JP2008007960A - Folded plate material for building structure - Google Patents
Folded plate material for building structure Download PDFInfo
- Publication number
- JP2008007960A JP2008007960A JP2006176730A JP2006176730A JP2008007960A JP 2008007960 A JP2008007960 A JP 2008007960A JP 2006176730 A JP2006176730 A JP 2006176730A JP 2006176730 A JP2006176730 A JP 2006176730A JP 2008007960 A JP2008007960 A JP 2008007960A
- Authority
- JP
- Japan
- Prior art keywords
- folded plate
- web
- rigidity
- inclination angle
- building structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
- Panels For Use In Building Construction (AREA)
Abstract
【課題】面外せん断剛性(たわみ剛性)低下させることなく、面内せん断剛性をより向上させることが可能な建築構造用折板材を提供することを目的とする。
【解決手段】水平な上下フランジ11、12がウエブ13を介して形成されている建築構造用折板材1において、ウエブ13は、水平方向に対して上方に10°以上45°未満傾斜されている。このとき、ウエブ13は、水平方向に対して上方に30°以上40°以下傾斜されているようにしてもよい。
【選択図】図1An object of the present invention is to provide a folded plate material for a building structure capable of further improving the in-plane shear rigidity without reducing the out-of-plane shear rigidity (flexural rigidity).
In a folded plate material for building structure 1 in which horizontal upper and lower flanges 11 and 12 are formed via a web 13, the web 13 is inclined upward by 10 ° or more and less than 45 ° with respect to the horizontal direction. . At this time, the web 13 may be inclined upward by 30 ° or more and 40 ° or less with respect to the horizontal direction.
[Selection] Figure 1
Description
本発明は、水平な上下フランジがウエブを介して形成されているいわゆるデッキプレートや折板屋根材等に代表される建築構造用折板材に関する。 The present invention relates to a folded plate material for a building structure represented by a so-called deck plate or folded plate roof material in which horizontal upper and lower flanges are formed via a web.
一般にデッキプレートや折板屋根材等に用いられる折板は、水平な上フランジ及び下フランジと、この上フランジ及び下フランジの間に連なる傾斜部としてのウエブとから構成されている。 In general, a folded plate used for a deck plate, a folded plate roofing material, or the like is composed of a horizontal upper flange and a lower flange, and a web as an inclined portion connected between the upper flange and the lower flange.
従来において、この折板におけるウエブの傾斜角について言及されている特許文献1、2が開示されている。 Conventionally, Patent Documents 1 and 2 that refer to the inclination angle of the web in the folded plate are disclosed.
特許文献1では、このウエブの傾斜角が約45°である旨が記載されている。また、特許文献2では、ウエブの傾斜角が55°〜65°である旨が記載されている。
上述した特許文献1、2で折板におけるウエブの傾斜角の傾きを45°以上に設定しているのは、折板を床や屋根に用いた場合に加わるコンクリートや積雪や積載物等による鉛直荷重、折板を屋根や壁に用いた場合に加わる風圧力等による面圧荷重に対する、折板の面外曲げ剛性(抵抗)の確保を重視しているためである。 In Patent Documents 1 and 2 mentioned above, the inclination angle of the web in the folded plate is set to 45 ° or more. The vertical load due to concrete, snow, or load applied when the folded plate is used for a floor or a roof. This is because the emphasis is on securing the out-of-plane bending rigidity (resistance) of the folded plate against the surface pressure load caused by wind pressure or the like applied when the folded plate is used for a roof or a wall.
一方、建築物が地震力や風圧力を受けると、上述した鉛直荷重や面圧荷重に加え、床や屋根や壁の面内方向にはせん断力が作用する。これらのせん断力に抵抗するために、床や屋根や壁の面内方向にブレース等の付加的な構造部材を配置する設計手法もあるが、床や屋根や壁そのものをせん断抵抗要素とみなしてブレース等の付加的な構造部材を必要としない合理的な設計手法もある。後者の設計手法に則り、床や屋根や壁の構造材として折板を用いる場合には、折板の面内せん断剛性を確保することが重要となる。 On the other hand, when the building receives an earthquake force or wind pressure, a shearing force acts in the in-plane direction of the floor, roof, or wall in addition to the above-described vertical load or surface pressure load. In order to resist these shearing forces, there is a design method in which additional structural members such as braces are arranged in the in-plane direction of the floor, roof, or wall. There are also rational design methods that do not require additional structural members. In accordance with the latter design method, when a folded plate is used as a structural material for a floor, a roof, or a wall, it is important to ensure in-plane shear rigidity of the folded plate.
しかしながら、折板の面外せん断剛性の確保のみを重視した45°以上のウエブの傾斜角では、却って面内せん断剛性を確保することができないという問題点があった。 However, there is a problem that in-plane shear rigidity cannot be ensured at a web inclination angle of 45 ° or more, which places importance on ensuring the out-of-plane shear rigidity of the folded plate.
そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、面外曲げ剛性(たわみ剛性)低下させることなく、面内せん断剛性をより向上させることが可能な建築構造用折板材を提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to further improve the in-plane shear rigidity without reducing the out-of-plane bending rigidity (flexural rigidity). The object is to provide a folded plate material for a building structure.
本発明に係る建築構造用折板材は、上述した問題点を解決するために、水平な上下フランジがウエブを介して形成されている建築構造用折板材において、ウエブは、水平方向に対して上方に10°以上45°未満傾斜されていることを特徴とする。 In order to solve the above-mentioned problems, the folded sheet material for building structure according to the present invention is a folded sheet material for building structure in which horizontal upper and lower flanges are formed via the web. It is characterized by being inclined at 10 ° or more and less than 45 °.
このとき、上記ウエブは、水平方向に対して上方に30°以上40°以下傾斜されているようにしてもよい。 At this time, the web may be inclined upward by 30 ° or more and 40 ° or less with respect to the horizontal direction.
本発明では、水平な上下フランジがウエブを介して形成されている建築構造用折板材において、ウエブは、水平方向に対して上方に10°以上45°未満傾斜されていることを特徴とする。このとき、上記ウエブは、水平方向に対して上方に30°以上40°以下傾斜されているようにしてもよい。 In the present invention, in the folded plate material for building structure in which the horizontal upper and lower flanges are formed via the web, the web is inclined upward by 10 ° or more and less than 45 ° with respect to the horizontal direction. At this time, the web may be inclined upward by 30 ° or more and 40 ° or less with respect to the horizontal direction.
傾斜角度θを変化させると、せん断剛性とたわみ剛性において相反する特性を示すことになる。傾斜角度θは、折板に要求されるせん断剛性とたわみ剛性とを比較して、10以上45°未満の範囲にあることが望ましいが、特に傾斜角度θが30°以上40°以下の範囲において傾斜されたものであれば、たわみ剛性の減少を抑えつつ、せん断剛性の向上を期待することが可能となる。 When the inclination angle θ is changed, the opposite characteristics are exhibited in the shear rigidity and the flexural rigidity. The inclination angle θ is preferably in the range of 10 or more and less than 45 ° by comparing the shear rigidity and the deflection rigidity required for the folded plate, but particularly in the range of the inclination angle θ of 30 ° or more and 40 ° or less. If it is inclined, it is possible to expect an improvement in shear rigidity while suppressing a decrease in flexural rigidity.
以下、本発明を実施するための最良の形態として、水平な上下フランジがウエブを介して接合されている建築構造用折板材について、図面を参照しながら詳細に説明する。 Hereinafter, as a best mode for carrying out the present invention, a folded plate material for a building structure in which horizontal upper and lower flanges are joined via a web will be described in detail with reference to the drawings.
本発明を適用した建築構造用折板材1は、例えば図1に示すように水平な上フランジ11及び下フランジ12と、この上フランジ11及び下フランジ12の間に形成されているウエブ13とを備えている。即ち、この上フランジ並びに下フランジ12は、ウエブ13を介して連続となるように形成されている。 The folded plate material 1 for building structure to which the present invention is applied includes, for example, a horizontal upper flange 11 and a lower flange 12 as shown in FIG. 1 and a web 13 formed between the upper flange 11 and the lower flange 12. I have. That is, the upper flange and the lower flange 12 are formed so as to be continuous via the web 13.
この建築構造用折板材1は、鋼ストリップを折り曲げ加工することにより作製される。この建築構造用折板材1は、建築構造物における屋根や床や壁に適用される。 This folded sheet material 1 for building structure is produced by bending a steel strip. The folded plate material 1 for building structure is applied to a roof, a floor, or a wall in a building structure.
図2は、本発明を適用した建築構造用折板材1の側面図を示している。ウエブ13は、水平方向に対して上方に角度θ°に亘り傾斜されている。 FIG. 2 shows a side view of a folded sheet material 1 for building structure to which the present invention is applied. The web 13 is inclined upward at an angle θ ° with respect to the horizontal direction.
以下、このウエブ13の傾斜角度θの限定理由について説明をする。因みに以下の算定式は、Steel Deck Institute発刊の「DIAPHRAGM DESIGN MANUAL 3rd EDITION」に基づいている(以下、技術文献1という。)。 The reason for limiting the inclination angle θ of the web 13 will be described below. The following formula is based on “DIAPHRAGM DESIGN MANUAL 3rd EDITION” published by Steel Deck Institute (hereinafter referred to as “Technical Reference 1”).
図3は、建築構造用折板材1に代表される折板2を、内枠4の内部に設けた外枠3に配設する例を示している。折板2のせん断剛性G´は、以下の(1)式で与えられる。 FIG. 3 shows an example in which the folded plate 2 represented by the folded plate material 1 for building structure is disposed on the outer frame 3 provided inside the inner frame 4. The shear rigidity G ′ of the folded plate 2 is given by the following equation (1).
折板のせん断変形Δは、折板が純粋にせん断変形することによる面内変形Δs、折板の形がゆがむことで生じるゆがみ変形Δd、そして折板と周囲の接合部で生じる変形Δcからなる。ここで、折板2の一部を抜き出して、折板が純粋にせん断変形する状況を図4(a)に、折板がゆがみ変形する状況を図4(b)に示す。これより、(1)式は、(2)式に置き換えることが可能となる。 The shear deformation Δ of the folded plate includes in-plane deformation Δ s caused by pure shear deformation of the folded plate, distortion deformation Δ d caused by distortion of the shape of the folded plate, and deformation Δ generated at the joint between the folded plate and the surroundings. c . Here, FIG. 4A shows a situation where a part of the folded plate 2 is extracted and the folded plate is purely sheared, and FIG. 4B shows a situation where the folded plate is distorted. Thus, the expression (1) can be replaced with the expression (2).
(2)式の各項に、折板の形状、物性値、周囲の接合部の変形特性によって決まる値を代入すると(3)式で表される。なお、折板2の断面寸法を表す記号と断面形状の対応は、図5に示す。図5に示す折板2は、上フランジ11の長さをf、下フランジ12の二分の一に相当する長さをe、ウエブの長さをw、ウエブの水平成分の長さをg、ウエブの垂直成分の長さ(折板の高さ)をh、上フランジとその両脇にあるウェブ及び下フランジ二分の一相当の長さを加えた一山ピッチ分の長さをdとしている。即ち、この1ピッチ分の長さdは、2e+2g+fで表されることになる。 Substituting values determined by the shape of the folded plate, the physical property values, and the deformation characteristics of the surrounding joints into each term of the equation (2), the equation is expressed by the equation (3). The correspondence between the symbols representing the cross-sectional dimensions of the folded plate 2 and the cross-sectional shape is shown in FIG. In the folded plate 2 shown in FIG. 5, the length of the upper flange 11 is f, the length corresponding to a half of the lower flange 12 is e, the length of the web is w, the length of the horizontal component of the web is g, The length of the vertical component of the web (the height of the folded plate) is h, and the length corresponding to one mountain pitch including the length of the upper flange and the webs on both sides and the lower flange is d. . That is, the length d for one pitch is represented by 2e + 2g + f.
ここで、折板形状に着目し、折板周囲の接合部仕様に影響される接合部変形係数Cを除いて考えると、折板のせん断剛性G´は、面内変形係数Siとゆがみ変形係数Dnにより定まる。ここで、面内変形係数Siは、ゆがみ変形係数Dnと比較して著しく小さいため、せん断剛性G´は、実質的にゆがみ変形係数Dnに支配される。せん断剛性G´を与える(2)式においてゆがみ変形係数Dnは分母にあることから、このDnが大きいほどせん断剛性G´は低くなる。また逆に、このゆがみ変形係数Dnが小さいほどせん断剛性G´は高くなる。 Here, paying attention to the shape of the folded plate and excluding the joint deformation coefficient C that is affected by the specifications of the joint around the folded plate, the shear rigidity G ′ of the folded plate is the in-plane deformation coefficient S i and distortion deformation. determined by the coefficient D n. Here, since the in-plane deformation coefficient S i is significantly smaller than the distortion deformation coefficient D n , the shear rigidity G ′ is substantially controlled by the distortion deformation coefficient D n . In equation (2) that gives the shear stiffness G ′, the distortion deformation coefficient D n is in the denominator, so that the greater this D n, the lower the shear stiffness G ′. Conversely, shear stiffness G'higher the distortion deformation coefficient D n is smaller the higher.
技術文献1によると、ゆがみ変形係数Dnは、(4)式により表される。 According to the technical literature 1, the distortion deformation coefficient D n is expressed by the equation (4).
ここで、Dは折板の断面寸法及び枠材への固定の程度に応じて定められる値であり、例えば、山ピッチが3つ形成された状態にある折板を枠材に固定する場合においてDは(5)式で表される。 Here, D is a value determined in accordance with the cross-sectional dimension of the folded plate and the degree of fixation to the frame material. D is expressed by equation (5).
ここで、ウエブ13の傾斜角度θと、ゆがみ変形係数Dnに基づいて求めたθ=45°の場合を基準にした剛性比κを定義する。剛性比κは、図4(b)に示すゆがみ変形の剛性を表すゆがみ変形係数Dnから求めたせん断剛性の比として次の(6)式で与えられる。 We define the inclination angle theta of the web 13, the rigidity ratio κ relative to the case of theta = 45 °, which has been calculated based on the distortion deformation coefficient D n. The rigidity ratio κ is given by the following equation (6) as a shear rigidity ratio obtained from a distortion deformation coefficient D n representing the rigidity of distortion deformation shown in FIG.
ここで図6に示すように上フランジ11とその両端に形成されるウエブ13および下フランジ12とにより構成される3つの山ピッチを対象とした場合において、断面の各部寸法を変化させた場合における傾斜角度θに対する剛性比κの関係について説明をする。なお、この図6において、折板2の断面寸法を表す記号と断面形状の対応は、図5と同様である。 Here, in the case where three crest pitches constituted by the upper flange 11 and the web 13 and the lower flange 12 formed at both ends thereof are used as shown in FIG. The relationship of the rigidity ratio κ with respect to the inclination angle θ will be described. In FIG. 6, the correspondence between the symbol representing the cross-sectional dimension of the folded plate 2 and the cross-sectional shape is the same as in FIG.
このとき、d=300mm、h=50mm、e=25mmとして傾斜角度θの傾きを変化させた場合の剛性比κを図7(a)に示す。また、d=300mm、h=50mm、e=50mmとして傾斜角度θの傾きを変化させた場合の剛性比κを図7(b)に示す。また、d=300mm、h=50mm、e=75mmとして傾斜角度θの傾きを変化させた場合の剛性比κを図7(c)に示す。 At this time, FIG. 7A shows the stiffness ratio κ when the inclination of the inclination angle θ is changed with d = 300 mm, h = 50 mm, and e = 25 mm. FIG. 7B shows the stiffness ratio κ when the inclination of the inclination angle θ is changed with d = 300 mm, h = 50 mm, and e = 50 mm. FIG. 7C shows the rigidity ratio κ when the inclination of the inclination angle θ is changed with d = 300 mm, h = 50 mm, and e = 75 mm.
またd=300mm、h=25mm、e=25mmとして傾斜角度θの傾きを変化させた場合の剛性比κを図8(a)に示す。また、d=300mm、h=25mm、e=50mmとして傾斜角度θの傾きを変化させた場合の剛性比κを図8(b)に示す。また、d=300mm、h=25mm、e=75mmとして傾斜角度θの傾きを変化させた場合の剛性比κを図8(c)に示す。 FIG. 8A shows the stiffness ratio κ when the inclination of the inclination angle θ is changed with d = 300 mm, h = 25 mm, and e = 25 mm. FIG. 8B shows the rigidity ratio κ when the inclination of the inclination angle θ is changed with d = 300 mm, h = 25 mm, and e = 50 mm. FIG. 8C shows the rigidity ratio κ when the inclination of the inclination angle θ is changed with d = 300 mm, h = 25 mm, and e = 75 mm.
ここで、固定値としたd、h、e以外の値であるg、f、wは、傾斜角度θの増減に伴い変化させている。上述の結果より、eの寸法が変化し、上フランジ11と下フランジ12の長さのバランスが変化しても、傾斜角度θが45°を下回る場合には、剛性比κが1を超えることになり、せん断剛性が向上する。即ち、面内せん断剛性のみに着目した場合には、傾斜角度θが小さければ小さいほど好ましいという結果が得られたことが示されている。 Here, g, f, and w, which are values other than fixed values d, h, and e, are changed as the inclination angle θ increases and decreases. From the above results, even if the dimension of e changes and the balance of the lengths of the upper flange 11 and the lower flange 12 changes, the rigidity ratio κ exceeds 1 when the inclination angle θ is less than 45 °. The shear rigidity is improved. That is, when focusing only on the in-plane shear rigidity, it is shown that the smaller the inclination angle θ, the better.
なお、d=300mm、h=50mm、e=50mm、l=3000mmとした場合を例にとり、傾斜角度θに対する面内変形係数Siとゆがみ変形係数Dnの挙動を図9に示す。上述したように面内変形係数Siは、ゆがみ変形係数Dnと比較して著しく小さく、せん断剛性G´は、実質的にゆがみ変形係数Dnに支配されることが分かる。 FIG. 9 shows the behavior of the in-plane deformation coefficient S i and the distortion deformation coefficient D n with respect to the inclination angle θ, taking as an example the case where d = 300 mm, h = 50 mm, e = 50 mm, and l = 3000 mm. Plane deformation coefficient S i as described above, considerably compared to strain deformation coefficient D n small shearing stiffness G'is seen to be substantially controlled to the distortion deformation coefficient D n.
上述した面内せん断剛性のみに着目して傾斜角度θを小さくしすぎると、図12に示すように、面外力に対して折板が面外にたわむ際の折板のたわみ剛性の低下が懸念される。以下、せん断剛性と同様に、傾斜角度θが45°を基準とし、図12に示す折板がたわみ変形する剛性と比較したたわみ剛性比ηの傾斜角度θに対する関係について検討した結果について説明をする。 If only the in-plane shear rigidity is focused on and the inclination angle θ is too small, as shown in FIG. Is done. Hereinafter, as in the case of the shearing rigidity, the relationship between the bending rigidity ratio η and the inclination angle θ compared to the rigidity at which the folded plate shown in FIG. .
たわみ剛性比ηは、以下の(7)式で与えられる。 The flexural rigidity ratio η is given by the following equation (7).
折板の断面二次モーメントIは、長さdの1山ピッチを対象とした場合に、以下の(8)式で表される。 The sectional secondary moment I of the folded plate is expressed by the following equation (8) when a single pitch having a length d is targeted.
ここで、xnは下フランジから中立軸までの距離であり、以下の(9)式で表される。 Here, xn is the distance from the lower flange to the neutral axis, and is expressed by the following equation (9).
このとき、d=300mm、h=50mm、e=25mmとして傾斜角度θの傾きを変化させた場合のたわみ剛性比ηを図10(a)に示す。また、d=300mm、h=50mm、e=50mmとして傾斜角度θの傾きを変化させた場合のたわみ剛性比ηを図10(b)に示す。また、d=300mm、h=50mm、e=75mmとして傾斜角度θの傾きを変化させた場合のたわみ剛性比ηを図10(c)に示す。 FIG. 10A shows the deflection rigidity ratio η when the inclination of the inclination angle θ is changed with d = 300 mm, h = 50 mm, and e = 25 mm. FIG. 10B shows the deflection rigidity ratio η when the inclination of the inclination angle θ is changed with d = 300 mm, h = 50 mm, and e = 50 mm. FIG. 10C shows the deflection rigidity ratio η when the inclination of the inclination angle θ is changed with d = 300 mm, h = 50 mm, and e = 75 mm.
またd=300mm、h=25mm、e=25mmとして傾斜角度θの傾きを変化させた場合のたわみ剛性比ηを図11(a)に示す。また、d=300mm、h=25mm、e=50mmとして傾斜角度θの傾きを変化させた場合のたわみ剛性比ηを図11(b)に示す。また、d=300mm、h=25mm、e=75mmとして傾斜角度θの傾きを変化させた場合のたわみ剛性比ηを図11(c)に示す。 FIG. 11A shows the deflection rigidity ratio η when the inclination of the inclination angle θ is changed with d = 300 mm, h = 25 mm, and e = 25 mm. FIG. 11B shows the deflection stiffness ratio η when the inclination of the inclination angle θ is changed with d = 300 mm, h = 25 mm, and e = 50 mm. FIG. 11C shows the deflection rigidity ratio η when the inclination of the inclination angle θ is changed with d = 300 mm, h = 25 mm, and e = 75 mm.
ここで、固定値としたd、h、e以外の値であるg、f、wは、傾斜角度θの増減に伴い変化させている。d、h、eの断面寸法のバランスにより、幾何学的に決まる傾斜角度θの下限は異なるが、図11(a)に示すようにθ=10°程度まで傾斜部の角度を小さくしても、θ=45°の場合のたわみ剛性の1/2程度は確保することが可能となる。 Here, g, f, and w, which are values other than fixed values d, h, and e, are changed as the inclination angle θ increases and decreases. The lower limit of the geometrically determined inclination angle θ differs depending on the balance of the cross-sectional dimensions of d, h, and e. However, even if the angle of the inclined portion is reduced to about θ = 10 ° as shown in FIG. Thus, it is possible to ensure about 1/2 of the flexural rigidity when θ = 45 °.
以上のように、傾斜角度θを変化させると、せん断剛性とたわみ剛性において相反する特性を示すことになる。傾斜角度θは、折板に要求されるせん断剛性とたわみ剛性とを比較して、10以上45°未満の範囲にあることが望ましいが、特に傾斜角度θが30以上40°以下の範囲において傾斜されたものであれば、たわみ剛性の減少を抑えつつ、せん断剛性の向上を期待することが可能となる。 As described above, when the inclination angle θ is changed, opposite characteristics are exhibited in the shear rigidity and the flexural rigidity. The inclination angle θ is preferably in the range of 10 to less than 45 ° by comparing the shear rigidity and the deflection rigidity required for the folded plate, but particularly in the range of the inclination angle θ of 30 to 40 °. If it was made, it will become possible to expect improvement in shear rigidity while suppressing a decrease in flexural rigidity.
なお、フランジとウェブの交差する稜線 における板の折り曲げ半径rは任意の値としてもよい。 The bending radius r of the plate at the ridge line where the flange and the web intersect may be an arbitrary value.
1 建築構造用折板材
2 折板
11 上フランジ
12 下フランジ
13 ウエブ
14 折板と枠材の固定箇所
1 Folded plate material for building structure 2 Folded plate 11 Upper flange 12 Lower flange 13 Web 14 Folded plate and frame material fixing point
Claims (2)
上記ウエブは、水平方向に対して上方に10°以上45°未満傾斜されていること
を特徴とする建築構造用折板材。 In the folded plate material for building structure in which the horizontal upper and lower flanges are formed via the web,
The folded sheet material for building structures, wherein the web is inclined upward by 10 ° or more and less than 45 ° with respect to the horizontal direction.
上記ウエブは、水平方向に対して上方に30°以上40°以下傾斜されていること
を特徴とする建築構造用折板材。 In the folded plate material for building structure in which the horizontal upper and lower flanges are formed via the web,
The folded sheet material for a building structure, wherein the web is inclined upward by 30 ° or more and 40 ° or less with respect to a horizontal direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006176730A JP4975384B2 (en) | 2006-06-27 | 2006-06-27 | Folded plate material for building structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006176730A JP4975384B2 (en) | 2006-06-27 | 2006-06-27 | Folded plate material for building structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008007960A true JP2008007960A (en) | 2008-01-17 |
JP4975384B2 JP4975384B2 (en) | 2012-07-11 |
Family
ID=39066410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006176730A Active JP4975384B2 (en) | 2006-06-27 | 2006-06-27 | Folded plate material for building structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4975384B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010090650A (en) * | 2008-10-10 | 2010-04-22 | Nippon Steel Corp | Folding plate panel structure and building structure |
JP2010126964A (en) * | 2008-11-27 | 2010-06-10 | Nippon Steel Corp | Folded plate panel structure and building structure |
WO2011121794A1 (en) * | 2010-03-30 | 2011-10-06 | 新日本製鐵株式会社 | Folded steel plate for construction, and building structure using folded steel plate for construction |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH073954A (en) * | 1993-06-15 | 1995-01-06 | Tsutsunaka Plast Ind Co Ltd | Arched folded plate roof |
JP2006097461A (en) * | 2004-08-31 | 2006-04-13 | Yamaha Livingtec Corp | Floor panel and manufacturing method for floor panel |
-
2006
- 2006-06-27 JP JP2006176730A patent/JP4975384B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH073954A (en) * | 1993-06-15 | 1995-01-06 | Tsutsunaka Plast Ind Co Ltd | Arched folded plate roof |
JP2006097461A (en) * | 2004-08-31 | 2006-04-13 | Yamaha Livingtec Corp | Floor panel and manufacturing method for floor panel |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010090650A (en) * | 2008-10-10 | 2010-04-22 | Nippon Steel Corp | Folding plate panel structure and building structure |
JP2010126964A (en) * | 2008-11-27 | 2010-06-10 | Nippon Steel Corp | Folded plate panel structure and building structure |
WO2011121794A1 (en) * | 2010-03-30 | 2011-10-06 | 新日本製鐵株式会社 | Folded steel plate for construction, and building structure using folded steel plate for construction |
JP5146622B2 (en) * | 2010-03-30 | 2013-02-20 | 新日鐵住金株式会社 | Architectural steel folding plate and building structure using architectural steel folded plate |
Also Published As
Publication number | Publication date |
---|---|
JP4975384B2 (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9290940B2 (en) | Cold formed joist | |
JP7207054B2 (en) | Rolled H-section steel and composite beams | |
JP5383166B2 (en) | Corrugated steel earthquake resistant wall, corrugated steel earthquake resistant wall design method, and building | |
JP4975384B2 (en) | Folded plate material for building structure | |
KR102027813B1 (en) | Built-Up Beam | |
US20120186191A1 (en) | Rolled h-section steel | |
JP7172779B2 (en) | Rolled H-section steel and composite beams | |
JP2008517187A (en) | Architectural panels and building structures | |
KR20030087764A (en) | Concrete-Filled Steel Pipe Girder | |
JP4414832B2 (en) | Seismic walls using corrugated steel plates with openings | |
JP2006037586A (en) | Earthquake-resisting wall using corrugated steel plate | |
KR101855350B1 (en) | Assemble type complex section steel | |
US8381469B2 (en) | Cold formed joist | |
KR200286012Y1 (en) | Concrete-Filled Steel Pipe Girder | |
US20110247296A1 (en) | Cold formed joist | |
JP2009191487A (en) | H-section steel | |
JP5095492B2 (en) | Corrugated steel shear wall | |
JP2005325637A (en) | Load-bearing wall frame | |
JP5176338B2 (en) | Folded plate material for building structure | |
JP2005083083A (en) | Girder structure, bridge girder, corrugated web bridge and corrugated plate | |
JP2008038464A (en) | Vibration control wall structure for steel house | |
JP4355936B2 (en) | Beam structure with steel flange and web | |
JP6742741B2 (en) | Bending yield type damper | |
JP2020157329A (en) | Welded joint | |
JP2005320722A (en) | Deck plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120411 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4975384 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |