JP2008034791A - 熱電変換装置およびその装置の製造方法 - Google Patents
熱電変換装置およびその装置の製造方法 Download PDFInfo
- Publication number
- JP2008034791A JP2008034791A JP2007019951A JP2007019951A JP2008034791A JP 2008034791 A JP2008034791 A JP 2008034791A JP 2007019951 A JP2007019951 A JP 2007019951A JP 2007019951 A JP2007019951 A JP 2007019951A JP 2008034791 A JP2008034791 A JP 2008034791A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchange
- thermoelectric
- thermoelectric conversion
- insulating
- conversion device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/13—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
【課題】熱交換性能および送風性能を低下させることなく、電気的な絶縁が得られる熱電変換装置およびその装置の製造方法を提供する。
【解決手段】一対の熱電素子のそれぞれに複数の熱交換部材を接合する接合工程と、この接合工程の後に、絶縁材料が溶融された電着槽内に熱電素子基板10を浸漬させて、端子24a、24bに所定の電圧を印加させて絶縁材料を塗布する浸漬工程と、この浸漬工程で絶縁材料が塗布された熱電素子基板10を高温で焼き付けて絶縁層を形成する焼付け工程とを設ける。これにより、熱交換性能および送風性能を低下させることなく、電気的な絶縁が得られる。
【選択図】図6
【解決手段】一対の熱電素子のそれぞれに複数の熱交換部材を接合する接合工程と、この接合工程の後に、絶縁材料が溶融された電着槽内に熱電素子基板10を浸漬させて、端子24a、24bに所定の電圧を印加させて絶縁材料を塗布する浸漬工程と、この浸漬工程で絶縁材料が塗布された熱電素子基板10を高温で焼き付けて絶縁層を形成する焼付け工程とを設ける。これにより、熱交換性能および送風性能を低下させることなく、電気的な絶縁が得られる。
【選択図】図6
Description
本発明は、N型熱電素子、P型熱電素子からなる直列回路に直流電流を流通させることで吸熱、放熱が得られる熱電変換装置およびその装置の製造方法に関するものであり、特に、熱電素子基板に配設される複数の熱交換部材の絶縁処理に関する。
従来、この種の熱電変換装置として、例えば、特許文献1に示されるように、P型とN型とからなる一対の熱電素子を複数対配列してなる熱電素子基板と、全ての熱電素子が電気的に直列接続されるとともに一対の熱電素子から伝熱される熱を吸熱、放熱するための複数の熱交換部材とから構成されたものが知られている。
換言すると、この熱電変換装置は、電素子基板の表側と裏側が吸熱側および放熱側に区画されて、それぞれの平面上に複数の熱交換部材が配設されている。これにより、熱交換部材と熱電素子との熱抵抗を最小にすることで熱電変換効率を向上させるとともに、製造工数の低減が図れるようになっている。
特開2006−114840号公報
しかしながら、上記特許文献1のような装置では、吸熱側の熱交換部材で発生した結露水によって、熱電素子自体、および熱交換部材と熱電素子との接合部でのマイグレーションを引き起こす問題がある。
また、全ての熱電素子が、吸熱側熱交換部材もしくは吸熱側熱交換部材を介して電気的に直列接続されている。そのために、一対の熱電素子および熱交換部材は、通電時に電圧が印加されているため、隣り合う相互間が電気的に絶縁されるように形成されている。
上記特許文献1では絶縁の手段については詳しくは記載されていないが、電気的な絶縁を行う方法としては、一般的に絶縁塗装もしくは蒸着による絶縁膜を形成する方法がある。しかしながら、このような絶縁塗装や蒸着においては、熱電素子基板の外方から絶縁材料を吹き付けるため、外方では絶縁膜が厚く形成され、内方では薄く形成されることで全体的にムラが出来やすい。
この結果、電気的な絶縁のための最低限必要な膜厚は、内方の膜厚で設定されるため外方は必要以上に厚くなってしまう。このため、厚膜による熱抵抗の増加による熱交換性能の低下、および狭小の隙間に発生する膜張り等による送風通路の通風抵抗の増加、ひいては送風系の送風性能の低下が問題となる。
しかも、膜厚のムラが発生しやすいことで送風通路の通路幅方向においても、膜厚の分布ができ易いため、風速分布もしくは温度分布が発生して熱交換性能の低下が発生する。
さらに、この種の熱電素子基板は、小型の冷却装置や加熱装置に用いられるため、熱電素子、熱交換部材などの構成部品は、複数個あり、かつ極小部品であって、熱交換媒体の流れる流れ方向に対して複数列配設されている。従って、内側列に配設される熱電素子および熱交換部材には絶縁膜が形成されにくい構造になっている。
そこで、本発明の目的は、上記点を鑑みたものであり、熱交換性能および送風性能を低下させることなく、電気的な絶縁が得られる熱電変換装置およびその装置の製造方法を提供することにある。
上記目的を達成するために、請求項1ないし請求項19に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの熱電素子(12、13)が電気的に直列接続される熱電素子モジュール(10)と、一対の熱電素子(12、13)のそれぞれに伝熱可能、かつ電気的に結合された複数の熱交換部材(22、32)とを備える熱電変換装置において、複数の熱交換部材(22、32)は、熱交換媒体の流れる流れ方向に対して3列以上配設されて、一対の熱電素子(12、13)のそれぞれに対応して結合されており、熱電素子モジュール(10)、および熱交換部材(22、32)の表面全体には、電着塗装による絶縁膜が形成されていることを特徴としている。
この発明によれば、電着塗装では、電着層内に熱電素子モジュール(10)を浸漬させて絶縁膜を形成するため、全体をムラのない膜厚で形成できる。特に、熱電素子(12、13)および熱交換部材(22、32)が熱交換媒体の流れる流れ方向に対して複数列以上配設される熱電素子モジュール(10)では、その内側列に配設される熱電素子(12、13)および熱交換部材(22、32)の内方にも隈なく絶縁膜を形成できる。
これにより、所定の膜厚で絶縁膜を形成できるとともに、厚膜による熱交換性能の低下および送風系の送風性能の低下をなくすることができる。
また、電着塗装では、絶縁膜を形成する部位に電圧を印加させて絶縁材料を塗布する方法であるため、熱電素子モジュール(10)の通電部を均等の膜厚で絶縁膜を形成できる。しかも、必要以上の膜厚が形成されないので狭小の隙間に発生する膜張りを防止できる。なお、電圧を印加させない部位には絶縁膜は形成されない。
さらに、内部に配設される熱電素子(12、13)および熱交換部材(22、32)と熱電素子(12、13)との接合部にも容易に絶縁膜を形成できることで、マイグレーションの発生の防止ができる。
請求項2に記載の発明では、絶縁膜には、エッジカバー樹脂材が含まれていることを特徴としている。複数の熱交換部材(22、32)は薄板によって吸熱部、放熱部が形成される場合が多く、数多くのエッジ面を備えている。
エッジカバー樹脂材は、電着槽において、絶縁材料に溶融されたときに粘度の高い樹脂材料であるため、電着槽で絶縁材料が塗布された熱電素子モジュール(10)を電着槽から取り出して焼付けを行うときにエッジ面からの液ダレを低減できる。これにより、所定の膜厚の絶縁膜を形成することができる。
請求項3に記載の発明では、熱交換部材(22、32)は、一対の熱電素子(12、13)を接続する電極部(25、35)と、電極部(25、35)に直接接続される熱交換部(26、36)とを備え、熱交換部(26、36)を突出させるように保持すると共に、複数対の熱電素子(12、13)にそれぞれ対応する複数の熱交換部(26、36)間を電気的に絶縁させる絶縁板(21、31)を備えており、絶縁板(21、31)における複数の熱交換部(26、36)の突出側において、絶縁板(21、31)と複数の熱交換部(26、36)との接触部分(42)を絶縁膜(40)の外側から覆うように形成されたシール部(27、37)を有することを特徴としている。
絶縁板(21、31)の表面には電着塗装の際に膜が形成されないため、絶縁板(21、31)と熱交換部(26、36)との接触部分(42)には電着塗装により絶縁膜(40)を形成することが困難であるが、この接触部分(42)を絶縁膜(40)の外側から覆うようにシール部(27、37)を設けることで、熱電変換装置(100)内において必要な導電部位(12、13、26、36)の絶縁が完全となる。これにより、熱電変換装置(100)内部での短絡およびマイグレーションの発生を確実に防ぐことが可能となり、熱電変換装置(100)の信頼性が向上する。
シール部(27、37)は、請求項4に記載の発明のように、絶縁板(21、31)と熱交換部(26、36)との接触部分(42)を覆うだけでなく、熱交換素子(26、36)の突出側において絶縁板(21、31)の表面全体を覆うように構成してもよい。このように絶縁板(21、31)の表面全体を覆うようにシール部(27、37)を構成することで、例えば、請求項5に記載の発明のように、絶縁板(21、31)が複数の熱交換部(26、36)を電極部(25、35)への接続側において保持している場合には、熱交換部(26、36)に結露などにより付着した水滴が熱電素子(12、13)側に浸入することを確実に防止することができる。これにより、このような水滴の浸入によって熱電素子(12、13)側で短絡およびマイグレーションが発生することを防止することができる。
絶縁板としては、上記請求項5に記載の発明のように、複数の熱交換部(26、36)を電極部(25、35)への接続側において保持する第1板(21、31)を備えるのに加えて、請求項6に記載の発明のように、複数の熱交換部(26、36)を電極部(25、35)への接続側の反対側において保持する第2板(23、33)を備えるように構成してもよい。あるいは、第1板(21、31)を備えることなく第2板(23、33)のみを備える構成とすることもできる。
このような第2板(23、33)を設けることで、熱交換部(26、36)が電極部(25、35)への接続側の反対側、つまり熱交換部(26、36)の先端側において、熱交換部(26、36)間が接触することを防止して、これらの間を絶縁することができる。また、電着塗装により絶縁膜(40)を形成することが困難である第2板(23、33)と熱交換部(26、36)との接触部分(43)を絶縁膜(40)の外側から覆うようにシール部(29、39)を設けることで、熱交換部(26、36)の先端側における絶縁を完全なものとすることができる。
請求項7に記載の発明のように、熱交換部(26、36)に接触させて、あるいは近傍に配設された温度センサ(70)、およびこの温度センサ(70)に接続された配線(71)を備えている場合には、配線(71)の表面全体に電着塗装により配線絶縁膜(48)を形成するとよい。このような配線絶縁膜(48)は、上記熱電素子モジュール(10)の両端に電圧を印加した場合に電位が作用する導電部位(12、13、26、36)表面に絶縁膜(40)を形成する際に、同時に1度の電着塗装で形成することが可能であり、また、このような配線絶縁膜(48)を形成することで、温度センサ(70)の配線(71)が被水した場合でも短絡およびマイグレーションの発生を防止することができる。
また、本発明の熱電変換装置においては、請求項8に記載の発明のように、例えば、電極部(25、35)が熱交換部(26,36)と一体に形成された構成とすることができる。これにより、熱交換部(26、36)と別体の電極部材を備える場合に比較して、少ない部品数で熱電変換装置を構成することができる。
請求項9に記載の発明では、P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの熱電素子(12、13)が電気的に直列接続される熱電素子モジュール(10)と、熱交換媒体が流れる流れ方向に対して3列以上配設されて、一対の熱電素子(12、13)のそれぞれに対応して伝熱可能、かつ電気的に結合された複数の熱交換部材(22、32)と、熱電素子モジュール(10)に設けられ、電源に接続される電源端子部(24a、24b)とを備える熱電変換装置の製造方法において、一対の熱電素子(12、13)のそれぞれに複数の熱交換部材(22、32)を接合する接合工程と、接合工程の後に、熱電素子モジュール(10)を絶縁材料が溶融された電着槽内に浸漬させ、電源端子部(24a、24b)に所定の電圧を印加することで、熱電素子モジュール(10)および熱交換部材(22、32)の表面全体に絶縁材料を塗布する浸漬工程と、この浸漬工程で絶縁材料が塗布された熱電素子モジュール(10)を高温で焼き付けて絶縁膜を形成する焼付け工程とを有することを特徴としている。
この発明によれば、一対の熱電素子(12、13)と熱交換部材(22、32)とを接合する接合工程の後に浸漬工程と焼付け工程とからなる電着塗装を行うことで、電着層内に熱電素子モジュール(10)を浸漬させて絶縁膜を形成することができ、全体にムラのない膜厚を形成できる。
特に、熱電素子(12、13)および熱交換部材(22、32)が熱交換媒体の流れる流れ方向に対して複数列以上配設される熱電素子モジュール(10)では、その内側列に配設される熱電素子(12、13)および熱交換部材(22、32)の内方にも隈なく絶縁膜を形成できる。これにより、所定の膜厚で絶縁膜を形成できるとともに、厚膜による熱交換性能の低下および送風系の送風性能の低下をなくすることができる。
また、浸漬工程において、電源端子部(24a、24b)に所定の電圧を印加させて絶縁材料を塗布する方法であるため、熱電素子モジュール(10)の導電部位を均等の膜厚で絶縁膜を形成できる。しかも、必要以上の膜厚が形成されないので狭小の隙間に発生する膜張りを防止できる。なお、電圧を印加させない部位には絶縁膜は形成されない。
さらに、内部に配設される熱電素子(12、13)および熱交換部材(22、32)と熱電素子(12、13)との接合部にも容易に絶縁膜を形成できることで、マイグレーションの発生の防止ができる。
請求項10に記載の発明では、浸漬工程において、絶縁材料には、エッジカバー樹脂材が含まれていることを特徴としている。この発明によれば、エッジカバー樹脂材は、電着槽において、絶縁材料に溶融されたときに粘度の高い樹脂材料であるため、電着槽で絶縁材料を塗布された熱電素子モジュール(10)を電着槽から取り出して焼付けを行うときにエッジ面からの液ダレを低減できる。これにより、所定の膜厚の絶縁膜を形成することができる。
請求項11に記載の発明では、焼付け工程は、浸漬工程を少なくとも複数回繰り返した後に行うことを特徴としている。この発明によれば、先回絶縁材料を塗布できなかった部位を今回塗布することができる。よって、全体的に隈なく所定の膜厚の絶縁膜を形成することができる。
請求項12に記載の発明では、浸漬工程は、数回毎に浸漬条件を変えることを特徴としている。この発明によれば、浸漬条件として、例えば、印加電圧、浸漬時間、および浸漬回数などがあるが、これらの浸漬条件を数回毎に変えることで、全体的に隈なく所定の膜厚の絶縁膜を形成することができる。
請求項13に記載の発明では、焼付け工程は、少なくとも複数回繰り返して行うとともに、数回毎に焼付け条件を変えることを特徴としている。この発明によれば、焼付け条件として、焼付け温度、焼付け時間、および焼付け回数などがあるが、これらの浸漬条件を数回毎に変えることで、全体的に隈なく所定の膜厚の絶縁膜を形成することができる。
請求項14に記載の発明では、熱交換部材(22、32)は、一対の熱電素子(12、13)を接続する電極部(25、35)と、電極部(25、35)に直接接続される熱交換部(26、36)とを備え、熱交換部(26、36)を突出させるように保持すると共に、複数対の熱電素子(12、13)にそれぞれ対応する複数の熱交換部(26、36)間を電気的に絶縁させる絶縁板(21、31)を備えており、焼付け工程の後に、複数の熱交換部(26、36)の突出側において絶縁板(21、31)と複数の熱交換部(26、36)との接触部分(42)を絶縁膜(40)の外側から覆うようにシール部(27、37)を形成するシール工程を備えたことを特徴としている。
絶縁板(21、31)の表面には電着塗装の際に膜が形成されないため、絶縁板(21、31)と熱交換部(26、36)との接触部分(42)には電着塗装により絶縁膜(40)を形成することが困難である。そこで、焼付け工程の後に、シール工程において絶縁板(21、31)と熱交換部(26、36)との接触部分(42)を絶縁膜(40)の外側から覆うようにシール部(27、37)を設けることにより、熱電変換装置(100)内において必要な導電部位(12、13、26、36)の絶縁が完全となり、熱電変換装置(100)内部での短絡およびマイグレーションの発生を確実に防ぐことが可能となる。
なお、請求項15〜19に記載の発明は、上記請求項4〜8に記載の発明の熱電変換装置の製造方法に関するものであり、その技術的意義は上記請求項4〜請求項8に記載の熱電変換装置と本質的に同じである。
なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。
(第1実施形態)
以下、第1実施形態における熱電変換装置100Aを図1ないし図8に基づいて説明する。図1は本実施形態における固定板23を配設する前の熱電変換装置100Aの外観形状を示す平面図であり、図2は図1のII−II部を示す断面図である。図3は熱電変換装置100Aの全体構成を示す分解模式図である。また、図4は図2のIV−IV部を示す断面図であり、図5は図2のV−V部を示す断面図である。
以下、第1実施形態における熱電変換装置100Aを図1ないし図8に基づいて説明する。図1は本実施形態における固定板23を配設する前の熱電変換装置100Aの外観形状を示す平面図であり、図2は図1のII−II部を示す断面図である。図3は熱電変換装置100Aの全体構成を示す分解模式図である。また、図4は図2のIV−IV部を示す断面図であり、図5は図2のV−V部を示す断面図である。
本実施形態の熱電変換装置100Aは、車両に搭載される冷却装置もしくは加熱装置に適用したものであり、例えば、車両用のシートの着座部内と背当部内とにそれぞれ熱電変換装置100Aを配設し、その熱電変換装置100Aにより冷却された冷風をシート表面から吹き出すシート空調装置に適用させている。
従って、本実施形態の熱電変換装置100Aは、設置空間の狭い車両用のシート内に搭載できるように、小型化が図られている。熱電変換装置100Aは、図1ないし図5に示すように、熱電素子モジュールである熱電素子基板10、吸熱側フィン基板20、放熱側フィン基板30、および一対のケース部材28から構成されている。
熱電素子モジュールである熱電素子基板10は、図2ないし図5に示すように、熱電素子12、13の保持板である第1絶縁基板11、熱電素子であるP型熱電素子12、N型熱電素子13、および電極素子である電極部材16から一体的に構成されている。
具体的には、平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる第1絶縁基板11に、一対のP型熱電素子12とN型熱電素子13とを交互に略碁盤目状に複数対配列してなる熱電素子群を列設し、隣接する一対のP型、N型熱電素子12、13(以下、熱電素子12、13)の両端面に電極部材16を接合して一体的に構成している。
P型熱電素子12はBi−Te系化合物からなるP型半導体により構成され、N型熱電素子12はBi−Te系化合物からなるN型半導体により構成された極小部品である。なお、P型熱電素子12およびN型熱電素子13は、その上端面、下端面が第1絶縁基板11よりも突き出すように形成されている。
電極部材16は、平板状の銅材などの導電性金属から形成され、第1絶縁基板11に配列された熱電素子群のうち、隣接する一対の熱電素子12、13を電気的に直列接続する電極である。
より具体的には、図2および図3に示すように、上方に配置される電極部材16は、隣接するN型熱電素子13からP型熱電素子12に向けて電流を流すための電極であり、下方に配置される電極部材16は、隣接するP型熱電素子12からN型熱電素子13に電流を流すための電極である。なお、電極部材16は、熱電素子12、13の端面に予めペーストハンダなどをスクリーン印刷で薄く均一に塗っておいてから半田付けで接合される。
次に、吸熱側フィン基板20は、複数の吸熱熱交換部材22が平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる保持板としての第2絶縁基板21に一体構成されたものであり、放熱側フィン基板30は、複数の放熱熱交換部材32が平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる保持板としての第3絶縁基板31に一体構成されたものとなっている。
そして、吸熱熱交換部材22および放熱熱交換部材32(以下、熱交換部22、32)は、銅材などの導電性金属からなる薄肉の板材が用いられて、図5に示すように、断面が略U字状からなり底部に平面状の吸熱、放熱電極部25、35(以下、電極部25、35)が形成され、その電極部25、35から外方に延出された平面にルーバー状の熱交換部26、36が形成されたものとなっている。
また、この熱交換部26、36は、電極部25、35から伝熱される熱を吸熱、放熱するためのフィンであり、切り起こしなどの成形加工により電極部25、35と一体的に形成されている。そして、その電極部25、35の一端面が電極部材16に接合するように、第2、第3絶縁基板21、31に一体で構成されている。
なお、吸熱熱交換部材22、放熱熱交換部材32は、第2、第3絶縁基板21、31の一端面に、その電極部25、35の一端面が僅かに突き出す程度の位置に一体で構成されている。つまり、電極部25、35の一端面が熱電素子基板10に設けられた電極部材16に当接したときに、その電極部25、35が第2、第3絶縁基板21、31から電極部材16側にはみ出さないように構成されている。
