[go: up one dir, main page]

JP2008042143A - Group iii nitride compound semiconductor light emitting element, and its manufacturing method - Google Patents

Group iii nitride compound semiconductor light emitting element, and its manufacturing method Download PDF

Info

Publication number
JP2008042143A
JP2008042143A JP2006218463A JP2006218463A JP2008042143A JP 2008042143 A JP2008042143 A JP 2008042143A JP 2006218463 A JP2006218463 A JP 2006218463A JP 2006218463 A JP2006218463 A JP 2006218463A JP 2008042143 A JP2008042143 A JP 2008042143A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
group iii
nitride compound
iii nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006218463A
Other languages
Japanese (ja)
Other versions
JP2008042143A5 (en
Inventor
Toshiya Kamimura
俊也 上村
Shigemi Horiuchi
茂美 堀内
Masanobu Ando
雅信 安藤
Takayoshi Yajima
孝義 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2006218463A priority Critical patent/JP2008042143A/en
Publication of JP2008042143A publication Critical patent/JP2008042143A/en
Publication of JP2008042143A5 publication Critical patent/JP2008042143A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a group III nitride compound semiconductor light-emitting element in which an n-type layer is formed on a conductive substrate with a highly reflective metal layer interposed therebetween, and a transparent electrode is formed on a p-type contact layer of the top layer, and to provide a method of manufacturing the same. <P>SOLUTION: The method of manufacturing a group III nitride compound semiconductor light-emitting element comprises the steps of: forming on an substrate 100 for epitaxial growth, an n-type layer 11, a p-type layer 12, a transparent electrode 121, and an insulating layer 150 in this order (1. A); forming a sacrificial layer 122 and then forming a holding substrate 200 using an adhesion layer 201 in-between (1. B); obtaining a holding substrate wafer 290 by removing the substrate 100 for epitaxial growth with laser liftoff (1. C); forming a highly reflective metal layer 111, and a solder layer etc. (metals) (1. D); joining a conductive substrate 300 (1. E); and obtaining a conductive substrate wafer 390 by removing the sacrificial layer 122 with wet-etching (1. F). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はIII族窒化物系化合物半導体発光素子に関する。   The present invention relates to a group III nitride compound semiconductor light emitting device.

緑色、青色乃至紫外光を発する発光素子として、III族窒化物系化合物半導体発光素子が登場してから久しいが、依然サファイア基板等の、異種且つ絶縁性基板上に発光素子をエピタキシャル成長するものが主流である。異種の導電性基板を用いる場合であっても、エピタキシャル成長中のいわゆる転位が十分に低減できないことや、エピタキシャル成長後常温に戻すまでに、熱膨張係数の差によるIII族窒化物系化合物半導体層におけるクラックの発生を十分には抑制できないことが依然として問題である。   As a light emitting element that emits green, blue or ultraviolet light, it has been a long time since a group III nitride compound semiconductor light emitting element appeared, but it is still mainstream to epitaxially grow the light emitting element on a dissimilar and insulating substrate such as a sapphire substrate. It is. Even when different types of conductive substrates are used, so-called dislocations during epitaxial growth cannot be sufficiently reduced, and cracks in the group III nitride compound semiconductor layer due to differences in thermal expansion coefficients after returning to room temperature after epitaxial growth. It is still a problem that generation | occurrence | production of this cannot fully be suppressed.

ところで、エピタキシャル成長を行う基板と、素子として用いる際の支持基板とを異なるものとする、即ちエピタキシャル成長後に他の基板にIII族窒化物系化合物半導体層やIII族窒化物系化合物半導体素子を移し替る技術がある(特許文献1乃至4、非特許文献1)。
特許3418150 特表2001−501778 特表2005−522873 USP6071795 Kellyら、「Optical process for liftoff of group III−nitride films」、Physica Status Solidi(a) vol.159、1997年、R3〜R4頁
By the way, a substrate for epitaxial growth is different from a support substrate when used as an element, that is, a technique for transferring a group III nitride compound semiconductor layer or a group III nitride compound semiconductor element to another substrate after epitaxial growth. (Patent Documents 1 to 4, Non-Patent Document 1).
Patent 3418150 Special table 2001-501778 Special table 2005-522873 USP 6071795 Kelly et al., “Optical process for liftoff of group III-nitride films”, Physica Status Solidi (a) vol. 159, 1997, R3-R4

さて、導電性基板に、高反射性金属層を介してn型層を設け、最上層のp型層に透光性電極を設けた構成のIII族窒化物系化合物半導体発光素子はなかった。   There was no Group III nitride compound semiconductor light-emitting device in which an n-type layer was provided on a conductive substrate via a highly reflective metal layer and a translucent electrode was provided on the uppermost p-type layer.

本発明者らは鋭意検討し、上記の構成のIII族窒化物系化合物半導体発光素子を簡易に得る方法を完成した。即ち、本発明の目的は、導電性基板に、高反射性金属層を介してn型層を設け、最上層のp型層に透光性電極を設けた構成のIII族窒化物系化合物半導体発光素子を提供することである。   The present inventors diligently studied and completed a method for easily obtaining a group III nitride compound semiconductor light-emitting device having the above structure. That is, an object of the present invention is to provide a group III nitride compound semiconductor in which an n-type layer is provided on a conductive substrate via a highly reflective metal layer and a translucent electrode is provided on the uppermost p-type layer. It is to provide a light emitting device.

請求項1に係る発明は、導電性基板と、高反射性金属層と、n型のIII族窒化物系化合物半導体層と、p型のIII族窒化物系化合物半導体層と、透光性電極とを、各層間に他の層を介し又は介さずにこの順に有し、透光性電極から導電性基板に電流を流して発光させることを特徴とするIII族窒化物系化合物半導体発光素子である。   The invention according to claim 1 includes a conductive substrate, a highly reflective metal layer, an n-type group III nitride compound semiconductor layer, a p-type group III nitride compound semiconductor layer, and a translucent electrode. And a light emitting element that emits light by passing a current from the light-transmitting electrode to the conductive substrate. is there.

また、請求項2に係る発明は、III族窒化物系化合物半導体発光素子の製造方法において、エピタキシャル成長用基板に、少なくともn型のIII族窒化物系化合物半導体層と、最上層のp型のIII族窒化物系化合物半導体層までの所望の積層構造を形成するエピタキシャル成長工程と、最上層であるp型のIII族窒化物系化合物半導体層の上面に透光性電極を形成する透光性電極形成工程と、透光性電極側に、主として有機材料から成る接着剤から成る接着層により一時保持用の保持基板を接着する保持基板接着工程と、n型のIII族窒化物系化合物半導体層の、エピタキシャル成長用基板との界面近傍にレーザーを照射して当該界面近傍を分解するレーザー照射工程と、その後、エピタキシャル成長用基板を除く成長基板除去工程と、露出したn型のIII族窒化物系化合物半導体層裏面に高反射性金属層を形成する反射金属形成工程と、高反射性金属層に覆われたn型のIII族窒化物系化合物半導体層裏面側に、導体による接続層を表面に形成した導電性基板を接合する導電性基板接合工程と、保持基板と有機材料から成る接着層とを除去する保持基板除去工程と、を少なくとも有することを特徴とするIII族窒化物系化合物半導体発光素子の製造方法である。   According to a second aspect of the present invention, in the method for manufacturing a group III nitride compound semiconductor light emitting device, an epitaxial growth substrate includes at least an n-type group III nitride compound semiconductor layer and an uppermost p-type III compound semiconductor layer. Epitaxial growth process for forming desired laminated structure up to group nitride compound semiconductor layer, and translucent electrode formation for forming translucent electrode on upper surface of p-type group III nitride compound semiconductor layer as uppermost layer A holding substrate adhering step for adhering a holding substrate for temporary holding to the translucent electrode side with an adhesive layer mainly made of an organic material, and an n-type group III nitride compound semiconductor layer, A laser irradiation step of irradiating the vicinity of the interface with the epitaxial growth substrate to decompose the vicinity of the interface, a growth substrate removing step excluding the epitaxial growth substrate, an exposed n-type I A reflective metal forming step of forming a highly reflective metal layer on the back surface of the group II nitride compound semiconductor layer, and a conductor on the back surface side of the n-type group III nitride compound semiconductor layer covered with the highly reflective metal layer. A group III nitriding comprising at least a conductive substrate bonding step for bonding a conductive substrate having a connection layer formed on a surface thereof, and a holding substrate removing step for removing the holding substrate and an adhesive layer made of an organic material This is a method for manufacturing a physical compound semiconductor light emitting device.

請求項3に係る発明は、保持基板接着工程においては、透光性電極側に、金属から成る犠牲層を介して有機材料から成る接着層により保持基板を接着するものであり、保持基板除去工程においては、金属から成る犠牲層を分解又は除去した後に保持基板と有機材料から成る接着層とを除去するものであることを特徴とする。請求項4に係る発明は、透光性電極形成工程の後に、当該透光性電極をパターニングする工程と、パターニング後の当該透光性電極を覆う耐ウエットエッチング層を設ける工程とを有することを特徴とする。請求項5に係る発明は、保持基板除去工程に続いて、導電性基板上に形成された積層構造を、最上層のp型のIII族窒化物系化合物半導体層側から、n型のIII族窒化物系化合物半導体層に達し、且つ高反射性金属層には達しないように、第1のダイシングブレードにより、分離用の第1の溝を形成するハーフカット工程と、第1のダイシングブレードよりも厚さの薄い第2のダイシングブレードにより、導電性基板まで達する分離用の第2の溝を形成するフルカット工程とを有することを特徴とする。   According to the third aspect of the present invention, in the holding substrate bonding step, the holding substrate is bonded to the translucent electrode side with an adhesive layer made of an organic material through a sacrificial layer made of metal. Is characterized in that after the sacrificial layer made of metal is decomposed or removed, the holding substrate and the adhesive layer made of an organic material are removed. The invention according to claim 4 includes a step of patterning the translucent electrode and a step of providing a wet etching resistant layer covering the translucent electrode after patterning after the translucent electrode forming step. Features. In the invention according to claim 5, following the holding substrate removing step, the stacked structure formed on the conductive substrate is changed from the p-type group III nitride compound semiconductor layer side of the uppermost layer to the n-type group III. From the first dicing blade, a half-cut step of forming a first groove for separation with a first dicing blade so as to reach the nitride-based compound semiconductor layer and not reach the highly reflective metal layer; And a full-cut step of forming a second groove for separation reaching the conductive substrate by the second dicing blade having a small thickness.

以下に示す通り、導電性基板に、高反射性金属層を介してn型層を設け、最上層のp型層を透光性電極で覆った構成のIII族窒化物系化合物半導体発光素子を形成し、透光性電極から導電性基板に電流を流すことで発光させることができる。この発光素子はいわゆるフェイスアップタイプであり、高反射性金属層をn型層の下に有しているので、効率的に光を透光性電極側から取り出すことが可能である。   As shown below, a Group III nitride compound semiconductor light-emitting device having a structure in which an n-type layer is provided on a conductive substrate via a highly reflective metal layer and the uppermost p-type layer is covered with a translucent electrode It can be made to emit light by flowing current from the translucent electrode to the conductive substrate. This light-emitting element is a so-called face-up type and has a highly reflective metal layer under the n-type layer, so that light can be efficiently extracted from the translucent electrode side.

本発明の要部は、保持基板に接着した後にエピタキシャル成長用基板を除去することである。追加的には、厚さの異なる2つのダイシングブレードを用い、厚い第1のダイシングブレードで、分離線を望む2つの素子の間に幅広の溝を形成し、その後、薄い第2のダイシングブレードで金属層等を切断する際の金属片が、それら2つの素子のp型層とn型層とを短絡しないようにすることである。保持基板の除去方法としては、溶剤等により除去可能な主として有機材料からなる接着層を用いると良い。さらには、ウエットエッチング可能な金属からなる犠牲層を用いることで、保持基板の除去が容易になる。   The main part of the present invention is to remove the epitaxial growth substrate after bonding to the holding substrate. In addition, two dicing blades having different thicknesses are used, and a wide groove is formed between the two elements where separation lines are desired with the thick first dicing blade, and then the thin second dicing blade is used. It is to prevent the metal piece when cutting the metal layer or the like from short-circuiting the p-type layer and the n-type layer of these two elements. As a method for removing the holding substrate, an adhesive layer mainly made of an organic material that can be removed by a solvent or the like is preferably used. Furthermore, by using a sacrificial layer made of a metal that can be wet etched, the holding substrate can be easily removed.

こうして、導電性基板に、高反射性金属層を介してn型層を設け、最上層のp型層を透光性電極で覆った構成のIII族窒化物系化合物半導体発光素子を、容易に形成し、且つ分離の際の素子外周部におけるpn短絡を回避することができる。   In this way, a group III nitride compound semiconductor light-emitting device having a structure in which an n-type layer is provided on a conductive substrate via a highly reflective metal layer and the uppermost p-type layer is covered with a translucent electrode can be easily obtained. A pn short circuit at the outer periphery of the element during formation and separation can be avoided.

また、保持基板と発光素子の主要部であるエピタキシャル層とは、間に有機材料から成る接着層を有しているので、応力が緩和される。よって、エピタキシャル成長用基板をレーザーリフトオフにより除去する際に生ずる、局所的な窒素ガスの発生による応力や局所的な熱膨張による応力を吸収し、素子構造の破壊を回避することができる。   In addition, since the holding substrate and the epitaxial layer which is the main part of the light emitting element have an adhesive layer made of an organic material between them, the stress is relieved. Therefore, it is possible to absorb the stress due to the generation of local nitrogen gas and the stress due to local thermal expansion that occur when the epitaxial growth substrate is removed by laser lift-off, thereby avoiding the destruction of the element structure.

本発明は、p層側に光を取り出す、いわゆるフェイスアップタイプであれば、発光層その他の半導体の積層構造は任意である。即ち、フェイスアップタイプの任意の積層構造を有するIII族窒化物系化合物半導体発光素子に適用できる。   In the present invention, a stacked structure of a light emitting layer and other semiconductors is arbitrary as long as it is a so-called face-up type in which light is extracted to the p layer side. That is, the present invention can be applied to a group III nitride compound semiconductor light emitting device having an arbitrary laminated structure of face-up type.

レーザ照射により例えばGaNの薄膜部を溶融、分解してエピタキシャル成長用基板と分離させる場合は、365nmより短波長のレーザが適しており、波長365nm、266nmのYAGレーザ、波長308nmのXeClレーザ、波長155nmのArFレーザ、波長248nmのKrFが好適に用いられる。レーザ照射を、任意個数のチップサイズとすること、例えば500μm毎にウエハに配置されたチップならば4個×4個の2mm角のレーザ照射、或いは6個×6個の3mm角のレーザ照射とすると、各チップを「レーザ照射済み」「未照射」の境界が横切ることが無く、好適である。尚、バッファ層としてGaN以外のAlGaN等を用いる場合は、例えばGaNのAlGaNとの界面にレーザを照射し、リフトオフによりバッファ層共々エピタキシャル成長用基板を除去しても良い。エピタキシャル成長用基板は、レーザーリフトオフが適用でき、且つIII族窒化物系化合物半導体をエピタキシャル成長可能な物であれば任意に選択できる。   For example, when the thin film portion of GaN is melted and decomposed by laser irradiation and separated from the epitaxial growth substrate, a laser having a wavelength shorter than 365 nm is suitable, a YAG laser having a wavelength of 365 nm, 266 nm, a XeCl laser having a wavelength of 308 nm, and a wavelength of 155 nm. ArF laser, KrF having a wavelength of 248 nm is preferably used. For example, if the chips are arranged on the wafer every 500 μm, 4 × 4 2 mm square laser irradiations or 6 × 6 3 mm square laser irradiations are used. Then, it is preferable that the boundary between “laser irradiated” and “unirradiated” does not cross each chip. When AlGaN other than GaN is used as the buffer layer, for example, the laser may be irradiated on the interface between GaN and AlGaN, and the substrate for epitaxial growth together with the buffer layer may be removed by lift-off. The substrate for epitaxial growth can be arbitrarily selected as long as laser lift-off can be applied and a group III nitride compound semiconductor can be epitaxially grown.

III族窒化物系化合物半導体積層構造は、エピタキシャル成長により形成することが望ましい。但しエピタキシャル成長に先立って形成されるバッファ層は、エピタキシャル成長によらず、例えばスパッタリングその他の方法により形成されるものでも構わない。エピタキシャル成長方法、エピタキシャル成長用基板、各層の構成、発光層等の機能層の構造その他の構成方法及び素子分割後の取扱い方法等は、以下の実施例では細部を全く述べないこともあるが、これは本願出願時における、任意の公知の構成を用いること、或いは複数の技術構成を任意に組み合わせて所望の光素子を形成することが、本発明に包含されうることを意味するものである。   The group III nitride compound semiconductor multilayer structure is desirably formed by epitaxial growth. However, the buffer layer formed prior to the epitaxial growth may be formed by, for example, sputtering or other methods without depending on the epitaxial growth. The epitaxial growth method, the substrate for epitaxial growth, the configuration of each layer, the structure of the functional layer such as the light emitting layer, the other configuration method, the handling method after element division, etc. may not be described in detail in the following examples, Use of any known configuration at the time of filing of the present application or formation of a desired optical element by arbitrarily combining a plurality of technical configurations means that the present invention can be included.

III族窒化物系化合物は、狭義にはAlGaInN系の任意組成の2元系及び3元系を包含する4元系の半導体自体と、それらに導電性を付与するためのドナー又はアクセプタ不純物を添加したものを意味する。しかし、一般的に、他のIII族及びV族を追加的或いは一部置換して用いる半導体、或いは他の機能を付与するために任意の元素を添加された半導体を排除するものではない。   Group III nitride compounds, in a narrow sense, include quaternary semiconductors including arbitrary and binary AlGaInN compositions, and donor or acceptor impurities for imparting conductivity to them. Means something. However, in general, it does not exclude a semiconductor that uses another group III and group V in addition or in part, or a semiconductor to which an arbitrary element is added to provide another function.

III族窒化物系化合物層に直接接合させる電極や、当該電極に接続される単層又は多層の電極は、任意の導電性材料を用いることができる。p型層側に設けられる透光性電極としては、例えば酸化インジウムスズ、酸化インジウムチタンその他の酸化物電極を用いることができる。n型層側に設けられる高反射性金属としては、III族窒化物系化合物層に直接接合させる場合はイリジウム(Ir)、白金(Pt)、ロジウム(Rh)、銀(Ag)、アルミニウム(Al)が好適である。尚、高反射性金属とn型層との間に透光性電極を形成することも可能である。   An arbitrary conductive material can be used for the electrode directly bonded to the group III nitride compound layer and the single-layer or multi-layer electrode connected to the electrode. As the translucent electrode provided on the p-type layer side, for example, indium tin oxide, indium titanium oxide, or other oxide electrodes can be used. As a highly reflective metal provided on the n-type layer side, iridium (Ir), platinum (Pt), rhodium (Rh), silver (Ag), aluminum (Al ) Is preferred. It is also possible to form a translucent electrode between the highly reflective metal and the n-type layer.

エピタキシャル成長用基板上に積層構造を設けた、エピタキシャル成長ウエハに保持基板を接着する場合は犠牲層及び/又は接着層を用いると良い。保持基板は、全く任意に選択できるが、犠牲層エッチング及び/又は接着層溶解の際には、犠牲層及び/又は接着層に到達する孔を形成しやすい、加工の容易な材料から成るものが好ましい。犠牲層を用いる場合は、希薄酸等で容易に分解できる金属層が好ましい。例えば希塩酸でウエットエッチング可能なニッケルを用いることができる。また、犠牲層のウエットエッチングに際し、透光性電極やIII族窒化物系化合物半導体層が腐食されないように、例えば二酸化ケイ素(SiO2)から成る絶縁層を、耐ウエットエッチング層として用いることができる。耐ウエットエッチング層は、犠牲層とエッチング液の選択に応じて所望に選択可能である。尚、最終的に絶縁層として発光素子に残す場合は、透光性であることが必要である。 A sacrificial layer and / or an adhesive layer may be used when a holding substrate is bonded to an epitaxial growth wafer in which a laminated structure is provided on the epitaxial growth substrate. The holding substrate can be selected arbitrarily. However, when the sacrificial layer is etched and / or the adhesive layer is dissolved, the holding substrate is made of an easily processable material that easily forms a hole reaching the sacrificial layer and / or the adhesive layer. preferable. When a sacrificial layer is used, a metal layer that can be easily decomposed with dilute acid or the like is preferable. For example, nickel that can be wet etched with dilute hydrochloric acid can be used. In addition, an insulating layer made of, for example, silicon dioxide (SiO 2 ) can be used as the wet etching resistant layer so that the translucent electrode and the group III nitride compound semiconductor layer are not corroded during the wet etching of the sacrificial layer. . The wet etching resistant layer can be selected as desired according to the selection of the sacrificial layer and the etchant. Note that in the case where the light-emitting element is finally left as an insulating layer, it needs to be light-transmitting.

接着剤による接着層は有機溶剤その他により容易に除去及び洗浄できるものが好ましい。このような接着剤としては、例えばアクリル樹脂系の接着剤を用いることができる。   The adhesive layer made of an adhesive is preferably one that can be easily removed and washed with an organic solvent or the like. As such an adhesive, for example, an acrylic resin adhesive can be used.

保持基板に積層構造を設けた、保持基板ウエハと導電性基板とを接合させるのには、はんだを好適に用いることができる。即ち、当該接合面は、導電性基板と発光素子のn型層とをつなぐものであり、導電性が要求されるからである。尚、はんだの成分によって、導電性基板や保持基板ウエハの接合側面(n型層に設けた高反射性金属層表面)に必要に応じて多層金属膜を形成すると良い。  Solder can be suitably used to join the holding substrate wafer and the conductive substrate provided with a laminated structure on the holding substrate. That is, the bonding surface connects the conductive substrate and the n-type layer of the light emitting element, and is required to have conductivity. Depending on the solder component, a multilayer metal film may be formed on the bonding side surface (surface of the highly reflective metal layer provided on the n-type layer) of the conductive substrate or holding substrate wafer as necessary.

図1を用いて、まず、本発明の概要を示す。図1.A乃至図1.Fは、本発明の製造方法の要部を示す工程図(断面図)である。エピタキシャル成長用基板100に、n型層11、p型層12、透光性電極121を少なくとも有する積層構造を形成する。尚、耐ウエットエッチング層を兼ねる絶縁層150を最上層に設けた構成とする。これをエピタキシャル成長ウエハ190と呼ぶ(図1.A)。エピタキシャル成長ウエハ190に犠牲層122を設けて、接着層201を用いて保持基板200と接着する(図1.B)。この後、例えばGaNから成るn型層11の、エピタキシャル成長用基板100との界面に所定波長のレーザーを照射して、GaNを液体Gaと窒素ガスN2とに分解する。この後エピタキシャル成長用基板100をリフトオフにより除去し、露出したn型層11表面を洗浄して、保持基板200からn型層11までの積層構造の保持基板ウエハ290を得る(図1.C)。 First, the outline of the present invention will be described with reference to FIG. FIG. A to FIG. F is a process drawing (cross-sectional view) showing the main part of the production method of the present invention. A stacked structure including at least the n-type layer 11, the p-type layer 12, and the translucent electrode 121 is formed on the epitaxial growth substrate 100. Note that the uppermost layer is the insulating layer 150 that also serves as a wet etching resistant layer. This is called an epitaxially grown wafer 190 (FIG. 1.A). A sacrificial layer 122 is provided on the epitaxially grown wafer 190 and bonded to the holding substrate 200 using the adhesive layer 201 (FIG. 1.B). Thereafter, a laser having a predetermined wavelength is irradiated to the interface between the n-type layer 11 made of, for example, GaN and the epitaxial growth substrate 100 to decompose GaN into liquid Ga and nitrogen gas N 2 . Thereafter, the epitaxial growth substrate 100 is removed by lift-off, and the exposed surface of the n-type layer 11 is washed to obtain a holding substrate wafer 290 having a laminated structure from the holding substrate 200 to the n-type layer 11 (FIG. 1C).

図の都合で上下を逆にするが、図1.Dのように、保持基板ウエハ290のn型層11に高反射性金属層111を形成し、更にはんだ層その他から成る接合用の金属層(図でmetals)を形成する。ここに、金属又は低抵抗の半導体その他から成る導電性基板300を接合する(図1.E)。後述するように、保持基板200は加工が容易であれば、犠牲層122を容易にエッチングできる。こうして、犠牲層122をウエットエッチングにより除去すれば、導電性基板300に積層構造を形成した、導電性基板ウエハ390が得られる(図1.F)。この絶縁層150の所望位置に孔を開けて透光性電極121を露出させて、所望の正電極を形成した後、個々の素子に分離すれば、導電性基板300に、高反射性金属層111、n型層11、p型層12及び透光性電極121をこの順に少なくとも有し、透光性電極121電極から導電性基板300に電流を流して発光するIII族窒化物系化合物半導体発光素子が得られる。   Upside down for convenience of illustration. As in D, a highly reflective metal layer 111 is formed on the n-type layer 11 of the holding substrate wafer 290, and a metal layer for bonding (metals in the figure) including a solder layer and the like is further formed. Here, a conductive substrate 300 made of a metal or a low-resistance semiconductor or the like is bonded (FIG. 1.E). As will be described later, if the holding substrate 200 is easily processed, the sacrificial layer 122 can be easily etched. Thus, if the sacrificial layer 122 is removed by wet etching, a conductive substrate wafer 390 having a laminated structure formed on the conductive substrate 300 is obtained (FIG. 1.F). A hole is formed in a desired position of the insulating layer 150 to expose the translucent electrode 121 to form a desired positive electrode, and then separated into individual elements to form a highly reflective metal layer on the conductive substrate 300. 111, an n-type layer 11, a p-type layer 12, and a translucent electrode 121 in this order, and a Group III nitride compound semiconductor light emitting that emits light by passing a current from the translucent electrode 121 electrode to the conductive substrate 300 An element is obtained.

図2.A乃至図2.Pは、本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の更に詳細な製造方法を示す工程図(断面図)である。尚、図2.Pでは、実質的に2チップのIII族窒化物系化合物半導体発光素子1000に対応する図を示している。図2.A乃至図2.Pは1枚のウエハ等の「一部」を拡大して表現したものである。   FIG. A to FIG. P is a process diagram (cross-sectional view) showing a more detailed manufacturing method of the group III nitride compound semiconductor light emitting device 1000 according to a specific example of the present invention. FIG. P shows a diagram substantially corresponding to a two-chip group III nitride compound semiconductor light emitting device 1000. FIG. A to FIG. P is an enlarged representation of a “part” of a single wafer or the like.

まず、サファイア基板100を用意し、通常のエピタキシャル成長によりIII族窒化物系化合物半導体層を形成する(図2.A)。図2.Aでは単純化して、n型層11とp型層12と発光領域Lとして積層されたIII族窒化物系化合物半導体層を示した。図2.A乃至図2.Pにおいて、n型層11とp型層12とは、破線で示した発光領域Lで接する2つの層の如く記載しているが、これらは細部の積層構造の記載を省略したものである。   First, a sapphire substrate 100 is prepared, and a group III nitride compound semiconductor layer is formed by normal epitaxial growth (FIG. 2.A). FIG. In A, a group III nitride compound semiconductor layer stacked as an n-type layer 11, a p-type layer 12, and a light emitting region L is shown in a simplified manner. FIG. A to FIG. In P, the n-type layer 11 and the p-type layer 12 are described as two layers that are in contact with each other in the light emitting region L indicated by a broken line.

実際、サファイア基板100に例えばバッファ層、シリコンをドープしたGaNから成る高濃度n+層、GaNから成る低濃度n層、n−AlGaNクラッド層を構成するものであっても、図2.A乃至図2.Pにおいてはn型層11として代表させている。同様に、マグネシウムをドープしたp−AlGaNクラッド層、GaNから成る低濃度p層、GaNから成る高濃度p+層を構成するものであっても、図2.A乃至図2.Pにおいてはp型層12として代表させている。また、発光領域Lは、pn接合の場合の接合面と、例えば多重量子井戸構造の発光層(通常、井戸層はアンドープ層)の両方を代表して破線で示したものであり、単に「n型層11とp型層12との界面」を意味するものではない。但し、「発光領域の平面」は発光領域Lで示した破線付近に存在する、平面である。尚、p型層12は、下記の「窒素(N2)雰囲気下の熱処理」前においては、「p型不純物を含む層ではあるが、低抵抗化していない」ものであり、当該「窒素(N2)雰囲気下の熱処理」後においては、通常の意味の低抵抗のp型層である。 Actually, even if the sapphire substrate 100 includes, for example, a buffer layer, a high concentration n + layer made of GaN doped with silicon, a low concentration n layer made of GaN, and an n-AlGaN cladding layer, FIG. A to FIG. P is represented as an n-type layer 11. Similarly, even if a p-AlGaN cladding layer doped with magnesium, a low-concentration p layer made of GaN, and a high-concentration p + layer made of GaN are formed, FIG. A to FIG. In P, the p-type layer 12 is represented. The light emitting region L is represented by a broken line representing both the junction surface in the case of a pn junction and a light emitting layer having a multiple quantum well structure (usually, the well layer is an undoped layer). It does not mean the “interface between the mold layer 11 and the p-type layer 12”. However, the “plane of the light emitting region” is a plane existing in the vicinity of the broken line indicated by the light emitting region L. Note that the p-type layer 12 is “a layer containing a p-type impurity but not reduced in resistance” before the “heat treatment under nitrogen (N 2 ) atmosphere” described below, and the “nitrogen ( After the “N 2 ) heat treatment under atmosphere”, it is a p-type layer with a low resistance in the usual sense.

次に、電子ビーム蒸着により、p型層12の全面に厚さ300nmの酸化インジウムスズ(ITO)から成る透光性電極121を形成する。ITO電極121を各図では「121−ITO」と示す。次に、ITO電極121をパターニングする(図2.B)。この後、N2雰囲気下、700℃で、5分間加熱処理してp型層12を低抵抗化すると共に、p型層12とITO電極121との間のコンタクト抵抗を低抵抗化する(図2.C)。次に、ITO電極121の全面に、厚さ100nmの二酸化ケイ素(SiO2)から成る絶縁層150を形成する(図2.D)。 Next, a translucent electrode 121 made of indium tin oxide (ITO) having a thickness of 300 nm is formed on the entire surface of the p-type layer 12 by electron beam evaporation. The ITO electrode 121 is indicated as “121-ITO” in each drawing. Next, the ITO electrode 121 is patterned (FIG. 2.B). Thereafter, heat treatment is performed at 700 ° C. for 5 minutes in an N 2 atmosphere to reduce the resistance of the p-type layer 12 and to reduce the contact resistance between the p-type layer 12 and the ITO electrode 121 (FIG. 2.C). Next, an insulating layer 150 made of silicon dioxide (SiO 2 ) having a thickness of 100 nm is formed on the entire surface of the ITO electrode 121 (FIG. 2.D).

次に、犠牲層となる、ウエットエッチング可溶な層として、絶縁層150の上面に、Ni層122を500nm形成する(図2.E)。ここにダミー基板(一時保持基板)であるSi基板200を接着剤201で接着する。接着剤201としては、溶剤可溶タイプが好ましく、メチルエチルケトン等に可溶なアクリル系接着剤を用いると良い(図2.F)。   Next, a Ni layer 122 having a thickness of 500 nm is formed on the upper surface of the insulating layer 150 as a wet etching soluble layer serving as a sacrificial layer (FIG. 2.E). Here, a Si substrate 200 as a dummy substrate (temporary holding substrate) is bonded with an adhesive 201. The adhesive 201 is preferably a solvent-soluble type, and an acrylic adhesive that is soluble in methyl ethyl ketone or the like is preferably used (FIG. 2.F).

この後、公知のレーザーリフトオフによりサファイア基板100を除去して、ダミー基板(一時保持基板)であるSi基板200上に、n型層11側を上面とした状態にする(図2.G)。レーザーリフトオフは、n型層11のサファイア基板100との界面11fに焦点を当ててレーザー照射し、界面11fでの接合を分解して、サファイア基板100を剥がして除去する。例えば、照射条件は、0.7J/cm2以上、パルス幅25ns(ナノ秒)、照射領域2mm角又は3mm角で、各照射ごとに、レーザ照射領域外周が、「1チップ」を横切らないようにすると良い。このレーザ照射により、サファイア基板100に最も近いn型層11(GaN層)の界面11fが薄膜状に溶融し、ガリウム(Ga)液滴と窒素(N2)とに分解する。この後、露出したn層11表面を希塩酸(aqHCl)と、フッ酸緩衝液(BHF)で洗浄し、表面に付着しているガリウム(Ga)液滴を除去する。 Thereafter, the sapphire substrate 100 is removed by a known laser lift-off, and the n-type layer 11 side is placed on the Si substrate 200 as a dummy substrate (temporary holding substrate) (FIG. 2.G). In the laser lift-off, the interface 11f of the n-type layer 11 with the sapphire substrate 100 is focused and laser irradiation is performed, the bonding at the interface 11f is decomposed, and the sapphire substrate 100 is peeled off and removed. For example, the irradiation conditions are 0.7 J / cm 2 or more, a pulse width of 25 ns (nanoseconds), an irradiation area of 2 mm square or 3 mm square, and the outer periphery of the laser irradiation area does not cross “one chip” for each irradiation. It is good to make it. By this laser irradiation, the interface 11f of the n-type layer 11 (GaN layer) closest to the sapphire substrate 100 is melted into a thin film and decomposed into gallium (Ga) droplets and nitrogen (N 2 ). Thereafter, the exposed surface of the n layer 11 is washed with dilute hydrochloric acid (aqHCl) and hydrofluoric acid buffer (BHF) to remove gallium (Ga) droplets adhering to the surface.

次に、露出したn層11表面に、厚さ500nmのアルミニウム(Al)から成る高反射性金属層111を蒸着により形成する。尚、アルミニウム(Al)から成る高反射性金属層111を図2.H以下では「111−Al」として示した。更にこの上に順に厚さ100nmのチタン(Ti)層112、厚さ300nmのニッケル(Ni)層113、厚さ100nmの金(Au)層114を積層し、スズ20%の金スズはんだ(Au−20Sn)115を1000nm厚で設けた(図2.H)。   Next, a highly reflective metal layer 111 made of aluminum (Al) having a thickness of 500 nm is formed on the exposed surface of the n layer 11 by vapor deposition. A highly reflective metal layer 111 made of aluminum (Al) is formed as shown in FIG. Below H, it is shown as “111-Al”. Further, a titanium (Ti) layer 112 having a thickness of 100 nm, a nickel (Ni) layer 113 having a thickness of 300 nm, and a gold (Au) layer 114 having a thickness of 100 nm are laminated thereon in order, and a gold-tin solder (Au −20Sn) 115 was provided with a thickness of 1000 nm (FIG. 2.H).

チタン(Ti)層112、ニッケル(Ni)層113、金(Au)層114の機能は、次の通りである。スズ20%の金スズはんだ(Au−20Sn)115を設けるにあたって、当該金スズはんだ(Au−20Sn)115と合金化する層として金(Au)層114を、スズ(Sn)のアルミニウム(Al)から成る高反射性金属層111への拡散を防ぐ層としてニッケル(Ni)層113を、ニッケル(Ni)層113とアルミニウム(Al)から成る高反射性金属層111との密着性を向上させるためにチタン(Ti)層112を各々設けるものである。   The functions of the titanium (Ti) layer 112, the nickel (Ni) layer 113, and the gold (Au) layer 114 are as follows. In providing the gold tin solder (Au-20Sn) 115 of 20% tin, a gold (Au) layer 114 is formed as an alloying layer with the gold tin solder (Au-20Sn) 115, and aluminum (Al) of tin (Sn). In order to improve the adhesion between the nickel (Ni) layer 113 and the highly reflective metal layer 111 made of aluminum (Al) as a layer for preventing diffusion to the highly reflective metal layer 111 made of Each is provided with a titanium (Ti) layer 112.

次に銅(Cu)基板300を用意し、表面にAu層301、裏面にAu層302を形成し、表面側のAu層301上にスズ20%の金スズはんだ(Au−20Sn)305を厚さ1000nm形成する。こうして、銅(Cu)基板300の表面側のスズ20%の金スズはんだ(Au−20Sn)305と、ダミー基板(一時保持基板)であるSi基板200のウエハのスズ20%の金スズはんだ(Au−20Sn)115とをホットプレスで接着する(図2.I)。この際の条件は、例えば300℃、30kg重/cm2(2.94MPa)である。こうして、銅(Cu)基板300と、アルミニウム(Al)から成る高反射性金属層111その他の金属層と、n型層11と、p型層12と、ITO電極121とが積層された構造が、ダミー基板(一時保持基板)であるSi基板200を被せた状態で得られる。 Next, a copper (Cu) substrate 300 is prepared, an Au layer 301 is formed on the front surface, an Au layer 302 is formed on the back surface, and a gold tin solder (Au-20Sn) 305 of 20% tin is thick on the Au layer 301 on the front surface side. A thickness of 1000 nm is formed. Thus, a 20% gold tin solder (Au-20Sn) 305 on the surface side of the copper (Cu) substrate 300 and a 20% tin gold tin solder on the wafer of the Si substrate 200 as a dummy substrate (temporary holding substrate) ( (Au-20Sn) 115 is bonded by hot pressing (FIG. 2.I). The conditions at this time are, for example, 300 ° C. and 30 kg weight / cm 2 (2.94 MPa). Thus, a structure in which the copper (Cu) substrate 300, the highly reflective metal layer 111 made of aluminum (Al), and other metal layers, the n-type layer 11, the p-type layer 12, and the ITO electrode 121 are laminated. It is obtained in a state where it covers the Si substrate 200 which is a dummy substrate (temporary holding substrate).

次に、Si基板200及び接着剤層201に孔Hを複数個あけて、エッチング液が犠牲層であるNi層122に十分に到達するようにする(図2.J)。当該孔Hは例えばトレンチ状としても、それらが全体として格子状となっていても良く、Si基板200及び接着剤層201を裁断するように形成しても、裁断しないように形成しても良い。   Next, a plurality of holes H are formed in the Si substrate 200 and the adhesive layer 201 so that the etching solution sufficiently reaches the Ni layer 122 which is a sacrificial layer (FIG. 2.J). For example, the holes H may be formed in a trench shape, or in a lattice shape as a whole, and may be formed so as to cut the Si substrate 200 and the adhesive layer 201 or not. .

こうして複数個の孔Hからエッチング液を犠牲層であるNi層122に十分に作用させてNi層122を溶解させ、Si基板200及び接着剤層201を、銅(Cu)基板300と、アルミニウム(Al)から成る高反射性金属層111その他の金属層と、n型層11と、p型層12と、ITO電極121とが積層された構造から除去する(図2.K)。尚、エッチング液としては希硝酸を用いた。   In this way, the etching solution is sufficiently applied to the sacrificial Ni layer 122 from the plurality of holes H to dissolve the Ni layer 122, and the Si substrate 200 and the adhesive layer 201 are bonded to the copper (Cu) substrate 300 and aluminum ( The highly reflective metal layer 111 made of Al) and other metal layers, the n-type layer 11, the p-type layer 12, and the ITO electrode 121 are removed from the laminated structure (FIG. 2.K). Note that dilute nitric acid was used as the etching solution.

次に、SiO2層150の表面の一部をエッチングしてITO電極121の必要箇所を露出させ(図2.L)、所望の金属等から成る台座電極125をレジスト膜を用いたリフトオフにより形成する(図2.M)。 Next, a part of the surface of the SiO 2 layer 150 is etched to expose a necessary portion of the ITO electrode 121 (FIG. 2.L), and a pedestal electrode 125 made of a desired metal or the like is formed by lift-off using a resist film. (FIG. 2.M).

以上により、各発光素子の構成は完成したので、個々の素子に分離する。まず、素子間の分離線に沿って、幅50μmの第1の溝T1を、p層12側からn層11の厚さの中央あたりまで、第1のダイシングブレードにより形成する。この際、アルミニウム(Al)から成る高反射性金属層111以下の金属層をダイシングしてしまうと、金属片が各素子のn型層11とp型層12とを短絡させてしまうので、ダイシングはn層11の厚さを越えてはならない(図2.N)。   As described above, since the configuration of each light emitting element is completed, it is separated into individual elements. First, a first trench T1 having a width of 50 μm is formed by a first dicing blade from the p layer 12 side to the center of the thickness of the n layer 11 along the separation line between the elements. At this time, if the metal layer below the highly reflective metal layer 111 made of aluminum (Al) is diced, the metal piece short-circuits the n-type layer 11 and the p-type layer 12 of each element. Must not exceed the thickness of the n layer 11 (FIG. 2.N).

次に素子間の分離線に沿って形成された第1の溝T1にあわせ、幅20μmの第2の溝T2を、銅(Cu)基板300及び裏面のAu層302を完全に分離するまで第2のダイシングブレードにより形成する。尚、素子分離工程の都合により、例えば格子状に形成する第2の溝T2を、銅(Cu)基板300の下方を一部残すように形成した後、ブレーキング工程を設けても良い。この状況を説明するため、図2.Oでは、第2の溝T2を、実線としては銅(Cu)基板300を完全に分離しない状態として示し、破線にて、銅(Cu)基板300及び裏面のAu層302を完全に分離する状態を示した。   Next, the second groove T2 having a width of 20 μm is aligned with the first groove T1 formed along the separation line between the elements until the copper (Cu) substrate 300 and the Au layer 302 on the back surface are completely separated. 2 dicing blades. For the convenience of the element isolation process, for example, the second groove T2 formed in a lattice shape may be formed so as to leave a part of the lower portion of the copper (Cu) substrate 300, and then a breaking process may be provided. To illustrate this situation, FIG. In O, the second groove T2 is shown as a state in which the copper (Cu) substrate 300 is not completely separated as a solid line, and the copper (Cu) substrate 300 and the Au layer 302 on the back surface are completely separated by a broken line. showed that.

こうして、本願発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000が得られる(図2.P)。III族窒化物系化合物半導体発光素子1000は、銅(Cu)基板300に設けられ、n型層11の下方にアルミニウムから成る高反射性金属層111を有し、p型層12の上方にITO電極121を有する。台座電極125はITO電極121全体を覆っておらず、SiO2から成る絶縁層150は透光性であるので、少なくとも台座電極125を設けていない部分において、発光領域Lからの発光は、上方に発せられることとなる。 Thus, a group III nitride compound semiconductor light emitting device 1000 according to a specific example of the present invention is obtained (FIG. 2.P). The group III nitride compound semiconductor light emitting device 1000 is provided on a copper (Cu) substrate 300, has a highly reflective metal layer 111 made of aluminum below the n-type layer 11, and ITO above the p-type layer 12. An electrode 121 is included. Since the pedestal electrode 125 does not cover the entire ITO electrode 121 and the insulating layer 150 made of SiO 2 is translucent, the light emitted from the light emitting region L is upward at least in a portion where the pedestal electrode 125 is not provided. Will be emitted.

図3を用いて、本発明の他の実施例である、犠牲層122を省略した場合の概要を工程図で示す。図3.A乃至図3.Fは、本発明の第2の製造方法の要部を示す工程図(断面図)である。エピタキシャル成長用基板100に、n型層11、p型層12、透光性電極121を少なくとも有する積層構造を形成し、耐ウエットエッチング層を兼ねる絶縁層150を最上層に設けた構成のエピタキシャル成長ウエハ190を用意する(図3.A、図1.Aと同一)。次に犠牲層122の形成を省略して、接着層201を用いてエピタキシャルウエハ190と保持基板200と接着する(図3.B)。この後、エピタキシャル成長用基板100をレーザリフトオフにより除去し、露出したn型層11表面を洗浄して、保持基板200からn型層11までの積層構造の保持基板ウエハ295を得る(図3.C)。   An outline of the case where the sacrificial layer 122, which is another embodiment of the present invention, is omitted is shown in FIG. FIG. A to FIG. F is a process drawing (cross-sectional view) showing the main part of the second production method of the present invention. An epitaxial growth wafer 190 having a structure in which a laminated structure having at least an n-type layer 11, a p-type layer 12, and a translucent electrode 121 is formed on an epitaxial growth substrate 100, and an insulating layer 150 serving also as a wet etching resistant layer is provided as the uppermost layer. Is prepared (same as FIG. 3.A, FIG. 1.A). Next, the formation of the sacrificial layer 122 is omitted, and the epitaxial wafer 190 and the holding substrate 200 are bonded using the adhesive layer 201 (FIG. 3.B). Thereafter, the epitaxial growth substrate 100 is removed by laser lift-off, and the exposed surface of the n-type layer 11 is washed to obtain a holding substrate wafer 295 having a laminated structure from the holding substrate 200 to the n-type layer 11 (FIG. 3.C). ).

図3.Dのように、保持基板ウエハ295のn型層11に高反射性金属層111、はんだ層その他から成る接合用の金属層(図でmetals)を形成する。ここに、金属又は低抵抗の半導体その他から成る導電性基板300を接合する(図3.E)。この後、導電性基板300を接合した保持基板ウエハ295を所定の有機溶剤に浸漬すれば、有機材料からなる接着層201を膨潤させ、剥離、溶解又は分解させることができる。この際、保持基板200に孔をあける必要は無い。こうして、導電性基板300に積層構造を形成した、導電性基板ウエハ390が得られる(図3.F、図1.Fと同一)。この絶縁層150の所望位置に孔を開けて透光性電極121を露出させて、所望の正電極を形成した後、個々の素子に分離すれば、導電性基板300に、高反射性金属層111、n型層11、p型層12及び透光性電極121をこの順に少なくとも有し、透光性電極121電極から導電性基板300に電流を流して発光するIII族窒化物系化合物半導体発光素子が得られる。   FIG. As in D, a metal layer (metals in the figure) for bonding composed of the highly reflective metal layer 111, the solder layer, and the like is formed on the n-type layer 11 of the holding substrate wafer 295. Here, a conductive substrate 300 made of a metal or a low-resistance semiconductor or the like is bonded (FIG. 3.E). Thereafter, if the holding substrate wafer 295 to which the conductive substrate 300 is bonded is immersed in a predetermined organic solvent, the adhesive layer 201 made of an organic material can be swollen and peeled, dissolved, or decomposed. At this time, it is not necessary to make a hole in the holding substrate 200. In this way, a conductive substrate wafer 390 having a laminated structure formed on the conductive substrate 300 is obtained (same as FIG. 3.F and FIG. 1.F). A hole is formed in a desired position of the insulating layer 150 to expose the translucent electrode 121 to form a desired positive electrode, and then separated into individual elements to form a highly reflective metal layer on the conductive substrate 300. 111, an n-type layer 11, a p-type layer 12, and a translucent electrode 121 in this order, and a Group III nitride compound semiconductor light emitting that emits light by passing a current from the translucent electrode 121 electrode to the conductive substrate 300 An element is obtained.

本発明の製造方法の概要を示す工程図(断面図)。Process drawing (sectional drawing) which shows the outline | summary of the manufacturing method of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子1000の製造方法の一工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the group III nitride compound semiconductor light-emitting device 1000 which concerns on one specific Example of this invention. 本発明の第2の製造方法の概要を示す工程図(断面図)。Process drawing (sectional drawing) which shows the outline | summary of the 2nd manufacturing method of this invention.

符号の説明Explanation of symbols

1000:III族窒化物系化合物半導体発光素子
L:発光領域
100:サファイア基板(エピタキシャル成長用基板)
11:n型III族窒化物系化合物半導体層
111:Alから成る高反射性金属層
112:Ti層
113:Ni層
114、301、302:Au層
115、305:Au−20Snはんだ層
12:p型III族窒化物系化合物半導体層
121:ITOから成る透光性電極
122:Niから成る犠牲層
125:台座電極
150:SiO2から成る絶縁層
200:シリコン基板(保持基板)
201:有機材料から成る接着層
H:ウエットエッチング用の孔
300:Cu基板
T1、T2:第1、及び第2のダイシングブレードにより形成される溝

1000: Group III nitride compound semiconductor light emitting device L: Light emitting region 100: Sapphire substrate (substrate for epitaxial growth)
11: n-type group III nitride compound semiconductor layer 111: highly reflective metal layer made of Al 112: Ti layer 113: Ni layer 114, 301, 302: Au layer 115, 305: Au-20Sn solder layer 12: p Type III nitride compound semiconductor layer 121: Translucent electrode made of ITO 122: Sacrificial layer made of Ni 125: Base electrode 150: Insulating layer made of SiO 2 200: Silicon substrate (holding substrate)
201: Adhesive layer made of an organic material H: Hole for wet etching 300: Cu substrate T1, T2: Groove formed by first and second dicing blades

Claims (5)

導電性基板と、
高反射性金属層と、
n型のIII族窒化物系化合物半導体層と、
p型のIII族窒化物系化合物半導体層と、
透光性電極とを、
各層間に他の層を介し又は介さずにこの順に有し、
前記透光性電極から前記導電性基板に電流を流して発光させることを特徴とするIII族窒化物系化合物半導体発光素子。
A conductive substrate;
A highly reflective metal layer;
an n-type Group III nitride compound semiconductor layer;
a p-type group III nitride compound semiconductor layer;
A translucent electrode,
Have each layer in this order with or without other layers,
A Group III nitride compound semiconductor light-emitting element that emits light by passing a current from the translucent electrode to the conductive substrate.
III族窒化物系化合物半導体発光素子の製造方法において、
エピタキシャル成長用基板に、少なくともn型のIII族窒化物系化合物半導体層と、最上層のp型のIII族窒化物系化合物半導体層までの所望の積層構造を形成するエピタキシャル成長工程と、
最上層である前記p型のIII族窒化物系化合物半導体層の上面に透光性電極を形成する透光性電極形成工程と、
透光性電極側に、主として有機材料から成る接着剤から成る接着層により一時保持用の保持基板を接着する保持基板接着工程と、
前記n型のIII族窒化物系化合物半導体層の、前記エピタキシャル成長用基板との界面近傍にレーザーを照射して当該界面近傍を分解するレーザー照射工程と、
その後、前記エピタキシャル成長用基板を除く成長基板除去工程と、
露出した前記n型のIII族窒化物系化合物半導体層裏面に高反射性金属層を形成する反射金属形成工程と、
前記高反射性金属層に覆われた前記n型のIII族窒化物系化合物半導体層裏面側に、導体による接続層を表面に形成した導電性基板を接合する導電性基板接合工程と、
前記保持基板と前記有機材料から成る接着層とを除去する保持基板除去工程と
を少なくとも有することを特徴とするIII族窒化物系化合物半導体発光素子の製造方法。
In the method for producing a group III nitride compound semiconductor light emitting device,
An epitaxial growth step of forming a desired stacked structure of at least an n-type group III nitride compound semiconductor layer and an uppermost p-type group III nitride compound semiconductor layer on an epitaxial growth substrate;
A translucent electrode forming step of forming a translucent electrode on the upper surface of the p-type group III nitride compound semiconductor layer which is the uppermost layer;
A holding substrate bonding step in which a holding substrate for temporary holding is bonded to the translucent electrode side by an adhesive layer made mainly of an organic material;
A laser irradiation step of irradiating the vicinity of the interface with the epitaxial growth substrate of the n-type group III nitride compound semiconductor layer to decompose the vicinity of the interface;
Thereafter, a growth substrate removing step excluding the epitaxial growth substrate,
A reflective metal forming step of forming a highly reflective metal layer on the back surface of the exposed n-type group III nitride compound semiconductor layer;
A conductive substrate bonding step of bonding a conductive substrate having a connection layer formed by a conductor on the back side of the n-type group III nitride compound semiconductor layer covered with the highly reflective metal layer;
A method of manufacturing a group III nitride compound semiconductor light emitting device, comprising at least a holding substrate removing step of removing the holding substrate and the adhesive layer made of the organic material.
前記保持基板接着工程においては、透光性電極側に、金属から成る犠牲層を介して前記有機材料から成る接着層により前記保持基板を接着するものであり、
前記保持基板除去工程においては、前記金属から成る犠牲層を分解又は除去した後に前記保持基板と前記有機材料から成る接着層とを除去するものであることを特徴とする請求項2に記載のIII族窒化物系化合物半導体発光素子の製造方法。
In the holding substrate bonding step, the holding substrate is bonded to the translucent electrode side by an adhesive layer made of the organic material through a sacrificial layer made of metal,
3. The III according to claim 2, wherein in the holding substrate removing step, the holding substrate and the adhesive layer made of the organic material are removed after the sacrificial layer made of the metal is decomposed or removed. A method for manufacturing a group nitride compound semiconductor light emitting device.
前記透光性電極形成工程の後に、
当該透光性電極をパターニングする工程と、
パターニング後の当該透光性電極を覆う耐ウエットエッチング層を設ける工程とを有することを特徴とする請求項3に記載のIII族窒化物系化合物半導体発光素子の製造方法。
After the translucent electrode forming step,
Patterning the translucent electrode;
A method for producing a Group III nitride compound semiconductor light-emitting device according to claim 3, further comprising a step of providing a wet etching-resistant layer that covers the translucent electrode after patterning.
前記保持基板除去工程に続いて、
前記導電性基板上に形成された積層構造を、最上層の前記p型のIII族窒化物系化合物半導体層側から、前記n型のIII族窒化物系化合物半導体層に達し、且つ前記高反射性金属層には達しないように、第1のダイシングブレードにより、分離用の第1の溝を形成するハーフカット工程と、
前記第1のダイシングブレードよりも厚さの薄い第2のダイシングブレードにより、前記導電性基板まで達する分離用の第2の溝を形成するフルカット工程と
を有することを特徴とする請求項2乃至請求項4のいずれか1項に記載のIII族窒化物系化合物半導体発光素子の製造方法。
Following the holding substrate removal step,
The stacked structure formed on the conductive substrate reaches the n-type group III nitride compound semiconductor layer from the p-type group III nitride compound semiconductor layer side of the uppermost layer, and is highly reflective. A half-cut step of forming a first groove for separation by a first dicing blade so as not to reach the conductive metal layer;
3. A full-cut step of forming a second groove for separation reaching the conductive substrate by a second dicing blade having a thickness smaller than that of the first dicing blade. The manufacturing method of the group III nitride compound semiconductor light-emitting device of any one of Claim 4.
JP2006218463A 2006-08-10 2006-08-10 Group iii nitride compound semiconductor light emitting element, and its manufacturing method Withdrawn JP2008042143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218463A JP2008042143A (en) 2006-08-10 2006-08-10 Group iii nitride compound semiconductor light emitting element, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218463A JP2008042143A (en) 2006-08-10 2006-08-10 Group iii nitride compound semiconductor light emitting element, and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2008042143A true JP2008042143A (en) 2008-02-21
JP2008042143A5 JP2008042143A5 (en) 2010-09-16

Family

ID=39176770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218463A Withdrawn JP2008042143A (en) 2006-08-10 2006-08-10 Group iii nitride compound semiconductor light emitting element, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008042143A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231549A (en) * 2008-03-24 2009-10-08 Toyoda Gosei Co Ltd Nitride-based semiconductor light-emitting device
JP2010114374A (en) * 2008-11-10 2010-05-20 Stanley Electric Co Ltd Method of manufacturing semiconductor element
JP2010114375A (en) * 2008-11-10 2010-05-20 Stanley Electric Co Ltd Semiconductor element manufacturing method
JP2010114373A (en) * 2008-11-10 2010-05-20 Stanley Electric Co Ltd Method of manufacturing semiconductor element
JP2011522436A (en) * 2008-06-02 2011-07-28 コリア ユニバーシティ インダストリアル アンド アカデミック コラボレイション ファウンデーション Support substrate for manufacturing semiconductor light emitting device and semiconductor light emitting device using this support substrate
WO2011118489A1 (en) * 2010-03-24 2011-09-29 住友ベークライト株式会社 Method of manufacture for light-emitting element and light-emitting element manufactured thereby
WO2014079708A1 (en) * 2012-11-23 2014-05-30 Osram Opto Semiconductors Gmbh Method for singulating an assemblage into semiconductor chips, and semiconductor chip
JP2014525683A (en) * 2011-08-30 2014-09-29 コーニンクレッカ フィリップス エヌ ヴェ Method for bonding substrate to semiconductor light emitting device
KR101470020B1 (en) * 2008-03-18 2014-12-10 엘지이노텍 주식회사 epitaxial semiconductor thin-film transfer using sandwich-structured wafer bonding and photon-beam
JP2016039242A (en) * 2014-08-07 2016-03-22 シャープ株式会社 Semiconductor light emitting element manufacturing method and semiconductor light emitting element
CN105431252A (en) * 2013-08-08 2016-03-23 奥斯兰姆奥普托半导体有限责任公司 Method for dividing composite into semiconductor chips and semiconductor chips
KR101608868B1 (en) * 2009-10-22 2016-04-04 삼성전자주식회사 Light emitting diode array integrated with apertures, line printer head, and method of fabricating the light emitting diode array
JP2020502796A (en) * 2016-12-16 2020-01-23 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Method for manufacturing a semiconductor component
CN115458647A (en) * 2022-10-31 2022-12-09 天津三安光电有限公司 A vertical LED chip structure and its manufacturing method and light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210066A (en) * 2003-12-25 2005-08-04 Kyocera Corp Thin film light emitting device and manufacturing method thereof
JP2005259768A (en) * 2004-03-09 2005-09-22 Sanyo Electric Co Ltd LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2005276900A (en) * 2004-03-23 2005-10-06 Shin Etsu Handotai Co Ltd Light-emitting element
JP2006086254A (en) * 2004-09-15 2006-03-30 Kyocera Corp LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE USING THE LIGHT EMITTING ELEMENT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210066A (en) * 2003-12-25 2005-08-04 Kyocera Corp Thin film light emitting device and manufacturing method thereof
JP2005259768A (en) * 2004-03-09 2005-09-22 Sanyo Electric Co Ltd LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2005276900A (en) * 2004-03-23 2005-10-06 Shin Etsu Handotai Co Ltd Light-emitting element
JP2006086254A (en) * 2004-09-15 2006-03-30 Kyocera Corp LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE USING THE LIGHT EMITTING ELEMENT

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470020B1 (en) * 2008-03-18 2014-12-10 엘지이노텍 주식회사 epitaxial semiconductor thin-film transfer using sandwich-structured wafer bonding and photon-beam
JP2009231549A (en) * 2008-03-24 2009-10-08 Toyoda Gosei Co Ltd Nitride-based semiconductor light-emitting device
JP2011522436A (en) * 2008-06-02 2011-07-28 コリア ユニバーシティ インダストリアル アンド アカデミック コラボレイション ファウンデーション Support substrate for manufacturing semiconductor light emitting device and semiconductor light emitting device using this support substrate
US9224910B2 (en) 2008-06-02 2015-12-29 Lg Innotek Co., Ltd. Supporting substrate for preparing semiconductor light-emitting device and semiconductor light-emitting device using supporting substrates
US8877530B2 (en) 2008-06-02 2014-11-04 Lg Innotek Co., Ltd. Supporting substrate for preparing semiconductor light-emitting device and semiconductor light-emitting device using supporting substrates
JP2010114374A (en) * 2008-11-10 2010-05-20 Stanley Electric Co Ltd Method of manufacturing semiconductor element
JP2010114375A (en) * 2008-11-10 2010-05-20 Stanley Electric Co Ltd Semiconductor element manufacturing method
JP2010114373A (en) * 2008-11-10 2010-05-20 Stanley Electric Co Ltd Method of manufacturing semiconductor element
KR101608868B1 (en) * 2009-10-22 2016-04-04 삼성전자주식회사 Light emitting diode array integrated with apertures, line printer head, and method of fabricating the light emitting diode array
WO2011118489A1 (en) * 2010-03-24 2011-09-29 住友ベークライト株式会社 Method of manufacture for light-emitting element and light-emitting element manufactured thereby
JP2014525683A (en) * 2011-08-30 2014-09-29 コーニンクレッカ フィリップス エヌ ヴェ Method for bonding substrate to semiconductor light emitting device
US10158049B2 (en) 2011-08-30 2018-12-18 Lumileds Llc Method of bonding a substrate to a semiconductor light emitting device
WO2014079708A1 (en) * 2012-11-23 2014-05-30 Osram Opto Semiconductors Gmbh Method for singulating an assemblage into semiconductor chips, and semiconductor chip
US9728459B2 (en) 2012-11-23 2017-08-08 Osram Opto Semiconductors Gmbh Method for singulating an assemblage into semiconductor chips, and semiconductor chip
CN105431252A (en) * 2013-08-08 2016-03-23 奥斯兰姆奥普托半导体有限责任公司 Method for dividing composite into semiconductor chips and semiconductor chips
CN105431252B (en) * 2013-08-08 2017-06-23 奥斯兰姆奥普托半导体有限责任公司 Method and semiconductor chip for complex to be divided into semiconductor chip
US9873166B2 (en) 2013-08-08 2018-01-23 Osram Opto Semiconductors Gmbh Method for dividing a composite into semiconductor chips, and semiconductor chip
US10232471B2 (en) 2013-08-08 2019-03-19 Osram Opto Semiconductors Gmbh Method for dividing a composite into semiconductor chips, and semiconductor chip
JP2016039242A (en) * 2014-08-07 2016-03-22 シャープ株式会社 Semiconductor light emitting element manufacturing method and semiconductor light emitting element
JP2020502796A (en) * 2016-12-16 2020-01-23 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Method for manufacturing a semiconductor component
US11081620B2 (en) 2016-12-16 2021-08-03 Osram Oled Gmbh Method of producing a semiconductor component
CN115458647A (en) * 2022-10-31 2022-12-09 天津三安光电有限公司 A vertical LED chip structure and its manufacturing method and light emitting device

Similar Documents

Publication Publication Date Title
JP2008042143A (en) Group iii nitride compound semiconductor light emitting element, and its manufacturing method
JP4841378B2 (en) Manufacturing method of vertical structure light emitting diode
JP2008186959A (en) III-V group semiconductor device and manufacturing method thereof
JP4758857B2 (en) Manufacturing method of vertical structure light emitting diode
CN100388518C (en) Nitride-based compound semiconductor light-emitting device
US20070141806A1 (en) Method for producing group III nitride based compound semiconductor device
CN102067341A (en) Light emitting device and manufacturing method for same
JP4489747B2 (en) Method for manufacturing vertical structure nitride semiconductor device
CN101188265A (en) Semiconductor light emitting element and manufacturing method thereof
JP4835409B2 (en) III-V group semiconductor device and manufacturing method thereof
JP5774712B2 (en) Semiconductor device and manufacturing method thereof
JP5658604B2 (en) Manufacturing method of semiconductor light emitting device
JP4910664B2 (en) Method for manufacturing group III-V semiconductor device
EP2426741B1 (en) Method of fabricating a semiconductor light emitting device
KR100916366B1 (en) Support substrate for semiconductor light emitting device and method for manufacturing semiconductor light emitting device having vertical structure using same
JP2008306021A (en) LED chip manufacturing method
JP2010225852A (en) Semiconductor device and manufacturing method thereof
JP2013197380A (en) Semiconductor light emitting element, lamp for vehicle, and semiconductor light emitting element manufacturing method
JP2008153362A (en) Semiconductor light emitting device manufacturing method, semiconductor light emitting device, and light emitting device
JP2008140871A5 (en)
JP4920249B2 (en) Group III nitride compound semiconductor light emitting device
JP2013058707A (en) Semiconductor light-emitting element manufacturing method
JPH11354841A (en) Fabrication of semiconductor light emitting element
US20070141753A1 (en) Group III nitride based compound semiconductor device and producing method for the same
JP4738999B2 (en) Semiconductor optical device manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110610