JP2008071559A - Lithium-ion secondary battery - Google Patents
Lithium-ion secondary battery Download PDFInfo
- Publication number
- JP2008071559A JP2008071559A JP2006247633A JP2006247633A JP2008071559A JP 2008071559 A JP2008071559 A JP 2008071559A JP 2006247633 A JP2006247633 A JP 2006247633A JP 2006247633 A JP2006247633 A JP 2006247633A JP 2008071559 A JP2008071559 A JP 2008071559A
- Authority
- JP
- Japan
- Prior art keywords
- ion secondary
- secondary battery
- lithium ion
- group
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池に関し、特に電解液に添加剤を加えることにより電池特性を向上させたリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery, and more particularly to a lithium ion secondary battery whose battery characteristics are improved by adding an additive to an electrolytic solution.
リチウムイオン二次電池は小型で大容量であるという特長を有しており、携帯電話、ノート型パソコン等の携帯機器の電源として広く用いられている。従来より、リチウムイオン二次電池においては電極の表面に皮膜を形成させることにより電池特性を改善させる提案があり、特許文献1においては電解液に環状スルホン酸エステルを添加することによりサイクル寿命を改善させる記載がある。最近では、HEV、EV等の自動車用途や電力貯蔵用途等の大型のリチウムイオン二次電池の開発が進められており、サイクル寿命に関しては10年以上の長期の寿命が必要になり、更なる改善が必要になっている。 A lithium ion secondary battery has a feature of being small and has a large capacity, and is widely used as a power source for portable devices such as mobile phones and notebook computers. Conventionally, in lithium ion secondary batteries, there has been a proposal to improve battery characteristics by forming a film on the surface of the electrode, and Patent Document 1 improves cycle life by adding a cyclic sulfonate ester to the electrolyte. There is a description to make. Recently, development of large-sized lithium ion secondary batteries for HEV, EV, and other automobile applications and power storage applications has been promoted, and a cycle life of 10 years or longer is required, and further improvements are made. Is needed.
また、電池特性を改善させる試みの一つとして、特許文献2においては電解液にリン酸トリエステルを添加してサイクル特性を改善する記載があり、特許文献3においては電解液にフッ素を含む界面活性剤を添加して電解液のセパレータに対する濡れ性を改善する記載がある。 In addition, as one of attempts to improve battery characteristics, Patent Document 2 describes that cycle characteristics are improved by adding a phosphate triester to an electrolytic solution, and Patent Document 3 describes an interface containing fluorine in the electrolytic solution. There is a description of improving the wettability of the electrolytic solution to the separator by adding an activator.
リチウムイオン二次電池の電極活物質は、エネルギー密度の向上のために高密度充填されている。また、電解液には通常混合溶媒が用いられるが、電解液の粘度が高い。そのため、電極活物質中に電解液が充分に浸透するには、電極活物質に細孔などが存在するため時間を要していた。すなわち、初期に電解液の添加剤により電極活物質中の細孔の表面にも皮膜を形成させることが困難であり、これにより長期のサイクル寿命が劣化していた。一方、界面活性剤による濡れ性の改善のみでは電極の表面に皮膜を形成することが出来ず、サイクル寿命の改善は充分ではなかった。 The electrode active material of the lithium ion secondary battery is filled with high density in order to improve the energy density. Moreover, although a mixed solvent is normally used for electrolyte solution, the viscosity of electrolyte solution is high. Therefore, it takes time for the electrolyte to sufficiently penetrate into the electrode active material because pores and the like exist in the electrode active material. That is, it is difficult to form a film on the surface of the pores in the electrode active material at the initial stage with the additive of the electrolytic solution, thereby deteriorating the long cycle life. On the other hand, it was not possible to form a film on the surface of the electrode only by improving the wettability with the surfactant, and the cycle life was not improved sufficiently.
本発明は上記問題点に鑑みなされたものである。本発明の課題は、長期的なサイクル寿命を改善したリチウムイオン二次電池を提供することにある。 The present invention has been made in view of the above problems. An object of the present invention is to provide a lithium ion secondary battery with improved long-term cycle life.
本発明者らは上記問題点を解決するに当たり鋭意検討した結果、電解液に初期の充放電により電極活物質の表面に皮膜を形成させる添加剤を加え、さらに電解液を電極活物質の細孔部に浸透させるために界面活性剤を電解液に加えた場合に、長期的なサイクル寿命特性が向上することを見出し本発明に至ったものである。 As a result of diligent investigations to solve the above problems, the present inventors have added an additive for forming a film on the surface of the electrode active material by the initial charge / discharge to the electrolyte, and further added the electrolyte to the pores of the electrode active material. The present inventors have found that a long-term cycle life characteristic is improved when a surfactant is added to an electrolyte solution so as to penetrate into a part.
本発明のリチウムイオン二次電池は正極、負極、電解液、およびセパレータを備えたリチウムイオン二次電池において、前記電解液が環状ジスルホン酸エステルと界面活性剤を有することを特徴とする。 The lithium ion secondary battery of the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, wherein the electrolytic solution has a cyclic disulfonic acid ester and a surfactant.
また、本発明のリチウムイオン二次電池は前記界面活性剤が、リン酸エステル、脂肪酸塩、アルカンスルホン酸塩から選択される少なくとも一種で構成されることを特徴とする。 The lithium ion secondary battery of the present invention is characterized in that the surfactant is composed of at least one selected from a phosphate ester, a fatty acid salt, and an alkane sulfonate.