さらに、互いに隣り合う吸熱熱交換部材22、放熱熱交換部材32同士は、互いに電気的に絶縁するように、所定の空間を設けて複数個略碁盤目状に第2、第3絶縁基板21、31に配設されている。そして、上方に配置された電極部材16に対応するように、吸熱熱交換部材22の吸熱電極部25が配置され、電極部材16と吸熱電極部25とが接合されている。また、下方に配置された電極部材16に対応するように、放熱熱交換部材32の放熱電極部35が配置され、電極部材16と放熱熱交換部材32とが接合されている。
ここで、図2および図3において、上下方向の最外方に位置する板は、固定板23、23であり、吸熱熱交換部材22、放熱熱交換部材32の他端側を保持するための保持部材となっている。これにより、互いに隣り合う吸熱熱交換部材22もしくは放熱熱交換部材32同士間に所定の空間が設けられるとともに、隣り合う吸熱熱交換部材22もしくは放熱熱交換部材32同士が電気的に絶縁されている。
なお、固定板23、33は、第1絶縁基板11と同じように、平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂、もしくはPET樹脂など)からなり、電極部25、35の他端側が貫通するように図示しない固定穴が形成されている。
なお、図1中に示す左右端に配設される熱電素子12、13の末端には、電源端子部である接続端子24a、24bが設けられ、その接続端子24a、24bのうち、接続端子24aには、図示しない直流電源の正側端子が接続され、接続端子24bには図示しない直流電源の負側端子が接続されるようにしている。
これにより、上方側の電極部材16および吸熱熱交換部材22は、隣接するN型熱電素子13からP型熱電素子12に電気的に接続されて複数個配設され、下方側の電極部材16および放熱熱交換部材32は、隣接するP型熱電素子12からN型熱電素子13に電気的に接続されて複数個配設されている。
ところで、接続端子24aから入力された直流電源は、図2中に示す左端のP型熱電素子12から下方に配設された電極部材16を介してN型熱電素子13に直列的に流れ、次に、このN型熱電素子13から上方に配設された電極部材16を介してP型熱電素子12に直列的に流れる。
このときに、PN接合部を構成する下方に配設された電極部材16は、ペルチェ効果によって高温の状態となり、NP接合部を構成する上方に配設された電極部材16は低温の状態となる。つまり、上方側に配置された熱交換部26は吸熱熱交換部を形成して低温状態の熱が伝熱されて被冷却流体に接触され、下方側に設置された熱交換部36は放熱熱交換部を形成して高温状態の熱が伝熱されて冷却流体に接触される。
言い換えると、図2に示すように、熱電素子基板10を区画壁として、一対のケース部材28により、熱電素子基板10の上下方向の両側に送風通路を形成するとともに、その送風通路に熱交換媒体である空気を流通させることで、熱交換部26、36と空気とが熱交換され、熱電素子基板10を区画壁として、上側の熱交換部26で空気を冷却することができ、下側の熱交換部36で空気を加熱することができる。
なお、本実施形態では、直流電源の正側端子を接続端子24a側に接続し、負側端子を接続端子24b側に接続して接続端子24aに直流電源を入力させたが、これに限らず、直流電源の正側端子を接続端子24b側に接続し、負側端子を接続端子24a側に接続して接続端子24bに直流電源を入力させても良い。ただし、このときには、上方の吸熱熱交換部材22が放熱熱交換部を形成し、下方の放熱熱交換部材32が吸熱熱交換部を形成する。
次に、以上の構成による熱電変換装置100Aの製造方法について説明する。まず、図3ないし図4に示すように、第1絶縁基板11に設けられた基板穴に熱電素子12、13を交互に略碁盤目状に複数個配列して、第1絶縁基板11に一体的に構成する。そして、第1絶縁基板11に隣接して配列された熱電素子12、13の両端面に、電気的に直列接続するように複数個の電極部材16を半田付けにより接合する。
これにより、第1絶縁基板11に対して、熱電素子12、13および電極部材16が一体的に構成される熱電素子基板10となる。上方側に配設される電極部材16によってNP接合部が形成され、また、下方側に配設される電極部材16によってPN接合部が形成され、熱電素子12、13は電気的に直列接続される。
なお、熱電素子12、13および電極部材16は、半導体、電子部品などを制御基板に組み付けるための製造装置であるマウンター装置を用いて組み付けても良い。これによれば、熱電素子12、13の素子寸法が1.5mm×1.5mm程度以上であれば、容易に摘むことができるので生産性が低下することなく組付けができる。
そして、吸熱熱交換部材22を摘んで、第2絶縁基板21に設けられた嵌合孔に吸熱電極部25を挿入して第2絶縁基板21に複数列の吸熱熱交換部材22を配列して吸熱側フィン基板20を形成する。そして、放熱熱交換部材32を摘んで、第3絶縁基板31に設けられた嵌合孔に放熱電極部35を挿入して第3絶縁基板31に複数列の放熱熱交換部材32を配列して放熱側フィン基板30を形成する。
そして、吸熱側フィン基板20と放熱側フィン基板30との間に、熱電素子基板10を挟んで組み合わせて、それぞれの電極部材16にそれぞれの電極部25、35とを当接させて一斉に半田付けにより接合する。この工程は、請求項で称する接合工程に対応する。
なお、上記接合工程においては、熱電素子基板10に吸熱側フィン基板20を重ねて電極部材16と吸熱電極部25とを当接させて片面のみ一斉に接合し、その後、熱電素子基板10を反転し、放熱側フィン基板30を重ねて電極部材16と放熱電極部35とを接合するようにしても良い。
そして、熱電極部25、35に対して他端側となる吸熱熱交換部材22、放熱熱交換部材32の端部をそれぞれ固定板23、33に形成された固定穴に配設して固定する。この工程を以下、固定板組付け工程と称する。これにより、熱交換部材22、32の端部が固定板23、32に固定されることで隣り合う熱交換部材22、32相互で所定の隙間が形成されることとなり、電気的に絶縁される。
そして、熱電素子基板10に吸熱側フィン基板20、放熱側フィン基板30、および固定板23、33を組み付けた状態で電着塗装を行う。この電着塗装は、図6に示すように、(a)に示す浸漬工程と、(b)に示す焼付け工程とからなっている。
図6(a)に示す浸漬工程は、熱交換部材22、32(吸熱、放熱側フィン基板20、30)が組み付けられた熱電素子基板10を、絶縁材料として例えば電解性型電着塗料が溶融された電着槽内に浸漬して、外表面全体に絶縁材料を塗布する工程である。このときに、印加装置と熱電素子基板10の接続端子24a、24bとを電気的に接続して、所定の電圧を印加させて所定の浸漬時間、浸漬するようにしている。
図6(b)に示す焼付け工程は、上記の浸漬工程で熱交換部材22、32が組み付けられた熱電素子基板10の外表面に塗布された絶縁材料を焼き付けて絶縁膜を形成する工程である。ここでは、浸漬工程を終えた熱電素子基板10を所定の焼付け温度に設定された恒温室内に入れて絶縁材料を焼き付けつける。
つまり、熱交換部材22、32が組み付けられた熱電素子基板10の外表面に塗布された液状の絶縁材料を高温の雰囲気で硬化させるものである。これにより、所定の膜厚の絶縁膜が形成される。ここでは、焼付け温度、焼付け時間および焼付け回数などが焼き付け条件であって、これらの条件を変えることで絶縁膜の硬化時間、膜厚、絶縁膜の密度などを調整できる。
例えば、焼付け温度もしくは焼付け時間においては、焼付け回数を数回に分けて、最初は半焼け、その後に中焼け、その後に仕上げ焼けとなる条件を設定するようにしても良い。
上記の電着塗装によれば、熱交換部材22、32を含めて熱電素子基板10全体に絶縁材料を塗布することができる。また、接続端子24a、24bに電圧を印加することで、熱電素子基板10の通電部、すなわち、熱電素子12、13、電極部材16および熱交換部材22、32の全てに所定の電圧が印加される。
従って、電着塗装の一般的な特徴として、電圧が印加された部位に絶縁材料が塗布できるとともに、その絶縁膜は印加電圧に応じて絶縁膜の膜厚が規定されるため均等に行えることができる。なお、電圧が印加されない部位には、絶縁材料が塗布されない。すなわち、第1、第2、第3絶縁基板11、21、31などは絶縁膜が形成されない。従って、絶縁材料を外方から吹き付ける方式よりも膜張りの発生を防止することができる。
ところで、本実施形態では、電着槽内に溶融される絶縁材料として、例えば、電解活性型電着塗料を用いている。この電解活性型電着塗料は、製品にムラのないように絶縁膜が形成されるように、変性エポキシからなるベース樹脂材にエッジカバー樹脂材の比率を増量した材料となっている。
ここで、ベース樹脂材およびエッジカバー樹脂材はともに絶縁材であって、特に、電着槽内に溶融されるときにおいてベース樹脂材の粘度を高めてある。換言すると、ベース樹脂材の比率を増加することで、製品に電解活性型電着塗料が塗布されたときの液ダレを防止するものである。つまり、電着槽から製品を取り出したときのエッジ面に塗布された電着塗料が表面張力による液ダレを防止するものである。
ここで、本実施形態のように、熱電素子12、13、電極部材16、および熱交換部材22、32が極小部品で、かつ複数個配設されるとともに、これらが熱交換媒体の流れる流れ方向に対して複数列配設されているものにおいては、電解活性型電着塗料を用いると、その絶縁膜の形成が有効である。
これを、図7および図8に基づいて説明する。一方の図7は熱交換部材22、32に形成されるエッジ面を説明するための説明図である。図7(a)は熱交換部材22、32の全体形状を示す外観図であり、電極部25、35から外方に延出された平面にルーバー状の熱交換部26、36を形成している。
図7(b)は図(a)に示すVIIb−VIIb断面図であり、ルーバー状の熱交換部26、36の形状を示している。図7(c)は図(b)に示すVIIc部を顕微鏡で拡大した拡大図であり、熱交換部26、36の先端には、外方に突き出たエッジ面が形成されている。
図7(d)は図7(c)に示すVIId部を顕微鏡で拡大した拡大図である。これによると、熱交換部26、36の先端には鋭角状のエッジ面が形成されている。しかも、熱交換部26、36にはこのような鋭角状のエッジ面が多数箇所に形成されている。
図8は、従来の絶縁材料と本実施形態による絶縁材料とを用いて、上述のようなエッジ面の電着塗装を比較した模式図である。ここで、従来の絶縁材料は、一般的なベース樹脂材のみを用いている。従って、従来の絶縁材料では、図8に示すように、浸漬工程では母材の周辺に均等な絶縁膜が形成される。
しかし、焼付け工程の溶融状態においては、塗布された絶縁材料が表面張力により液ダレを起こしている。つまり、エッジ面では絶縁材料が液ダレにより薄くなってしまう。この状態で焼付け時間が進行するとエッジ面が露出したままとなって絶縁膜が形成されない。
ところが、本実施形態による絶縁材料を用いると、焼付け工程の溶融状態において、エッジカバー樹脂材の粘度により液ダレを防止することができるためエッジ面での絶縁膜が薄くならずに所定の膜厚を確保することができる。この状態で焼付け時間が進行すると、エッジ面を含めて所定の膜厚となる絶縁膜を形成でき、かつ全体的にムラなく絶縁膜を形成できる。
これにより、隣り合う熱電素子12、13、電極部材16、および熱交換部材22、32の相互間において電気的に絶縁できる。また、隣り合う熱電素子12、13、電極部材16、および熱交換部材22、32の相互間に形成される隙間を必要最小限とすることができる。
