[go: up one dir, main page]

JP2008034874A - Semiconductor light emitting device and manufacturing method thereof - Google Patents

Semiconductor light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP2008034874A
JP2008034874A JP2007263290A JP2007263290A JP2008034874A JP 2008034874 A JP2008034874 A JP 2008034874A JP 2007263290 A JP2007263290 A JP 2007263290A JP 2007263290 A JP2007263290 A JP 2007263290A JP 2008034874 A JP2008034874 A JP 2008034874A
Authority
JP
Japan
Prior art keywords
semiconductor light
layer
light emitting
emitting device
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007263290A
Other languages
Japanese (ja)
Inventor
Teruhiko Kuramachi
照彦 蔵町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007263290A priority Critical patent/JP2008034874A/en
Publication of JP2008034874A publication Critical patent/JP2008034874A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】半導体発光装置の長期信頼性を向上させ、製造コストを低減させる。
【解決手段】熱抵抗の小さいCuまたはCuWからなるヒートシンク1上にメッキ法によりNi薄膜層を2μm以上6μm以下の膜厚で形成する。その後、半導体発光素子5を接着する面および光出射される側の面に、半導体発光素子5の接着面の面積の4倍の領域に、蒸着およびスパッタ成膜法により、銅と直接反応しないTi又はNiTiのバリア金属層2と、その上に、はんだ材との濡れをよくするための濡れ改善の金属層3とを、各々50nm以上150nm以下の膜厚で、同一真空内で連続して成膜を行う。
ここで、GaAs基板上に、AlGaAs層、GaAs層、GaAsP層およびInGaAs層を順次積層し、N電極とP電極とを形成してなる半導体発光素子5を、前記ヒートシンク1の接着面に10gから30gの加重で押し当てたまま、200℃から250℃程度の熱でInロウ材4を融解させ、その後冷却し固定する。
【選択図】図1
The long-term reliability of a semiconductor light-emitting device is improved and the manufacturing cost is reduced.
An Ni thin film layer having a thickness of 2 μm or more and 6 μm or less is formed by plating on a heat sink 1 made of Cu or CuW having a low thermal resistance. Thereafter, Ti that does not react directly with copper by vapor deposition and sputter deposition on the surface to which the semiconductor light emitting element 5 is bonded and the surface on which light is emitted are formed in a region four times the area of the bonding surface of the semiconductor light emitting element 5. Alternatively, the NiTi barrier metal layer 2 and the metal layer 3 for improving wettability for improving the wettability with the solder material are continuously formed in the same vacuum at a thickness of 50 nm to 150 nm. Do the membrane.
Here, a semiconductor light emitting device 5 in which an AlGaAs layer, a GaAs layer, a GaAsP layer, and an InGaAs layer are sequentially laminated on a GaAs substrate to form an N electrode and a P electrode is formed on the bonding surface of the heat sink 1 from 10 g. The In brazing material 4 is melted with heat of about 200 ° C. to 250 ° C. while being pressed with a load of 30 g, and then cooled and fixed.
[Selection] Figure 1

Description

本発明は、半導体発光装置、特に、金属層が積層されたヒートシンクに半導体発光素子がボンディングされてなる半導体発光装置に関するものである。   The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device in which a semiconductor light emitting element is bonded to a heat sink in which metal layers are laminated.

これまで、半導体レーザなどの半導体発光素子をヒートシンクにボンディングする場合、特に、熱抵抗を小さくし、歪みを少なくすることが重要であり、このためには、比較的熱抵抗の小さい材料からなるヒートシンクを用い、この上に半導体発光素子を均一にボンディング出来るように、ボンディング面を平坦にしなければならなかった。   Conventionally, when bonding a semiconductor light emitting device such as a semiconductor laser to a heat sink, it is particularly important to reduce the thermal resistance and to reduce distortion. For this purpose, a heat sink made of a material having a relatively low thermal resistance is important. The bonding surface had to be flat so that the semiconductor light emitting device could be uniformly bonded thereon.

また、ヒートシンクは主に銅系の部材からなるため、長期間、大気中で放置すると酸化され、電気抵抗および熱抵抗が上昇したり、その酸化物等の不純物が半導体発光素子へ拡散しやすいという問題があった。   In addition, since the heat sink is mainly made of a copper-based member, it is oxidized when left in the atmosphere for a long period of time, and electrical resistance and thermal resistance are increased, and impurities such as oxides are easily diffused into the semiconductor light emitting device. There was a problem.

このため、ヒートシンクの表面を、研磨、化学エッチング等の表面処理により無酸化層面を形成した直後に、ヒートシンク上に、銅と直接反応しないNiやTi等のバリア金属層を設けて拡散を抑制し、その上に、腐食特性のよいAuやPtなどの薄膜を形成する等の方法がとられている。また、最上層には、半導体発光素子とヒートシンクを接着するためのInろう材との濡れ性が良い、Pt薄膜層等を形成させる必要がある。   For this reason, immediately after forming the non-oxidized layer surface by surface treatment such as polishing or chemical etching on the surface of the heat sink, a barrier metal layer such as Ni or Ti that does not directly react with copper is provided on the heat sink to suppress diffusion. On top of this, a method such as forming a thin film of Au, Pt or the like having good corrosion characteristics is employed. Further, it is necessary to form a Pt thin film layer or the like having good wettability with the In brazing material for bonding the semiconductor light emitting element and the heat sink as the uppermost layer.

上記のような条件を満たす例として、ヒートシンク上にNi、Ptが順次形成されているものがある。しかし、この構造では、ヒートシンクにおける金属膜の形成場所が半導体発光素子が接着される1面だけであるため、その端部から金属の劣化が進行し、ついには半導体発光素子を劣化させてしまう。そこで、Ni、Pt層をヒートシンク全面に形成しようとすると、成膜自体はメッキにより簡易であるが、Ptメッキに関してはメッキ液のコストが高く、また、特殊性が高いため生産性が良くない。また、蒸着、スパッタによって全面に金属薄膜を形成するには、1つのヒートシンクに対し、向きを変えながら繰り返し成膜する必要があり、生産性が良くなくコストがかかるという問題がある。   As an example satisfying the above conditions, there is one in which Ni and Pt are sequentially formed on a heat sink. However, in this structure, since the metal film is formed on the heat sink only on one surface to which the semiconductor light emitting element is bonded, the deterioration of the metal progresses from the end portion, and eventually the semiconductor light emitting element is deteriorated. Therefore, when the Ni and Pt layers are to be formed on the entire surface of the heat sink, the film formation itself is simple by plating. However, the cost of the plating solution is high with respect to Pt plating, and the productivity is not good due to the high specificity. In addition, in order to form a metal thin film on the entire surface by vapor deposition or sputtering, it is necessary to repeatedly form a film on one heat sink while changing the direction, and there is a problem that the productivity is not good and the cost is high.

ここで、Ni層だけをメッキにより全面に形成した後、蒸着、スパッタ成膜法によりPtを部分的に成膜する方法がとられるようになった。しかし、この方法においても、Ni膜とPt膜を連続して成膜することが出来ないために、成膜中断中にNiメッキ層表面に、Ni酸化被膜層が形成され、NiとPtとの界面で、発熱し易く密着性も悪くなり、信頼性を低下させるという問題がある。   Here, after only the Ni layer is formed on the entire surface by plating, a method of partially depositing Pt by vapor deposition or sputter deposition has been adopted. However, even in this method, since a Ni film and a Pt film cannot be continuously formed, a Ni oxide film layer is formed on the surface of the Ni plating layer during the interruption of the film formation. There is a problem that heat is easily generated at the interface, the adhesion is deteriorated, and the reliability is lowered.

さらに、Pt薄膜は他の金属膜に比べ膜応力が高いため、厚膜にすると膜応力により接着界面に歪みが発生し、接着強度の低下や、歪みによるデバイスの信頼性を低下させる。   Furthermore, since the Pt thin film has a higher film stress than other metal films, a thick film causes distortion at the bonding interface due to the film stress, which decreases the adhesive strength and device reliability due to the distortion.

上記のように、半導体発光素子をパッケージにボンディングする場合、接着面の歪みと熱抵抗を少なくし、初期特性はもちろん長期信頼性を向上させ、また、ヒートシンクの金属構造および成膜プロセスの最適化をする事でコスト生産性をも満足させることが重要である。   As described above, when bonding a semiconductor light emitting device to a package, the distortion and thermal resistance of the adhesive surface are reduced, the initial characteristics as well as the long-term reliability are improved, and the metal structure of the heat sink and the film formation process are optimized It is important to satisfy cost productivity by doing.

本発明は上記事情に鑑みて、長期的信頼性の高い、低コストな半導体発光装置とその製造方法を提供することを目的とするものである。   In view of the circumstances described above, an object of the present invention is to provide a low-cost semiconductor light-emitting device with high long-term reliability and a manufacturing method thereof.

本発明の半導体発光装置は、半導体発光素子が、ヒートシンク上の端部に、ヒートシンクの一側面に光出射面を近接させてボンディングされてなる半導体発光装置において、
ヒートシンクが、全面にNi薄膜層が施されており、かつ
ヒートシンクの半導体発光素子が接着された面および側面のNi薄膜層上に、バリア金属層および濡れ改善層が順次積層されていることを特徴とするものである。
The semiconductor light-emitting device of the present invention is a semiconductor light-emitting device in which a semiconductor light-emitting element is bonded to an end portion on a heat sink with a light emitting surface in proximity to one side surface of the heat sink.
The heat sink has a Ni thin film layer on the entire surface, and a barrier metal layer and a wetting improvement layer are sequentially stacked on the Ni thin film layer on the side and the side where the semiconductor light emitting element of the heat sink is bonded. It is what.

上記バリア金属層は、Ni、TiまたはNiTi合金であることが望ましい。   The barrier metal layer is preferably Ni, Ti, or a NiTi alloy.

また、濡れ改善金属層は、Pd、PtまたはPdPt合金であることが望ましい。   The wettability improving metal layer is preferably Pd, Pt or a PdPt alloy.

また、ヒートシンクは、CuまたはCuWからなることが望ましい。   The heat sink is preferably made of Cu or CuW.

上記、Ni薄膜層は、無電界メッキ、またはスルファミン酸浴を用いた電界メッキにより形成されており、かつ、2μm以上6μm以下の膜厚であることが望ましい。   The Ni thin film layer is formed by electroless plating or electroplating using a sulfamic acid bath, and preferably has a thickness of 2 μm or more and 6 μm or less.

また、バリア金属層と濡れ改善金属層の層の厚さは、それぞれ50nm以上150nm以下であることが望ましい。   The thicknesses of the barrier metal layer and the wettability improving metal layer are preferably 50 nm or more and 150 nm or less, respectively.

なお、金属層の面積は、半導体発光素子の接着面の面積以上であることが望ましい。   The area of the metal layer is preferably equal to or larger than the area of the bonding surface of the semiconductor light emitting element.

また、Ni薄膜層が形成されたヒートシンクの平坦性は、Rmax6μm以下であることが望ましい。   The flatness of the heat sink on which the Ni thin film layer is formed is preferably Rmax 6 μm or less.

また、本発明の半導体発光装置の製造方法は、全面にNi薄膜層が施されたヒートシンクの隣り合う2面に、バリア金属層および濡れ改善層を順次積層し、その後、半導体発光素子を、2面のうちの1面上に、他の1面と半導体発光素子の光出射面を近接させてボンディングする半導体発光装置の製造方法において、
バリア金属層と濡れ改善金属層とを、連続して同一真空雰囲気で成膜することを特徴とするものである。
Also, in the method for manufacturing a semiconductor light emitting device of the present invention, a barrier metal layer and a wettability improving layer are sequentially laminated on two adjacent heat sinks each having a Ni thin film layer on the entire surface, and then the semiconductor light emitting element is formed by 2 In a method for manufacturing a semiconductor light-emitting device, on one surface of the surfaces, the other surface and the light emitting surface of the semiconductor light-emitting element are bonded in proximity to each other.
The barrier metal layer and the wettability improving metal layer are continuously formed in the same vacuum atmosphere.

上記バリア金属層および濡れ性改善金属層を、蒸着またはスパッタにより成膜することが望ましい。   It is desirable to form the barrier metal layer and the wettability improving metal layer by vapor deposition or sputtering.

本発明の半導体発光装置によると、Ni薄膜が全面に形成されたヒートシンクを使用するため、ヒートシンクのCu部材の腐食を防き、ヒートシンクから半導体発光素子への不純物が拡散するのを抑制でき、信頼性を向上することができる。また、Ni薄膜層の形成にメッキ法を採用することにより、容易に平坦性が得られる膜を安価で作製することができる。   According to the semiconductor light emitting device of the present invention, since the heat sink having the Ni thin film formed on the entire surface is used, corrosion of the Cu member of the heat sink can be prevented, and diffusion of impurities from the heat sink to the semiconductor light emitting element can be suppressed. Can be improved. Further, by adopting a plating method for forming the Ni thin film layer, a film that can easily obtain flatness can be produced at low cost.

また、Ni薄膜層が形成されたヒートシンク上に、厚さ50nm以上150nm以下のNiバリア層を再形成することにより、万一、Ni薄膜層をメッキにより形成した後に、層表面に発生する不純物が、Niバリア層に拡散しても、Niバリア層がバッファ層として機能することにより、濡れ改善金属層や半導体発光素子にまで拡散することを抑制でき、半導体発光素子の劣化を防ぐことができ、信頼性を向上することができる。   In addition, by re-forming a Ni barrier layer having a thickness of 50 nm or more and 150 nm or less on the heat sink on which the Ni thin film layer is formed, impurities generated on the surface of the layer should be formed after the Ni thin film layer is formed by plating. Even if it diffuses into the Ni barrier layer, the Ni barrier layer functions as a buffer layer, so that it can be prevented from diffusing to the wettability improving metal layer and the semiconductor light emitting device, and the deterioration of the semiconductor light emitting device can be prevented. Reliability can be improved.

また、Pt薄膜の膜厚を50nm以上150nm以下にすることにより、膜応力による接着界面の歪みを抑制でき、均一な濡れ性が得られる。これにより信頼性を向上することができる。   Further, by setting the thickness of the Pt thin film to 50 nm or more and 150 nm or less, distortion of the adhesive interface due to film stress can be suppressed, and uniform wettability can be obtained. Thereby, reliability can be improved.

また、本発明の半導体発光装置の製造方法によると、Ni薄膜層とPt薄膜層を連続して真空成膜するため、Ni表面に不純物が付着しにくく、また、これらの金属層を汎用性のある工程で作製することができ、かつ、単一バッチでの形成が可能となり、工程削減およびコスト低減を実現することができる。   In addition, according to the method for manufacturing a semiconductor light emitting device of the present invention, since the Ni thin film layer and the Pt thin film layer are continuously vacuum-deposited, impurities hardly adhere to the Ni surface, and these metal layers are made versatile. It can be manufactured in a certain process, and can be formed in a single batch, and process reduction and cost reduction can be realized.

以下に本発明の実施の形態を図面により詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1に本発明の実施の形態である半導体発光素子パッケージの構造図を示す。   FIG. 1 is a structural diagram of a semiconductor light emitting device package according to an embodiment of the present invention.

図1に示すように、ヒートシンク1上全面に、メッキ法によりNi薄膜層を2μm以上6μm以下の膜厚で形成する。その後、半導体発光素子5を接着する面および光出射される側の面に、半導体発光素子5の接着底面の面積の4倍に値する領域に、蒸着およびスパッタ成膜法により、銅と直接反応しないバリア金属層2を50nm以上150nm以下の膜厚で形成する。その上に、はんだ材との濡れをよくするための濡れ改善の金属層3を50nm以上150nm以下の膜厚で、同一真空内で連続して成膜を行う。   As shown in FIG. 1, a Ni thin film layer is formed on the entire surface of the heat sink 1 with a film thickness of 2 μm or more and 6 μm or less by plating. Thereafter, the semiconductor light-emitting element 5 is not directly reacted with copper by vapor deposition and sputter deposition on the surface to which the semiconductor light-emitting element 5 is bonded and the surface on which light is emitted, in an area that is four times the area of the bonding bottom surface of the semiconductor light-emitting element 5 The barrier metal layer 2 is formed with a film thickness of 50 nm or more and 150 nm or less. Further, a metal layer 3 for improving wettability for improving wettability with the solder material is continuously formed in the same vacuum at a film thickness of 50 nm to 150 nm.

ここで、半導体発光素子5を、GaAs基板上に、AlGaAs層、GaAs層、GaAsP層、InGaAs層を順次積層し、その後、AuGe/Ni/AuからなるN電極と、Au/Pt/Ti/Pt/TiからなるP電極を形成して作製する。この半導体発光素子5を、前記ヒートシンク1の接着面に10gから30gの加重で押し当てたまま、200℃から250℃程度の熱でInロウ材4を融解させ、その後冷却し固定する。   Here, the semiconductor light emitting device 5 is formed by sequentially laminating an AlGaAs layer, a GaAs layer, a GaAsP layer, and an InGaAs layer on a GaAs substrate, and then an N electrode made of AuGe / Ni / Au, and an Au / Pt / Ti / Pt. A P electrode made of / Ti is formed. While the semiconductor light emitting element 5 is pressed against the bonding surface of the heat sink 1 with a load of 10 g to 30 g, the In brazing material 4 is melted with heat of about 200 ° C. to 250 ° C., and then cooled and fixed.

なお、ヒートシンクは、熱抵抗の小さいCuまたはCuWを用いる。   In addition, Cu or CuW with small heat resistance is used for a heat sink.

また、バリア金属層には、NiまたはTiを使用することが望ましく、また、濡れ改善金属層には、PdまたはPtを使用することが望ましい。   Further, it is desirable to use Ni or Ti for the barrier metal layer, and it is desirable to use Pd or Pt for the wettability improving metal layer.

図2に、リッジ幅が50μm、共振器長が750μmの半導体発光素子を、温度50度、出力500mWで100時間プレエージングした時の劣化率のNi膜厚依存性のグラフを示す。図2から、バリア金属層であるNi薄膜層の膜厚を、50nm以上150nm以下にすることにより、劣化率が小さくなることが判る。   FIG. 2 is a graph showing the Ni film thickness dependence of the deterioration rate when pre-aging a semiconductor light emitting device having a ridge width of 50 μm and a resonator length of 750 μm at a temperature of 50 degrees and an output of 500 mW for 100 hours. It can be seen from FIG. 2 that the deterioration rate is reduced by setting the thickness of the Ni thin film layer as the barrier metal layer to 50 nm or more and 150 nm or less.

また、図3に、図2に示す条件と同様の条件でプレエージングを行った時のPt膜厚依存性のグラフを示す。図3から、濡れ改善金属層であるPt薄膜層の膜厚を、50nm以上150nm以下にすることにより、劣化率が小さくなることが判る。   FIG. 3 shows a graph of Pt film thickness dependence when pre-aging is performed under the same conditions as those shown in FIG. It can be seen from FIG. 3 that the deterioration rate is reduced by setting the thickness of the Pt thin film layer, which is a wettability improving metal layer, to 50 nm or more and 150 nm or less.

よって、上記のように作製された半導体発光素子パッケージによると、Ni薄膜を、メッキによりヒートシンク上全面に形成しているため、Cu部材の腐食を防ぎ、ヒートシンクから半導体発光素子への不純物の拡散を抑制することができ、平坦性が得られる膜を容易に、かつ安価で作製することができる。   Therefore, according to the semiconductor light emitting device package manufactured as described above, since the Ni thin film is formed on the entire surface of the heat sink by plating, corrosion of the Cu member is prevented, and diffusion of impurities from the heat sink to the semiconductor light emitting device is prevented. A film that can be suppressed and can obtain flatness can be manufactured easily and inexpensively.

また、Ni薄膜が形成されたヒートシンク上にNiバリア層を再度形成することにより、万一、メッキによりNi薄膜層を形成した場合の残留物等の不純物が、Niバリア層に拡散しても、Niバリア層がバッファ層として機能することにより、濡れ改善金属層や半導体発光素子にまで拡散することを抑制でき、半導体発光素子の劣化を防ぐことができ、信頼性を向上させることができる。   In addition, by forming the Ni barrier layer again on the heat sink on which the Ni thin film is formed, even if impurities such as residues when the Ni thin film layer is formed by plating diffuse into the Ni barrier layer, When the Ni barrier layer functions as a buffer layer, diffusion to the wetting improving metal layer and the semiconductor light emitting device can be suppressed, deterioration of the semiconductor light emitting device can be prevented, and reliability can be improved.

また、Ni薄膜層とPt薄膜層を真空雰囲気で行うことにより、単一バッチで薄膜形成が可能となり、工程を削減することができ、コストを低減することができる。また、この2つの層を連続して成膜することにより、Ni薄膜表面に水分等の不純物の付着を防止することができ、信頼性を向上させることができる。   Further, by performing the Ni thin film layer and the Pt thin film layer in a vacuum atmosphere, the thin film can be formed in a single batch, the number of steps can be reduced, and the cost can be reduced. Further, by continuously forming these two layers, it is possible to prevent adhesion of impurities such as moisture on the surface of the Ni thin film, and to improve reliability.

本発明の第1の実施の形態を示す半導体発光素子パッケージの斜傾図1 is an oblique view of a semiconductor light emitting device package showing a first embodiment of the present invention; 本発明の半導体発光素子の劣化率のNi膜厚依存性を示すグラフThe graph which shows the Ni film thickness dependence of the deterioration rate of the semiconductor light-emitting device of this invention 本発明の半導体発光素子の劣化率のPt膜厚依存性を示すグラフThe graph which shows the Pt film thickness dependence of the deterioration rate of the semiconductor light-emitting device of this invention

符号の説明Explanation of symbols

1 ヒートシンク
2 Ni薄膜層
3 Pt薄膜層
4 Inロウ材
5 半導体発光素子
6 光出射面
DESCRIPTION OF SYMBOLS 1 Heat sink 2 Ni thin film layer 3 Pt thin film layer 4 In brazing material 5 Semiconductor light emitting element 6 Light emission surface

Claims (3)

半導体発光素子が、ヒートシンク上の端部に、該ヒートシンクの一側面に光出射面を近接させてボンディングされてなる半導体発光装置において、
前記ヒートシンクが、全面にNi薄膜層が施されており、かつ
前記ヒートシンクの前記半導体発光素子が接着された面および前記側面の該Ni薄膜層上に、TiまたはNiTi合金からなるバリア金属層および濡れ改善層が順次積層され、
前記バリア金属層の層厚が50nm以上150nm以下であることを特徴とする半導体発光装置。
In a semiconductor light-emitting device in which a semiconductor light-emitting element is bonded to an end portion on a heat sink, with a light emitting surface being brought close to one side surface of the heat sink,
The heat sink has a Ni thin film layer on the entire surface, and a surface of the heat sink to which the semiconductor light emitting element is bonded and a barrier metal layer made of Ti or NiTi alloy on the Ni thin film layer on the side surface and wetness Improvement layers are sequentially stacked,
A semiconductor light-emitting device, wherein the barrier metal layer has a thickness of 50 nm to 150 nm.
前記濡れ改善金属層が、Pd、PtまたはPdPt合金であることを特徴とする請求項1記載の半導体発光装置。 2. The semiconductor light emitting device according to claim 1, wherein the wettability improving metal layer is made of Pd, Pt or a PdPt alloy. 前記濡れ改善金属層の層厚が、50nm以上150nm以下であることを特徴とする請求項2または3記載の半導体発光装置。 4. The semiconductor light emitting device according to claim 2, wherein the wettability improving metal layer has a thickness of 50 nm to 150 nm.
JP2007263290A 2007-10-09 2007-10-09 Semiconductor light emitting device and manufacturing method thereof Abandoned JP2008034874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007263290A JP2008034874A (en) 2007-10-09 2007-10-09 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263290A JP2008034874A (en) 2007-10-09 2007-10-09 Semiconductor light emitting device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07603999A Division JP4104032B2 (en) 1999-03-19 1999-03-19 Semiconductor light emitting device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008034874A true JP2008034874A (en) 2008-02-14

Family

ID=39123908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263290A Abandoned JP2008034874A (en) 2007-10-09 2007-10-09 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008034874A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122157A (en) * 1985-11-21 1987-06-03 Sharp Corp Electrode structure of heat sink for optical semiconductors
JPH0652743B2 (en) * 1982-10-08 1994-07-06 富士通株式会社 Method for manufacturing semiconductor device
JPH0738208A (en) * 1993-07-22 1995-02-07 Nec Corp Semiconductor laser device
JPH08330672A (en) * 1995-05-31 1996-12-13 Nec Corp Semiconductor device
JPH0938208A (en) * 1995-07-27 1997-02-10 Sumitomo Bakelite Co Ltd Aortic balloon catheter with suction route for injection of cardiac muscle protecting fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652743B2 (en) * 1982-10-08 1994-07-06 富士通株式会社 Method for manufacturing semiconductor device
JPS62122157A (en) * 1985-11-21 1987-06-03 Sharp Corp Electrode structure of heat sink for optical semiconductors
JPH0738208A (en) * 1993-07-22 1995-02-07 Nec Corp Semiconductor laser device
JPH08330672A (en) * 1995-05-31 1996-12-13 Nec Corp Semiconductor device
JPH0938208A (en) * 1995-07-27 1997-02-10 Sumitomo Bakelite Co Ltd Aortic balloon catheter with suction route for injection of cardiac muscle protecting fluid

Similar Documents

Publication Publication Date Title
JP5688412B2 (en) Method for thermally contacting opposing electrical connections of a semiconductor component array
US9172005B2 (en) Semiconductor light emitting diode having a contact portion and a reflective portion
TWI389336B (en) And a method of manufacturing the light-emitting element and the light-emitting element
JP2002134822A (en) Semiconductor light emitting device and method of manufacturing the same
JP2005117020A (en) Gallium nitride compound semiconductor device and manufacturing method thereof
JP2008091862A (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP4104032B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2012089828A (en) Semiconductor device manufacturing method
JP2008141094A (en) Semiconductor element and manufacturing method of semiconductor element
JP5085369B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US20060289875A1 (en) Light emitting diode and method making the same
TWI342074B (en)
JP5289791B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2008034874A (en) Semiconductor light emitting device and manufacturing method thereof
KR101186556B1 (en) Bonding method between galium nitride semiconductor and metal substrates and semiconductor element
JPH11186616A (en) Thermoelectric conversion element and method of manufacturing thermoelectric conversion element
JP5196288B2 (en) Light emitting device manufacturing method and light emitting device
JP4867414B2 (en) Nitride semiconductor light emitting diode
JP2012195407A (en) Semiconductor light-emitting element manufacturing method
JP2000012899A (en) Manufacture of nitride semiconductor device
JP2004221493A (en) Electrode structure for nitride semiconductor and method for manufacturing same
JP4120796B2 (en) Light emitting device and method for manufacturing light emitting device
JP2006086361A (en) Semiconductor light emitting device and manufacturing method thereof
JP4283502B2 (en) Group 3-5 compound semiconductor electrode, method for producing the same, and semiconductor light emitting device using the same
CN115693391A (en) N electrode applied to chip, preparation method and VCSEL chip

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110301