[go: up one dir, main page]

JP2008101219A - Method for imparting anti-fogging property - Google Patents

Method for imparting anti-fogging property Download PDF

Info

Publication number
JP2008101219A
JP2008101219A JP2007289604A JP2007289604A JP2008101219A JP 2008101219 A JP2008101219 A JP 2008101219A JP 2007289604 A JP2007289604 A JP 2007289604A JP 2007289604 A JP2007289604 A JP 2007289604A JP 2008101219 A JP2008101219 A JP 2008101219A
Authority
JP
Japan
Prior art keywords
coating material
material composition
hydrophilic
hydrophilic coating
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007289604A
Other languages
Japanese (ja)
Other versions
JP4811389B2 (en
Inventor
Hikari Tsujimoto
光 辻本
Hiroshi Tamaru
博 田丸
Keiji Shibata
圭史 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007289604A priority Critical patent/JP4811389B2/en
Publication of JP2008101219A publication Critical patent/JP2008101219A/en
Application granted granted Critical
Publication of JP4811389B2 publication Critical patent/JP4811389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrophilic coating technique which can offer anti-fogging properties with maintaining water resistance and wear resistance without irradiating UV rays from the initial stage after the film-making. <P>SOLUTION: The method comprises coating the surface of a substrate with a hydrophilic coating material composition comprising a silicone resin and an organo-zirconium compound. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、防曇性を有する親水性コーティング材組成物およびその塗装品に関する。   The present invention relates to a hydrophilic coating material composition having antifogging properties and a coated product thereof.

4官能アルコキシドの加水分解物および/または部分加水分解物からなるシリコーンレジンと無機系フィラーとを含む塗料から得られるコーティング膜は、水に対する接触角が低く防曇性を示し、耐摩耗性も高いことが知られている。また、特許文献1によると、塗料を塗布した後に250〜350℃の焼成温度で硬化することでより高い防曇性が得られる。
さらには、シリコーンレジンを主成分とし、光半導体を含有する塗料を塗布、硬化して得られる塗膜においては、以下のような様々な効果が期待でき、各種基材に適用されている。
A coating film obtained from a coating containing a silicone resin composed of a tetrafunctional alkoxide hydrolyzate and / or a partial hydrolyzate and an inorganic filler has a low contact angle with water and exhibits antifogging properties and high wear resistance. It is known. Moreover, according to patent document 1, after apply | coating a coating material, higher anti-fogging property is acquired by hardening at the baking temperature of 250-350 degreeC.
Furthermore, coating films obtained by applying and curing a coating containing a silicone resin as a main component and containing an optical semiconductor can be expected to have the following various effects and are applied to various substrates.

光半導体に励起波長(たとえば、400nm)の光(紫外線)が当たると、有機物を酸化分解することができる活性酸素が発生するため、光半導体を含有する塗料を基材の表面にコーティングした材料には、その表面に付着したカーボン系汚れ成分(たとえば、自動車の排気ガス中に含まれるカーボン留分や、たばこのヤニ等)を分解する自己洗浄効果;アミン化合物、アルデヒド化合物に代表される悪臭成分を分解する消臭効果;大腸菌、黄色ブドウ球菌に代表される菌成分の発生を防ぐ抗菌効果;防かび効果等が期待される。また、光半導体を含有する塗料を基材の表面にコーティングした材料に紫外線が当たると、光半導体がその光触媒作用で、空気中の水分または該材料表面に付着した水分を水酸化ラジカル化し、この水酸化ラジカルが、水をはじく有機物等(該材料表面に付着したものと該材料表面中に含まれるもの)を分解除去することにより、該材料表面に対する水の接触角が低下して該材料表面が水に濡れ(馴染み)やすくなるという親水性(水濡れ性)向上効果もある。この親水性向上効果から、屋内の部材においては、ガラスや鏡が水滴で曇りにくい防曇効果が期待され、屋外部材においては、付着した汚れが雨水によって洗浄される防汚効果が期待される。また、光半導体を含有する塗料を基材表面にコーティングした材料には、光半導体の光触媒作用による帯電防止機能もあり、この機能によっても防汚効果が期待される。
特開2001−146573号公報
When light (ultraviolet light) having an excitation wavelength (for example, 400 nm) hits an optical semiconductor, active oxygen capable of oxidatively decomposing organic matter is generated. Therefore, the surface of the base material is coated with a coating containing the optical semiconductor. Is a self-cleaning effect that decomposes carbon-based soil components adhering to the surface (for example, carbon fractions contained in automobile exhaust gas and cigarette dust); malodorous components typified by amine compounds and aldehyde compounds Deodorizing effect that degrades; antibacterial effect that prevents the generation of bacterial components typified by Escherichia coli and Staphylococcus aureus; In addition, when UV light hits a material coated with a coating containing a photo semiconductor on the surface of the base material, the photo semiconductor acts as a hydroxyl radical on the moisture in the air or on the surface of the material by photocatalysis. Hydroxyl radicals decompose and remove organic substances (such as those attached to the material surface and those contained in the material surface) that repel water, thereby reducing the contact angle of water with the material surface and reducing the surface of the material. There is also an effect of improving hydrophilicity (water wettability), which makes it easy to get wet with water (familiarity). From this hydrophilicity-improving effect, the indoor member is expected to have an anti-fogging effect in which glass and mirrors are not easily fogged by water droplets, and the outdoor member is expected to have an anti-fouling effect in which attached dirt is washed away by rainwater. In addition, a material obtained by coating the surface of a base material with a coating containing an optical semiconductor also has an antistatic function due to the photocatalytic action of the optical semiconductor.
JP 2001-146573 A

ところが、上記の従来技術には、以下のような問題点があった。それは、シリコーンレジンが主に4官能シリコーンレジンから構成されている場合、製膜後初期は親水性が不十分な場合があり、また、光半導体が含有される場合、紫外線が照射されてから光触媒作用が発揮されるまでにある程度の時間がかかるため、製膜後、光触媒作用の効果が発揮されるまでの時間は親水性が得られず、紫外線の当たらない屋内等ではなかなか親水性にならないため、使用しにくかった。また、前記特許文献1の技術では、250〜350℃の温度で焼成することが必要であるため、耐熱性の低い基材に塗布する場合や、建物の外壁に塗布する等の加熱できないような場所に塗布する場合には、適用できないという問題があった。   However, the above prior art has the following problems. That is, when the silicone resin is mainly composed of a tetrafunctional silicone resin, the hydrophilicity may be insufficient in the initial stage after film formation. When a photo-semiconductor is contained, the photocatalyst is applied after irradiation with ultraviolet rays. Since it takes a certain amount of time for the action to be exerted, the time until the effect of the photocatalytic action is exerted after film formation is not hydrophilic, and it is difficult to become hydrophilic in indoor places where there is no exposure to ultraviolet rays. It was difficult to use. Moreover, in the technique of the said patent document 1, since it is necessary to bake at the temperature of 250-350 degreeC, when apply | coating to a base material with low heat resistance, it cannot be heated, such as apply | coating to the outer wall of a building There is a problem that it cannot be applied when applied to a place.

そこで、本発明の課題は、上記従来技術と同等以上の耐水性、耐摩耗性を維持しつつ、製膜後初期より紫外線の照射なしに防曇性を示すことができる親水性コーティング材組成物およびその塗装品を提供することにある。   Accordingly, an object of the present invention is to provide a hydrophilic coating material composition capable of exhibiting antifogging properties without being irradiated with ultraviolet rays from the initial stage after film formation while maintaining water resistance and abrasion resistance equal to or higher than those of the above-described conventional techniques. And providing its paint.

上記課題を解決するため、本発明者は種々検討を重ねた。その結果、シリコーンレジンに下記特定の有機金属化合物を配合すれば、耐水性、耐摩耗性等を低下させずに、塗膜形成初期より紫外線の照射なしに防曇性を示すことができることを実験で確認して、本発明の親水性コーティング組成物および親水性塗装品を完成させた。
本発明において「親水性」とは、初期から親水性に優れていることを意味する。
本発明の請求項1に係る親水性コーティング材組成物は、シリコーンレジンと有機Zr化合物とを含有する。
本発明の請求項2に係る親水性コーティング材組成物は、上記本発明の請求項1に係る親水性コーティング材組成物において、前記有機Zr化合物が、ZrO (ORで表される化合物である。
(ここで、RおよびRは同一または異種の1価の有機基または水素原子を示し、pは1〜4の整数、nは0または1であり、2n+m+p=4である。)
本発明の請求項3に係る親水性コーティング材組成物は、上記本発明の請求項1に係る親水性コーティング材組成物において、前記有機Zr化合物がZr(C5724である。
In order to solve the above problems, the present inventor has made various studies. As a result, if the following specific organometallic compound is blended with the silicone resin, it can be tested that antifogging properties can be exhibited without ultraviolet irradiation from the initial stage of coating formation without reducing water resistance, abrasion resistance, etc. The hydrophilic coating composition and hydrophilic coating product of the present invention were completed.
In the present invention, “hydrophilic” means excellent hydrophilicity from the beginning.
The hydrophilic coating material composition according to claim 1 of the present invention contains a silicone resin and an organic Zr compound.
The hydrophilic coating material composition according to claim 2 of the present invention is the hydrophilic coating material composition according to claim 1 of the present invention, wherein the organic Zr compound is ZrO n R 1 m (OR 2 ) p . It is a compound represented.
(Here, R 1 and R 2 represent the same or different monovalent organic groups or hydrogen atoms, p is an integer of 1 to 4, n is 0 or 1, and 2n + m + p = 4.)
The hydrophilic coating material composition according to claim 3 of the present invention is the hydrophilic coating material composition according to claim 1 of the present invention, wherein the organic Zr compound is Zr (C 5 H 7 O 2 ) 4 . .

本発明の請求項4に係る親水性コーティング材組成物は、上記本発明の請求項1に係る親水性コーティング材組成物において、前記有機Zr化合物が、Zr(OC)(C)(Cである。
本発明の請求項5に係る親水性コーティング材組成物は、上記本発明の請求項1〜4のいずれかに係る親水性コーティング材組成物において、前記有機Zr化合物を親水性コーティング材組成物の全固形分に対し0.1〜30重量%含有する。
本発明の請求項6に係る親水性コーティング材組成物は、上記本発明の請求項1〜5のいずれかに係る親水性コーティング材組成物において、無機系フィラーをも含有する。
The hydrophilic coating material composition according to claim 4 of the present invention is the hydrophilic coating material composition according to claim 1 of the present invention, wherein the organic Zr compound is Zr (OC 4 H 9 ) (C 5 H). 7 O 2 ) (C 6 H 9 O 3 ) 2 .
The hydrophilic coating material composition according to claim 5 of the present invention is the hydrophilic coating material composition according to any one of claims 1 to 4 of the present invention, wherein the organic Zr compound is mixed with the hydrophilic coating material composition. It is contained in an amount of 0.1 to 30% by weight based on the total solid content.
The hydrophilic coating material composition according to claim 6 of the present invention contains the inorganic filler in the hydrophilic coating material composition according to any one of claims 1 to 5 of the present invention.

本発明の請求項7に係る親水性コーティング材組成物は、上記本発明の請求項6に係る親水性コーティング材組成物において、前記無機系フィラーが光半導体である。
本発明の請求項8に係る親水性コーティング材組成物は、上記本発明の請求項7に係る親水性コーティング材組成物において、前記光半導体がアナターゼ型TiOである。
本発明の請求項9に係る親水性塗装品は、基材の表面に、上記本発明の請求項1〜8のいずれかに係る親水性コーティング材組成物の塗布硬化被膜からなる塗装層を備える。
The hydrophilic coating material composition according to claim 7 of the present invention is the hydrophilic coating material composition according to claim 6 of the present invention, wherein the inorganic filler is an optical semiconductor.
The hydrophilic coating material composition according to an eighth aspect of the present invention is the hydrophilic coating material composition according to the seventh aspect of the present invention, wherein the optical semiconductor is anatase TiO 2 .
The hydrophilic coating product according to claim 9 of the present invention includes a coating layer comprising a coating-cured film of the hydrophilic coating material composition according to any one of claims 1 to 8 of the present invention on the surface of the substrate. .

本発明の親水性コーティング材組成物は、製膜後初期より紫外線の照射なしに防曇性を示す。
本発明の親水性塗装品は、上記本発明の親水性コーティング材組成物の塗布硬化被膜からなる塗装層を備えるため、製膜後初期より紫外線の照射なしに防曇性を示す。
The hydrophilic coating material composition of the present invention exhibits antifogging properties without ultraviolet irradiation from the initial stage after film formation.
Since the hydrophilic coated product of the present invention includes a coating layer composed of a coating-cured film of the hydrophilic coating material composition of the present invention described above, it exhibits antifogging properties without ultraviolet irradiation from the initial stage after film formation.

本発明の親水性コーティング材組成物の必須成分の一つであるシリコーンレジンは、バインダー樹脂および造膜成分として用いられる成分である。
シリコーンレジンは、その形態を特に限定されず、たとえば、溶液状のものでも分散液状のもの等でも構わない。
シリコーンレジンは、一般的に下記式(1)〜(3)で示される加水分解性オルガノシランの(部分)加水分解物である。なお、本明細書中、「(部分)加水分解」は「部分加水分解および/または加水分解」を意味する。
Si(OR) (1)
Si(OR) (2)
(RSi(OR) (3)
式(1)〜(3)中のRは1価の炭化水素基であれば特に限定されないが、炭素数1〜8の1価の炭化水素基が好適であり、たとえば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ペプチル基、オクチル基等のアルキル基を例示することができる。これらアルキル基のうち、炭素数が3以上のものについては、n−プロピル基、n−ブチル基等のように直鎖状のものであってもよいし、イソプロピル基、イソブチル基、t−ブチル基等のように分岐を有するものであってもよい。また、式(2)および(3)中のRは、1価の炭化水素基であれば特に限定はされないが、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ペプチル基、オクチル基等のアルキル基の他に、例えばγ−グリシドキシプロピル基等も例示される。
Silicone resin, which is one of the essential components of the hydrophilic coating material composition of the present invention, is a component used as a binder resin and a film-forming component.
The form of the silicone resin is not particularly limited, and may be, for example, a solution or a dispersion.
The silicone resin is a (partial) hydrolyzate of a hydrolyzable organosilane generally represented by the following formulas (1) to (3). In the present specification, “(partial) hydrolysis” means “partial hydrolysis and / or hydrolysis”.
Si (OR) 4 (1)
R 1 Si (OR) 3 (2)
(R 1 ) 2 Si (OR) 2 (3)
R in the formulas (1) to (3) is not particularly limited as long as it is a monovalent hydrocarbon group, but is preferably a monovalent hydrocarbon group having 1 to 8 carbon atoms, such as a methyl group or an ethyl group. And alkyl groups such as propyl group, butyl group, pentyl group, hexyl group, peptyl group and octyl group. Among these alkyl groups, those having 3 or more carbon atoms may be linear such as n-propyl group, n-butyl group, etc., isopropyl group, isobutyl group, t-butyl group. It may have a branch such as a group. R 1 in the formulas (2) and (3) is not particularly limited as long as it is a monovalent hydrocarbon group, but is not limited to methyl, ethyl, propyl, butyl, pentyl, hexyl, peptyl. In addition to alkyl groups such as a group and octyl group, for example, γ-glycidoxypropyl group and the like are also exemplified.

式(1)で表される加水分解性オルガノシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラ−t−ブトキシシランなどが例示される。
式(2)で表される加水分解性オルガノシランとしては、γ−グリシドキシプロピルトリメトキシシランなどが例示される。
式(3)で表される加水分解性オルガノシランとしては、γ−グリシドキシプロピルメチルジメトキシシランなどが例示される。
加水分解性オルガノシランは、1種のみを用いてもよいし、2種以上を併用してもよい。
Examples of the hydrolyzable organosilane represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, and tetra-t-butoxysilane.
Examples of the hydrolyzable organosilane represented by the formula (2) include γ-glycidoxypropyltrimethoxysilane.
Examples of the hydrolyzable organosilane represented by the formula (3) include γ-glycidoxypropylmethyldimethoxysilane.
Only one type of hydrolyzable organosilane may be used, or two or more types may be used in combination.

シリコーンレジンは、たとえば、加水分解性オルガノシランに硬化剤としての水および必要に応じて触媒等を必要量添加して、(部分)加水分解を行わせてプレポリマー化させることにより、調製することができる。
シリコーンレジンは、たとえば、加水分解性オルガノシランに硬化剤としての水および必要に応じて触媒等を必要量添加して、(部分)加水分解を行わせてプレポリマー化させることにより、調製することができる。
加水分解性オルガノシランを(部分)加水分解する際に用いられる水の量は、特に限定はされないが、たとえば、加水分解性オルガノシランの有する加水分解性基(OR)に対する水(H2O)のモル当量比(H2O/OR)で示せば、好ましくは0.3〜5、より好ましくは0.35〜4、さらに好ましくは0.4〜3.5の範囲である。上記モル当量比が0.3未満であると、加水分解が十分進行せず、硬化被膜が脆くなる恐れがあり、5を超えると、得られるシリコーンレンジが短時間でゲル化する傾向があるため、貯蔵安定性が低下する恐れがある。
A silicone resin is prepared by, for example, adding a necessary amount of water as a curing agent and, if necessary, a catalyst or the like to a hydrolyzable organosilane, and performing (partial) hydrolysis to make a prepolymer. Can do.
A silicone resin is prepared by, for example, adding a necessary amount of water as a curing agent and, if necessary, a catalyst or the like to a hydrolyzable organosilane, and performing (partial) hydrolysis to make a prepolymer. Can do.
The amount of water used for hydrolyzing the hydrolyzable organosilane is not particularly limited. For example, water (H 2 O) relative to the hydrolyzable group (OR) of the hydrolyzable organosilane. The molar equivalent ratio (H 2 O / OR) is preferably 0.3 to 5, more preferably 0.35 to 4, and still more preferably 0.4 to 3.5. If the molar equivalent ratio is less than 0.3, hydrolysis does not proceed sufficiently and the cured coating may become brittle. If it exceeds 5, the resulting silicone range tends to gel in a short time. , Storage stability may be reduced.

また加水分解性オルガノシランを(部分)加水分解する際に必要に応じて用いられる触媒としては、特に限定はされないが、製造工程にかかる時間を短縮する点から、酸性触媒が好ましい。酸性触媒としては、特に限定はされないが、たとえば、酢酸、クロロ酢酸、クエン酸、安息香酸、ジメチルマロン酸、蟻酸、プロピオン酸、グルタール酸、グリコール酸、マレイン酸、マロン酸、トルエンスルホン酸、シュウ酸などの有機酸;塩酸、硝酸、ハロゲン化シラン等の無機酸;酸性コロイダルシリカ、酸化チタニアゾル等の酸性ゾル状フィラー等が挙げられ、これらを1種または2種以上使用することができる。
加水分解性オルガノシランの(部分)加水分解は、必要に応じ、加温(たとえば、40〜100℃に加熱)して行っても良い。
Further, the catalyst used as necessary when (partially) hydrolyzing the hydrolyzable organosilane is not particularly limited, but an acidic catalyst is preferable from the viewpoint of shortening the time required for the production process. The acidic catalyst is not particularly limited. For example, acetic acid, chloroacetic acid, citric acid, benzoic acid, dimethylmalonic acid, formic acid, propionic acid, glutaric acid, glycolic acid, maleic acid, malonic acid, toluenesulfonic acid, Examples include organic acids such as acids; inorganic acids such as hydrochloric acid, nitric acid, and halogenated silane; acidic sol-like fillers such as acidic colloidal silica and oxidized titania sol. These can be used alone or in combination of two or more.
The (partial) hydrolysis of the hydrolyzable organosilane may be performed by heating (for example, heating to 40 to 100 ° C.) as necessary.

加水分解性オルガノシランの(部分)加水分解は、必要に応じ、加水分解性オルガノシランを適当な溶媒で希釈して行ってよい。そのような希釈溶媒(反応溶媒)としては、特に限定はされないが、たとえば、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等の低級脂肪族アルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体;ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコール誘導体;およびジアセトンアルコール等を挙げることができ、これらからなる群より選ばれた1種もしくは2種以上のものを使用することができる。これらの親水性有機溶媒と併用して、トルエン、キシレン、ヘキサン、ヘプタン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、メチルエチルケトオキシム等の1種もしくは2種以上も用いることができる。   The (partial) hydrolysis of the hydrolyzable organosilane may be carried out by diluting the hydrolyzable organosilane with an appropriate solvent, if necessary. Such a diluting solvent (reaction solvent) is not particularly limited. For example, lower aliphatic alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol; ethylene glycol, ethylene glycol monobutyl ether, ethylene acetate Examples include ethylene glycol derivatives such as glycol monoethyl ether; diethylene glycol derivatives such as diethylene glycol and diethylene glycol monobutyl ether; and diacetone alcohol. One or more selected from the group consisting of these are used. be able to. In combination with these hydrophilic organic solvents, one or more of toluene, xylene, hexane, heptane, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl ethyl ketoxime and the like can be used.

本発明で用いられるシリコーンレジンの重量平均分子量(Mw)は、特に限定されるものではないが、ポリスチレン換算で500〜1000の範囲が好ましい。500未満の場合はシリコーンレジンが不安定であったり、1000より大きい場合はコーティング膜が十分な硬度を保てない等の不都合がある。
本発明の親水性コーティング材組成物は、上記シリコーンレジンに加え、さらに有機Zr化合物を必須成分として含む。有機Zr化合物は、脱水・脱アルコールによる縮合反応を促進し、塗膜の架橋密度を高めたり、基材との密着性を向上させる効果や、膜を硬くする効果、さらには疎水、耐水、耐アルカリ効果等を有する。
Although the weight average molecular weight (Mw) of the silicone resin used by this invention is not specifically limited, The range of 500-1000 is preferable in polystyrene conversion. If it is less than 500, the silicone resin is unstable, and if it is more than 1000, the coating film cannot maintain sufficient hardness.
The hydrophilic coating material composition of the present invention further contains an organic Zr compound as an essential component in addition to the silicone resin. The organic Zr compound promotes the condensation reaction by dehydration and dealcoholization, increases the cross-linking density of the coating film, improves the adhesion to the base material, hardens the film, and further has hydrophobic, water and water resistance. Has an alkali effect and the like.

有機Zr化合物としては、
ZrO (OR
(ここで、RおよびRは同一または異種の1価の有機基または水素原子を示し、pは1〜4の整数、nは0または1であり、2n+m+p=4である。)
で表される化合物が好ましく用いられる。特にZr(OC(C)およびZr(OC)(C)(Cを使用した場合は、塗料の塗布後に室温で乾燥を行った場合でも、300℃程度で焼成を行った場合と同等に初期より高い防曇性を示す。
As an organic Zr compound,
ZrO n R 1 m (OR 2 ) p
(Here, R 1 and R 2 represent the same or different monovalent organic groups or hydrogen atoms, p is an integer of 1 to 4, n is 0 or 1, and 2n + m + p = 4.)
Is preferably used. Especially when Zr (OC 4 H 9 ) 3 (C 5 H 7 O 2 ) and Zr (OC 4 H 9 ) (C 5 H 7 O 2 ) (C 6 H 9 O 3 ) 2 are used, Even when drying is performed at room temperature after coating, the antifogging property is higher than that in the initial stage in the same manner as when baking is performed at about 300 ° C.

有機Zr化合物の含有量としては、親水性コーティング材組成物の全固形分に対し0.1〜30重量%であることが好ましい。0.1重量%未満では添加効果が見られない場合があり、30重量%を越えるとコーティング材のゲル化や凝集が起こるおそれがある。
本発明の親水性コーティング材組成物は、必要に応じ、フィラーをも含有していてもよい。フィラーとしては、特に限定はされず、例えば、シリカ、アルミナ、光半導体等の無機酸化物等の無機系フィラー;カーボンブラック等の有機系フィラー等、公知のものを使用できる。これらの中でも、無機系フィラーが、耐溶剤性・耐酸性等の化学的安定性、シリコーンレジン中への分散性、硬化被膜の耐摩耗性等の点から特に好ましい。フィラーは、1種のみ用いてもよいし、2種以上併用してもよい。
The content of the organic Zr compound is preferably 0.1 to 30% by weight with respect to the total solid content of the hydrophilic coating material composition. If the amount is less than 0.1% by weight, the effect of addition may not be observed. If the amount exceeds 30% by weight, the coating material may be gelled or aggregated.
The hydrophilic coating material composition of the present invention may also contain a filler, if necessary. The filler is not particularly limited, and for example, known fillers such as silica, alumina, inorganic fillers such as inorganic oxides such as optical semiconductors, and organic fillers such as carbon black can be used. Among these, inorganic fillers are particularly preferable from the viewpoints of chemical stability such as solvent resistance and acid resistance, dispersibility in a silicone resin, and abrasion resistance of a cured film. Only 1 type of filler may be used and it may use 2 or more types together.

前記無機系フィラーとして用いられるシリカの形態としては、特に限定はされず、例えば、粉体の形でもゾル状の形(コロイダルシリカ)でもよい。上記コロイダルシリカとしては、特に限定はされないが、たとえば、水分散性あるいはアルコール等の非水系の有機溶媒分散性コロイダルが使用できる。一般に、このようなコロイダルシリカは、固形分としてのシリカを20〜50重量%含有しており、この値からシリカ配合量を決定できる。なお、水分散性コロイダルシリカを使用する場合には、同コロイダルシリカ中に固形分以外の成分として存在する水は、加水分解性オルガノシランの(部分)加水分解に使用できる((部分)加水分解の際の水の使用量に加算される)。水分散性コロイダルシリカは、通常、水ガラスから作られるが、市販品として容易に入手することができる。また、有機溶媒分散性コロイダルシリカは、前記水分散性コロイダルシリカの水を有機溶媒と置換することで容易に調製することができる。このような有機溶媒分散性コロイダルシリカも水分散性コロイダルシリカと同様に市販品として容易に入手できる。有機溶媒分散性コロイダルシリカにおいて、コロイダルシリカが分散している有機溶媒の種類は、特に限定はされないが、たとえば、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等の低級脂肪族アルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体;ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコール誘導体;およびジアセトンアルコール等を挙げることができ、これらからなる群より選ばれた1種もしくは2種以上のものを使用することができる。これらの親水性有機溶媒と併用して、トルエン、キシレン、ヘキサン、ヘプタン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、メチルエチルケトオキシム等の1種もしくは2種以上も使用することができる。   The form of silica used as the inorganic filler is not particularly limited, and may be, for example, a powder form or a sol form (colloidal silica). Although it does not specifically limit as said colloidal silica, For example, non-aqueous organic-solvent dispersoid colloids, such as water dispersibility or alcohol, can be used. Generally, such colloidal silica contains 20 to 50% by weight of silica as a solid content, and the amount of silica can be determined from this value. When water-dispersible colloidal silica is used, water present as a component other than solid content in the colloidal silica can be used for (partial) hydrolysis of hydrolyzable organosilane ((partial) hydrolysis. In addition to the amount of water used during The water-dispersible colloidal silica is usually made from water glass, but can be easily obtained as a commercial product. The organic solvent-dispersible colloidal silica can be easily prepared by replacing the water of the water-dispersible colloidal silica with an organic solvent. Such an organic solvent-dispersible colloidal silica can be easily obtained as a commercial product in the same manner as the water-dispersible colloidal silica. In the organic solvent-dispersible colloidal silica, the type of the organic solvent in which the colloidal silica is dispersed is not particularly limited. For example, lower aliphatic alcohols such as methanol, ethanol, isopropanol, n-butanol, and isobutanol; ethylene Examples include ethylene glycol derivatives such as glycol, ethylene glycol monobutyl ether, and ethylene glycol monoethyl ether; diethylene glycol derivatives such as diethylene glycol and diethylene glycol monobutyl ether; and diacetone alcohol. One kind selected from the group consisting of these Alternatively, two or more types can be used. In combination with these hydrophilic organic solvents, one or more of toluene, xylene, hexane, heptane, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl ethyl ketoxime and the like can be used.

本発明の親水性コーティング材組成物は、後で述べる光触媒効果による各種機能を得るとともに、形成される塗膜の表面親水性を、光触媒効果でさらに高くしたり長期間維持させたりするために、前記無機系フィラーとして光半導体を含むことが好ましい。
光半導体としては、特に限定はされないが、たとえば、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化ルテニウム、酸化ゲルマニウム、酸化鉛、酸化カドミウム、酸化銅、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化マンガン、酸化コバルト、酸化ロジウム、酸化ニッケル、酸化レニウム等の金属酸化物の他、チタン酸ストロンチウム等が挙げられる。これらの中でも、上記金属酸化物が、実用的に容易に利用可能な点で好ましく、金属酸化物の中でも特に酸化チタンが、その光触媒性能、硬化促進性能、安全性、入手の容易さおよびコストの面で好ましい。なお、酸化チタンを光半導体として用いる場合は、結晶型がアナタース型(アナターゼ型)であるものを用いる方が、光触媒性能および硬化促進性能が最も強く、しかも長期間発現するとともに、光触媒性能および硬化促進性能がより短時間で発現する点で好ましい。
The hydrophilic coating material composition of the present invention obtains various functions by the photocatalytic effect described later, and further increases the surface hydrophilicity of the formed coating film by the photocatalytic effect or maintains it for a long period of time. It is preferable that an optical semiconductor is included as the inorganic filler.
The optical semiconductor is not particularly limited. For example, titanium oxide, zinc oxide, tin oxide, iron oxide, zirconium oxide, tungsten oxide, chromium oxide, molybdenum oxide, ruthenium oxide, germanium oxide, lead oxide, cadmium oxide, and oxide. In addition to metal oxides such as copper, vanadium oxide, niobium oxide, tantalum oxide, manganese oxide, cobalt oxide, rhodium oxide, nickel oxide and rhenium oxide, strontium titanate and the like can be given. Among these, the metal oxide is preferable in terms of practical and easy use, and titanium oxide is particularly preferable among the metal oxides because of its photocatalytic performance, curing acceleration performance, safety, availability, and cost. In terms of surface. When titanium oxide is used as an optical semiconductor, the one with a crystal type of anatase type (anatase type) has the strongest photocatalytic performance and curing acceleration performance, and it develops for a long period of time. This is preferable in that the acceleration performance is manifested in a shorter time.

光半導体は、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。
なお、光半導体の原料となるものも、最終的に光半導体の性質を示す物であれば使用可能である。
光半導体に励起波長(たとえば、400nm)の光(紫外線)が当たると活性酸素が発生することは公知である。活性酸素は有機物を酸化して分解することができるため、光半導体を含有するコーティング材組成物を基材の表面にコーティングした材料には、その表面に付着したカーボン系汚れ成分(たとえば、自動車の排気ガス中に含まれるカーボン留分や、たばこのヤニ等)を分解する自己洗浄効果;アミン化合物、アルデヒド化合物に代表される悪臭成分を分解する消臭効果;大腸菌、黄色ブドウ球菌に代表される菌成分の発生を防ぐ抗菌効果;防かび効果等が期待される。また、光半導体を含有するコーティング材組成物を基材の表面にコーティングした材料に紫外線が当たると、光半導体がその光触媒作用で、空気中の水分または該材料表面に付着した水分を水酸化ラジカル化し、この水酸化ラジカルが、水をはじく有機物等(該材料表面に付着したものと該材料表面中に含まれるもの)を分解除去することにより、該材料表面に対する水の接触角が低下して該材料表面が水に濡れ(馴染み)やすくなるという親水性(水濡れ性)向上効果もある。この親水性向上効果から、屋内の部材においては、ガラスや鏡が水滴で曇りにくい防曇効果が期待され、屋外部材においては、付着した汚れが雨水によって洗浄される防汚効果が期待される。さらには、光半導体の光触媒作用による帯電防止機能もあり、この機能によっても防汚効果がさらに向上する。
Only one type of optical semiconductor may be used, or two or more types may be used in combination.
In addition, what becomes the raw material of an optical semiconductor can be used if it finally shows the property of an optical semiconductor.
It is known that active oxygen is generated when light (ultraviolet light) having an excitation wavelength (for example, 400 nm) hits an optical semiconductor. Since active oxygen can oxidize and decompose organic substances, carbon-based soil components (for example, automobiles) attached to the surface of the substrate coated with a coating material composition containing an optical semiconductor are coated on the surface of the substrate. Self-cleaning effect for decomposing carbon fractions and cigarettes contained in exhaust gas; Deodorizing effect for degrading malodorous components typified by amine compounds and aldehyde compounds; typified by Escherichia coli and Staphylococcus aureus Antibacterial effect to prevent the generation of fungal components; In addition, when ultraviolet light is applied to the material coated with the coating material composition containing the optical semiconductor on the surface of the base material, the optical semiconductor uses its photocatalytic action to convert moisture in the air or moisture attached to the surface of the material to hydroxyl radicals. This hydroxyl radical decomposes and removes organic substances (such as those attached to the material surface and those contained in the material surface) that repel water, thereby reducing the contact angle of water with the material surface. There is also an effect of improving hydrophilicity (water wettability) that the surface of the material is easily wetted (familiar) with water. From this hydrophilicity-improving effect, the indoor member is expected to have an anti-fogging effect in which glass and mirrors are not easily fogged by water droplets, and the outdoor member is expected to have an anti-fouling effect in which attached dirt is washed away by rainwater. Furthermore, there is an antistatic function by the photocatalytic action of the optical semiconductor, and this function further improves the antifouling effect.

上記フィラーは、粉末、微粒子粉末、溶液分散ゾル粒子等、コーティング材組成物に分散可能なものであれば、いかなる形態のものでも構わないが、ゾル状、特にpH7以下のゾル状であれば、硬化がより短時間で進み、使用する上で利便性に優れる。
使用される分散媒としては、フィラーを均一に分散させることのできるものであれば特に限定はされず、水系、非水系のいずれの溶媒も用いることができる。
水系溶剤としては、特に限定はされないが、たとえば、水単独の他、親水性有機溶媒(たとえば、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等の低級脂肪族アルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体;ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコール誘導体;ジアセトンアルコール等)の少なくとも1種と水との混合溶媒を用いることができる。これらの水系溶媒の中でも、水−メタノール混合溶媒が、フィラーの分散安定性と、塗布後の分散媒の乾燥性の点で好ましい。さらに、水系のゾルを用いることにより、これに、加水分解性オルガノシランの(部分)加水分解時の酸性触媒の機能を兼ねさせることもできる。
The filler may be in any form as long as it is dispersible in the coating material composition, such as powder, fine particle powder, solution-dispersed sol particles, etc. Curing proceeds in a shorter time, and is more convenient for use.
The dispersion medium to be used is not particularly limited as long as the filler can be uniformly dispersed, and any aqueous or non-aqueous solvent can be used.
The aqueous solvent is not particularly limited. For example, in addition to water alone, hydrophilic organic solvents (for example, lower aliphatic alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol; ethylene glycol, ethylene glycol) A mixed solvent of at least one of ethylene glycol derivatives such as monobutyl ether and ethylene glycol monoethyl ether; diethylene glycol derivatives such as diethylene glycol and diethylene glycol monobutyl ether; diacetone alcohol and the like) and water can be used. Among these aqueous solvents, a water-methanol mixed solvent is preferable in view of dispersion stability of the filler and drying property of the dispersion medium after coating. Furthermore, by using an aqueous sol, it can also serve as an acidic catalyst function during (partial) hydrolysis of the hydrolyzable organosilane.

フィラーの分散媒として使用可能な非水系溶媒としては、特に限定はされないが、たとえば、上記親水性有機溶媒と、トルエン、キシレン等の疎水性有機溶媒とからなる群の中から選ばれた少なくとも1種の有機溶媒を用いることができる。これらの非水系溶媒の中でも、メタノールが、フィラーの分散安定性と、塗布後の分散媒の乾燥性の点で好ましい。
フィラーを分散媒中に均一に分散させる方法としては、特に限定されるものではなく、たとえば、ホモジナイザー、ディスパー、ペイントシェーカー、ビーズミル等を用いた通常の各種分散方法を用いることができる。
The non-aqueous solvent that can be used as the filler dispersion medium is not particularly limited. For example, at least one selected from the group consisting of the above hydrophilic organic solvents and hydrophobic organic solvents such as toluene and xylene. Various organic solvents can be used. Among these non-aqueous solvents, methanol is preferable in terms of the dispersion stability of the filler and the drying property of the dispersion medium after coating.
The method for uniformly dispersing the filler in the dispersion medium is not particularly limited, and for example, various ordinary dispersion methods using a homogenizer, a disper, a paint shaker, a bead mill and the like can be used.

本発明の親水性コーティング材組成物を製造する方法は、特に限定はされず、各成分を通常の方法および装置等を用いて混合すればよい。
本発明の親水性塗装品は、基材の表面に、本発明の親水性コーティング組成物の塗布硬化被膜からなる塗装層を備えたものである。
本発明の親水性コーティング材組成物を塗布する方法は、特に限定されるものではなく、たとえば、刷毛塗り、スプレーコート、浸漬(ディッピング、ディップコートとも言う)、ロールコート、フローコート(基材の被塗装部位の上部から塗料を流して塗装する流し塗り塗装法)、カーテンコート、ナイフコート、スピンコート、バーコート等の通常の各種塗布方法を選択することができる。
The method for producing the hydrophilic coating material composition of the present invention is not particularly limited, and each component may be mixed using a normal method and apparatus.
The hydrophilic coated product of the present invention is provided with a coating layer made of a coated and cured film of the hydrophilic coating composition of the present invention on the surface of a substrate.
The method for applying the hydrophilic coating material composition of the present invention is not particularly limited. For example, brush coating, spray coating, dipping (also referred to as dipping or dip coating), roll coating, flow coating (of the substrate) Various usual coating methods such as a flow coating method in which a coating material is poured from the upper part of the coating site, curtain coating, knife coating, spin coating, bar coating, and the like can be selected.

本発明の親水性コーティング材組成物の塗膜の硬化方法については、公知の方法を用いればよく、特に限定はされない。また、硬化の際の温度も特に限定はされず、所望される硬化被膜性能や、フィラーや基材の耐熱性等に応じて常温〜加熱温度の広い範囲をとることができる。
本発明の親水性コーティング材組成物が塗布される基材(本発明の親水性塗装品に用いられる基材でもある)としては、有機、無機を問わず、各種基材を用いることができ、特に限定はされないが、たとえば、ガラス、金属、プラスチック等が挙げられる。これらの基材は、塗装の際に塗膜を均一に形成できるようにするため、または、塗膜との密着性を向上させるために、前洗浄しておくと良い。その方法としては、特に限定はされないが、たとえば、アルカリ洗浄、ふっ化アンモニウム洗浄、プラズマ洗浄、UV洗浄等が挙げられる。
About the hardening method of the coating film of the hydrophilic coating material composition of this invention, a well-known method should just be used and it does not specifically limit. Further, the temperature at the time of curing is not particularly limited, and can range from a room temperature to a heating temperature depending on the desired cured film performance, the heat resistance of the filler and the substrate, and the like.
As a substrate to which the hydrophilic coating material composition of the present invention is applied (which is also a substrate used in the hydrophilic coating product of the present invention), various substrates can be used regardless of organic or inorganic, Although it does not specifically limit, For example, glass, a metal, a plastic etc. are mentioned. These base materials are preferably pre-cleaned so that a coating film can be formed uniformly during coating, or in order to improve adhesion to the coating film. The method is not particularly limited, and examples thereof include alkali cleaning, ammonium fluoride cleaning, plasma cleaning, and UV cleaning.

以下、実施例および比較例によって本発明を詳細に説明する。実施例および比較例中、特に断らない限り、「部」はすべて「重量部」を、「%」はすべて「重量%」を表す。また、分子量はGPC(ゲルパーミエーションクロマトグラフィー)により、測定機種として東ソー(株)のHLC8020を用いて、標準ポリスチレンで検量線を作成し、その換算値として測定したものである。なお、本発明は、下記の実施例に限定されない。
<実施例1>
テトラエトキシシラン208部にメタノール356部を加え、さらに水18部および0.01Nの塩酸18部を混合し、ディスパーを用いてよく混合することにより、コーティング溶液を得た。得られた液を60℃恒温槽中で2時間加熱して重量平均分子量を950に調製することにより、シリコーンレジン(A)を得た。
Hereinafter, the present invention will be described in detail by examples and comparative examples. In Examples and Comparative Examples, unless otherwise specified, “parts” all represent “parts by weight” and “%” all represent “% by weight”. Further, the molecular weight is measured by GPC (gel permeation chromatography), using a standard polystyrene with a calibration curve using HLC8020 manufactured by Tosoh Corporation as a measurement model, and measuring the converted value. The present invention is not limited to the following examples.
<Example 1>
A coating solution was obtained by adding 356 parts of methanol to 208 parts of tetraethoxysilane, mixing 18 parts of water and 18 parts of 0.01N hydrochloric acid, and mixing well using a disper. The obtained liquid was heated in a constant temperature bath at 60 ° C. for 2 hours to adjust the weight average molecular weight to 950, thereby obtaining a silicone resin (A).

次に、このシリコーンレジン(A)に、フィラー成分(光半導体)として酸化チタン水ゾル(固形分21%、平均一次粒子径20nm)を光半導体/全シリコーンレジン(縮合化合物換算)の固形分基準で重量比が1.0となるように添加し、全固形分が5%になるようメタノールで希釈して基本コーティング材を得た。これに有機Zr化合物としてZr(OC(C)を、基本コーティング材固形分に対し1%添加することにより、親水性コーティング材組成物を得た。
これを1時間放置した後にスピンコータによりガラス基材に塗装し、300℃で焼成することにより、親水性塗装品を作製した。
Next, a titanium oxide water sol (solid content: 21%, average primary particle size: 20 nm) is added to the silicone resin (A) as a filler component (photo semiconductor) based on the solid content of the photo semiconductor / total silicone resin (condensed compound equivalent). Was added so that the weight ratio was 1.0, and diluted with methanol so that the total solid content was 5% to obtain a basic coating material. A hydrophilic coating material composition was obtained by adding 1% of Zr (OC 4 H 9 ) 3 (C 5 H 7 O 2 ) as an organic Zr compound to the basic coating material solid content.
This was left to stand for 1 hour, and then coated on a glass substrate with a spin coater and baked at 300 ° C. to prepare a hydrophilic coated product.

<実施例2>
実施例1において、有機Zr化合物としてZr(OC)(C)(Cを添加する以外は実施例1と同様の操作を行って親水性コーティング材組成物を得た。次いで、この親水性コーティング材組成物を用い、実施例1と同様の方法で親水性塗装品を作製した。
<実施例3>
実施例1において、有機Zr化合物の添加量を基本コーティング材固形分に対し20%とする以外は実施例1と同様の操作を行って親水性コーティング材組成物を得た。次いで、この親水性コーティング材組成物を用い、実施例1と同様の方法で親水性塗装品を作製した。
<Example 2>
In Example 1, the same operation as in Example 1 was carried out except that Zr (OC 4 H 9 ) (C 5 H 7 O 2 ) (C 6 H 9 O 3 ) 2 was added as the organic Zr compound to make it hydrophilic. A coating material composition was obtained. Next, using this hydrophilic coating material composition, a hydrophilic coated product was produced in the same manner as in Example 1.
<Example 3>
In Example 1, a hydrophilic coating material composition was obtained in the same manner as in Example 1 except that the amount of the organic Zr compound added was 20% based on the solid content of the basic coating material. Next, using this hydrophilic coating material composition, a hydrophilic coated product was produced in the same manner as in Example 1.

<実施例4>
実施例2において、有機Zr化合物の添加量を基本コーティング材固形分に対し20%とする以外は実施例2と同様の操作を行って親水性コーティング材組成物を得た。次いで、この親水性コーティング材組成物を用い、実施例2と同様の方法で親水性塗装品を作製した。
<実施例5>
実施例3において、乾燥温度を30℃とする以外は実施例3と同様の操作を行って親水性コーティング材組成物を得た。次いで、この親水性コーティング材組成物を用い、実施例3と同様の方法で親水性塗装品を作製した。
<Example 4>
In Example 2, a hydrophilic coating material composition was obtained in the same manner as in Example 2 except that the amount of the organic Zr compound added was 20% based on the solid content of the basic coating material. Subsequently, using this hydrophilic coating material composition, a hydrophilic coated product was produced in the same manner as in Example 2.
<Example 5>
In Example 3, a hydrophilic coating material composition was obtained by performing the same operation as in Example 3 except that the drying temperature was 30 ° C. Subsequently, using this hydrophilic coating material composition, a hydrophilic coated product was produced in the same manner as in Example 3.

<実施例6>
実施例1において、フィラー成分としてシリカメタノールゾル(商品名:メタノールシリカゾル、日産化学工業製、粒径10〜20nm)をフィラー/全シリコーンレジン(縮合化合物換算)の固形分基準で重量比が0.25となるよう添加する以外は実施例1と同様の操作を行って親水性コーティング材組成物を得た。次いで、この親水性コーティング材組成物を用い、実施例1と同様の方法で親水性塗装品を作製した。
<比較例1>
実施例1において、基本コーティング材に有機Zr化合物を添加せずに該基本コーティング材をガラス基材に塗装する以外は実施例1と同様の方法で塗装品を作製した。
<Example 6>
In Example 1, silica methanol sol (trade name: methanol silica sol, manufactured by Nissan Chemical Industries, particle size 10 to 20 nm) was used as a filler component with a weight ratio of 0. 0 based on the solid content of filler / total silicone resin (condensed compound equivalent). A hydrophilic coating material composition was obtained in the same manner as in Example 1 except that the amount was 25. Next, using this hydrophilic coating material composition, a hydrophilic coated product was produced in the same manner as in Example 1.
<Comparative Example 1>
In Example 1, a coated product was produced in the same manner as in Example 1 except that the basic coating material was coated on the glass substrate without adding the organic Zr compound to the basic coating material.

<比較例2>
実施例5において、基本コーティング材に有機Zr化合物を添加せずに該基本コーティング材をガラス基材に塗装する以外は実施例5と同様の方法で塗装品を作製した。
<比較例3>
実施例6において、基本コーティング材に有機Zr化合物を添加せずに該基本コーティング材をガラス基材に塗装する以外は実施例6と同様の方法で塗装品を作製した。
[塗膜性能の評価]
以上のようにして得られた塗装品の塗膜性能を以下の方法で評価した。
<Comparative example 2>
In Example 5, a coated article was produced in the same manner as in Example 5 except that the basic coating material was coated on the glass substrate without adding the organic Zr compound to the basic coating material.
<Comparative Example 3>
In Example 6, a coated product was prepared in the same manner as in Example 6 except that the basic coating material was coated on the glass substrate without adding the organic Zr compound to the basic coating material.
[Evaluation of coating film performance]
The coating film performance of the coated product obtained as described above was evaluated by the following method.

(水との接触角)
塗膜形成後、紫外線があたらない状況下で室温まで十分冷却し、水との接触角を計測した。
評価結果を表1に示す。
(Contact angle with water)
After forming the coating film, it was sufficiently cooled to room temperature under the condition where it was not exposed to ultraviolet rays, and the contact angle with water was measured.
The evaluation results are shown in Table 1.

Figure 2008101219
Figure 2008101219

表1にみるように、実施例1〜6ではいずれも接触角が10゜未満であった。これに対して有機Zr化合物を使用しなかった比較例1〜3では、接触角が30゜を越えるものであった。このことより、有機Zr化合物を使用することにより、塗膜形成直後から優れた防曇性を示すことがわかる。   As seen in Table 1, in each of Examples 1 to 6, the contact angle was less than 10 °. On the other hand, in Comparative Examples 1 to 3 in which no organic Zr compound was used, the contact angle exceeded 30 °. From this, it can be seen that by using the organic Zr compound, excellent antifogging properties are exhibited immediately after the coating film is formed.

Claims (9)

シリコーンレジンと有機Zr化合物とを含有する親水性コーティング材組成物。   A hydrophilic coating material composition comprising a silicone resin and an organic Zr compound. 前記有機Zr化合物が、ZrO (ORで表される化合物である、請求項1に記載の親水性コーティング材組成物。
(ここで、RおよびRは同一または異種の1価の有機基または水素原子を示し、pは1〜4の整数、nは0または1であり、2n+m+p=4である。)
The hydrophilic coating material composition according to claim 1, wherein the organic Zr compound is a compound represented by ZrO n R 1 m (OR 2 ) p .
(Here, R 1 and R 2 represent the same or different monovalent organic groups or hydrogen atoms, p is an integer of 1 to 4, n is 0 or 1, and 2n + m + p = 4.)
前記有機Zr化合物が、前記ZrO (ORで表される化合物が、Zr(OC(C)である、請求項1に記載の親水性コーティング材組成物。 The hydrophilic property according to claim 1, wherein the organic Zr compound is a compound represented by ZrO n R 1 m (OR 2 ) p is Zr (OC 4 H 9 ) 3 (C 5 H 7 O 2 ). Coating material composition. 前記有機Zr化合物が、Zr(OC)(C)(Cである、請求項1に記載の親水性コーティング材組成物。 The hydrophilic coating material composition according to claim 1, wherein the organic Zr compound is Zr (OC 4 H 9 ) (C 5 H 7 O 2 ) (C 6 H 9 O 3 ) 2 . 前記有機Zr化合物を親水性コーティング材組成物の全固形分に対し0.1〜30重量%含有する、請求項1から4までのいずれかに記載の親水性コーティング材組成物。   The hydrophilic coating material composition in any one of Claim 1 to 4 which contains the said organic Zr compound 0.1 to 30weight% with respect to the total solid of a hydrophilic coating material composition. 無機系フィラーをも含有する請求項1から5までのいずれかに記載の親水性コーティング材組成物。   The hydrophilic coating material composition according to any one of claims 1 to 5, which also contains an inorganic filler. 前記無機系フィラーが光半導体である、請求項6に記載の親水性コーティング材組成物。   The hydrophilic coating material composition according to claim 6, wherein the inorganic filler is an optical semiconductor. 前記光半導体がアナターゼ型TiOである、請求項7に記載の親水性コーティング材組成物。 The hydrophilic coating material composition according to claim 7, wherein the optical semiconductor is anatase TiO 2 . 基材の表面に、請求項1から8までのいずれかに記載の親水性コーティング材組成物の塗布硬化被膜からなる塗装層を備えた親水性塗装品。

A hydrophilic coated product comprising a coating layer comprising a coating film of the hydrophilic coating material composition according to any one of claims 1 to 8 on the surface of a substrate.

JP2007289604A 2007-11-07 2007-11-07 How to add antifogging properties Expired - Fee Related JP4811389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007289604A JP4811389B2 (en) 2007-11-07 2007-11-07 How to add antifogging properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289604A JP4811389B2 (en) 2007-11-07 2007-11-07 How to add antifogging properties

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001239679A Division JP2003049117A (en) 2001-08-07 2001-08-07 Hydrophilic coating composition and its coated article

Publications (2)

Publication Number Publication Date
JP2008101219A true JP2008101219A (en) 2008-05-01
JP4811389B2 JP4811389B2 (en) 2011-11-09

Family

ID=39435774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289604A Expired - Fee Related JP4811389B2 (en) 2007-11-07 2007-11-07 How to add antifogging properties

Country Status (1)

Country Link
JP (1) JP4811389B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07175715A (en) * 1993-12-17 1995-07-14 Fuji Xerox Co Ltd Page memory management control method and system applying the control method
JPH07305000A (en) * 1993-12-10 1995-11-21 Sekisui Chem Co Ltd Antistatic coating composition
JPH07331172A (en) * 1994-06-09 1995-12-19 Toray Ind Inc Coating composition for formation of color filter-protecting film
JPH10183061A (en) * 1996-10-30 1998-07-07 Jsr Corp Composition for coating
JPH10183062A (en) * 1996-10-30 1998-07-07 Jsr Corp Composition for coating
JPH10204292A (en) * 1996-11-22 1998-08-04 Jsr Corp Thermosetting resin composition and cured product thereof
JPH11256041A (en) * 1998-03-12 1999-09-21 Tsb:Kk Inorganic resin composition
JP2000256621A (en) * 1999-01-08 2000-09-19 Jsr Corp Composition for forming film, method for producing the same, and material for interlayer insulating film
JP2000265114A (en) * 1999-03-17 2000-09-26 Jsr Corp Composition for coating
JP2000273396A (en) * 1999-03-26 2000-10-03 Jsr Corp Composition for coating
JP2000290591A (en) * 1999-04-07 2000-10-17 Yamaha Livingtec Corp Preparation of inorganic coating agent
JP2001038219A (en) * 1999-07-30 2001-02-13 Toto Ltd Aqueous photocatalyst hydrophilic composition, aqueous primer for photocatalyst and photocatalytic hydrophilic composite material using them
JP2001192641A (en) * 2000-01-06 2001-07-17 Dow Corning Toray Silicone Co Ltd Sealant composition
JP2001200202A (en) * 2000-01-21 2001-07-24 Yamaha Livingtec Corp Method of forming inorganic film

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305000A (en) * 1993-12-10 1995-11-21 Sekisui Chem Co Ltd Antistatic coating composition
JPH07175715A (en) * 1993-12-17 1995-07-14 Fuji Xerox Co Ltd Page memory management control method and system applying the control method
JPH07331172A (en) * 1994-06-09 1995-12-19 Toray Ind Inc Coating composition for formation of color filter-protecting film
JPH10183061A (en) * 1996-10-30 1998-07-07 Jsr Corp Composition for coating
JPH10183062A (en) * 1996-10-30 1998-07-07 Jsr Corp Composition for coating
JPH10204292A (en) * 1996-11-22 1998-08-04 Jsr Corp Thermosetting resin composition and cured product thereof
JPH11256041A (en) * 1998-03-12 1999-09-21 Tsb:Kk Inorganic resin composition
JP2000256621A (en) * 1999-01-08 2000-09-19 Jsr Corp Composition for forming film, method for producing the same, and material for interlayer insulating film
JP2000265114A (en) * 1999-03-17 2000-09-26 Jsr Corp Composition for coating
JP2000273396A (en) * 1999-03-26 2000-10-03 Jsr Corp Composition for coating
JP2000290591A (en) * 1999-04-07 2000-10-17 Yamaha Livingtec Corp Preparation of inorganic coating agent
JP2001038219A (en) * 1999-07-30 2001-02-13 Toto Ltd Aqueous photocatalyst hydrophilic composition, aqueous primer for photocatalyst and photocatalytic hydrophilic composite material using them
JP2001192641A (en) * 2000-01-06 2001-07-17 Dow Corning Toray Silicone Co Ltd Sealant composition
JP2001200202A (en) * 2000-01-21 2001-07-24 Yamaha Livingtec Corp Method of forming inorganic film

Also Published As

Publication number Publication date
JP4811389B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4199490B2 (en) Coating material composition
JP5851836B2 (en) Room temperature curable near-infrared shielding coating agent, near-infrared shielding film using the same, and method for producing the same
JP4354813B2 (en) Antifouling film forming product
JP2004107381A (en) Coating material composition and coated product thereof
JP4410443B2 (en) Antifouling film forming product
JP4325076B2 (en) Method for forming coating film
JP2002161238A (en) Coating material composition and coated product therewith
JP4811389B2 (en) How to add antifogging properties
JP3733854B2 (en) INORGANIC FILM FORMING METHOD AND COATED ARTICLE
JP4754035B1 (en) Polyorganosiloxane coating composition with good plating adhesion and coating film thereof
JP2003049117A (en) Hydrophilic coating composition and its coated article
JP3804449B2 (en) Coating film forming method and coated product
JP3835154B2 (en) Film and method for forming the film
JP6653627B2 (en) Photocatalyst coating liquid, photocatalyst structure and method for producing the same
JP2000119596A (en) Antifouling hard coating material composition and its coated product
JP2000144054A (en) Antifouling hard coating material composition and article coated therewith
JP2004148260A (en) Application method of silicone-based coating agent
JP2001146573A (en) Method for forming coating film
JP2002248419A (en) Coating film forming method and coated product
JP2002285088A (en) Coating-material composition, coated articles, mirror and wall of bathroom
JP2001064585A (en) Coating material composition and coated product
JP2004292754A (en) Antifogging coating material, coating film and optical member using the film
JP2008126153A (en) Antifouling coated article
JP2002121481A (en) Coating material composition and article coated with the same
JP2000143988A (en) Curing type silicon-based composition and film having photocatalytic activity using the composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R151 Written notification of patent or utility model registration

Ref document number: 4811389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees