水素を酸素と反応させて塩素と水を生成させ、塩化水素、酸素、塩素、水からなる混合物を得る工程
塩素分離工程:上記酸化工程で得た混合物を、塩素を主とする部分、酸素を主とする部分、塩化水素と水を主とする部分に分離し、酸素を主とする部分の少なくとも一部を酸化工程に供給し、塩素を主とする部分を上記塩素化工程に供給し、塩化水素と水を主とする部分を上記塩化水素分離工程または水分離工程に供給する工程
The manufacturing method of the hydroxy compound including the following process.
Chlorination step: a step in which a hydrocarbon compound and chlorine are reacted to obtain a chlorinated hydrocarbon compound and hydrogen chloride Hydrolysis step: a reaction between the chlorinated hydrocarbon compound obtained in the chlorination step and water to produce a hydroxy compound A step of producing hydrogen chloride to obtain a mixture comprising a chlorinated hydrocarbon compound, water, a hydroxy compound, and hydrogen chloride Hydrochloric acid separation step: The mixture obtained in the hydrolysis step is divided into a portion mainly composed of hydrogen chloride and water; A process of separating a chlorinated hydrocarbon compound and a hydroxy compound into main parts and supplying a main part of hydrogen chloride and water to the following water separation process or hydrogen chloride separation process. Hydrogen chloride separation process: Under a pressure higher than the pressure, a mixture of hydrogen chloride and water having a composition richer in hydrogen chloride than the azeotropic composition of hydrogen chloride and water at the pressure is subjected to distillation, and hydrogen chloride is removed from the top of the column. Supplying the mixture to the following oxidation step, obtaining a mixture of hydrogen chloride and water from the bottom of the column and supplying at least a part thereof to the water separation step. Water separation step: Under a pressure lower than that of the hydrogen chloride separation step, Subjecting a mixture of hydrogen chloride and water having a composition richer in water than the azeotropic composition of water and hydrogen chloride at a pressure to distillation, obtaining water from the top of the tower, and supplying at least a portion thereof to the hydrolysis step; A step of obtaining a mixture of hydrogen chloride and water from the bottom of the tower and supplying at least a part thereof to the hydrogen chloride separation step. Oxidation step: The hydrogen chloride obtained in the chlorination step and the hydrogen chloride separation step is reacted with oxygen to react with chlorine. Process for producing water and obtaining a mixture comprising hydrogen chloride, oxygen, chlorine and water Chlorine separation process: The mixture obtained in the above oxidation process is composed of a part mainly composed of chlorine, a part mainly composed of oxygen, hydrogen chloride and water. Is divided into the main parts, Supply at least a part of the main part of oxygen to the oxidation process, supply a main part of chlorine to the chlorination process, and separate the main part of hydrogen chloride and water into the hydrogen chloride separation process or water separation. Supplying process
下記の塩素化炭化水素精製工程を含む請求項1記載の製造方法。
塩素化炭化水素精製工程:上記塩素化工程で得られた塩素化炭化水素を精製する工程
The manufacturing method of Claim 1 including the following chlorinated hydrocarbon refinement | purification processes.
Chlorinated hydrocarbon purification process: A process for purifying the chlorinated hydrocarbon obtained in the above chlorination process.
下記のヒドロキシ化合物精製工程を含む請求項1記載の製造方法。
ヒドロキシ化合物精製工程:上記塩酸分離工程で得た塩素化炭化水素化合物およびヒドロキシ化合物を主とする部分を、塩素化炭化水素化合物を主とする部分とヒドロキシ化合物を主とする部分と不純物を主とする部分に分離し、塩素化炭化水素化合物を主とする部分の少なくとも一部を上記加水分解工程に供給する工程
The manufacturing method of Claim 1 including the following hydroxy compound refinement | purification process.
Hydroxy compound purification step: A portion mainly composed of chlorinated hydrocarbon compound and hydroxy compound obtained in the hydrochloric acid separation step, a portion mainly composed of chlorinated hydrocarbon compound, a portion mainly composed of hydroxy compound and impurities. Supplying the above hydrolysis step with at least a part of a portion mainly composed of a chlorinated hydrocarbon compound.
下記の塩化水素精製工程を含む請求項1記載の製造方法。
塩化水素精製工程:上記塩素化工程および塩化水素分離工程で得た塩化水素を主とする部分より炭化水素化合物、塩素化炭化水素化合物およびヒドロキシ化合物を主とする部分を分離して回収したのち、残りの塩化水素を上記酸化工程へ供給する工程
The manufacturing method of Claim 1 including the following hydrogen chloride refinement | purification processes.
Hydrogen chloride refining step: After separating and recovering the main part of hydrocarbon compound, chlorinated hydrocarbon compound and hydroxy compound from the main part of hydrogen chloride obtained in the above chlorination step and hydrogen chloride separation step, Supplying the remaining hydrogen chloride to the oxidation process
炭化水素化合物がベンゼンであり、塩素化炭化水素化合物がモノクロルベンゼンであり、ヒドロキシ化合物がフェノールである、請求項1記載の製造方法。 The production method according to claim 1, wherein the hydrocarbon compound is benzene, the chlorinated hydrocarbon compound is monochlorobenzene, and the hydroxy compound is phenol.
JP2006344194A 2006-12-21 2006-12-21 Method for producing hydroxy compound Pending JP2008156248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344194A JP2008156248A (en) 2006-12-21 2006-12-21 Method for producing hydroxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344194A JP2008156248A (en) 2006-12-21 2006-12-21 Method for producing hydroxy compound

Publications (1)

Publication Number Publication Date
JP2008156248A true JP2008156248A (en) 2008-07-10

Family

ID=39657587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344194A Pending JP2008156248A (en) 2006-12-21 2006-12-21 Method for producing hydroxy compound

Country Status (1)

Country Link
JP (1) JP2008156248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040269B1 (en) * 2019-03-19 2019-11-27 제이엘켐 주식회사 Methods for preparing and purifying hydroxy compounds

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139305A (en) * 1999-11-10 2001-05-22 Sumitomo Chem Co Ltd Separation and recovery method of hydrogen chloride and water
JP2001247518A (en) * 1999-12-28 2001-09-11 Mitsubishi Chemicals Corp Method of producing diaryl carbonate
JP2003081891A (en) * 2001-06-28 2003-03-19 Sumitomo Chem Co Ltd Method for producing 1,2-dichloroethane
WO2006038705A1 (en) * 2004-10-05 2006-04-13 Sumitomo Chemical Company, Limited Method for producing hydroxy compound
JP2006131617A (en) * 2004-10-05 2006-05-25 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
JP2006282642A (en) * 2005-04-05 2006-10-19 Mitsui Chemicals Polyurethanes Inc Device for producing polyisocyanate
JP2006306833A (en) * 2005-03-30 2006-11-09 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
JP2007063209A (en) * 2005-09-01 2007-03-15 Sumitomo Chemical Co Ltd Method for producing cyclohexanone
JP2007161665A (en) * 2005-12-15 2007-06-28 Sumitomo Chemical Co Ltd Process for producing hydroxy compounds and chlorine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139305A (en) * 1999-11-10 2001-05-22 Sumitomo Chem Co Ltd Separation and recovery method of hydrogen chloride and water
JP2001247518A (en) * 1999-12-28 2001-09-11 Mitsubishi Chemicals Corp Method of producing diaryl carbonate
JP2003081891A (en) * 2001-06-28 2003-03-19 Sumitomo Chem Co Ltd Method for producing 1,2-dichloroethane
WO2006038705A1 (en) * 2004-10-05 2006-04-13 Sumitomo Chemical Company, Limited Method for producing hydroxy compound
JP2006131617A (en) * 2004-10-05 2006-05-25 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
JP2006306833A (en) * 2005-03-30 2006-11-09 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
JP2006282642A (en) * 2005-04-05 2006-10-19 Mitsui Chemicals Polyurethanes Inc Device for producing polyisocyanate
JP2007063209A (en) * 2005-09-01 2007-03-15 Sumitomo Chemical Co Ltd Method for producing cyclohexanone
JP2007161665A (en) * 2005-12-15 2007-06-28 Sumitomo Chemical Co Ltd Process for producing hydroxy compounds and chlorine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040269B1 (en) * 2019-03-19 2019-11-27 제이엘켐 주식회사 Methods for preparing and purifying hydroxy compounds

Similar Documents

Publication Publication Date Title
TW200936538A (en) Methods of making chlorinated hydrocarbons
KR20180120276A (en) HIGH PURITY E-l-CHLORO-3,3,3-TRIFLUOROPROPENE AND METHODS OF MAKING THE SAME
CN104093685A (en) Method for producing 2,3,3,3-tetrafluoropropene
WO2014001461A1 (en) Process for the production of a mixture comprising cyclohexanone and cyclohexanol from phenol
CN112739672A (en) Process for producing trifluoroiodomethane
US20100036180A1 (en) Method of obtaining 1,2-dichloroethane by direct chlorination with a step of separation from the catalyst by direct evaporation, and facility for the implementation thereof
JP4904730B2 (en) Separation and recovery of aromatic compounds and hydrogen chloride
MXPA06012058A (en) Liquid phase oxidation of p-xylene to terephthalic acid in the presence of a catalyst system containing nickel, manganese, and bromine atoms.
JP6481041B2 (en) Method for producing acetic acid
JP2008156248A (en) Method for producing hydroxy compound
CN101035750B (en) The production method of hydroxyl compound
KR20140139025A (en) Process for the purification of aniline from gas phase hydrogenations
JP6693959B2 (en) Method for producing acetic acid
CN113772629A (en) Process for recovering HCl from a HCl-containing gas stream
JP5040109B2 (en) Process for producing phenol and chlorine
JP4935052B2 (en) Method for producing phenol
JP2007269707A (en) Method for producing methyl methacrylate
JP2006131617A (en) Method for producing hydroxy compound
CH409901A (en) Methyl chloroform manufacturing process
JP4432187B2 (en) Method for recovering 1,2-dichloroethane
JP5023618B2 (en) Method for dehydration of hydrolysis reaction mixture
JP4432186B2 (en) Method for purifying 1,2-dichloroethane
JP4967281B2 (en) Method for producing cyclohexanone
US20230183161A1 (en) Continuous process to make trifluoroacetyl iodide from trifluoroacetyl chloride and hydrogen iodide by reactive distillation
JP4691771B2 (en) Method for recovering high purity 1,2-dichloroethane

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Effective date: 20111020

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Effective date: 20120228

Free format text: JAPANESE INTERMEDIATE CODE: A02