また、本発明のリチウムイオン二次電池は前記界面活性剤がリン酸トリオクチルからなることを特徴とする。 The lithium ion secondary battery of the present invention is characterized in that the surfactant comprises trioctyl phosphate.
また、本発明のリチウムイオン二次電池は前記環状ジスルホン酸エステルが、下記化1(ただし、下記化1において、Qは酸素原子、メチレン基または単結合、Aは置換もしくは無置換の炭素数1〜5のアルキレン基、カルボニル基、スルフィニル基、置換もしくは無置換の炭素数1〜6のフルオロアルキレン基、またはエーテル結合を介してアルキレン単位もしくはフルオロアルキレン単位結合した炭素数2〜6の2価の基を示し、Bは置換もしくは無置換のアルキレン基、置換もしくは無置換のフルオロアルキレン基、または酸素原子を示す)で示される化合物を含むことを特徴とする。
また、本発明のリチウムイオン二次電池は前記環状ジスルホン酸エステルが、下記化2で示される化合物または下記化3で示される化合物から選択される少なくとも一つを含むことを特徴とする。
また、本発明のリチウムイオン二次電池は前記界面活性剤が、前記電解液中に0.01質量(以下wtと表記)%以上3wt%以下含まれることを特徴とする。 In the lithium ion secondary battery of the present invention, the surfactant is contained in the electrolytic solution in an amount of 0.01 mass (hereinafter referred to as wt)% to 3 wt%.
また、本発明のリチウムイオン二次電池は前記環状ジスルホン酸エステルが、前記電解液中に0.1wt%以上5wt%以下含まれることを特徴とする。 The lithium ion secondary battery of the present invention is characterized in that the cyclic disulfonic acid ester is contained in an amount of 0.1 wt% to 5 wt% in the electrolytic solution.
本発明はリチウムイオン二次電池のサイクル寿命の改善を図ったものである。リチウムイオン二次電池に使用される電解液の溶媒は粘度が高いが、界面活性剤を添加することにより、電極活物質の細孔部へ浸透することとなり、これにより環状ジスルホン酸エステルによる初期の充電時において、電極表面に均一な皮膜が形成されることになる。その結果、充放電サイクルや高温保存時における劣化が抑制されることになる。また、皮膜の形成により界面活性剤の分解も抑制されるため、さらにサイクル寿命が改善されることとなる。 The present invention is intended to improve the cycle life of a lithium ion secondary battery. Although the solvent of the electrolyte used for the lithium ion secondary battery has a high viscosity, by adding a surfactant, it penetrates into the pores of the electrode active material. At the time of charging, a uniform film is formed on the electrode surface. As a result, deterioration during charge / discharge cycles and high temperature storage is suppressed. Moreover, since the decomposition of the surfactant is suppressed by the formation of the film, the cycle life is further improved.
本発明によれば、リチウムイオン二次電池の電解液が環状ジスルホン酸エステルと界面活性剤を有することによりサイクル寿命が改善されたリチウムイオン二次電池を提供することが出来る。 ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery with improved cycle life can be provided because the electrolyte solution of a lithium ion secondary battery has cyclic disulfonic acid ester and surfactant.
次に本発明の実施の形態について図面を参照して説明する。図1は本発明のリチウムイオン二次電池の構成を示す模式図である。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of the lithium ion secondary battery of the present invention.
図1に示すように、アルミニウム箔等の金属からなる正極集電体11上のリチウムイオンを吸蔵、放出し得る正極活物質を含有する層12と、銅箔等の金属からなる負極集電体14上のリチウムイオンを吸蔵、放出する負極活物質を含有する層13とが、電解液15、およびこれを含む不織布、ポリオレフィン微多孔膜などからなるセパレータ16を介して対向して配置され構成されている。
As shown in FIG. 1, a
本発明のリチウムイオン二次電池はリチウム複合酸化物を含む正極活物質を用いた正極と、リチウムを吸蔵放出可能な負極活物質を持つ負極を主要成分とし、正極と負極の間に電気的接続を起こさないようなセパレータが挟まれ、正極と負極はリチウムイオン電導性の非水電解液に浸った状態で、非水電解液を介して対向配置され、これらが電池ケースの中に密閉された状態となっている。 The lithium ion secondary battery of the present invention is mainly composed of a positive electrode using a positive electrode active material containing a lithium composite oxide and a negative electrode having a negative electrode active material capable of occluding and releasing lithium, and is electrically connected between the positive electrode and the negative electrode. The positive electrode and the negative electrode are soaked in a lithium ion conductive non-aqueous electrolyte and are placed opposite each other through the non-aqueous electrolyte, and these are sealed in a battery case. It is in a state.
(電解液)
電解液はリチウム塩を溶解させた非プロトン性有機溶媒に環状ジスルホン酸エステルと界面活性剤を添加した物を用いることができる。電解液の溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート類、γ−ブチロラクトン(GBL)等のγ−ラクトン類などの非プロトン性有機溶媒を一種又は二種以上を混合して使用できる。このうち、PC、EC、GBL、DMC、DEC、EMCなどを単独もしくは混合して用いることが好ましいが、これらに限定されるものではない。
(Electrolyte)
As the electrolytic solution, a product obtained by adding a cyclic disulfonic acid ester and a surfactant to an aprotic organic solvent in which a lithium salt is dissolved can be used. As a solvent for the electrolytic solution, cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC), Aprotic organic solvents such as γ-lactones such as γ-butyrolactone (GBL) can be used singly or in combination. Of these, PC, EC, GBL, DMC, DEC, EMC, etc. are preferably used alone or in combination, but are not limited thereto.
これらの有機溶媒に支持塩としてリチウム塩を溶解させる。リチウム塩としては、例えばLiPF6、LiBF4、LiCF3SO3などがあげられるが、これらに限定されるものではない。電解質濃度は、0.5mol/lから1.5mol/lが好ましい。この濃度が高すぎると密度と粘度が増加する。濃度が低すぎると電気伝導率が低下することがある。 A lithium salt is dissolved as a supporting salt in these organic solvents. Examples of the lithium salt include, but are not limited to, LiPF 6 , LiBF 4 , and LiCF 3 SO 3 . The electrolyte concentration is preferably 0.5 mol / l to 1.5 mol / l. If this concentration is too high, density and viscosity increase. If the concentration is too low, the electrical conductivity may decrease.
環状ジスルホン酸エステルとしては化合物番号1〜22として表1に示される有機化合物が挙げられるが、これらに限定されるものではない。 Examples of the cyclic disulfonic acid ester include organic compounds shown in Table 1 as compound numbers 1 to 22, but are not limited thereto.
環状ジスルホン酸エステルの電解液への添加量は0.1wt%以上5wt%以下が好ましい。0.1wt%未満の場合には電極活物質の表面に皮膜が充分形成されず、サイクル寿命の改善効果が小さくなる恐れがあり、5wt%を超える場合には皮膜の量が増加しすぎて抵抗が上昇するなどの悪影響が出る恐れがある。 The amount of cyclic disulfonic acid ester added to the electrolytic solution is preferably 0.1 wt% or more and 5 wt% or less. If the amount is less than 0.1 wt%, a film is not sufficiently formed on the surface of the electrode active material, and the effect of improving the cycle life may be reduced. If the amount exceeds 5 wt%, the amount of the film is excessively increased and resistance is increased. There is a risk of adverse effects such as rising.
界面活性剤としてはリン酸エステル、脂肪酸塩、アルカンスルホン酸塩、などを使用することができ、リン酸トリオクチル、ステアリン酸塩が好ましいがこれらに限定されるものではない。 As the surfactant, phosphate esters, fatty acid salts, alkane sulfonates, and the like can be used, and trioctyl phosphate and stearate are preferable, but not limited thereto.
界面活性剤の電解液への添加量は0.01wt%以上3wt%以下が好ましい。0.01wt%未満の場合には電解液の電極活物質の細孔への浸透効果が充分発揮されず、改善効果が小さくなる恐れがあり、3wt%を超える場合には、界面活性剤の分解反応が増加し電池の抵抗が増加する可能性がある。 The addition amount of the surfactant to the electrolytic solution is preferably 0.01 wt% or more and 3 wt% or less. If the amount is less than 0.01 wt%, the effect of penetration of the electrolyte into the pores of the electrode active material may not be sufficiently exerted, and the improvement effect may be reduced. If the amount exceeds 3 wt%, the surfactant is decomposed. The reaction may increase and the battery resistance may increase.
(正極)
正極活物質としては、たとえば、LiCoO2、LiNiO2、LiMn2O4、LiNi1/3Co1/3Mn1/3O2、LiNi0.5Mn1.5O4、LiFePO4などのリチウム含有複合酸化物が挙げられ、これらのリチウム含有複合酸化物の遷移金属部分を他の元素で置換させたものでもよく、またこれらの混合物でもよい。これらの正極活物質とカーボンブラックなどからなる導電性付与剤およびポリフッ化ビニリデン(PVDF)等からなるバインダーと共に、バインダーを溶解しうるN−メチルピロリドン(NMP)等の分散媒で混合(スラリー法)した上で、アルミ箔等の集電体上に塗布した後、溶剤を乾燥した後、プレス等により圧縮して正極を形成する。
(Positive electrode)
Examples of the positive electrode active material include lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 1.5 O 4 , and LiFePO 4 . The transition metal portion of these lithium-containing composite oxides may be substituted with other elements, or a mixture thereof. A mixture of these positive electrode active materials, a conductivity imparting agent made of carbon black and the like and a binder made of polyvinylidene fluoride (PVDF), etc., and a dispersion medium such as N-methylpyrrolidone (NMP) capable of dissolving the binder (slurry method) Then, after coating on a current collector such as an aluminum foil, the solvent is dried and then compressed by a press or the like to form a positive electrode.