さらに、本実施形態のように、複数の熱交換部材22、32が熱交換媒体の流れる流れ方向に対して複数列配設されていることで、浸漬工程と焼付け工程とを備える電着塗装を行うことで、熱電素子基板10の内側に配設される熱電素子12、13、電極部材16、熱交換部材22、32の内部が均等な膜厚の絶縁膜を形成することができる。
さらに、本実施形態のような電着塗装においては、複数の熱電素子12、13、電極部材16、および熱交換部材22、32が熱交換媒体の流れる流れ方向に対して3列以上配設する場合に特に効果が大である。
浸漬工程においては、印加電圧、浸漬時間、および浸漬回数などが浸漬条件であって、これらの条件を変えることで絶縁膜の膜厚、絶縁膜の密度などを調整できる。例えば、浸漬回数においては、数回に分けて行うことで、先回絶縁材料が塗布できなかった箇所が今回行えることができる。また、印加電圧もしくは浸漬時間を変えることによって絶縁膜の膜厚が調整できる。
そして、電着塗装を終了後に、第2絶縁基板21の上方側、第3絶縁基板31の下方側、およびこれらの側方側を一対のケース部材28により空気経路を形成するように組み付けることで、上方側に吸熱熱交換部が形成され、下方側に放熱熱交換部が形成されて、これに空気を流通させることで冷風、温風を得ることが可能となる。
これにより、熱交換部材22、32の相互間に形成される隙間に膜張りができることもない。また、熱交換部材22、32に形成される電着塗装による絶縁膜が均等にムラなく形成されることで、吸熱熱交換部、放熱熱交換部における送風通路の風速分布もしくは温度分布の発生を防止できるとともに、送風系の送風性能の向上が図れる。なお、この種の熱電変換装置100Aは、シート空調装置の他に、半導体や電気部品などの発熱部品の冷却や暖房装置などの加熱に用いることができる。
以上の実施形態による熱電変換装置100Aによれば、熱交換部材22、32が組み付けられた熱電素子基板10を浸漬工程と焼付け工程とを備える電着塗装で絶縁膜を形成することにより、電着層内に熱電素子基板10に浸漬させて絶縁膜を形成することで、全体をムラのない膜厚で形成できる。
特に、熱電素子12、13および熱交換部材22、32が熱交換媒体の流れる流れ方向に対して複数列以上配設される熱電素子基板10では、その内側列に配設される熱電素子12、13、電極素子16および熱交換部材22、32の内方にも隈なく絶縁膜を形成できる。従って、所定の膜厚で絶縁膜を形成できるとともに、厚膜による熱交換性能の低下および送風系の送風性能の低下をなくすることができる。
また、電着塗装では、絶縁膜を形成する部位に電圧を印加させて絶縁材料を塗布する方法であるため、熱電素子基板10の通電部、すなわち、熱電素子12、13、電極部材16および熱交換部材22、32を均等の膜厚で絶縁膜を形成できる。
しかも、必要以上の膜厚が形成されないので狭小の隙間に発生する膜張りを防止できる。なお、電圧を印加させない部位、すなわち、絶縁基板11、21、31には絶縁膜が形成されないので、送風系の圧力損失が大きくなるようなことはない。これにより、送風系の送風性能の向上が図れる。
さらに、内部に配設される熱電素子12、13および熱交換部材22、32と熱電素子12、13との接合部にも容易に絶縁膜を形成できることで、マイグレーションの発生の防止ができる。
複数の熱交換部材22、32は薄板を用いて吸熱、放熱部を形成しているため数多くの鋭角状のエッジ面を備えている。絶縁材料には、エッジカバー樹脂材が含まれており、エッジカバー樹脂材は、電着槽において、絶縁材料に溶融されたときに粘度の高い樹脂材料となる。よって、電着槽で絶縁材料が塗布された熱電素子基板10を電着槽から取り出して焼付けを行うときに、エッジ面からの液ダレを低減できる。これにより、所定の膜厚の絶縁膜を形成することができる。
また、焼付け工程は、浸漬工程を少なくとも複数回繰り返した後に行うことにより、先回絶縁材料を塗布できなかった部位を今回塗布することができるので、全体的に隈なく所定の膜厚の絶縁膜を形成することができる。
また、浸漬工程における浸漬条件としては、例えば、印加電圧、浸漬時間、および浸漬回数などがある。浸漬工程において、これらの浸漬条件を数回毎に変えることで、全体的に隈なく所定の膜厚の絶縁膜を形成することができる。
また、焼付け工程における焼付け条件としては、例えば、焼付け温度、焼付け時間、および焼付け回数などがある。焼付け工程において、少なくとも複数回繰り返して行うとともに、数回毎に焼付け条件を変えることにより、全体的に隈なく所定の膜厚の絶縁膜を形成することができる。
上記の第1実施形態では、熱電変換装置100を車両に搭載されるシート空調装置に適用させたが、車両とは限らず、ペルチェ素子により送風空気を冷却もしくは加熱する冷却装置もしくは加熱装置に適用させても良い。
(第2実施形態)
第2実施形態を図9〜図11に示す。第2実施形態における熱電変換装置100Bは、上記第1実施形態に対して、電極部材16を廃止したものである。
第2実施形態を図9〜図11に示す。第2実施形態における熱電変換装置100Bは、上記第1実施形態に対して、電極部材16を廃止したものである。
ここでは、熱交換部材22、32の電極部25、35を電極部材16と兼用しており、電極部25、35は、第1絶縁基板11に配列された熱電素子群のうち、隣接する一対の熱電素子12、13に直接接触されて、熱電素子12、13電気的に直列接続する電極となるようにしている。
より具体的には、上方に配置される吸熱電極部25は、隣接するN型熱電素子13からP型熱電素子12に向けて電流を流すための電極となっており、また、下方に配置される放熱電極部35は、隣接するP型熱電素子12からN型熱電素子13に電流を流すための電極となっている。なお、電極部25、35は、熱電素子12、13の端面に予めペーストハンダなどをスクリーン印刷で薄く均一に塗っておいてから半田付けで接合される。
これにより、電極部材16に関る部品コスト、組付けコスト等を低減することができる。
(第3実施形態)
第3実施形態における熱電変換装置100Cを図12〜図17に示し、まず、その構成について図12〜図16を用いて説明する。図12は熱電変換装置100Cの全体構成を示す模式図であり、図13は図12に示す矢印XIIIで示す方向から見た矢視図、図14は熱電変換装置100Cの主要部(熱電変換モジュール)200の構成を示す分解構成図、図15は熱電変換装置100Cの主要部200の構成を示す図12中の線XVにおける側面図、図16は図15におけるXVI部の詳細を示す拡大図である。
第3実施形態における熱電変換装置100Cを図12〜図17に示し、まず、その構成について図12〜図16を用いて説明する。図12は熱電変換装置100Cの全体構成を示す模式図であり、図13は図12に示す矢印XIIIで示す方向から見た矢視図、図14は熱電変換装置100Cの主要部(熱電変換モジュール)200の構成を示す分解構成図、図15は熱電変換装置100Cの主要部200の構成を示す図12中の線XVにおける側面図、図16は図15におけるXVI部の詳細を示す拡大図である。
本熱電変換装置100Cは、図12に示すように、熱電素子基板10、吸熱側フィン基板20、放熱側フィン基板30を有する熱電変換モジュール200が、一対のケース部材28、38からなるケースに収納されて構成されている。
熱電素子基板10は、図12〜図15に示すように、保持板である第1絶縁基板11と、複数のP型、N型の熱電素子12、13からなる熱電素子群とを有して、これらにより一体に構成されている。具体的には、平板状の絶縁材料(例えば、ガラスエポキシ、フェノール樹脂、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる第1絶縁基板11に、ほぼ碁盤目状に複数の嵌合孔が形成されて、この嵌合孔にP型熱電素子12とN型熱電素子13とが交互に配列されている。
P型熱電素子12はBi−Te系化合物からなるP型半導体により構成され、N型熱電素子13はBi−Te系化合物からなるN型半導体により構成された極小部品であって、これらは、その上端面、下端面が第1絶縁基板11よりも突き出すように構成されている。本実施形態においては、1.5mm角ほどの大きさのP型熱電素子12、N型熱電素子13が120組ほど第1絶縁基板11に保持されている。
つぎに、吸熱側フィン基板20は、図12、図14、および図15に示すように、複数個の吸熱熱交換部材22を平板状の絶縁材料(例えば、ガラスエポキシ、フェノール樹脂、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる保持板である第2絶縁基板21(本発明の絶縁板および第1板に対応)および固定板23に一体構成しており、放熱側フィン基板30は、複数個の放熱熱交換部材32を平板状の絶縁材料(例えば、ガラスエポキシ、フェノール樹脂、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる保持板である第3絶縁基板31(本発明の絶縁板および第1板に対応)および固定板33に一体構成している。
具体的には、第2絶縁基板21、固定板23、もしくは第3絶縁基板31、固定板33にほぼ碁盤目状に複数の嵌合孔が形成されて、この嵌合孔に熱交換部材22、32が保持されている。これにより、隣り合う熱交換部材22、32同士は、互いに電気的に絶縁するように、所定の隙間を設けてほぼ碁盤目状に配設されている。
熱交換部材22、32は、銅材などの導電性金属からなる薄肉の板材を用いて、図15に示すように、断面がほぼU字状となるように構成されている。U字状の底部は平面状の吸熱電極部25、放熱電極部35(本発明の電極部に対応)を形成しており、その電極部25、35から外方に延出された平面に吸熱部、放熱部である熱交換部26、36を形成している。熱交換部26、36はルーバを有するフィンとして形成されている。この熱交換部材22、32を形成する板材として、板厚が0.2〜0.3mmであるものを選択すると、加工性の向上が図れるため望ましい。
熱交換部材22、32は、その電極部25、35において熱電素子基板10の熱電素子12、13にはんだ接合されている。具体的には、図12、図14および図15に示すように、吸熱熱交換部材22は熱電素子12、13の上端面に接合されており、放熱熱交換部材32は熱電素子12、13の下端面に接合されている。
電極部25、35は、熱電素子基板10に配列された熱電素子群のうち、隣接するP型熱電素子12とN型熱電素子13との間を電気的に接続する電極である。具体的には、吸熱電極部25は、図12に示すように、隣接するN型熱電素子13からP型熱電素子12に向けて電流が流れるように熱電素子13、12間を接続しており、放熱電極部35は、隣接するP型熱電素子12からN型熱電素子13に向けて電流が流れるように熱電素子12、13間を接続している。これにより、全ての熱電素子12、13が直列に接続されて、直列回路50が形成されている。
また、熱交換部26、36は、電極部25、35からの吸熱、放熱を伝えて、熱交換部26に接触する流体から吸熱、あるいは熱交換部36に接触する流体へ放熱するためのフィンであり、電極部25、35から延出する平面に切り起こしなどの成形加工により形成されている。このように、本実施形態においては、熱交換部26、36と電極部25、35とは、共に熱交換部材22、32の一部分として一体に形成されている。
なお、熱交換部材22、32は、その電極部25、35が、第2もしくは第3絶縁基板21、31から熱電素子12、13側に僅かに突き出すように構成されており、従って、熱交換部26、36が熱電素子12、13側にはみ出さないようになっている。また、熱交換部材22、32は、その先端部において固定板23、33に保持されており、熱交換部材22、32の先端が固定板23の上面あるいは固定板33の下面から僅かに突き出すように構成されている。
熱電素子12、13が電極部25、35によって接続されて形成される直列回路50において、その末端に配設される熱電素子12、13(図12および図14中における左右端の熱電素子12a、13a)には、それぞれ接続端子24a、24bが設けられ、この接続端子24a、24bには、図示しない直流電源の正側端子と負側端子とがそれぞれ接続されるようになっている。
以上のように構成された熱電変換モジュール200において、上記のように接続端子24aに電圧を印加すると、直流電流がP型熱電素子12aから放熱電極部35を介して隣接するN型熱電素子13に流れ、さらに、このN型熱電素子13から吸熱電極部25を介してP型熱電素子12に流れるというようにして、両端の熱電素子12a、13aの間の直列回路50に直流電流が流れる。
このときに、PN接合部に配設された放熱電極部35は、ペルチェ効果によって高温の状態となり、NP接合部に配設された吸熱電極部25は低温の状態となる。そして、放熱電極部35からの熱は放熱熱交換部材32の熱交換部36に伝わり、熱交換部36に接触される冷却流体に対して放熱される。また、吸熱電極部25からの吸熱は吸熱熱交換部材22の熱交換部26に伝わり、熱交換部26に接触される被冷却流体から吸熱される。
従って、図12に示すように、熱電素子基板10を区画壁として、一対のケース部材28、38により、熱電素子基板10の両側の吸熱熱交換部材22側と放熱熱交換部材32側とに送風通路をそれぞれ形成して、その送風通路に空気を流通させることで、熱交換部26、36と空気との間で熱交換され、これにより、吸熱熱交換部材22側通路を流通する空気が冷却され、放熱熱交換部材32側通路を流通する空気が加熱される。
このとき、本熱電変換装置100Cにおいては、上記のように熱交換部26、36が、直列回路50の吸熱部位、放熱部位である電極部25、35と絶縁されることなく繋がっていることにより、高い熱交換効率を得ることができる。しかし、接続端子24a、24bに電圧が印加されたときには、熱電素子12、13によって形成される直列回路50に電位が作用するだけでなく、熱交換部26、36など、この直列回路50と絶縁されることなく接続されている導電部位全体に電位が作用する。
そこで、本熱電変換装置100Cにおいては、熱電変換モジュール200の接続端子24a、24bに電圧を印加したときに電位が作用する導電部位の表面全体に、図16に示すように、短絡の発生を防止するための絶縁膜40を形成している。この絶縁膜40は電着塗装によって形成されるもので、熱交換部材22、32の熱交換部26、36の表面、熱電素子12、13の側面、電極部25,35と熱電素子12、13の間のはんだ接合部45の側面など、直列回路50と絶縁されることなく接続されている導電部位の露出している表面全体に、それらの形状に沿って万遍なく絶縁膜40が形成されている。本実施形態では、絶縁膜40はエポキシ樹脂系の塗料により形成されており、その膜厚は10〜20μmほどとなっている。
なお、図16では、吸熱側フィン基板20における第2絶縁基板21と吸熱熱交換部材22との接触部分42の詳細を示しているが、放熱側フィン基板30における第3絶縁基板31と放熱熱交換部材32との接触部分についても同様の構成となっている。
さらに、第2絶縁基板21および第3絶縁基板31の熱電素子基板10と反対側の表面には、図12、および図14〜図16に示すように、第1シール層27、第2シール層37(本発明のシール部に対応)がそれぞれ形成されており、これらのシール層27、37は、図15に示すように、熱交換部材22、32の第2もしくは第3絶縁基板21、31との嵌合部分の内側(電極部25、35の背面側)にまで渡って、第2絶縁基板21の熱交換部26側表面の全面、第3絶縁基板31の熱交換部36側表面の全面に形成されている。本実施形態では、第1、第2シール層27、37はエポキシ樹脂系のシール剤により形成されており、厚さ2〜3mmほどの層となっている。
なお、第2絶縁基板21および第3絶縁基板31と熱交換部材22、33の根元部分との接触部分42おいては、図16に示すように、第1、第2シール層27、37は絶縁膜40を外側から覆うように形成されており、これらのシール層27、37により、熱交換部26、36において電着塗装により絶縁膜40が形成されにくい第2、第3絶縁基板21、31付近部分の絶縁が補強されて完全なものとなっている。また、第1、第2シール層27、37は、熱電素子基板10側への水滴などの浸入を防止している。
つぎに、以上の構成による熱電変換装置100Cの製造方法について、図12、および図14〜図17に基づいて説明する。本製造方法は、接合工程、電着塗装工程(第1実施形態における浸漬工程および焼付け工程)、シール工程を備えており、図14は主に接合工程を示しており、図17は電着塗装工程を示している。
接合工程においては、まず、第1絶縁基板11にほぼ碁盤目状に形成された複数の嵌合孔にP型熱電素子12とN型熱電素子13とを交互に配列して接着剤で固定し、これにより熱電素子基板10を構成する。このとき、第1絶縁基板11への熱電素子12、13の組み付けは、例えば、半導体、電子部品などを制御基板に組み付けるための製造装置であるマウンタ装置を用いて行うことができる。
一方、第2絶縁基板21にほぼ碁盤目状に形成された複数の嵌合孔に吸熱熱交換部材22の根元部分が保持されるように嵌合させ、さらに吸熱熱交換部材22の先端部を固定板23に形成された嵌合孔に嵌合させて、吸熱側フィン基板20を構成する。
同様に、第3絶縁基板31にほぼ碁盤目状に形成された複数の嵌合孔に放熱熱交換部材32の根元部分が保持されるように嵌合させ、さらに放熱熱交換部材32の先端部を固定板33に形成された嵌合孔に嵌合させて、放熱側フィン基板30を構成する。
このとき、熱交換部材22、32は、その電極部25、35が、第2絶縁基板21もしくは第3絶縁基板31から僅かにはみ出すように構成される。また、熱交換部材22、32はその先端部において固定板23、33の嵌合孔に保持され、熱交換部材22、32の先端が固定板23の上面あるいは固定板33の下面とから僅かに突き出すように構成される。
なお、熱交換部材22、32は、例えば、平板状の金属板をプレス加工などによりほぼU字状に形成して、その底部に平面状からなる電極部25、35を形成し、さらに、その電極部25、35から外方に延出された平面をルーバー状に成形加工することにより、前もって構成される。
つぎに、図14に示すように、吸熱側フィン基板20と放熱側フィン基板30との間に熱電素子基板10を挟んで組み合わせることにより、熱電変換モジュール200を構成する。具体的には、熱交換部材22、32の電極部25、35を、その接合部において、熱電素子12、13の上端面もしくは下端面にはんだ付けにより接合することにより、熱交換部材22、32と熱電素子12、13との間を接合する。このとき、予め熱電素子12、13の上面もしくは下面にペーストハンダなどをスクリーン印刷で薄く均一に塗っておいて、電極部25、35をはんだ付けで接合する。
以上のようにして構成された熱電変換モジュール200に対して、電着塗装工程において、電着塗装を施すことより、接続端子24a、24bに電圧を印加した場合に電位が作用する導電部位の表面全体に絶縁膜40を形成する。具体的には、図17に示すように、エポキシ樹脂系塗料の溶液を入れた槽の中に熱電変換モジュール200を浸漬して、接続端子24a、24bのいずれか片方に陰極として電圧をかける。このようにして熱電変換モジュール200に塗料を塗布した後、これを180〜190度程度に加熱して、塗料を焼き付けることにより塗膜(絶縁膜)40を形成する。
これにより、図16に示すように、熱交換部材22、32の表面、熱電素子12、13の側面、はんだ接合部45の側面など、接続端子24a、24bに電圧を印加した場合に電位が作用する導電部位の表面に選択的に塗料が塗布されて、その結果、そのような導電部位の表面全体に渡って、それらの形状に沿って万遍なくピンホールのない絶縁膜40が形成される。本実施形態においては、上記のように、厚さ10〜20μmほどの絶縁膜40が形成される。
なお、本実施形態では、電着塗装の際に熱電変換モジュール200の接続端子24a、24bのいずれか片方に陰極として電圧を印加したが、これに限らず、熱電変換モジュール200の両接続端子24a、24bに電圧を印加した場合に電位が作用する導電部位であれば、どこに電圧を印加しても、同様に電着塗装が可能である。また、本実施形態においては、熱電変換モジュール200に陰極として電圧を印加して電着塗装を実施したが、用いる塗料などに応じて、陽極として電圧を印加する場合もある。
つぎに、シール工程において、第2絶縁基板21、第3絶縁基板31の熱電素子基板10と反対側の表面に、図12、図15および図16に示すような、第1、第2シール層27、37を形成する。具体的には、エポキシ樹脂系のシール剤をディスペンサにより第2絶縁基板21、第3絶縁基板31上に注入し、高温槽に入れてシール剤を硬化させることにより、シール層27、37を形成する。本実施形態においては、上記のように、厚さ2〜3mmほどのシール層27、37が形成される。
さらに、図12および図15に示すように、第2絶縁基板21、第3絶縁基板31の外周部における熱電素子基板10との間の隙間17にもシール剤を塗布して、熱電素子基板10側への水滴などの浸入を防止するためのシールを完成させる。
最後に、熱電変換モジュール200の上方側、下方側にそれぞれケース部材28、38を組み付けて、空気が流通する吸熱熱交換部、放熱熱交換部を形成する。このとき、熱交換部材22、32の先端部(固定板23、33)とケース部材28、38との間の隙間には、図示しないパッキンが充填されて、これによりケース28、38内で熱電変換部モジュール200の位置が固定されている。
以上のように、本実施形態の熱電変換装置100Cにおいては、接続端子24a、24bに電圧を印加したときに電位が作用する導電部位の表面全体に電着塗装により絶縁膜40が形成されている。このような絶縁膜40は、熱電変換モジュール200をまず構成して、これに電着塗装を施すことで、絶縁が必要な導電部位に選択的に形成することが可能であり、また、そのような導電部位全体に一度に形成することが可能である。電着塗装によると、熱交換部26、36のような複雑な形状のものにも均一でピンホールのない絶縁膜40を形成することができ、これにより導電部位における短絡およびマイグレーションの発生を防ぐことができる。
さらに、本実施形態の熱電変換装置100Cにおいては、電着塗装により絶縁膜40を形成することが困難である第2絶縁基板21、第3絶縁基板31と熱交換部材22、32との接触部分42付近においては、この部分42を絶縁膜40の外側から覆うようにシール層27、37を形成して、絶縁膜40を補強している。これにより、本熱電変換装置100C内において必要な導電部位の絶縁が完全となり、熱電変換装置100C内部での短絡およびマイグレーションの発生を確実に防ぐことができる。
また、シール層27、37が、熱交換部材22、32突出側において第2、第3絶縁基板21、31の表面全体を覆うように形成されていることにより、吸熱側において結露により熱交換部26に付着した水滴や、熱交換部26、36に流通する空気に含まれる水蒸気、薬品、ダスト、異物などが、第2、第3絶縁基板21、31と熱交換部材22、32との嵌合部の隙間などから熱電素子12、13側に浸入することを防止できる。これにより、熱電素子12、13および電極部25、35における腐食や損傷、短絡およびマイグレーションの発生を防止することができる。
(第4実施形態)
第4実施形態を図18および図19に示す。図18は本実施形態における熱電変換装置の主要部(熱電変換モジュール)200aの構成を示している。上記第3実施形態では熱交換部材22、32を根元部分でそれぞれ保持している第2絶縁基板21と第3絶縁基板31の表面に、それぞれ第1シール層27、第2シール層37を設けたが、これに対して、本実施形態においては、図18に示すように、第1シール層27および第2シール層37に加えて、熱交換部材22、32を先端部で保持している固定板23、33(本発明の絶縁板および第2板に対応)の表面にも、それぞれ第3シール層29、第4シール層39(本発明のシール部に対応)を設ける。
第4実施形態を図18および図19に示す。図18は本実施形態における熱電変換装置の主要部(熱電変換モジュール)200aの構成を示している。上記第3実施形態では熱交換部材22、32を根元部分でそれぞれ保持している第2絶縁基板21と第3絶縁基板31の表面に、それぞれ第1シール層27、第2シール層37を設けたが、これに対して、本実施形態においては、図18に示すように、第1シール層27および第2シール層37に加えて、熱交換部材22、32を先端部で保持している固定板23、33(本発明の絶縁板および第2板に対応)の表面にも、それぞれ第3シール層29、第4シール層39(本発明のシール部に対応)を設ける。
第3シール層29は、固定板23の熱交換部26側表面の全体に渡って形成されており、第4シール層39は、固定板33の熱交換部36側表面の全体に渡って形成されている。本実施形態においては、第3、第4シール層29、39の厚さは2〜3mmほどとなっている。
図19は図18において円XIXで示す部分の詳細を示す拡大図である。ここに示すように、熱交換部26の先端部分と固定板23との接触部分43において、第3シール層29は、絶縁膜40を外側から覆うように形成されており、これにより、熱交換部26において電着塗装により絶縁膜40が形成されにくい部分の絶縁が補強されて完全なものとなっている。
なお、図19では、吸熱熱交換部材22と固定板23との接触部分43を示しているが、放熱熱交換部材32と固定板33との接触部分についても同様の構成となっている。
第3、第4シール層29、39は、上記第3実施形態と同様のシール工程において、第1、第2シール層27、37が形成される際に、併せて形成される。具体的には、第3、第4シール層29、39は、固定板23、33の表面にエポキシ樹脂系のシール剤を塗布して、これを硬化させることにより形成される。
本実施形態の熱電変換装置におけるその他の構成、およびその製造方法における上記以外の工程については、上記第3実施形態と同様である。
以上のように、熱交換部材22、32をその先端側において保持する固定板23、33においても、その熱交換部材22、32側の表面に第3、第4シール層29、39を設けることにより、電着塗装により絶縁膜40が形成されにくい熱交換部材22、32先端部の固定板23、33との接触部分43付近における絶縁を補強して、熱交換部材22、32の先端側における絶縁を完全なものとすることができる。これにより、熱電変換装置内部での短絡およびマイグレーションの発生をより確実に防ぐことができる。
(第5実施形態)
第5実施形態における熱電変換装置の主要部(熱電変換モジュール)200bの構成を図20に示す。ここに示すように、本熱電変換装置では、上記第3実施形態と同様の構成の熱電変換装置に対して、その固定板23の吸熱熱交換部材22と反対側の表面上にサーミスタ70(本発明の温度センサに対応)を追加配設している。
第5実施形態における熱電変換装置の主要部(熱電変換モジュール)200bの構成を図20に示す。ここに示すように、本熱電変換装置では、上記第3実施形態と同様の構成の熱電変換装置に対して、その固定板23の吸熱熱交換部材22と反対側の表面上にサーミスタ70(本発明の温度センサに対応)を追加配設している。
サーミスタ70は、固定板23上において吸熱熱交換部材22の先端部と接触するように設けられており、さらに、このサーミスタ70を外部の制御装置(図示せず)と接続するためのリード71(本発明の配線に対応)が固定板23上に配設されている。このリード71は導電性金属の線材により構成されており、リード71の表面全体には、後述のように電着塗装により、絶縁膜48(本発明の配線絶縁膜に対応)が形成されている。
サーミスタ70は、上記第3実施形態と同様の接合工程において、接着剤などによって固定板23上に固定され、また、リード71は固定板23上にはんだ付けされる。
そして、上記第3実施形態と同様の電着塗装工程において、熱電変換モジュール200bに絶縁膜40を形成する際に、熱電変換モジュール200bの接続端子(図示せず)の一方に陰極として電圧を印加するだけでなく、サーミスタ70のリード71にも陰極として電圧を印加して、電着塗装を実施することにより、熱電変換モジュール200bの導電部位に絶縁膜40を形成すると同時に、サーミスタ70のリード71にも上記絶縁膜48を同時に形成することができる。
なお、本実施形態の熱電変換装置におけるその他の構成、およびその製造方法における上記以外の工程については、上記第3実施形態と同様である。
また、本実施形態においては、サーミスタ70を吸熱熱交換部材22に接触させて配設したが、これに限らず、本熱電変換装置の用途に応じて、サーミスタ70を吸熱熱交換部材22の近傍に配設してもよいし、あるいは放熱熱交換部材32側に配設してもよい。
このように、熱電変換モジュール200bがサーミスタ70およびリード71を備えている場合には、熱電変換モジュール200b内の導電部位の表面全体に電着塗装により絶縁膜40を形成する際に、熱電変換モジュール200bに配設されているサーミスタ70のリード71にも同時に絶縁膜48を形成することが可能である。このようにしてサーミスタ70のリード71に絶縁膜48を形成することで、リード71が被水した場合でも、短絡およびマイグレーションの発生を防止することができる。
(その他の実施形態)
上記第2〜第5実施形態においては、熱交換部材22、32の電極部25、35により直接、P型熱電素子12とN型熱電素子13との間を接続する構成であったが、これに代えて、第1実施形態および図21に示すように、熱交換部材22、32とは別体の電極部材16(本発明の電極部に対応)を設けて、これにより隣接するP型熱電素子12とN型熱電素子13との間を接続する構成であってもよい。
上記第2〜第5実施形態においては、熱交換部材22、32の電極部25、35により直接、P型熱電素子12とN型熱電素子13との間を接続する構成であったが、これに代えて、第1実施形態および図21に示すように、熱交換部材22、32とは別体の電極部材16(本発明の電極部に対応)を設けて、これにより隣接するP型熱電素子12とN型熱電素子13との間を接続する構成であってもよい。
この場合、この電極部材16に、熱交換部材22、32の電極部25、35が接合される。具体的には、上記第3実施形態と同様の接続工程において、まず熱電素子基板10の組み付けの際に、第1絶縁基板10に熱電素子12、13を組み付けた後に、熱電素子12、13の上端面および下端面に電極部材16をはんだ付けにより接合させて、熱電素子基板10を完成させる。そして、熱電素子基板10に吸熱側フィン基板20および放熱側フィン基板30を接合させて熱電変換モジュール200cを構成する際に、熱交換部材22、32の電極部25、35を電極部材16に接合させる。なお、電極部材16は、平板状の銅材などの導電性金属によって形成される。
このように構成された熱電変換モジュール200cに対して、上記第3実施形態の電着塗装工程と同様にして電着塗装を実施すると、熱交換部26、36の表面や熱電素子12、13の側面に絶縁膜40が形成されると共に、熱電素子12、13と電極部材16との間のはんだ接合部側面、電極部材16の側面、熱交換部材22、32の電極部25、35と電極部材16との間のはんだ接合部側面にも絶縁膜40が形成される。
このように熱交換部材22、32とは別体の電極部材16を設ける構成によると、熱電素子基板10を完成した段階において、熱電素子12、13が電極部材16によって接続されることにより直列回路50が形成されているため、熱電素子12、13と電極部材16との間における導通不良など、直列回路50の電気的な検査が、熱電変換モジュール200cを構成する前の熱電素子基板10のみ状態で容易に行なうことができる。
上記第1〜第5実施形態においては、熱交換部材22、32は、第2、第3絶縁基板21、31と、固定板23、33とにより、根元部分と先端部分の両方において保持されていたが、これに限らず、固定板23、33を取り除いて、熱交換部材22、32は、その根元部分においてのみ第2、第3絶縁基板21、31により保持されている構成としてもよい。あるいは、上記第2実施形態における第2、第3絶縁基板21、31を取り除いて、熱交換部材22、32は、その先端部分においてのみ固定板23、33に保持されている構成とすることもできる。
上記第1〜第5実施形態においては、複数の熱電素子12、13を保持板である第1絶縁基板11に保持して熱電素子基板10を形成していたが、これに代えて、熱電素子12、13を保持板に保持することなく、熱交換部材22、32のいずれか一方の電極部25、35に接合させるなどして、第1絶縁基板11を用いない構成としてもよい。
上記第1〜第5実施形態においては、ほぼU字状の熱交換部材22、32において熱交換部26、36をルーバー状に形成したが、これに限らず、熱交換部26、36をオフセット状に形成してもよい。あるいは、熱交換部26、放熱部36として、櫛歯状に形成した熱交換部材22、32の内部に、波形に折り曲げた金属板によってコルゲートフィンを形成することもできる。
上記第1〜第5実施形態では、図示しない直流電源の正側端子を接続端子24a側に、負側端子を接続端子24b側に接続する構成であったが、これに限らず、直流電源の正側端子を接続端子24b側に、負側端子を接続端子24a側に接続してもよい。ただし、このときには、上方側の熱交換部材22が放熱部を形成し、下方側の熱交換部材32が吸熱部を形成するようになる。
つまり、熱電素子12、13によって構成される直列回路50に流す電流の流れ方向を切り替えることで、吸熱側と放熱側を切り替えることができる。因みに、この種の熱電変換装置は、例えば、半導体や電気部品などの発熱部品の冷却用や暖房装置などの加熱用として用いられる。
10 熱電素子基板(熱電素子モジュール)
12 P型熱電素子(熱電素子)
13 N型熱電素子(熱電素子)
16 電極部材(電極部)
21 第2絶縁基板(絶縁板、第1板)
22 吸熱熱交換部材(熱交換部材)
23 固定板(第2板)
24a、24b 接続端子(電源端子部)
25 吸熱電極部(電極部)
26 熱交換部
27 第1シール層(シール部)
31 第3絶縁基板(絶縁板、第1板)
33 固定板(第2板)
32 吸熱熱交換部材(熱交換部材)
35 放熱電極部(電極部)
36 熱交換部
40 絶縁膜
42 接触部分
48 配線絶縁膜
50 直列回路
70 サーミスタ(温度センサ)
71 リード(配線)
100 熱電変換装置
12 P型熱電素子(熱電素子)
13 N型熱電素子(熱電素子)
16 電極部材(電極部)
21 第2絶縁基板(絶縁板、第1板)
22 吸熱熱交換部材(熱交換部材)
23 固定板(第2板)
24a、24b 接続端子(電源端子部)
25 吸熱電極部(電極部)
26 熱交換部
27 第1シール層(シール部)
31 第3絶縁基板(絶縁板、第1板)
33 固定板(第2板)
32 吸熱熱交換部材(熱交換部材)
35 放熱電極部(電極部)
36 熱交換部
40 絶縁膜
42 接触部分
48 配線絶縁膜
50 直列回路
70 サーミスタ(温度センサ)
71 リード(配線)
100 熱電変換装置
Claims (19)
- P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの前記熱電素子(12、13)が電気的に直列接続される熱電素子モジュール(10)と、
前記一対の熱電素子(12、13)のそれぞれに伝熱可能、かつ電気的に結合された複数の熱交換部材(22、32)とを備える熱電変換装置において、
複数の前記熱交換部材(22、32)は、熱交換媒体の流れる流れ方向に対して3列以上配設されて、前記一対の熱電素子(12、13)のそれぞれに対応して結合されており、
前記熱電素子モジュール(10)、および前記熱交換部材(22、32)の表面全体には、電着塗装による絶縁膜が形成されていることを特徴とする熱電変換装置。 - 前記絶縁膜には、エッジカバー樹脂材が含まれていることを特徴とする請求項1に記載の熱電変換装置。
- 前記熱交換部材(22、32)は、前記一対の熱電素子(12、13)を接続する電極部(25、35)と、前記電極部(25、35)に直接接続される熱交換部(26、36)とを備え、
前記熱交換部(26、36)を突出させるように保持すると共に、複数対の前記熱電素子(12、13)にそれぞれ対応する複数の前記熱交換部(26、36)間を電気的に絶縁させる絶縁板(21、31)を備えており、
前記絶縁板(21、31)における複数の前記熱交換部(26、36)の突出側において、前記絶縁板(21、31)と複数の前記熱交換部(26、36)との接触部分(42)を前記絶縁膜(40)の外側から覆うように形成されたシール部(27、37)を有することを特徴とする請求項1または請求項2に記載の熱電変換装置。 - 前記シール部(27、37)は、複数の前記熱交換部(26、36)の突出側において前記絶縁板(21、31)の表面全体を覆っていることを特徴とする請求項3に記載の熱電変換装置。
- 前記絶縁板として、複数の前記熱交換部(26、36)を複数の前記電極部(25、35)への接続側において保持する第1板(21、31)を備えることを特徴とする請求項3または請求項4に記載の熱電変換装置。
- 前記絶縁板として、複数の前記熱交換部(26、36)を複数の前記電極部(25、35)への接続側の反対側において保持する第2板(23、33)を備えることを特徴とする請求項3〜請求項5のいずれか1つに記載の熱電変換装置。
- 前記熱交換部(26、36)に接触させて、あるいは近傍に配設された温度センサ(70)と、
前記温度センサ(70)に接続された配線(71)とを備え、
前記配線(71)の表面全体に、電着塗装により形成された配線絶縁膜(48)を有することを特徴とする請求項3〜請求項6のいずれか1つに記載の熱電変換装置。 - 複数の前記電極部(25、35)は、複数の前記熱交換部(26、36)とそれぞれ一体に形成されていることを特徴とする請求項3〜請求項7のいずれか1つに記載の熱電変換装置。
- P型とN型とからなる一対の熱電素子(12、13)を複数対配列し、これらの前記熱電素子(12、13)が電気的に直列接続される熱電素子モジュール(10)と、
熱交換媒体が流れる流れ方向に対して3列以上配設されて、前記一対の熱電素子(12、13)のそれぞれに対応して伝熱可能、かつ電気的に結合された複数の熱交換部材(22、32)と、
前記熱電素子モジュール(10)に設けられ、電源に接続される電源端子部(24a、24b)とを備える熱電変換装置の製造方法において、
前記一対の熱電素子(12、13)のそれぞれに前記複数の熱交換部材(22、32)を接合する接合工程と、
前記接合工程の後に、前記熱電素子モジュール(10)を絶縁材料が溶融された電着槽内に浸漬させ、前記電源端子部(24a、24b)に所定の電圧を印加することで、前記熱電素子モジュール(10)および前記熱交換部材(22、32)の表面全体に前記絶縁材料を塗布する浸漬工程と、
前記浸漬工程で絶縁材料が塗布された前記熱電素子モジュール(10)を高温で焼き付けて絶縁膜を形成する焼付け工程とを有することを特徴とする熱電変換装置の製造方法。 - 前記浸漬工程において、前記絶縁材料には、エッジカバー樹脂材が含まれていることを特徴とする請求項9に記載の熱電変換装置の製造方法。
- 前記焼付け工程は、前記浸漬工程を少なくとも複数回繰り返した後に行うことを特徴とする請求項9または請求項10に記載の熱電変換装置の製造方法。
- 前記浸漬工程は、数回毎に浸漬条件を変えることを特徴とする請求項11に記載の熱電変換装置の製造方法。
- 前記焼付け工程は、少なくとも複数回繰り返して行うとともに、数回毎に焼付け条件を変えることを特徴とする請求項9または請求項10に記載の熱電変換装置の製造方法。
- 前記熱交換部材(22、32)は、前記一対の熱電素子(12、13)を接続する電極部(25、35)と、前記電極部(25、35)に直接接続される熱交換部(26、36)とを備え、
前記熱交換部(26、36)を突出させるように保持すると共に、複数対の前記熱電素子(12、13)にそれぞれ対応する複数の前記熱交換部(26、36)間を電気的に絶縁させる絶縁板(21、31)を備えており、
前記焼付け工程の後に、複数の前記熱交換部(26、36)の突出側において前記絶縁板(21、31)と複数の前記熱交換部(26、36)との接触部分(42)を前記絶縁膜(40)の外側から覆うようにシール部(27、37)を形成するシール工程を備えたことを特徴とする請求項9〜請求項13のいずれか1つに記載の熱電変換装置の製造方法。 - 前記シール工程において、複数の前記熱交換部(26、36)の突出側において前記絶縁板(21、31)の表面全体を覆うように前記シール部(27、37)を形成することを特徴とする請求項14に記載の熱電変換装置の製造方法。
- 前記接合工程において、前記複数の熱交換部(26、36)を複数の前記電極部(25、35)への接続側において保持する第1板(21、31)を前記絶縁板として組付けることを特徴とする請求項14または請求項15に記載の熱電変換装置の製造方法。
- 前記接合工程において、前記複数の熱交換部(26、36)を前記複数の電極部(25、35)への接続側の反対側において保持する第2板(23、33)を前記絶縁板として組付けることを特徴とする請求項14〜請求項16のいずれか1つに記載の熱電変換装置の製造方法。
- 前記接合工程において、前記熱交換部(26、36)に接触させて、あるいは近傍に配設された温度センサ(70)と、前記温度センサ(70)に接続された配線(71)とを組付けし、
前記浸漬工程において、前記配線(71)に陽極あるいは陰極として電圧を印加することにより、前記配線(71)の表面全体に配線絶縁膜(48)を形成することを特徴とする請求項14〜請求項17のいずれか1つに記載の熱電変換装置の製造方法。 - 複数の前記電極部(25、35)は、複数の前記熱交換部(26、36)とそれぞれ一体に形成されていることを特徴とする請求項14〜請求項18のいずれか1つに記載の熱電変換装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007019951A JP2008034791A (ja) | 2006-06-28 | 2007-01-30 | 熱電変換装置およびその装置の製造方法 |
DE102007028791A DE102007028791B4 (de) | 2006-06-28 | 2007-06-22 | Thermoelektrische Umwandlungsvorrichtung und Herstellungsverfahren dafür |
US11/823,314 US20080000511A1 (en) | 2006-06-28 | 2007-06-27 | Thermoelectric conversion device and manufacture method of the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006178307 | 2006-06-28 | ||
JP2006181101 | 2006-06-30 | ||
JP2007019951A JP2008034791A (ja) | 2006-06-28 | 2007-01-30 | 熱電変換装置およびその装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008034791A true JP2008034791A (ja) | 2008-02-14 |
Family
ID=38859566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007019951A Withdrawn JP2008034791A (ja) | 2006-06-28 | 2007-01-30 | 熱電変換装置およびその装置の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20080000511A1 (ja) |
JP (1) | JP2008034791A (ja) |
DE (1) | DE102007028791B4 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013157446A (ja) * | 2012-01-30 | 2013-08-15 | Kyocera Corp | 熱電モジュール |
JP2015154082A (ja) * | 2014-02-14 | 2015-08-24 | エルジー イノテック カンパニー リミテッド | 熱変換装置 |
KR20180052564A (ko) * | 2015-06-10 | 2018-05-18 | 젠썸 인코포레이티드 | 일체형 냉각판 어셈블리를 가진 자동차 전지 열전 모듈 및 그 조립 방법 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2919486B1 (fr) * | 2007-07-31 | 2009-10-02 | Captomed Entpr Unipersonnelle | Capteur de pression auto-etalonnable. |
US9112109B2 (en) * | 2009-11-06 | 2015-08-18 | The Boeing Company | Thermoelectric generator assembly and system |
US20110290295A1 (en) * | 2010-05-28 | 2011-12-01 | Guardian Industries Corp. | Thermoelectric/solar cell hybrid coupled via vacuum insulated glazing unit, and method of making the same |
JP2013008734A (ja) * | 2011-06-22 | 2013-01-10 | Toyota Industries Corp | 熱電変換ユニット |
FR3005529B1 (fr) | 2013-05-13 | 2018-05-11 | MAHLE Behr GmbH & Co. KG | Module thermoelectrique |
JP6011514B2 (ja) * | 2013-10-30 | 2016-10-19 | 株式会社デンソー | 液面高さ検出計 |
JP6652493B2 (ja) | 2014-02-14 | 2020-02-26 | ジェンサーム インコーポレイテッドGentherm Incorporated | 伝導性および対流性の温度調節シート |
DE102014002247A1 (de) * | 2014-02-21 | 2015-08-27 | Stiebel Eltron Gmbh & Co. Kg | Aufbau eines Peltiermoduls für Warmwasserspeicher |
JP6369379B2 (ja) * | 2014-06-03 | 2018-08-08 | 株式会社デンソー | 質量流量計および速度計 |
US11639816B2 (en) | 2014-11-14 | 2023-05-02 | Gentherm Incorporated | Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system |
WO2016077843A1 (en) | 2014-11-14 | 2016-05-19 | Cauchy Charles J | Heating and cooling technologies |
US11857004B2 (en) | 2014-11-14 | 2024-01-02 | Gentherm Incorporated | Heating and cooling technologies |
US10043962B2 (en) * | 2016-05-05 | 2018-08-07 | Globalfoundries Inc. | Thermoelectric cooling using through-silicon vias |
KR102528360B1 (ko) * | 2016-09-02 | 2023-05-03 | 엘지이노텍 주식회사 | 열전 소자 및 열전 모듈 |
US11223004B2 (en) | 2018-07-30 | 2022-01-11 | Gentherm Incorporated | Thermoelectric device having a polymeric coating |
JP7608337B2 (ja) | 2018-11-30 | 2025-01-06 | ジェンサーム インコーポレイテッド | 熱電調整システム及び方法 |
US11152557B2 (en) | 2019-02-20 | 2021-10-19 | Gentherm Incorporated | Thermoelectric module with integrated printed circuit board |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1489282A1 (de) * | 1965-11-30 | 1969-04-24 | Siemens Ag | Thermoelektrische Anordnung mit einer Traegerplatte aus elektrolytisch oxydiertem Aluminium |
US4147498A (en) * | 1977-01-13 | 1979-04-03 | Clarke, Inc. | Ignition assembly for flare stacks |
US5371665A (en) * | 1994-03-14 | 1994-12-06 | Quisenberry; Tony M. | Power control circuit for improved power application and temperature control of thermoelectric coolers and method for controlling thereof |
JP3926424B2 (ja) * | 1997-03-27 | 2007-06-06 | セイコーインスツル株式会社 | 熱電変換素子 |
EP1226995A1 (de) * | 2001-01-27 | 2002-07-31 | Ford Global Technologies, Inc., A subsidiary of Ford Motor Company | Thermo-elektrischer Stromerzeuger für ein Fahrzeug |
JPWO2004001865A1 (ja) * | 2002-06-19 | 2005-10-27 | 株式会社東芝 | 熱電素子とそれを用いた電子部品モジュールおよび携帯用電子機器 |
US20070220902A1 (en) * | 2004-05-31 | 2007-09-27 | Denso Corporation | Thermoelectric Converter |
JP2006114840A (ja) * | 2004-10-18 | 2006-04-27 | Denso Corp | 熱電変換装置およびその熱電変換装置の製造方法 |
US20060112982A1 (en) * | 2004-11-30 | 2006-06-01 | Denso Corporation | Method of manufacturing thermoelectric transducer, thermoelectric transducer, and method for forming corrugated fin used for the same |
KR100641944B1 (ko) * | 2005-07-21 | 2006-11-02 | 주식회사 하이닉스반도체 | 반도체소자의 트랜지스터 및 그 형성방법 |
JP2008034792A (ja) * | 2006-06-28 | 2008-02-14 | Denso Corp | 熱電変換装置およびその製造方法 |
-
2007
- 2007-01-30 JP JP2007019951A patent/JP2008034791A/ja not_active Withdrawn
- 2007-06-22 DE DE102007028791A patent/DE102007028791B4/de not_active Expired - Fee Related
- 2007-06-27 US US11/823,314 patent/US20080000511A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013157446A (ja) * | 2012-01-30 | 2013-08-15 | Kyocera Corp | 熱電モジュール |
JP2015154082A (ja) * | 2014-02-14 | 2015-08-24 | エルジー イノテック カンパニー リミテッド | 熱変換装置 |
KR20180052564A (ko) * | 2015-06-10 | 2018-05-18 | 젠썸 인코포레이티드 | 일체형 냉각판 어셈블리를 가진 자동차 전지 열전 모듈 및 그 조립 방법 |
KR102017275B1 (ko) | 2015-06-10 | 2019-09-02 | 젠썸 인코포레이티드 | 일체형 냉각판 어셈블리를 가진 자동차 전지 열전 모듈 및 그 조립 방법 |
Also Published As
Publication number | Publication date |
---|---|
DE102007028791A1 (de) | 2008-01-31 |
DE102007028791B4 (de) | 2010-11-25 |
US20080000511A1 (en) | 2008-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008034791A (ja) | 熱電変換装置およびその装置の製造方法 | |
CN100524866C (zh) | 热电转换装置及其制造方法 | |
JP2008034792A (ja) | 熱電変換装置およびその製造方法 | |
JP3510831B2 (ja) | 熱交換器 | |
JP5956608B2 (ja) | 熱電モジュール | |
JP4953841B2 (ja) | 熱電モジュール | |
JP2006234362A (ja) | 熱交換器及び熱交換器の製造方法 | |
JP2000058930A (ja) | 熱電素子およびその製造方法 | |
JP2006066822A (ja) | 熱電変換装置 | |
JP2008078222A (ja) | 熱電変換装置 | |
US10897809B2 (en) | Printed circuit board, air conditioner, and method for manufacturing printed circuit board | |
JP2007184416A (ja) | 熱電変換モジュール | |
JP4297060B2 (ja) | 熱電変換装置 | |
JP2011069552A (ja) | 熱交換器 | |
KR20100003494A (ko) | 플렉시블 열전도체 밴드 와이어를 이용한 열전냉각장치 | |
JP2007123530A (ja) | 熱電変換装置およびその装置の製造方法 | |
JPH10321920A (ja) | 熱電変換装置 | |
JP2008021931A (ja) | 熱電変換装置 | |
JP2007123564A (ja) | 熱交換装置 | |
JP2008066663A (ja) | 熱電変換装置 | |
JP4682756B2 (ja) | 熱電変換装置およびその装置の製造方法 | |
JP2007329349A (ja) | 熱電変換装置およびその製造方法 | |
JP4830668B2 (ja) | 熱電変換装置およびその製造方法 | |
JP4626263B2 (ja) | 熱電変換装置およびその熱電変換装置の製造方法 | |
JP4890323B2 (ja) | 熱電モジュール及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090415 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20110420 |