[go: up one dir, main page]

JP2008032450A - Soil inspection method - Google Patents

Soil inspection method Download PDF

Info

Publication number
JP2008032450A
JP2008032450A JP2006204223A JP2006204223A JP2008032450A JP 2008032450 A JP2008032450 A JP 2008032450A JP 2006204223 A JP2006204223 A JP 2006204223A JP 2006204223 A JP2006204223 A JP 2006204223A JP 2008032450 A JP2008032450 A JP 2008032450A
Authority
JP
Japan
Prior art keywords
soil
spectrum
inspection
reflected light
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006204223A
Other languages
Japanese (ja)
Other versions
JP5019025B2 (en
Inventor
Yuko Kato
祐子 加藤
Kazunori Ninomiya
和則 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SI Seiko Co Ltd
Original Assignee
SI Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SI Seiko Co Ltd filed Critical SI Seiko Co Ltd
Priority to JP2006204223A priority Critical patent/JP5019025B2/en
Publication of JP2008032450A publication Critical patent/JP2008032450A/en
Application granted granted Critical
Publication of JP5019025B2 publication Critical patent/JP5019025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil inspection method, capable of performing accurate analysis over the whole area of an extensive inspection range with a minimum number of collection points on condition that the soil is directly collected and analyzed, and easily acquiring features of a field (inspection range) to evaluate the field even before direct collection and analysis of the soil. <P>SOLUTION: The present invention relates to the soil inspection method comprising emitting an inspection light to the soil, acquiring a reflected light from the soil and detecting a spectrum of the reflected light. The spectrum measured in each moving position (measurement position) is displayed as shown in Fig. 6 to display the change in spectrum relative to the change in moving position. The intensity of the reflected light is preferably colored according to the magnitude of intensity of the reflected light. Although various different spectra result from inspection of an extensive inspection range, actual collection of the soil can be limited to each point where a different spectrum is obtained. Therefore, features of the soil over the whole area of the extensive inspection range can be accurately analyzed by collection and analysis of the soil in minimum points. The features of the field can be also easily acquired to evaluate the field before the analysis of soil. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は土壌の特性を検査する土壌検査方法に関し、より詳しくは、土壌からの反射光を取得することによって土壌の特性を検査するようにした土壌検査方法に関する。   The present invention relates to a soil inspection method for inspecting soil characteristics, and more particularly to a soil inspection method for inspecting soil characteristics by acquiring reflected light from the soil.

従来、土壌の特性を検査するには、実際に土壌を採取してその成分等を分析すればよいが、検査範囲が広大となる場合には、多数の地点で土壌を採取する必要がある。
また従来、土壌に検査光を照射するとともに土壌からの反射光を取得する検出手段と、該検出手段を移動させる移動手段とを備え、所定の検査範囲内を移動しながら反射光を取得して該反射光のスペクトルを検出する土壌検査方法が知られている。この種の土壌検査方法においては、予め測定すべき土壌について測定結果が正しい値を示すようなキャリブレーションを得ておく必要があり、このキャリブレーションを得た後に反射光のスペクトルを検出することにより、当該土壌がどのような成分であるかを計測することができるようになる(特許文献1)。
特開2006−38511号公報
Conventionally, in order to inspect the characteristics of the soil, it is only necessary to actually collect the soil and analyze its components and the like. However, when the inspection range is wide, it is necessary to collect the soil at many points.
In addition, conventionally, it has a detecting means for irradiating the soil with inspection light and acquiring reflected light from the soil, and a moving means for moving the detecting means, and the reflected light is acquired while moving within a predetermined inspection range. A soil inspection method for detecting the spectrum of the reflected light is known. In this type of soil inspection method, it is necessary to obtain in advance a calibration that shows the correct measurement result for the soil to be measured. After obtaining this calibration, the spectrum of the reflected light is detected. It becomes possible to measure what kind of component the soil is (Patent Document 1).
JP 2006-38511 A

前者の従来方法によれば、土壌を直接分析しているのでその精度は良好なものとなるが、検査範囲が広大となる場合には採取点数も膨大となるので、実用的ではない。これを避けるために採取点数を少なくすれば、検査範囲の全域において高精度な分析を行うことは困難となる。
また後者の土壌検査方法においては、予めキャリブレーションを得る必要があるが、そのキャリブレーションを得るのにかなりの手間と時間を必要とし、また必ずしも正確なキャリブレーションを得られずに、測定結果に誤差を含む危険性もあった。
本発明は上述した事情に鑑み、土壌を直接採取して分析することを前提とした上で、検査範囲が広大であっても採取すべき場所を効率的に特定することができるようにして、最小限の採取点数で広大な検査範囲の全域に亘って高精度な分析を行えるようにし、また土壌を直接採取して分析する以前であっても、簡易的に圃場(検査範囲)の特性を把握して該圃場を評価することができるようにした土壌検査方法を提供するものである。
According to the former conventional method, since the soil is directly analyzed, the accuracy thereof is good. However, when the inspection range is wide, the number of sampling points becomes enormous, which is not practical. If the number of sampling points is reduced to avoid this, it becomes difficult to perform highly accurate analysis over the entire inspection range.
In the latter soil inspection method, it is necessary to obtain calibration in advance, but it takes a lot of labor and time to obtain the calibration, and accurate calibration is not always obtained. There was also a risk including errors.
In view of the circumstances described above, the present invention is based on the premise that the soil is directly collected and analyzed, so that the place to be collected can be efficiently identified even if the inspection range is vast, Enables high-accuracy analysis over the entire inspection area with the minimum number of sampling points, and easily improves the characteristics of the field (inspection area) even before collecting and analyzing the soil directly. The present invention provides a soil inspection method capable of grasping and evaluating the field.

すなわち請求項1の発明は、土壌に検査光を照射するとともに土壌からの反射光を取得する検出手段と、該検出手段を移動させる移動手段とを備え、所定の検査範囲内を移動しながら反射光を取得して該反射光のスペクトルを検出する土壌検査方法において、
上記移動手段による検出手段の移動位置を検出するとともに当該移動位置のスペクトルを検出し、各移動位置毎にそれぞれのスペクトルを表示して、移動位置の変化に対するスペクトルの変化を表示させることを特徴とするものである。
That is, the invention of claim 1 comprises a detecting means for irradiating the soil with inspection light and acquiring reflected light from the soil, and a moving means for moving the detecting means, and reflecting while moving within a predetermined inspection range. In the soil inspection method for acquiring light and detecting the spectrum of the reflected light,
Detecting the moving position of the detecting means by the moving means, detecting the spectrum of the moving position, displaying the spectrum for each moving position, and displaying the change of the spectrum with respect to the change of the moving position, To do.

請求項1の発明によれば、移動位置の変化に対するスペクトルの変化を表示させているので、移動位置のどの地点でスペクトルがどのように変化するかを判別することができる。
そして同一若しくは近似したスペクトルを有する箇所は、同一若しくは近似した土壌であると解することができるので、それらの領域についてはその中のどこかの地点の土壌を採取して分析すればよい。
つまり、広大な検査範囲を検査すれば種々の異なったスペクトルが得られることになるが、異なったスペクトルが得られた地点ごとに実際に土壌を採取して分析すればよく、したがって少数の地点における土壌の採取と分析とによって、広大な検査範囲の全域に亘る土壌の特性を高精度に分析することが可能となる。
また上記移動位置の変化に対するスペクトルの変化は、検査を実行しながらリアルタイムに得ることが可能であるので、直ちに簡易的な圃場(検査範囲)の特性を把握することができ、さらにスペクトルの変化が多い又は少ないといった結果から圃場を評価するための新たな指標とすることが可能となる。
According to the first aspect of the present invention, since the change of the spectrum with respect to the change of the movement position is displayed, it is possible to determine how the spectrum changes at which point of the movement position.
And it can be understood that the portions having the same or approximated spectrum are the same or approximated soil, and therefore, for those regions, the soil at some point in the region may be collected and analyzed.
In other words, if a wide inspection range is inspected, various different spectra can be obtained, but it is only necessary to actually collect and analyze the soil at each point where different spectra were obtained, and therefore at a small number of points. By collecting and analyzing the soil, it is possible to analyze the characteristics of the soil over a wide inspection range with high accuracy.
Moreover, since the change in the spectrum with respect to the change in the moving position can be obtained in real time while performing the inspection, it is possible to immediately grasp the characteristics of the simple field (inspection range), and the change in the spectrum It becomes possible to use it as a new index for evaluating a field based on the result of being large or small.

以下図示実施例について本発明を説明すると、図1において、土壌に検査光を照射するとともに土壌からの反射光を取得する検出手段1はチゼル部と称される検出部2とこの検出部で検出したデータを演算処理する処理部3とを備えている。上記検出部2はビーム4を介して走行フレーム5に連結してあり、また処理部3は走行フレーム5に設けてある。
上記走行フレーム5はトラクタ6などの作業用車両によって牽引されるようになっており、したがって本実施例ではトラクタ6と走行フレーム5とによって検出手段1を移動させる移動手段が構成されている。また走行フレーム5をトラクタ6によって牽引することにより、上記検出部2を土壌中で進行させることができるようになっている。
The present invention will be described below with reference to the illustrated embodiment. In FIG. 1, a detection means 1 for irradiating soil with inspection light and acquiring reflected light from the soil is detected by a detection section 2 called a chisel section and this detection section. And a processing unit 3 that performs arithmetic processing on the processed data. The detection unit 2 is connected to a traveling frame 5 via a beam 4, and the processing unit 3 is provided on the traveling frame 5.
The traveling frame 5 is towed by a work vehicle such as a tractor 6. Therefore, in this embodiment, a moving means for moving the detecting means 1 is constituted by the tractor 6 and the traveling frame 5. Further, by pulling the traveling frame 5 by the tractor 6, the detection unit 2 can be advanced in the soil.

図2に示すように、上記検出部2の先端部分が土中貫入部2aとなっており、この検出部2の先端と後端2bとの中間部分の底部に均平板11を設けている。そして上記トラクタ6の前進に伴って土中貫入部2aで土中に穴を開けるとともに、均平板11でその穴の下面を均して土壌観測面12を作成することができるようにしてある。
上記検出部2には照明用光ファイバ13の一端部となる照射部13aを前後に2つ設けてあり、各照明用光ファイバ13の他端部は上記ビーム4の内部を介して地上に引出して、上記処理部3内に設けた図示しない光源に接続してある。したがって光源からの検査光は各照明用光ファイバ13を介して照射部13aから上記土壌観測面12に照射されるようになる。
また上記検出部2には集光ファイバ14の一端部となる受光部14aを設けてあり、上記照射部13aから土壌に照射された検査光を該土壌で反射させて、その反射光を上記受光部14aによって受光させることができるようにしてある。この集光ファイバ14の他端部は上記ビーム4の内部を介して地上に引出して、上記処理部3に接続してある。
なお、上記検出部2には照射部13aや受光部14aの他に、土壌観測面12と照射部13a及び受光部14aとの間隔を検出する土壌変位センサや、CCDカラーカメラ、或いは温度計などが設けられている。
As shown in FIG. 2, the front end portion of the detection unit 2 is a soil penetration portion 2a, and a flat plate 11 is provided at the bottom of the intermediate portion between the front end of the detection unit 2 and the rear end 2b. Along with advancement of the tractor 6, a hole is made in the soil by the soil penetration part 2 a, and the soil observation surface 12 can be created by leveling the lower surface of the hole with the leveling plate 11.
The detection unit 2 is provided with two irradiation units 13 a that are one end of the illumination optical fiber 13 on the front and rear sides, and the other end of each illumination optical fiber 13 is drawn out to the ground via the inside of the beam 4. The light source is connected to a light source (not shown) provided in the processing unit 3. Therefore, the inspection light from the light source is irradiated onto the soil observation surface 12 from the irradiation unit 13a through each illumination optical fiber 13.
The detection unit 2 is provided with a light receiving unit 14a which is one end of the condensing fiber 14, and the inspection light applied to the soil from the irradiation unit 13a is reflected by the soil, and the reflected light is received by the light receiving unit 14a. The light can be received by the portion 14a. The other end of the condensing fiber 14 is drawn to the ground via the inside of the beam 4 and connected to the processing unit 3.
In addition to the irradiation unit 13a and the light receiving unit 14a, the detection unit 2 includes a soil displacement sensor that detects the distance between the soil observation surface 12, the irradiation unit 13a, and the light receiving unit 14a, a CCD color camera, a thermometer, and the like. Is provided.

図3に示すように、上記処理部3は分光器としての反射型回析格子21を備えており、上記受光部14aによって受光された反射光は集光ファイバ14から凹面状の上記回折格子21に照射されるようになっている。
上記回析格子21に向けて多数のアレイ状の検出素子を有する光検出器22を配置してある。上記回析格子21に照射された反射光は、回析格子21によって短い波長から長い波長に連続的に分岐され、上記光検出器22におけるアレイ状に配置された多数の検出素子の一端部側から他端部側へ入力されるようになる。
そして光検出器22に接続された強度検出手段23は、上記光検出器22からの信号を入力して反射光のスペクトルを取得し、これを図示しない記憶装置に記憶させるようになっている。
As shown in FIG. 3, the processing unit 3 includes a reflective diffraction grating 21 as a spectroscope, and the reflected light received by the light receiving unit 14 a is concaved from the collecting fiber 14. It comes to be irradiated.
A photodetector 22 having a large number of array-like detection elements is arranged toward the diffraction grating 21. The reflected light applied to the diffraction grating 21 is continuously branched from a short wavelength to a long wavelength by the diffraction grating 21, and one end side of a large number of detection elements arranged in an array in the photodetector 22. To the other end side.
The intensity detector 23 connected to the photodetector 22 receives the signal from the photodetector 22 to acquire the spectrum of the reflected light and stores it in a storage device (not shown).

図5は上記強度検出手段23が取得した反射光のスペクトルの一例を示すものである。同図において、横軸が波長を、縦軸が反射光の強度としての吸光度の大きさを示している。吸光度は光が土壌に吸収された度合いを示すので、反射光の強度が大きければ吸光度は小さいという関係を有している。
図3に示すように、上記強度検出手段23は検出手段1の移動位置を検出する移動位置検出手段24を備えており、図5で示したような反射光のスペクトルを取得した際には、同時にその測定を行った際の検出手段1の移動位置も上記記憶装置に記録するようになっている。
FIG. 5 shows an example of the spectrum of the reflected light acquired by the intensity detecting means 23. In the figure, the horizontal axis indicates the wavelength, and the vertical axis indicates the magnitude of the absorbance as the intensity of the reflected light. Absorbance indicates the degree to which light is absorbed by the soil, and therefore, there is a relationship that the absorbance is small if the intensity of the reflected light is large.
As shown in FIG. 3, the intensity detection means 23 includes a movement position detection means 24 for detecting the movement position of the detection means 1, and when the reflected light spectrum as shown in FIG. At the same time, the moving position of the detecting means 1 when the measurement is performed is also recorded in the storage device.

上記検出手段1の移動位置は、例えば図4に示すように予め検査範囲(圃場)S内に検査経路L1〜L6が設定されている場合には、検査手段1の移動速度(トラクタ6の速度)と計測間隔とから算出することができる。
より具体的には、最初の検査経路L1のスタート地点に上記検査手段1の検出部2をセットしたら、トラクタ6により検出部2を前進させるとともに、一定間隔ごとに検出手段1によって反射光のスペクトルを取得する。上記一定間隔を例えば3秒のように予め設定しておけば、トラクタ6の速度を検出することにより、上記スタート地点における検査開始時間を基準として、順次反射光のスペクトルを取得した上記検査経路L1の位置を算出することができる。このとき、トラクタ6による検出部2の前進速度と反射光のスペクトルを取得する間隔とをそれぞれ一定に保持しておけば、ほぼ等間隔の距離で反射光のスペクトルを取得することができるので、検査範囲(圃場)S内の全域で均等に反射光のスペクトルを取得することが可能となる。
このようにして、上記検査経路L1上における検出部2の移動位置を検出するとともに、各移動位置における反射光のスペクトルを多数取得することができる。上記検査経路L1の終了地点となったら、検出部2による検査を終了する。次に、検査経路L2のスタート地点に上記検査手段1の検出部2をセットしたら、上述と同様にして、検査経路L2上における検出部2の移動位置を検出するとともに、当該移動位置のスペクトルを検出することができる。
このようにして、全ての検査経路L1〜L6上における検出部2の移動位置と当該移動位置のスペクトルとを順次検出することができる。
なお、上記検出手段1の移動位置は、走行フレーム5などにGPSを設けてこれによって得るようにしてもよい。
For example, as shown in FIG. 4, the movement position of the detection means 1 is the movement speed of the inspection means 1 (the speed of the tractor 6) when the inspection routes L <b> 1 to L <b> 6 are set in the inspection range (field) S in advance. ) And the measurement interval.
More specifically, when the detection unit 2 of the inspection unit 1 is set at the start point of the first inspection path L1, the detection unit 2 is advanced by the tractor 6 and the reflected light spectrum is detected by the detection unit 1 at regular intervals. To get. If the predetermined interval is set in advance, for example, as 3 seconds, the inspection path L1 in which the spectrum of the reflected light is sequentially acquired by detecting the speed of the tractor 6 and using the inspection start time at the start point as a reference. Can be calculated. At this time, if the forward speed of the detection unit 2 by the tractor 6 and the interval at which the spectrum of the reflected light is acquired are held constant, the spectrum of the reflected light can be acquired at substantially equal distances. It is possible to obtain the spectrum of reflected light evenly throughout the inspection range (farm field) S.
In this way, it is possible to detect the movement position of the detection unit 2 on the inspection path L1 and to obtain a large number of reflected light spectra at each movement position. When the end point of the inspection route L1 is reached, the inspection by the detection unit 2 is ended. Next, when the detection unit 2 of the inspection means 1 is set at the start point of the inspection route L2, the movement position of the detection unit 2 on the inspection route L2 is detected and the spectrum of the movement position is obtained in the same manner as described above. Can be detected.
In this way, the movement position of the detection unit 2 and the spectrum of the movement position on all the inspection paths L1 to L6 can be sequentially detected.
The moving position of the detecting means 1 may be obtained by providing a GPS on the traveling frame 5 or the like.

上記強度検出手段23は、各移動位置毎にそれぞれのスペクトルを表示して、移動位置の変化に対するスペクトルの変化を表示させる表示処理手段25を備えており、この表示処理手段25で得られたグラフはモニタ26に表示することができるようになっている。
図6は上記表示処理手段25によって得られた例えば上記検査経路L1についてのグラフを示したもので、横軸が計測番号を、したがって移動位置(測定位置)を示しており、縦軸が波長を示している。図6の例では、計測番号1が上記移動経路L1のスタート地点を示しており、計測番号111が計測終了地点を示している。
図6は図面上では白黒で表現されているが、実際にはスペクトルの強度はその強度の大きさに応じて色分けされて表現されている。より具体的には、一例として、赤色を最大の吸光度2.000(図面上では白)とし、また青色を吸光度0.000(図面上では黒)としてあり(吸光度の大きさの範囲は図5の縦軸参照)、上記赤色からオレンジ色、黄色、緑色、水色、青色の順に、スペクトルの強度の大きさに応じて連続的に色彩が変化するように設定してある。
そして図6に示されているように、計測番号1〜51までは概略同じようなスペクトルが得られており、計測番号51−111までは波長700〜900nmの範囲における吸光度が徐々に小さく(図面上は黒く)なっていることが理解できる。
The intensity detection unit 23 includes a display processing unit 25 that displays a spectrum for each moving position and displays a change in the spectrum with respect to a change in the moving position. A graph obtained by the display processing unit 25 Can be displayed on the monitor 26.
FIG. 6 shows a graph obtained by the display processing means 25, for example, with respect to the inspection path L1. The horizontal axis indicates the measurement number, and accordingly the movement position (measurement position), and the vertical axis indicates the wavelength. Show. In the example of FIG. 6, the measurement number 1 indicates the start point of the travel route L1, and the measurement number 111 indicates the measurement end point.
Although FIG. 6 is expressed in black and white in the drawing, the spectrum intensity is actually expressed in different colors according to the magnitude of the intensity. More specifically, as an example, red has a maximum absorbance of 2.000 (white on the drawing), and blue has an absorbance of 0.000 (black on the drawing) (the range of the magnitude of the absorbance is FIG. 5). The color is set so that the color continuously changes in the order of red, orange, yellow, green, light blue, and blue in accordance with the magnitude of the spectrum intensity.
As shown in FIG. 6, roughly the same spectra are obtained from measurement numbers 1 to 51, and the absorbance in the wavelength range of 700 to 900 nm is gradually decreased from measurement numbers 51 to 111 (drawing). You can see that the top is black.

作業者は、図6の結果を見ることにより、どの地点の土壌を採取すればよいのかを判断することができる。図6の結果からすれば、例えば代表的に、計測番号1〜51の中間位置である計測番号31の地点の土壌と、計測番号111の地点の土壌とを実際に採取してその土壌を分析比較すれば、両地点で何の成分が異なっているのかを検出することができる。
両者の土壌の分析の結果、例えば計測番号31の地点の土壌には充分の窒素が含まれているが、計測番号111の地点の土壌では窒素が不足している場合には、図6の図表から、計測番号51から計測番号111にかけて窒素が徐々に減少するであろうことが理解できる。したがってその結果を、後の施肥管理等に反映させることができる。
The operator can determine which point of soil should be collected by looking at the result of FIG. According to the results of FIG. 6, for example, representatively, the soil at the point of measurement number 31 that is the intermediate position of measurement numbers 1 to 51 and the soil at the point of measurement number 111 are actually collected and analyzed. By comparing, it is possible to detect what components are different at both points.
As a result of the analysis of both soils, for example, the soil at the point of measurement number 31 contains sufficient nitrogen, but the soil at the point of measurement number 111 lacks nitrogen, the chart of FIG. From the measurement number 51 to the measurement number 111, it can be understood that nitrogen will gradually decrease. Therefore, the result can be reflected in subsequent fertilization management.

このように本実施例においては、キャリブレーションを実行することなく直ちに土壌の計測を行ってどの地点の土壌を採取すればよいのかを判断することができる。したがって少数の地点における土壌の採取と分析とによって、広大な検査範囲の全域に亘る土壌の特性を高精度に分析することが可能となる。
また実際に土壌を採取して分析する以前に、上記移動位置の変化に対するスペクトルの変化から、直ちに簡易的な圃場の特性を把握することができ、特にスペクトルの変化が多い又は少ないといった検査結果を、圃場を評価するための新たな指標とすることが可能となる。
As described above, in this embodiment, it is possible to immediately determine the soil to be collected by performing the soil measurement without executing the calibration. Therefore, by collecting and analyzing the soil at a small number of points, it is possible to analyze the characteristics of the soil over a wide inspection range with high accuracy.
In addition, before actually collecting and analyzing the soil, it is possible to immediately grasp the characteristics of a simple field from the change in the spectrum with respect to the change in the moving position. This makes it possible to use a new index for evaluating the field.

なお、上記表示処理手段25は上記検査経路L1〜L6の全てのグラフを演算していることは勿論であり、これらグラフは1枚ずつモニタ26に表示させたり、6枚全ての図表を同時にモニタ26に表示させることができるようになっている。
また上記実施例では、スペクトルの強度をその強度の大きさに応じて色分けして表現しているがこれに限定されるものではないことは勿論である。例えばスペクトルの強度の大きさをグレースケールで表現し、黒を吸光度0.000、白を最大の吸光度2.000とし、その間を256階調などの複数の諧調で表示することができる。
Of course, the display processing means 25 calculates all the graphs of the inspection paths L1 to L6, and these graphs are displayed on the monitor 26 one by one, or all the six charts are monitored simultaneously. 26 can be displayed.
Moreover, in the said Example, although the intensity | strength of a spectrum is expressed by color-coding according to the magnitude | size of the intensity | strength, of course, it is not limited to this. For example, the magnitude of the spectrum intensity can be expressed in gray scale, black with an absorbance of 0.000, white with a maximum absorbance of 2.000, and a plurality of gradations such as 256 gradations in between.

本発明の一実施例を説明するための装置全体の該略正面図。1 is a schematic front view of an entire apparatus for explaining an embodiment of the present invention. 図1に示す検出部2の拡大断面図。The expanded sectional view of the detection part 2 shown in FIG. 図1に示す処理部3の内部の構成図。FIG. 2 is an internal configuration diagram of a processing unit 3 shown in FIG. 1. 検査範囲S内における検査経路L1〜L6を説明する平面図。FIG. 6 is a plan view for explaining inspection routes L1 to L6 in the inspection range S. 検査手段1によって取得したスペクトルの一例を示す図表。The chart which shows an example of the spectrum acquired by the test | inspection means. 検出手段1の移動位置毎に取得したそれぞれのスペクトルを移動位置毎に表示して、移動位置の変化に対するスペクトルの変化を表示させた図表。The chart which displayed each spectrum acquired for every movement position of detection means 1 for every movement position, and displayed the change of the spectrum to the change of a movement position.

符号の説明Explanation of symbols

1 検出手段 2 検出部
3 処理部 5 走行フレーム
6 トラクタ 12 土壌観測面
13 照明用ファイバ 13a 照射部
14 集光ファイバ 14a 受光部
21 反射型回析格子 22 光検出器
23 強度検出手段 24 移動位置検出手段
25 表示処理手段 26 モニタ
DESCRIPTION OF SYMBOLS 1 Detection means 2 Detection part 3 Processing part 5 Traveling frame 6 Tractor 12 Soil observation surface 13 Illumination fiber 13a Irradiation part 14 Condensing fiber 14a Light reception part 21 Reflection type diffraction grating 22 Photo detector 23 Intensity detection means 24 Moving position detection Means 25 Display processing means 26 Monitor

Claims (4)

土壌に検査光を照射するとともに土壌からの反射光を取得する検出手段と、該検出手段を移動させる移動手段とを備え、所定の検査範囲内を移動しながら反射光を取得して該反射光のスペクトルを検出する土壌検査方法において、
上記移動手段による検出手段の移動位置を検出するとともに当該移動位置のスペクトルを検出し、各移動位置毎にそれぞれのスペクトルを表示して、移動位置の変化に対するスペクトルの変化を表示させることを特徴とする土壌検査方法。
A detection means for irradiating the soil with inspection light and acquiring reflected light from the soil, and a moving means for moving the detection means. The reflected light is acquired while moving within a predetermined inspection range. In the soil inspection method for detecting the spectrum of
Detecting the moving position of the detecting means by the moving means, detecting the spectrum of the moving position, displaying the spectrum for each moving position, and displaying the change of the spectrum with respect to the change of the moving position, Soil inspection method.
上記スペクトルは波長毎の反射光の強度を示しており、このスペクトルは、移動位置と波長とを示すグラフに移動位置毎に並べて表示され、移動位置の変化に対して、同一波長における反射光の強度の変化が表示されていることを特徴とする請求項1に記載の土壌検査方法。   The above spectrum shows the intensity of reflected light for each wavelength, and this spectrum is displayed side by side for each moving position on a graph showing the moving position and wavelength. The soil inspection method according to claim 1, wherein a change in strength is displayed. 上記反射光の強度は、その大きさに応じて色分けされており、上記同一波長における反射光の強度の変化が色の変化として表示されていることを特徴とする請求項2に記載の土壌検査方法。   The soil inspection according to claim 2, wherein the intensity of the reflected light is color-coded according to its magnitude, and a change in the intensity of the reflected light at the same wavelength is displayed as a color change. Method. 上記反射光のスペクトルは、検出手段を移動させながら、一定時間間隔ごとに取得されることを特徴とする請求項1ないし請求項3のいずれかに記載の土壌検査方法。   The soil inspection method according to any one of claims 1 to 3, wherein the spectrum of the reflected light is acquired at regular time intervals while moving the detection means.
JP2006204223A 2006-07-27 2006-07-27 Soil inspection analysis method Active JP5019025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204223A JP5019025B2 (en) 2006-07-27 2006-07-27 Soil inspection analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204223A JP5019025B2 (en) 2006-07-27 2006-07-27 Soil inspection analysis method

Publications (2)

Publication Number Publication Date
JP2008032450A true JP2008032450A (en) 2008-02-14
JP5019025B2 JP5019025B2 (en) 2012-09-05

Family

ID=39122048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204223A Active JP5019025B2 (en) 2006-07-27 2006-07-27 Soil inspection analysis method

Country Status (1)

Country Link
JP (1) JP5019025B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270975A (en) * 2008-05-08 2009-11-19 Si Seiko Co Ltd Soil characteristic measuring device
EP2393041A2 (en) 2010-06-04 2011-12-07 Hitachi Solutions, Ltd. System for determining representative positions for sampled features
WO2018074171A1 (en) * 2016-10-18 2018-04-26 ヤンマー株式会社 Soil diagnosis method and soil condition improvement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539439A (en) * 1999-03-15 2002-11-19 財団法人熊本テクノポリス財団 Soil property measuring device and system for precision agriculture
JP2006162348A (en) * 2004-12-03 2006-06-22 Seiko Epson Corp Spectroscopic analysis apparatus, spectral analysis method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539439A (en) * 1999-03-15 2002-11-19 財団法人熊本テクノポリス財団 Soil property measuring device and system for precision agriculture
JP2006162348A (en) * 2004-12-03 2006-06-22 Seiko Epson Corp Spectroscopic analysis apparatus, spectral analysis method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270975A (en) * 2008-05-08 2009-11-19 Si Seiko Co Ltd Soil characteristic measuring device
EP2393041A2 (en) 2010-06-04 2011-12-07 Hitachi Solutions, Ltd. System for determining representative positions for sampled features
JP2011252870A (en) * 2010-06-04 2011-12-15 Hitachi Solutions Ltd Sampling position determination device
US9098745B2 (en) 2010-06-04 2015-08-04 Hitachi Solutions, Ltd. Sampling position-fixing system
WO2018074171A1 (en) * 2016-10-18 2018-04-26 ヤンマー株式会社 Soil diagnosis method and soil condition improvement method
JP2018066616A (en) * 2016-10-18 2018-04-26 ヤンマー株式会社 Soil diagnostic method and soil condition improvement method
CN109844524A (en) * 2016-10-18 2019-06-04 洋马株式会社 Soil diagnosis method and soil regime ameliorative way

Also Published As

Publication number Publication date
JP5019025B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
CN101387605B (en) Optical fiber agricultural land soil organic matter content rapid detector
KR101756960B1 (en) Monitoring method of heavy metals in soil using the aerial hyperspectral images
US5412219A (en) Method for determining surface coverage by materials exhibiting different fluorescent properties
JP7383184B2 (en) Product inspection method and product inspection equipment
Lan Development of an integration sensor and instrumentation system for measuring crop conditions
EP3088870B1 (en) Method and device for identifying jewellery and gems
US20150148630A1 (en) Method and device for detecting fluorescence radiation
JP2006300950A (en) Lateral flow assay system and method
JP2007535667A (en) Measuring head for spectral analysis and method for recalibration thereof
CN103411931B (en) Based on the long-range LIBS quantitative elementary analysis method that weighting multiline is demarcated
JP3730547B2 (en) Fluorescence peak detection method and spectrofluorometer
CN119585613A (en) Method and device for detecting chemical compounds in soil
JP5019025B2 (en) Soil inspection analysis method
WO2011027568A1 (en) Spectrophotofluorometer
Archana et al. An economically mobile device for the on-site testing of soil nutrients by studying the spectrum
JP5263744B2 (en) Photosynthesis activity evaluation program and photosynthesis activity evaluation apparatus
KR20180048823A (en) Method and device for sensing the surface structure and composition of a sample
US6329660B1 (en) Method of deriving sunlight induced fluorescence from radiance measurements and devices for executing the method
JP2009294211A (en) Method and apparatus for measuring analyte in liquid sample
US8730467B2 (en) Spectroscopic probe and method for detecting an inhomogeneity
WO2013133171A1 (en) Method for sorting seeds and seed-sorting apparatus
JP3422725B2 (en) An analyzer that simultaneously performs Raman spectroscopy and particle size distribution measurement
JPH0431054B2 (en)
Zhou et al. Performance analysis of vehicle-mounted soil total nitrogen detector at different vehicle speeds
US12228452B2 (en) Spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5019025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3