(負極)
負極活物質としては、たとえば、リチウムを吸蔵する黒鉛、非晶質炭素、Si合金、Si酸化物、Si複合酸化物、Sn合金、Sn酸化物、Sn複合酸化物あるいはこれらの複合物を用いることができる。これらの負極活物質とポリフッ化ビニリデン(PVDF)等からなるバインダーと共に、バインダーを溶解しうるN−メチルピロリドン(NMP)等の分散媒で混合(スラリー法)した上で、銅箔等の集電体上に塗布した後、溶剤を乾燥した後、プレス等により圧縮して負極を形成する。負極に用いる炭素材料としては、天然黒鉛、人造黒鉛、メソカーボンマイクロビーズなどの高結晶性の黒鉛材料や、低結晶性炭素、難黒鉛化炭素材料などの非晶質炭素を使用することができる。結晶性の高い黒鉛は電解液との反応性が高いために、表面を低結晶性または非晶質の炭素で処理した表面処理黒鉛を使用することが可能である。表面処理方法としては、固相法、液相法、気相法などの手法を使用することができる。
(Negative electrode)
As the negative electrode active material, for example, graphite that absorbs lithium, amorphous carbon, Si alloy, Si oxide, Si composite oxide, Sn alloy, Sn oxide, Sn composite oxide, or a composite thereof is used. Can do. A negative electrode active material and a binder made of polyvinylidene fluoride (PVDF) and the like, mixed with a dispersion medium such as N-methylpyrrolidone (NMP) that can dissolve the binder (slurry method), and then collected current such as copper foil After coating on the body, the solvent is dried and then compressed by a press or the like to form a negative electrode. As the carbon material used for the negative electrode, high-crystalline graphite materials such as natural graphite, artificial graphite and mesocarbon microbeads, and amorphous carbon such as low-crystalline carbon and non-graphitizable carbon material can be used. . Since highly crystalline graphite has high reactivity with the electrolytic solution, it is possible to use surface-treated graphite whose surface is treated with low crystalline or amorphous carbon. As the surface treatment method, a solid phase method, a liquid phase method, a gas phase method, or the like can be used.
セパレーターとして、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムなどが使用できるが、これに限定されるものではない。 As the separator, polyolefin such as polypropylene and polyethylene, porous film such as fluororesin, and the like can be used, but the separator is not limited thereto.
以下に本発明の実施例について詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。 Examples of the present invention will be described in detail below, but the present invention is not limited to the following examples.
(実施例1)
(電池の作製)
本発明の実施例1のリチウムイオン電池の作製について説明する。正極は、正極集電体として厚さ20μmのアルミニウム箔を用い、正極活物質としてLi(Li0.1Mn1.9)O4、とLiNi0.8Co0.15Al0.05O2を質量比で80:20に混合したものを用いた。また負極は、負極集電体として厚さ10μmの銅箔を用い、負極活物質として黒鉛を用いた。電解液は溶媒としてECとDECの混合溶媒(体積比:30/70)を用い、電解質としてLiPF6を1mol/l溶解し、さらにリン酸トリオクチル0.5wt%、および表1に記載の化合物No.1(メチレンメタンジスルホン酸エステル:以下MMDSと記載)1.5wt%を加えた。次に正極と負極をポリエチレンからなるセパレータを介して積層し、ラミネート外装型リチウムイオン二次電池を作製した。
(Example 1)
(Production of battery)
The production of the lithium ion battery of Example 1 of the present invention will be described. As the positive electrode, an aluminum foil having a thickness of 20 μm was used as the positive electrode current collector, and Li (Li 0.1 Mn 1.9 ) O 4 and LiNi 0.8 Co 0.15 Al 0.05 O 2 were mixed at a mass ratio of 80:20 as the positive electrode active material. A thing was used. Moreover, the negative electrode used the 10-micrometer-thick copper foil as a negative electrode electrical power collector, and used graphite as the negative electrode active material. As the electrolyte, a mixed solvent of EC and DEC (volume ratio: 30/70) was used as a solvent, 1 mol / l of LiPF 6 was dissolved as an electrolyte, 0.5 wt% of trioctyl phosphate, and the compound No. described in Table 1 . 1 (methylenemethane disulfonic acid ester: hereinafter referred to as MMDS) 1.5 wt% was added. Next, the positive electrode and the negative electrode were laminated via a separator made of polyethylene, to produce a laminated exterior type lithium ion secondary battery.
(充放電サイクル試験)
温度60℃において、充電条件:充電終止電圧4.2V、充電レート1C、2.5時間、放電条件:放電終止電圧3.0V、放電レート0.2Cで充放電を行なった。容量維持率(%)は、500サイクル後の放電容量(mAh)の、10サイクル目の放電容量(mAh)に対する割合である。サイクル試験の結果を表2に示す。
(Charge / discharge cycle test)
At a temperature of 60 ° C., charging / discharging was performed under the following conditions: charging condition: end-of-charge voltage of 4.2 V, charging rate of 1 C, 2.5 hours, discharging condition: end-of-discharge voltage of 3.0 V, and discharging rate of 0.2 C. The capacity retention rate (%) is the ratio of the discharge capacity (mAh) after 500 cycles to the discharge capacity (mAh) at the 10th cycle. The results of the cycle test are shown in Table 2.
(実施例2〜6)
リン酸トリオクチルの添加量を3.0wt%、2.0wt%、0.2wt%、0.05wt%、0.01wt%とした他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表2に示す。
(Examples 2 to 6)
A lithium ion secondary battery was fabricated in the same manner as in Example 1 except that the amount of trioctyl phosphate added was 3.0 wt%, 2.0 wt%, 0.2 wt%, 0.05 wt%, 0.01 wt%, A charge / discharge cycle test was conducted. The results are shown in Table 2.
(実施例7〜11)
MMDSの添加量を0.5wt%、1.0wt%、2.0wt%、3.0wt%、5.0wt%とした他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表2に示す。
(Examples 7 to 11)
A lithium ion secondary battery was fabricated in the same manner as in Example 1 except that the amount of MMDS added was 0.5 wt%, 1.0 wt%, 2.0 wt%, 3.0 wt%, and 5.0 wt%. A cycle test was performed. The results are shown in Table 2.
(実施例12〜13)
リン酸トリオクチルに代えてステアリン酸ナトリウムまたはC12H25−OSO3Liとした他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表2に示す。
(Examples 12 to 13)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that sodium stearate or C 12 H 25 —OSO 3 Li was used instead of trioctyl phosphate, and a charge / discharge cycle test was performed. The results are shown in Table 2.
(実施例14)
MMDSに代えて表1に記載の化合物No.2(エチレンメタンジスルホン酸エステル:以下EMDSと記載)とした他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表2に示す。
(Example 14)
In place of MMDS, the compound Nos. A lithium ion secondary battery was prepared in the same manner as in Example 1 except that it was changed to 2 (ethylene methanedisulfonate ester: hereinafter referred to as EMDS), and a charge / discharge cycle test was performed. The results are shown in Table 2.
(比較例1)
リン酸トリオクチルおよびMMDSを添加しない他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表2に示す。
(Comparative Example 1)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that trioctyl phosphate and MMDS were not added, and a charge / discharge cycle test was performed. The results are shown in Table 2.
(比較例2)
MMDSを添加しない他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表2に示す。
(Comparative Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that MMDS was not added, and a charge / discharge cycle test was performed. The results are shown in Table 2.
(比較例3)
リン酸トリオクチルを添加しない他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表2に示す。
(Comparative Example 3)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that trioctyl phosphate was not added, and a charge / discharge cycle test was performed. The results are shown in Table 2.
実施例1〜実施例14の電池は比較例1〜比較例3の電池と比較してサイクル試験後の容量維持率が改善されていることが確認された。 The batteries of Examples 1 to 14 were confirmed to have improved capacity retention after the cycle test as compared with the batteries of Comparative Examples 1 to 3.
(実施例15)
正極活物質をLiNi0.8Co0.15Al0.05O2100%とし、負極活物質を表面処理黒鉛とした他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表3に示す。
(Example 15)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was LiNi 0.8 Co 0.15 Al 0.05 O 2 100% and the negative electrode active material was surface-treated graphite, and a charge / discharge cycle test was performed. The results are shown in Table 3.
(比較例4)
リン酸トリオクチルおよびMMDSを添加しない他は実施例15と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表3に示す。
(Comparative Example 4)
A lithium ion secondary battery was produced in the same manner as in Example 15 except that trioctyl phosphate and MMDS were not added, and a charge / discharge cycle test was performed. The results are shown in Table 3.
(比較例5)
MMDSを添加しない他は実施例15と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表3に示す。
(Comparative Example 5)
A lithium ion secondary battery was produced in the same manner as in Example 15 except that MMDS was not added, and a charge / discharge cycle test was performed. The results are shown in Table 3.
(比較例6)
リン酸トリオクチルを添加しない他は実施例15と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表3に示す。
(Comparative Example 6)
A lithium ion secondary battery was prepared in the same manner as in Example 15 except that trioctyl phosphate was not added, and a charge / discharge cycle test was performed. The results are shown in Table 3.
実施例15の電池は比較例4〜比較例6の電池に比較しサイクル試験後の容量維持率が高く、サイクル寿命特性が改善されたことが確認された。 It was confirmed that the battery of Example 15 had a higher capacity retention rate after the cycle test as compared with the batteries of Comparative Examples 4 to 6, and the cycle life characteristics were improved.
(実施例16)
正極活物質をLiCoO2とし、電解液の溶媒としてECとGBLの混合溶媒(体積比:20/80)を用いた他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表4に示す。
(Example 16)
A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the positive electrode active material was LiCoO 2 and a mixed solvent of EC and GBL (volume ratio: 20/80) was used as the solvent of the electrolytic solution. A test was conducted. The results are shown in Table 4.
(比較例7)
リン酸トリオクチルおよびMMDSを添加しない他は実施例16と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表4に示す。
(Comparative Example 7)
A lithium ion secondary battery was produced in the same manner as in Example 16 except that trioctyl phosphate and MMDS were not added, and a charge / discharge cycle test was performed. The results are shown in Table 4.
(比較例8)
MMDSを添加しない他は実施例16と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表4に示す。
(Comparative Example 8)
A lithium ion secondary battery was produced in the same manner as in Example 16 except that MMDS was not added, and a charge / discharge cycle test was performed. The results are shown in Table 4.
(比較例9)
リン酸トリオクチルを添加しない他は実施例16と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表4に示す。
(Comparative Example 9)
A lithium ion secondary battery was produced in the same manner as in Example 16 except that trioctyl phosphate was not added, and a charge / discharge cycle test was performed. The results are shown in Table 4.
実施例16の電池は比較例7〜比較例9の電池に比較しサイクル試験後の容量維持率が高く、サイクル寿命特性が改善されたことが確認された。 It was confirmed that the battery of Example 16 had a higher capacity retention rate after the cycle test as compared with the batteries of Comparative Examples 7 to 9, and the cycle life characteristics were improved.
(実施例17)
正極活物質をLi(Mn1.9Li0.1)O4とし、負極活物質を非晶質炭素とし電解液の溶媒としてECとPCLの混合溶媒(体積比:10/90)を用いた他は実施例1と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。充放電サイクル試験は放電終止電圧を2.5Vとした以外は実施例1と同じ方法で行った。結果を表5に示す。
(Example 17)
Example except that the positive electrode active material is Li (Mn 1.9 Li 0.1 ) O 4 , the negative electrode active material is amorphous carbon, and a mixed solvent of EC and PCL (volume ratio: 10/90) is used as a solvent for the electrolytic solution. A lithium ion secondary battery was prepared in the same manner as in Example 1, and a charge / discharge cycle test was performed. The charge / discharge cycle test was performed in the same manner as in Example 1 except that the final discharge voltage was 2.5V. The results are shown in Table 5.
(比較例10)
リン酸トリオクチルおよびMMDSを添加しない他は実施例17と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表5に示す。
(Comparative Example 10)
A lithium ion secondary battery was produced in the same manner as in Example 17 except that trioctyl phosphate and MMDS were not added, and a charge / discharge cycle test was performed. The results are shown in Table 5.
(比較例11)
MMDSを添加しない他は実施例17と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表5に示す。
(Comparative Example 11)
A lithium ion secondary battery was produced in the same manner as in Example 17 except that MMDS was not added, and a charge / discharge cycle test was performed. The results are shown in Table 5.
(比較例12)
リン酸トリオクチルを添加しない他は実施例17と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表5に示す。
(Comparative Example 12)
A lithium ion secondary battery was produced in the same manner as in Example 17 except that trioctyl phosphate was not added, and a charge / discharge cycle test was performed. The results are shown in Table 5.
実施例17の電池は比較例10〜比較例12の電池に比較しサイクル試験後の容量維持率が高く、サイクル寿命特性が改善されたことが確認された。 It was confirmed that the battery of Example 17 had a higher capacity retention rate after the cycle test than the batteries of Comparative Examples 10 to 12, and the cycle life characteristics were improved.
(実施例18)
正極活物質をLiNi1/3Co1/3Mn1/3O2とした他は実施例15と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表6に示す。
(Example 18)
A lithium ion secondary battery was prepared in the same manner as in Example 15 except that the positive electrode active material was LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and a charge / discharge cycle test was performed. The results are shown in Table 6.
(比較例13)
リン酸トリオクチルおよびMMDSを添加しない他は実施例18と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表6に示す。
(Comparative Example 13)
A lithium ion secondary battery was produced in the same manner as in Example 18 except that trioctyl phosphate and MMDS were not added, and a charge / discharge cycle test was performed. The results are shown in Table 6.
(比較例14)
MMDSを添加しない他は実施例18と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表6に示す。
(Comparative Example 14)
A lithium ion secondary battery was produced in the same manner as in Example 18 except that MMDS was not added, and a charge / discharge cycle test was performed. The results are shown in Table 6.
(比較例15)
リン酸トリオクチルを添加しない他は実施例18と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表5に示す。
(Comparative Example 15)
A lithium ion secondary battery was produced in the same manner as in Example 18 except that trioctyl phosphate was not added, and a charge / discharge cycle test was performed. The results are shown in Table 5.
実施例18の電池は比較例13〜比較例15の電池に比較しサイクル試験後の容量維持率が高く、サイクル寿命特性が改善されたことが確認された。 It was confirmed that the battery of Example 18 had a higher capacity retention rate after the cycle test than the batteries of Comparative Examples 13 to 15, and the cycle life characteristics were improved.
(実施例19)
正極活物質をLiNi0.5Mn1.35Ti0.15O4とし、電解液の溶媒としてECとDMC.の混合溶媒(体積比:40/60)を用いた他は実施例1と同様にリチウムイオン二次電池を作製した。充放電サイクルにおける充電終止電圧を4.75Vとし、放電終止電圧を3Vとした他は、実施例1と同じ条件でサイクル試験を行った。結果を表7に示す。
(Example 19)
A lithium ion secondary battery as in Example 1 except that the positive electrode active material was LiNi 0.5 Mn 1.35 Ti 0.15 O 4 and a mixed solvent of EC and DMC. (Volume ratio: 40/60) was used as the solvent of the electrolytic solution. Was made. A cycle test was performed under the same conditions as in Example 1 except that the charge end voltage in the charge / discharge cycle was 4.75 V and the discharge end voltage was 3 V. The results are shown in Table 7.
(比較例16)
リン酸トリオクチルおよびMMDSを添加しない他は実施例19と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表7に示す。
(Comparative Example 16)
A lithium ion secondary battery was produced in the same manner as in Example 19 except that trioctyl phosphate and MMDS were not added, and a charge / discharge cycle test was performed. The results are shown in Table 7.
(比較例17)
MMDSを添加しない他は実施例19と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表7に示す。
(Comparative Example 17)
A lithium ion secondary battery was produced in the same manner as in Example 19 except that MMDS was not added, and a charge / discharge cycle test was performed. The results are shown in Table 7.
(比較例18)
リン酸トリオクチルを添加しない他は実施例19と同様にリチウムイオン二次電池を作製し、充放電サイクル試験を行なった。結果を表7に示す。
(Comparative Example 18)
A lithium ion secondary battery was produced in the same manner as in Example 19 except that trioctyl phosphate was not added, and a charge / discharge cycle test was performed. The results are shown in Table 7.
実施例19の電池は比較例16〜18の電池に比較しサイクル試験後の容量維持率が高く、サイクル寿命特性が改善されたことが確認された。 It was confirmed that the battery of Example 19 had a higher capacity retention rate after the cycle test as compared with the batteries of Comparative Examples 16 to 18, and the cycle life characteristics were improved.
11正極集電体
12正極活物質を含有する層
13負極活物質を含有する層
14負極集電体
15電解液
16セパレータ
11 positive electrode
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006247633A JP5058538B2 (en) | 2006-09-13 | 2006-09-13 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006247633A JP5058538B2 (en) | 2006-09-13 | 2006-09-13 | Lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008071559A true JP2008071559A (en) | 2008-03-27 |
JP5058538B2 JP5058538B2 (en) | 2012-10-24 |
Family
ID=39292976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006247633A Active JP5058538B2 (en) | 2006-09-13 | 2006-09-13 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5058538B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2109177A1 (en) * | 2008-04-07 | 2009-10-14 | NEC TOKIN Corporation | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
JP2010219011A (en) * | 2009-03-19 | 2010-09-30 | Nec Energy Devices Ltd | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
WO2011096572A1 (en) * | 2010-02-08 | 2011-08-11 | Necエナジーデバイス株式会社 | Nonaqueous electrolyte secondary battery |
WO2011099580A1 (en) * | 2010-02-10 | 2011-08-18 | Necエナジーデバイス株式会社 | Nonaqueous electrolyte solution, and lithium ion secondary battery using same |
WO2012090855A1 (en) * | 2010-12-27 | 2012-07-05 | Necエナジーデバイス株式会社 | Gel electrolyte for lithium ion secondary batteries, and lithium ion secondary battery |
WO2012118179A1 (en) * | 2011-03-03 | 2012-09-07 | Necエナジーデバイス株式会社 | Lithium ion battery |
JP2012226878A (en) * | 2011-04-15 | 2012-11-15 | Mitsui Chemicals Inc | Nonaqueous electrolyte containing benzoxathiepin derivative, and lithium secondary battery |
WO2014163055A1 (en) | 2013-04-01 | 2014-10-09 | 宇部興産株式会社 | Nonaqueous electrolyte solution and electricity storage device using same |
WO2015156399A1 (en) * | 2014-04-11 | 2015-10-15 | 日産自動車株式会社 | Electrical device |
CN112542655A (en) * | 2015-05-08 | 2021-03-23 | 赛尔格有限责任公司 | Improved coated or treated microporous battery separator, rechargeable lithium battery, system |
JP2022081056A (en) * | 2020-11-19 | 2022-05-31 | プライムプラネットエナジー&ソリューションズ株式会社 | Non-aqueous electrolyte secondary battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000173651A (en) * | 1998-12-09 | 2000-06-23 | Tomiyama Pure Chemical Industries Ltd | Nonaqueous electrolyte for secondary battery |
JP2001297790A (en) * | 2000-04-11 | 2001-10-26 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary cell |
JP2001345120A (en) * | 2000-05-31 | 2001-12-14 | Denso Corp | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte |
JP2006156314A (en) * | 2003-12-15 | 2006-06-15 | Nec Corp | Secondary battery |
JP2006172721A (en) * | 2004-12-10 | 2006-06-29 | Nec Corp | Electrolyte for secondary battery, and secondary battery using the same |
-
2006
- 2006-09-13 JP JP2006247633A patent/JP5058538B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000173651A (en) * | 1998-12-09 | 2000-06-23 | Tomiyama Pure Chemical Industries Ltd | Nonaqueous electrolyte for secondary battery |
JP2001297790A (en) * | 2000-04-11 | 2001-10-26 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary cell |
JP2001345120A (en) * | 2000-05-31 | 2001-12-14 | Denso Corp | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte |
JP2006156314A (en) * | 2003-12-15 | 2006-06-15 | Nec Corp | Secondary battery |
JP2006172721A (en) * | 2004-12-10 | 2006-06-29 | Nec Corp | Electrolyte for secondary battery, and secondary battery using the same |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009252545A (en) * | 2008-04-07 | 2009-10-29 | Nec Tokin Corp | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery |
EP2109177A1 (en) * | 2008-04-07 | 2009-10-14 | NEC TOKIN Corporation | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
US8455142B2 (en) | 2008-04-07 | 2013-06-04 | Nec Energy Devices, Ltd. | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
JP2010219011A (en) * | 2009-03-19 | 2010-09-30 | Nec Energy Devices Ltd | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
CN102742063A (en) * | 2010-02-08 | 2012-10-17 | Nec能源元器件株式会社 | Nonaqueous electrolyte secondary battery |
WO2011096572A1 (en) * | 2010-02-08 | 2011-08-11 | Necエナジーデバイス株式会社 | Nonaqueous electrolyte secondary battery |
JPWO2011096572A1 (en) * | 2010-02-08 | 2013-06-13 | Necエナジーデバイス株式会社 | Non-aqueous electrolyte secondary battery |
US9847180B2 (en) | 2010-02-10 | 2017-12-19 | Nec Energy Devices, Ltd. | Nonaqueous electrolyte solution, and lithium ion secondary battery having the same |
CN102742064A (en) * | 2010-02-10 | 2012-10-17 | Nec能源元器件株式会社 | Nonaqueous electrolyte solution, and lithium ion secondary battery using same |
CN102742064B (en) * | 2010-02-10 | 2015-11-25 | Nec能源元器件株式会社 | Non-aqueous electrolytic solution, and the lithium rechargeable battery with described non-aqueous electrolytic solution |
JP2014044964A (en) * | 2010-02-10 | 2014-03-13 | Nec Energy Devices Ltd | Nonaqueous electrolyte and lithium ion secondary battery including the same |
US9312073B2 (en) | 2010-02-10 | 2016-04-12 | Nec Energy Devices, Ltd. | Nonaqueous electrolyte solution, and lithium ion secondary battery having the same |
EP2535975A4 (en) * | 2010-02-10 | 2018-04-04 | NEC Energy Devices, Ltd. | Nonaqueous electrolyte solution, and lithium ion secondary battery using same |
JP5645274B2 (en) * | 2010-02-10 | 2014-12-24 | Necエナジーデバイス株式会社 | Non-aqueous electrolyte and lithium ion secondary battery comprising the same |
WO2011099580A1 (en) * | 2010-02-10 | 2011-08-18 | Necエナジーデバイス株式会社 | Nonaqueous electrolyte solution, and lithium ion secondary battery using same |
CN103270640A (en) * | 2010-12-27 | 2013-08-28 | Nec能源元器件株式会社 | Gel electrolyte for lithium ion secondary battery and lithium ion secondary battery |
US9196926B2 (en) | 2010-12-27 | 2015-11-24 | Nec Energy Devices, Ltd. | Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery |
WO2012090855A1 (en) * | 2010-12-27 | 2012-07-05 | Necエナジーデバイス株式会社 | Gel electrolyte for lithium ion secondary batteries, and lithium ion secondary battery |
JP5975523B2 (en) * | 2010-12-27 | 2016-08-23 | Necエナジーデバイス株式会社 | Gel electrolyte for lithium ion secondary battery and lithium ion secondary battery |
CN103403950A (en) * | 2011-03-03 | 2013-11-20 | Nec能源元器件株式会社 | Lithium Ion Battery |
US20130295465A1 (en) * | 2011-03-03 | 2013-11-07 | Nec Energy Devices, Ltd. | Lithium ion battery |
US9620812B2 (en) | 2011-03-03 | 2017-04-11 | Nec Energy Devices, Ltd. | Lithium ion battery |
WO2012118179A1 (en) * | 2011-03-03 | 2012-09-07 | Necエナジーデバイス株式会社 | Lithium ion battery |
JP2012226878A (en) * | 2011-04-15 | 2012-11-15 | Mitsui Chemicals Inc | Nonaqueous electrolyte containing benzoxathiepin derivative, and lithium secondary battery |
WO2014163055A1 (en) | 2013-04-01 | 2014-10-09 | 宇部興産株式会社 | Nonaqueous electrolyte solution and electricity storage device using same |
KR20150139847A (en) | 2013-04-01 | 2015-12-14 | 우베 고산 가부시키가이샤 | Nonaqueous electrolyte solution and electricity storage device using same |
US9934911B2 (en) | 2013-04-01 | 2018-04-03 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and electricity storage device using same |
CN106165181A (en) * | 2014-04-11 | 2016-11-23 | 日产自动车株式会社 | Electric device |
WO2015156399A1 (en) * | 2014-04-11 | 2015-10-15 | 日産自動車株式会社 | Electrical device |
CN112542655A (en) * | 2015-05-08 | 2021-03-23 | 赛尔格有限责任公司 | Improved coated or treated microporous battery separator, rechargeable lithium battery, system |
CN112542655B (en) * | 2015-05-08 | 2023-09-08 | 赛尔格有限责任公司 | Improved, coated or treated microporous battery separators, rechargeable lithium batteries, systems |
JP2022081056A (en) * | 2020-11-19 | 2022-05-31 | プライムプラネットエナジー&ソリューションズ株式会社 | Non-aqueous electrolyte secondary battery |
JP7213221B2 (en) | 2020-11-19 | 2023-01-26 | プライムプラネットエナジー&ソリューションズ株式会社 | Non-aqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP5058538B2 (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102379223B1 (en) | Methods for preparing negative electrode for lithium secondary battery and lithium secondary battery | |
JP5058538B2 (en) | Lithium ion secondary battery | |
JP3844733B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3978881B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP5032773B2 (en) | Lithium secondary battery using ionic liquid | |
KR102084245B1 (en) | Method for forming a cell of a lithium-ion battery provided with a positive electrode comprising a sacrificial salt | |
KR102525619B1 (en) | Rechargeable lithium battery | |
JP2005135895A (en) | Lithium battery with efficient performance | |
KR102463234B1 (en) | Lithium secondary battery | |
JP2009105069A (en) | ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME | |
KR100725704B1 (en) | Non-aqueous electrolyte additive and secondary battery using same | |
JP2008084705A (en) | Nonaqueous electrolyte secondary battery | |
CN104779397A (en) | Rechargeable lithium battery | |
KR20080110404A (en) | Non-aqueous electrolyte additive and secondary battery using same | |
KR101431259B1 (en) | Additive for non-aqueous electrolyte and secondary battery using the same | |
KR20160081395A (en) | An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same | |
JP4433163B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
TWI583039B (en) | Nonaqueous electrolyte lithium secondary battery | |
WO2016068033A1 (en) | Lithium-ion secondary cell | |
JP7301449B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
KR101683534B1 (en) | electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
JP2002313416A (en) | Non-aqueous electrolyte secondary battery | |
KR20210137547A (en) | Use of lithium batteries and germanium organyl-based electrolyte additives contained therein as electrolyte additives | |
JP4306891B2 (en) | Non-aqueous electrolyte battery | |
TWI709262B (en) | Non-aqueous electrolyte solution and lithium metal secondary battery and lithium ion secondary battery including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090406 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120801 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5058538 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |