[go: up one dir, main page]

JP2007314689A - Water-based paint composition - Google Patents

Water-based paint composition Download PDF

Info

Publication number
JP2007314689A
JP2007314689A JP2006146755A JP2006146755A JP2007314689A JP 2007314689 A JP2007314689 A JP 2007314689A JP 2006146755 A JP2006146755 A JP 2006146755A JP 2006146755 A JP2006146755 A JP 2006146755A JP 2007314689 A JP2007314689 A JP 2007314689A
Authority
JP
Japan
Prior art keywords
compound
resin
coating composition
rare earth
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006146755A
Other languages
Japanese (ja)
Inventor
Satoshi Okamoto
岡本  聡
Toshio Kaneko
敏雄 金子
Yoshiaki Okumura
美明 奥村
Hisaichi Muramoto
壽市 村本
Eisaku Okada
栄作 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Paint Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd, Toyota Motor Corp filed Critical Nippon Paint Co Ltd
Priority to JP2006146755A priority Critical patent/JP2007314689A/en
Publication of JP2007314689A publication Critical patent/JP2007314689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

【課題】化成処理液およびカチオン電着塗料組成物の両工程を短縮統合する複層塗膜形成方法に最適な水性塗料組成物の提供。
【解決手段】(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂、(B)硬化剤および(C)希土類金属化合物を含有する水性塗料組成物であって、該没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂(A)が、(a)式
【化1】

Figure 2007314689

(式中、Rはジグリシジルエポキシ化合物のグリシジルオキシ基を除いた残基、R’はジイソシアネート化合物からイソシアネート基を除いた残基、nは正の整数を意味する。)を有する、分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂;(b)1価の活性水素化合物;(c)2価の活性水素化合物;(d)没食子酸および(e)第2級モノアミン化合物を反応させて得られる、数平均分子量1,000〜5,000の樹脂であることを特徴とする水性塗料組成物。
【選択図】なし
The present invention provides an aqueous coating composition that is most suitable for a method for forming a multilayer coating film that shortens and integrates both steps of a chemical conversion treatment liquid and a cationic electrodeposition coating composition.
An aqueous coating composition containing (A) a gallic acid / amine-modified diglycidyl ether type epoxy resin, (B) a curing agent and (C) a rare earth metal compound, the gallic acid / amine-modified diglycidyl The ether type epoxy resin (A) is represented by the formula (a):
Figure 2007314689

(Wherein R represents a residue obtained by removing a glycidyloxy group of a diglycidyl epoxy compound, R ′ represents a residue obtained by removing an isocyanate group from a diisocyanate compound, and n represents a positive integer). A diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings; (b) a monovalent active hydrogen compound; (c) a divalent active hydrogen compound; (d) gallic acid and (e) a secondary monoamine compound. A water-based coating composition, which is a resin having a number average molecular weight of 1,000 to 5,000 obtained by reaction.
[Selection figure] None

Description

本発明は、水性塗料組成物に関する。特に、本発明は、金属素材、とりわけ未処理冷延鋼板に施される電着塗装前の前処理(下地処理)工程と、電着塗装工程とが統合することができる水性塗料組成物に関する。   The present invention relates to an aqueous coating composition. In particular, the present invention relates to an aqueous coating composition capable of integrating a pretreatment (base treatment) step before electrodeposition coating applied to a metal material, particularly an untreated cold-rolled steel sheet, and an electrodeposition coating step.

自動車車体は、冷延鋼板、亜鉛めっき鋼板等の金属素材を成形し、この金属成形物を被塗物として塗装し、次いで組み立て等を行うことにより製造される。このような金属成形物は一般に、電着塗膜に対する密着性等を付与するために、電着塗装前にリン酸亜鉛化成処理等の防錆処理が行われている。   An automobile body is manufactured by forming a metal material such as a cold-rolled steel plate or a galvanized steel plate, coating the metal formed product as an object to be coated, and then performing assembly or the like. In general, such metal molded products are subjected to rust prevention treatment such as zinc phosphate chemical conversion treatment before electrodeposition coating in order to impart adhesion to the electrodeposition coating film.

カチオン電着塗料組成物を用いる電着塗装は、耐食性、つきまわり性に優れており、均一な塗膜を形成させることができるため、自動車車体、部品用プライマーを中心に広く使用されている。   Electrodeposition coating using a cationic electrodeposition coating composition is excellent in corrosion resistance and throwing power, and can form a uniform coating film. Therefore, it is widely used mainly for automobile bodies and primer for parts.

しかしながら、従来のカチオン電着塗料組成物においては、被塗物にリン酸亜鉛などの前処理がなされている素材に対しては、電着塗装により十分な耐食性を発現させることができるものの、被塗物の前処理(化成処理など)が不十分である場合は、耐食性確保が困難であるという問題があった。   However, in the conventional cationic electrodeposition coating composition, although it is possible to develop sufficient corrosion resistance by electrodeposition coating for a material in which a pretreatment such as zinc phosphate is applied to the coating object, When the pretreatment (chemical conversion treatment) of the coating is insufficient, there is a problem that it is difficult to ensure corrosion resistance.

特開平8−53637号公報(特許文献1)には、カチオン基を有する親水性フィルム形成性樹脂および硬化剤を、中和剤を含む水性媒体中に分散してなる陰極電着塗料組成物において、塗料固形分を基準にして、アルミニウム塩、カルシウム塩および亜鉛塩より選ばれた少なくとも1種のリンモリブデン酸塩を0.1〜20重量%、およびセリウム化合物を金属として0.01〜2.0重量%含むことを特徴とする陰極電着塗料組成物が記載されている。これにより、表面未処理冷延鋼板に対する耐食性を改良可能することができると記載されている。   JP-A-8-53637 (Patent Document 1) discloses a cathode electrodeposition coating composition obtained by dispersing a hydrophilic film-forming resin having a cationic group and a curing agent in an aqueous medium containing a neutralizing agent. Based on the solid content of the paint, 0.1 to 20% by weight of at least one phosphomolybdate selected from an aluminum salt, a calcium salt and a zinc salt, and 0.01 to 2. A cathode electrodeposition coating composition containing 0% by weight is described. Thereby, it is described that the corrosion resistance with respect to the surface untreated cold-rolled steel sheet can be improved.

特開平8−53638号公報(特許文献2)には、カチオン基を有する親水性フィルム形成性樹脂および硬化剤を、中和剤を含む水性媒体中に分散してなる陰極電着塗料組成物において、塗料固形分を基準にして、銅化合物およびセリウム化合物を金属として合計0.01〜2.0重量%含み、金属として銅/セリウム重量比が1/20〜20/1であることを特徴とする陰極電着塗料組成物が記載されている。これも同様に、表面未処理冷延鋼板に対する耐食性を改良可能することができると記載されている。   JP-A-8-53638 (Patent Document 2) discloses a cathode electrodeposition coating composition in which a hydrophilic film-forming resin having a cationic group and a curing agent are dispersed in an aqueous medium containing a neutralizing agent. , Based on the solid content of the paint, characterized in that it contains a total of 0.01 to 2.0% by weight of copper compound and cerium compound as metal, and the weight ratio of copper / cerium as metal is 1/20 to 20/1. A cathodic electrodeposition coating composition is described. Similarly, it is described that the corrosion resistance with respect to the untreated cold-rolled steel sheet can be improved.

しかしながら、上記電着塗料組成物を用いる塗装はいずれも、印加電圧100〜450V条件の一段階電着塗装による一段階電着塗装が行われている。このような電解、電着条件においては、セリウムあるいはセリウム―銅による皮膜形成が不充分となる。そのため、これらの発明による耐食性の改良レベルは、何れも、従来のリン酸塩による従来化成処理に匹敵する下地密着性を発現し、かつ電着塗装後における耐食性を発現する程には至っていない。   However, in any coating using the above electrodeposition coating composition, one-step electrodeposition coating is performed by one-step electrodeposition coating under the condition of an applied voltage of 100 to 450V. Under such electrolysis and electrodeposition conditions, film formation with cerium or cerium-copper is insufficient. For this reason, none of the improvement levels of the corrosion resistance according to these inventions has exhibited the base adhesion comparable to the conventional chemical conversion treatment with the conventional phosphate, and has not reached the level of the corrosion resistance after electrodeposition coating.

現状としては、前処理工程および電着塗装工程において、それぞれ別個の溶液である化成処理液およびカチオン電着塗料組成物は、それぞれの液中に含まれる成分を安定に溶解あるいは分散するpHの領域が異なる。そのため、これらの工程を組み合わせることは容易ではなかった。さらに、電着塗装においては、化成処理剤が少量でも混入するとによって、塗装効率、防食性能および仕上がり外観等に悪影響が生じる。そのため、被塗物を前処理した後、電着塗装を行う前に、被塗物を念入りに水洗する必要がある。このため、前処理および電着塗装は、より長大な塗装工程設備を必要としていた。   At present, in the pretreatment process and the electrodeposition coating process, the chemical conversion treatment liquid and the cationic electrodeposition coating composition, which are separate solutions, respectively, are in the pH range where the components contained in each liquid are stably dissolved or dispersed. Is different. Therefore, it is not easy to combine these steps. Furthermore, in electrodeposition coating, even if a small amount of the chemical conversion treatment agent is mixed, the coating efficiency, anticorrosion performance, and finished appearance are adversely affected. For this reason, it is necessary to carefully wash the object to be coated after pre-treatment and before electrodeposition coating. For this reason, pretreatment and electrodeposition coating require longer coating process facilities.

特開2000−63710号公報(特許文献3)には、電着塗装に適する水性塗料組成物が開示されており、その中で希土類金属化合物が、イットリウム(Y)、ネオジム(Nd)、プラセオジム(Pr)、及びサマリウム(Sm)からなる群より選択される化合物が開示されている。   Japanese Patent Application Laid-Open No. 2000-63710 (Patent Document 3) discloses an aqueous coating composition suitable for electrodeposition coating, in which rare earth metal compounds include yttrium (Y), neodymium (Nd), praseodymium ( A compound selected from the group consisting of Pr) and samarium (Sm) is disclosed.

しかしながら、上記複層塗膜形成方法にこれらの希土類金属化合物を含む水性塗料組成物を適用しても、現行の前処理、電着塗装よりなる2段工程と比較して、同等の性能を有する複層塗膜を得る目的に対しては、必ずしも充分ではなかった。
特開平8−53637号公報 特開平8−53638号公報 特開2000−63710号公報
However, even if an aqueous coating composition containing these rare earth metal compounds is applied to the above-mentioned multilayer coating film forming method, it has equivalent performance as compared with the current two-step process consisting of pretreatment and electrodeposition coating. For the purpose of obtaining a multilayer coating film, it was not always sufficient.
JP-A-8-53637 JP-A-8-53638 JP 2000-63710 A

本発明は、上記の現状に鑑み、従来は別々の化成処理液およびカチオン電着塗料組成物を用いて、前処理およびカチオン電着塗装を行っていたのに対して、両工程を画期的に短縮統合する複層塗膜形成方法に最適な水性塗料組成物の提供を目的とする。   In the present invention, in view of the above-mentioned present situation, both processes are epoch-making in contrast to the conventional pretreatment and cationic electrodeposition coating using separate chemical conversion treatment liquid and cationic electrodeposition coating composition. An object of the present invention is to provide an aqueous coating composition that is optimal for a method for forming a multilayer coating film that is shortened and integrated into

本発明は、少なくとも(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂、(B)硬化剤および(C)希土類金属化合物を含有する水性塗料組成物であって、該没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂(A)、(a)式

Figure 2007314689
(式中、Rはジグリシジルエポキシ化合物のグリシジルオキシ基を除いた残基、R’はジイソシアネート化合物からイソシアネート基を除いた残基、nは正の整数を意味する。)を有する、分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂;(b)1価の活性水素化合物;(c)2価の活性水素化合物;(d)没食子酸および(e)第2級モノアミン化合物を反応させて得られる、数平均分子量1,000〜5,000の樹脂であることを特徴とする水性塗料組成物に関するものである。 The present invention provides an aqueous coating composition containing at least (A) a gallic acid / amine-modified diglycidyl ether type epoxy resin, (B) a curing agent and (C) a rare earth metal compound, Glycidyl ether type epoxy resin (A), formula (a)
Figure 2007314689
(Wherein R represents a residue obtained by removing a glycidyloxy group of a diglycidyl epoxy compound, R ′ represents a residue obtained by removing an isocyanate group from a diisocyanate compound, and n represents a positive integer). A diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings; (b) a monovalent active hydrogen compound; (c) a divalent active hydrogen compound; (d) gallic acid and (e) a secondary monoamine compound. The present invention relates to a water-based coating composition characterized by being a resin having a number average molecular weight of 1,000 to 5,000 obtained by reaction.

また上記(B)硬化剤は、ブロックポリイソシアネートであることを特徴とする水性塗料組成物に関するものである。   Moreover, the said (B) hardening | curing agent is related with the water-based coating composition characterized by being block polyisocyanate.

上記希土類金属化合物(C)は、セリウム(Ce)、イットリウム(Y)、ネオジム(Nd)、プラセオジム(Pr)及びイッテルビウム(Yb)からなる群より選択される少なくとも1種の希土類金属を含む化合物である、水性塗料組成物に関するものである。
ここで、上記希土類金属化合物(C)は、塗料固形分に対して、希土類金属に換算して0.05〜10重量%含まれていることが好ましい。
The rare earth metal compound (C) is a compound containing at least one rare earth metal selected from the group consisting of cerium (Ce), yttrium (Y), neodymium (Nd), praseodymium (Pr), and ytterbium (Yb). The present invention relates to an aqueous coating composition.
Here, the rare earth metal compound (C) is preferably contained in an amount of 0.05 to 10% by weight in terms of the rare earth metal based on the solid content of the paint.

本発明の水性塗料組成物は、さらに亜鉛化合物(D)を含んでいると一層好ましく、希土類金属化合物(C):亜鉛化合物(D)の配合重量比は、1:20〜20:1であることが好ましい。   The aqueous coating composition of the present invention further preferably contains a zinc compound (D), and the blending weight ratio of the rare earth metal compound (C): zinc compound (D) is 1:20 to 20: 1. It is preferable.

本発明は、一種の水性塗料組成物を用いて、少なくとも2段階の印加電圧にて通電することによって、陰極電解処理(前処理工程)及び電着塗装工程を実用的に区分かつ連続的に実施し、かつ効率的に統合する上で最適の水性塗料組成物を提供する。これにより、従来の化成処理などの前処理、そして電着塗装からなる塗装工程を、大幅に短縮することができるばかりか、従来の工程である化成処理および電着工程により得られる塗膜と比較して同等の優れた塗膜密着性および耐食性(塩水噴霧、塩水浸漬、および乾湿サイクル腐食試験などに対する性能が優れる)である複層塗膜を得ることが可能である。   In the present invention, a cathodic electrolysis process (pretreatment process) and an electrodeposition coating process are practically divided and continuously performed by energizing at least two levels of applied voltage using a kind of water-based paint composition. And an optimum water-based coating composition for efficient integration. As a result, the conventional pretreatment such as chemical conversion treatment and the coating process consisting of electrodeposition coating can be greatly shortened, and compared with the coating film obtained by the conventional chemical conversion treatment and electrodeposition process. As a result, it is possible to obtain a multilayer coating film having the same excellent coating film adhesion and corrosion resistance (excellent performance with respect to salt spray, salt water immersion, and wet / dry cycle corrosion test, etc.).

本発明の方法によれば、従来、電着塗装の前に実施されていた前処理工程(特に、化成処理工程)を削減することができるか、あるいは化成処理を行っても工程を大きく短縮(即ち、処理時間の短縮や水洗時間の短縮など)することができ、技術的効果が大きい。また、電着塗装工程では、前処理のための低電圧印加工程が追加されるが、印加電圧を変化させるだけで、前処理と塗装処理とを連続することができるので、低電圧印加工程の追加は殆ど電着塗装工程に実質的な影響を与えない。   According to the method of the present invention, it is possible to reduce the pretreatment process (especially the chemical conversion treatment process) that has been conventionally performed before electrodeposition coating, or to greatly shorten the process even if chemical conversion treatment is performed ( That is, the processing time and the washing time can be shortened, and the technical effect is great. In addition, in the electrodeposition coating process, a low voltage application process for pretreatment is added, but since the pretreatment and the coating process can be continued only by changing the applied voltage, the low voltage application process The addition hardly affects the electrodeposition coating process substantially.

以下、本発明の水性塗料組成物について詳述する。
成分(A)
本発明の水性塗料組成物に含まれる没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂(A)は、(a)式

Figure 2007314689
(式中、Rはジグリシジルエポキシ化合物のグリシジルオキシ基を除いた残基、R’はジイソシアネート化合物からイソシアネート基を除いた残基、nは正の整数を意味する。)を有する、分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂;(b)1価の活性水素化合物;(c)2価の活性水素化合物;(d)没食子酸および(e)第2級モノアミン化合物を反応させて得られる、数平均分子量1,000〜5,000の樹脂であり、従来の没食子酸を変性しないカチオン性樹脂を含むバインダーと比較してより防食性が極めて高く、上記複層塗膜形成方法によって、高耐食性能を有する塗膜を得ることができることを見出した。 Hereinafter, the aqueous coating composition of the present invention will be described in detail.
Ingredient (A)
The gallic acid / amine-modified diglycidyl ether type epoxy resin (A) contained in the aqueous coating composition of the present invention has the formula (a):
Figure 2007314689
(Wherein R represents a residue obtained by removing a glycidyloxy group of a diglycidyl epoxy compound, R ′ represents a residue obtained by removing an isocyanate group from a diisocyanate compound, and n represents a positive integer). A diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings; (b) a monovalent active hydrogen compound; (c) a divalent active hydrogen compound; (d) gallic acid and (e) a secondary monoamine compound. It is a resin having a number average molecular weight of 1,000 to 5,000 obtained by the reaction, and has an extremely high anticorrosion property compared to a conventional binder containing a cationic resin that does not denature gallic acid, and the above multilayer coating film It has been found that a coating film having high corrosion resistance can be obtained by the forming method.

本発明の水性塗料組成物に用いられる没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂(A)は、(a)式

Figure 2007314689
(式中、Rはジグリシジルエポキシ化合物のグリシジルオキシ基を除いた残基、R’はジイソシアネート化合物からイソシアネート基を除いた残基、nは正の整数を意味する。)を有する、分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂に、(b)1価の活性水素化合物と(c)2価の活性水素化合物を出発樹脂(a)のエポキシ基に対して1未満の当量比で反応させて反応中間体(X)を得た後、さらに(d)没食子酸および(e)第2級モノアミン化合物を(a)、(b)および(c)の反応生成物中に残っているエポキシ基を開環するように該反応生成物に反応させることにより得られるものである。 The gallic acid / amine-modified diglycidyl ether type epoxy resin (A) used in the aqueous coating composition of the present invention has the formula (a):
Figure 2007314689
(Wherein R represents a residue obtained by removing a glycidyloxy group of a diglycidyl epoxy compound, R ′ represents a residue obtained by removing an isocyanate group from a diisocyanate compound, and n represents a positive integer). In a diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings, (b) a monovalent active hydrogen compound and (c) a divalent active hydrogen compound are less than 1 with respect to the epoxy group of the starting resin (a). After reacting at an equivalent ratio to obtain reaction intermediate (X), (d) gallic acid and (e) secondary monoamine compound were further added to the reaction products of (a), (b) and (c). It is obtained by reacting the reaction product so that the remaining epoxy group is ring-opened.

また上記(b)1価の活性水素化合物は、モノカルボン酸化合物、モノアルコール化合物、モノフェノール化合物又はモノチオール化合物である。   The (b) monovalent active hydrogen compound is a monocarboxylic acid compound, a monoalcohol compound, a monophenol compound, or a monothiol compound.

さらに上記(c)2価の活性水素化合物は、ジオール化合物、ジカルボン酸化合物、二官能ポリエステルポリオールまたは二官能ポリエーテルポリオールである。
以下に上記(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂の製造方法を述べる。
Furthermore, the (c) divalent active hydrogen compound is a diol compound, a dicarboxylic acid compound, a bifunctional polyester polyol or a bifunctional polyether polyol.
A method for producing the above (A) gallic acid / amine-modified diglycidyl ether type epoxy resin will be described below.

本発明の水性塗料組成物に用いられる(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂は、基本的に、以下に説明する成分(a)〜(e)を配合し反応せしめることによって製造されるものである。但し、没食子酸(成分(d))とエポキシ樹脂(具体的には、分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂(a))との反応は反応順序や反応量について後述のするような制御が必要である。   The (A) gallic acid / amine-modified diglycidyl ether type epoxy resin used in the aqueous coating composition of the present invention is basically produced by blending and reacting the components (a) to (e) described below. It is what is done. However, the reaction between gallic acid (component (d)) and epoxy resin (specifically, diglycidyl ether type epoxy resin (a) containing a plurality of oxazolidone rings in the molecular chain) Control as described below is required.

成分(a)
成分(a)は分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂であり、一分子中にエポキシ基を2個含むエポキシ化合物である。この成分(a)のエポキシ化合物は、本発明の樹脂の基本骨格をなす構成要素の一つであり、樹脂組成物からなる水性塗料塗膜の防食性を左右する。そのために本発明において、成分(a)は、数平均分子量300〜2,000の範囲における、分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂であることが極めて重要である。特開平5−306327号公報に記載される様に、分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂は、樹脂のガラス転移温度が高いにもかかわらず、熱流動性が優れているため、塗膜の平滑性を損なうことなく耐熱性及び耐食性に優れた塗膜が得られる。
Ingredient (a)
Component (a) is a diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings in the molecular chain, and is an epoxy compound containing two epoxy groups in one molecule. The epoxy compound of component (a) is one of the constituent elements constituting the basic skeleton of the resin of the present invention, and affects the anticorrosion property of the aqueous paint coating film comprising the resin composition. Therefore, in the present invention, it is extremely important that the component (a) is a diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings in the molecular chain in the range of a number average molecular weight of 300 to 2,000. As described in JP-A-5-306327, a diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings in a molecular chain is excellent in thermal fluidity even though the glass transition temperature of the resin is high. Therefore, a coating film excellent in heat resistance and corrosion resistance can be obtained without impairing the smoothness of the coating film.

分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂(成分(a))は、ポリエポキシ化合物とブロックジイソシアネート化合物とを反応させる方法(I)と、ブロック化されていないジイソシアネート化合物を直接ポリエポキシ化合物と反応させる方法(II)がある。方法(I)および(II)のどちらも採用し得るが、方法(II)はジイソシアネートの三量化など副反応が起こり易いため、方法(I)が好ましい。   The diglycidyl ether type epoxy resin (component (a)) containing a plurality of oxazolidone rings in the molecular chain includes a method (I) of reacting a polyepoxy compound and a blocked diisocyanate compound, and an unblocked diisocyanate compound. There is a method (II) of reacting directly with a polyepoxy compound. Either method (I) or (II) can be employed, but method (II) is preferred because method (II) tends to cause side reactions such as trimerization of diisocyanate.

ポリエポキシ化合物は、具体的には、ビスフェノールA型またはビスフェノールF型エポキシ樹脂である。前者の市販品としてはエピコート828(油化シェルエポキシ(株)、エポキシ当量180〜190)、エピコート1001(同、エポキシ当量450〜500)、エピコート1010(同、エポキシ当量3,000〜4,000)などがあり、後者の市販品としてはエピコート807(同、エポキシ当量170)などがある。   Specifically, the polyepoxy compound is a bisphenol A type or bisphenol F type epoxy resin. As the former commercial product, Epicoat 828 (Oilized Shell Epoxy Co., Ltd., Epoxy Equivalent 180-190), Epicoat 1001 (Same, Epoxy Equivalent 450-500), Epicoat 1010 (Same, Epoxy Equivalent 3,000-4,000) The latter commercially available product includes Epicoat 807 (same as above, epoxy equivalent 170).

ビスフェノール型エポキシ樹脂のほか、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ポリエチレングリコールなどの多価アルコールのポリグリシジルエーテル、および脂肪族、脂環族もしくは芳香族ポリカルボン酸のポリグリシジルエステルも使用することができる。   In addition to bisphenol-type epoxy resins, polyglycidyl ethers of polyhydric alcohols such as ethylene glycol, 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, pentaerythritol, polyethylene glycol, and aliphatic and alicyclic groups Alternatively, polyglycidyl esters of aromatic polycarboxylic acids can also be used.

ジイソシアネート化合物としては、4,4’−ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)などの芳香族ジイソシアネート、ヘキサメチレンジイソシアネート(HMDI)、イソホロンジイソシアネート(IPDI)、4,4’−メチレンビス(シクロヘキシルイソシアネート)、トリメチルヘキサメチレンジイソシアネートなどの脂肪族および脂環族ジイソシアネートを使用し得る。   Examples of the diisocyanate compound include aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), and xylylene diisocyanate (XDI), hexamethylene diisocyanate (HMDI), isophorone diisocyanate (IPDI), 4, Aliphatic and cycloaliphatic diisocyanates such as 4'-methylenebis (cyclohexyl isocyanate), trimethylhexamethylene diisocyanate may be used.

方法(II)ではこれらジイソシアネート化合物を直接ポリエポキシ化合物と反応させるが、好ましい方法(I)ではこれらジイソシアネート化合物をブロック剤でブロックしたブロックジイソシアネートを使用する。このためブロック剤であらかじめジイソシアネートをブロックした後にエポキシ化合物と混合し反応させても良いし、エポキシ化合物にブロック剤を溶解させておき、イソシアネートを加えることによりエポキシ化合物存在下で、ブロックジイソシアネートを発生させた後、オキサゾリドン環含有エポキシ樹脂を合成することも可能である。   In the method (II), these diisocyanate compounds are directly reacted with a polyepoxy compound, but in the preferred method (I), a blocked diisocyanate obtained by blocking these diisocyanate compounds with a blocking agent is used. For this reason, after diisocyanate is blocked with a blocking agent in advance, it may be mixed with the epoxy compound and allowed to react, or the blocking agent is dissolved in the epoxy compound, and the isocyanate is added to generate blocked diisocyanate in the presence of the epoxy compound. Thereafter, an oxazolidone ring-containing epoxy resin can be synthesized.

使用し得るプロック剤はこの分野では良く知られており、メタノール、エタノール、イソプロパノール、n−ブタノール、2−エチルヘキサノール、エチレングリコールモノブチルエーテル、シクロヘキサノール等の脂肪族アルコール;フェノール、ニトロフェノール、エチルフェノール等のフェノール類;メチルエチルケトオキシムなどのオキシム類;ε−カプロラクタム等のラクタム類を含む。   The blocking agents that can be used are well known in the art and include aliphatic alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-ethylhexanol, ethylene glycol monobutyl ether, cyclohexanol; phenol, nitrophenol, ethylphenol Phenols such as; oximes such as methyl ethyl ketoxime; and lactams such as ε-caprolactam.

ブロックジイソシアネートnモルに対し、ジエポキシ化合物n+1の反応により鎖中に複数のオキサゾリドン環を有し、末端エポキシ基を有するオキサゾリドン環含有エポキシ樹脂が得られる。反応温度は好ましくは60℃〜200℃である。反応が進行するにつれジイソシアネート化合物のブロック剤が再生されるが、これは系内にそのまま存在させてもよいし、デカンター等を使用して系外へ除去することもできる。   An oxazolidone ring-containing epoxy resin having a plurality of oxazolidone rings in the chain and having a terminal epoxy group is obtained by reaction of diepoxy compound n + 1 with respect to n moles of block diisocyanate. The reaction temperature is preferably 60 ° C to 200 ° C. As the reaction proceeds, the diisocyanate compound blocking agent is regenerated, which may be allowed to exist in the system as it is, or may be removed out of the system using a decanter or the like.

エポキシ化合物とカルバミン酸エステル(ウレタン)との反応による2−オキサゾリジノン化合物の合成法において、触媒として第三級アミンを使用することにより反応を円滑に進行させることができる。この原理はブロックイソシアネート化合物とポリエポキシ化合物との反応にも有利に適用することができる。この目的に使用し得る三級アミンとしては、N,N−ジメチルベンジルアミン、トリエチルアミン、N,N−ジメチルシクロヘキシルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N−メチルモルホリン、1,8−ジアザビシクロ〔5.4.0〕ウンデセン、1,4−ジアザビシクロ〔2.2.2〕オクタン、ピリジン、キノリン、イミダゾールなどがある。   In the method for synthesizing a 2-oxazolidinone compound by a reaction between an epoxy compound and a carbamate (urethane), the reaction can proceed smoothly by using a tertiary amine as a catalyst. This principle can be advantageously applied to the reaction between a blocked isocyanate compound and a polyepoxy compound. Tertiary amines that can be used for this purpose include N, N-dimethylbenzylamine, triethylamine, N, N-dimethylcyclohexylamine, N, N, N ′, N′-tetramethylethylenediamine, N-methylmorpholine, 1 , 8-diazabicyclo [5.4.0] undecene, 1,4-diazabicyclo [2.2.2] octane, pyridine, quinoline, imidazole and the like.

第3級アミンに加え、ジラウリル酸ジ−n−ブチルスズ、塩化第一スズ、オクテン酸スズ、ジブチルスズオキサイド、ジオクチルスズオキサイド、1,3−ジアセトキシテトラブチルジスタノキサン、1,3−ジクロルテトラブチルジスタノキサン、ジブチルジブトキシスズ等のスズ化合物を併用してもよい。   In addition to tertiary amines, di-n-butyltin dilaurate, stannous chloride, tin octenoate, dibutyltin oxide, dioctyltin oxide, 1,3-diacetoxytetrabutyl distanoxane, 1,3-dichlorotetra A tin compound such as butyl distanoxane and dibutyl dibutoxy tin may be used in combination.

成分(a)の分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂の分子量が300を下回ると、最終生成物である本発明の水性塗料用樹脂の分子量が過度に低くなる結果、バインダー樹脂から硬化形成される塗膜の強度等の機械的物性が低下する恐れがある。また分子量が2,000を上回ると、本発明の水性塗料用樹脂の分子量が過度に高くなる結果、バインダー樹脂の熱フロー時における高粘度のために硬化形成される塗膜の肌(外観)不良を招く恐れがある。   When the molecular weight of the diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings in the molecular chain of the component (a) is less than 300, the molecular weight of the aqueous coating resin of the present invention, which is the final product, becomes excessively low. Further, mechanical properties such as the strength of the coating film formed by curing from the binder resin may be lowered. Also, if the molecular weight exceeds 2,000, the molecular weight of the aqueous coating resin of the present invention becomes excessively high, and as a result, the skin (appearance) of the coating film formed by curing due to the high viscosity during the heat flow of the binder resin is poor. There is a risk of inviting.

成分(b)
成分(b)の1価の活性水素化合物は、モノカルボン酸化合物、モノアルコール化合物、モノフェノール化合物又はモノチオール化合物である。これらは主に成分(a)中に残存するエポキシ基の一部と付加反応し、本発明の樹脂にアルキル基を導入するための構成要素である。
Ingredient (b)
The monovalent active hydrogen compound of component (b) is a monocarboxylic acid compound, monoalcohol compound, monophenol compound or monothiol compound. These are constituent elements for introducing an alkyl group into the resin of the present invention mainly by addition reaction with part of the epoxy group remaining in the component (a).

本発明の樹脂を水性媒体中に分散する場合に、成分(b)の分子中の該当するアルキル基に基づく疎水性を付与し、後述の成分(e)によって導入される3級アミノ基に基づく親水性とバランス化させることによって、適度な乳化分散性を樹脂分子に付与するために有効である。   When the resin of the present invention is dispersed in an aqueous medium, it imparts hydrophobicity based on the corresponding alkyl group in the molecule of component (b) and is based on a tertiary amino group introduced by component (e) described below. It is effective for imparting appropriate emulsifying dispersibility to resin molecules by balancing with hydrophilicity.

従って、成分(b)であるモノカルボン酸化合物、モノアルコール化合物、モノフェノール化合物又はモノチオール化合物は適当な大きさのアルキル基を有することが好ましい。アルキル基の大きさは炭素数4〜18程度が好ましい。   Accordingly, the monocarboxylic acid compound, monoalcohol compound, monophenol compound or monothiol compound as component (b) preferably has an alkyl group of an appropriate size. The size of the alkyl group is preferably about 4 to 18 carbon atoms.

成分(b)の例としては、モノカルボン酸として、n−ブタン酸、n−ヘキサン酸、2−エチルヘキサン酸、n−オクチル酸、2−エチル3−メチル5,5’−ジメチルヘキサン酸、ヤシ油、ダイズ油あるいはアマニ油等の植物性脂肪酸;モノアルコールとして、n−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n―オクチルアルコール、n−ステアリルアルコール、n−ドデシルアルコール、エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2−エチルヘキシルエーテル;モノフェノールとして、ノニルフェノール;モノチオールとして、t−ドデシルメルカプタン、n−ドデシルメルカプタン、n−ステアリルメルカプタン等が挙げられる。   Examples of component (b) include monocarboxylic acids such as n-butanoic acid, n-hexanoic acid, 2-ethylhexanoic acid, n-octylic acid, 2-ethyl 3-methyl 5,5′-dimethylhexanoic acid, Vegetable fatty acids such as coconut oil, soybean oil or linseed oil; mono-alcohols: n-butanol, n-hexanol, 2-ethylhexanol, n-octyl alcohol, n-stearyl alcohol, n-dodecyl alcohol, ethylene glycol monohexyl Ether, ethylene glycol mono-2-ethylhexyl ether; monophenol, nonylphenol; monothiols include t-dodecyl mercaptan, n-dodecyl mercaptan, n-stearyl mercaptan, and the like.

成分(c)
成分(c)の2価の活性水素化合物は、成分(a)であるエポキシ化合物と相互に連結反応することで、本発明の樹脂の基本骨格となる線状高分子を形成するために必要な構成要素である。具体的には、ジオール化合物、ジカルボン酸化合物、二官能ポリエステルポリオールまたは二官能ポリエーテルポリオールである。
Ingredient (c)
The divalent active hydrogen compound of component (c) is necessary for forming a linear polymer that becomes the basic skeleton of the resin of the present invention by linking reaction with the epoxy compound of component (a). It is a component. Specifically, it is a diol compound, a dicarboxylic acid compound, a bifunctional polyester polyol or a bifunctional polyether polyol.

成分(c)の例としては、ジオール化合物として、エチレングリコール、1,2−プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオールなどのアルカンジオール;1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオールなどの脂環式ジオール;4,4’−ジヒドロキシジフェニル−2,2−プロパン(ビスフェノールA)、4,4’−ジヒドロキシジフェニル−2,2−メタン(ビスフェノールF)、ビス(4−ヒドロキシフェニル)スルホン(ビスフェノールS)あるいは1,3−ジヒドロキシベンゼン(レゾルシン)等の芳香族ジオール;ジカルボン酸として、コハク酸,アジピン酸,アゼライン酸,ドデカン二酸,ダイマー酸,C18−C20長鎖脂肪族ジカルボン酸、末端カルボキシル基変性ブタジエン−アクリロニトリル共重合体等の脂肪族ジカルボン酸;フタル酸,イソフタル酸,テレフタル酸等の芳香族ジカルボン酸ポリカルボン酸またはその無水物とポリオールとのエステル化反応により得られる二官能ポリエステルポリオール、ポリオールを開始剤とするカプロラクトンの重合反応によって得られる二官能ポリカプロラクトンポリオール等の二官能ポリエステルポリオール(分子量300〜3,000);およびポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール、それらのランダムまたはブロック共重合体などの二官能ポリエーテルポリオール(分子量300〜3,000)などが挙げられる。   Examples of component (c) include, as diol compounds, alkane diols such as ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol; Alicyclic diols such as 2-cyclohexanediol and 1,4-cyclohexanediol; 4,4′-dihydroxydiphenyl-2,2-propane (bisphenol A), 4,4′-dihydroxydiphenyl-2,2-methane ( Aromatic diols such as bisphenol F), bis (4-hydroxyphenyl) sulfone (bisphenol S) or 1,3-dihydroxybenzene (resorcin); dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, dodecanedioic acid, dimer Acid, C18-C20 long chain aliphatic dicarboxylic acid, terminal Aliphatic dicarboxylic acid such as carboxyl group-modified butadiene-acrylonitrile copolymer; bifunctional polyester obtained by esterification reaction of aromatic dicarboxylic acid polycarboxylic acid such as phthalic acid, isophthalic acid, terephthalic acid or the like with polyol and polyol Polyol, bifunctional polyester polyol (molecular weight 300 to 3,000) such as bifunctional polycaprolactone polyol obtained by polymerization reaction of caprolactone using polyol as an initiator; and polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene Examples thereof include bifunctional polyether polyols (molecular weight: 300 to 3,000) such as glycol and random or block copolymers thereof.

成分(e)
成分(e)は第2級モノアミン化合物である。この第2級モノアミン化合物は、主に成分(a)中に存在するエポキシ基の一部と付加反応し、本発明の樹脂に第3級アミノ基を導入するものである。第3級アミノ基は、たとえば、有機又は無機酸と中和することによって親水性基を成し、樹脂を水中に分散させるために必要な構成要素である。
Ingredient (e)
Component (e) is a secondary monoamine compound. This secondary monoamine compound mainly undergoes an addition reaction with part of the epoxy group present in component (a) to introduce a tertiary amino group into the resin of the present invention. A tertiary amino group forms a hydrophilic group by neutralizing with an organic or inorganic acid, for example, and is a constituent element necessary for dispersing a resin in water.

この際に成分(e)は一分子中に少なくとも1個の1級水酸基を有する、少なくとも1種類の第2級アミン(e1)を含んでいることが好ましい。これは本発明の水性樹脂が水性塗料塗膜を形成する場合、例えば、塗料組成物中に別途存在するブロックイソシアネートに代表される架橋剤と相互に架橋反応する樹脂構成要素となるからである。その例としては、2−(メチルアミノ)エタノール、2−(エチルアミノ)エタノール、4−(メチルアミノ)ブタノール、4−(エチルアミノ)ブタノール、ジエタノールアミン、ジブタノールアミン等を挙げることができる。   In this case, the component (e) preferably contains at least one secondary amine (e1) having at least one primary hydroxyl group in one molecule. This is because when the aqueous resin of the present invention forms an aqueous coating film, for example, it becomes a resin component that undergoes a cross-linking reaction with a cross-linking agent typified by a blocked isocyanate that is separately present in the coating composition. Examples thereof include 2- (methylamino) ethanol, 2- (ethylamino) ethanol, 4- (methylamino) butanol, 4- (ethylamino) butanol, diethanolamine, dibutanolamine and the like.

成分(e)はその他に、一分子中に炭素数2〜18の範囲のアルキル基を有するジアルキルアミン(e2)を含んでいてもよい。その例としては、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、メチルブチルアミン、N−エチル−1,2−ジメチルプロピルアミン、N−メチルヘキシルアミン、ジヘキシルアミン、ジn−オクチルアミン、ジ2−エチルヘキシルアミン、N−メチルヘキシルアミン、N−メチルラウリルアミン、N−エチル−イソ−アミルアミン、ジステアリルアミン等を挙げることができる。   In addition, the component (e) may contain a dialkylamine (e2) having an alkyl group having 2 to 18 carbon atoms in one molecule. Examples thereof include diethylamine, dipropylamine, dibutylamine, diisobutylamine, di-sec-butylamine, methylbutylamine, N-ethyl-1,2-dimethylpropylamine, N-methylhexylamine, dihexylamine, di-n- Examples include octylamine, di-2-ethylhexylamine, N-methylhexylamine, N-methyllaurylamine, N-ethyl-iso-amylamine, distearylamine and the like.

それ以外の第2級モノアミンとしては、ジフェニルアミン、ジベンジルアミンあるいはアミノエチルエタノールアミン・メチルイソブチルケチミン、ジエチレントリアミン・メチルイソブチルジケチミンの様なケチミンブロック1級アミノ基含有2級アミン(e3)も必用に応じて使用することができる。   Other secondary monoamines include secondary amines (e3) containing a ketimine block primary amino group such as diphenylamine, dibenzylamine or aminoethylethanolamine / methylisobutylketimine, diethylenetriamine / methylisobutyldiketimine. Can be used according to.

また、これら成分(e)とは別にトリエチルアミン酸塩、N,N−ジメチルエタノールアミン酸塩などの第3級アミン酸塩の所定量を反応させ、樹脂骨格に第4級アンモニウム塩基を必要に応じて一部導入してもかまわない。
さらに、合成樹脂の分子量調整のための鎖長延長剤として、第1級アミンを一部導入してもかまわない。
In addition to these components (e), a predetermined amount of a tertiary amine acid salt such as triethylamine acid salt or N, N-dimethylethanolamine acid is reacted, and a quaternary ammonium base is added to the resin skeleton as required. May be partially introduced.
Furthermore, a primary amine may be partially introduced as a chain extender for adjusting the molecular weight of the synthetic resin.

成分(d)
成分(d)は没食子酸(1,3,5−トリヒドロキシ安息香酸)であり、この多価フェノールカルボン酸化合物は、本発明の樹脂に対して、例えば電着塗料を成した際に、形成される塗装塗膜の防食性を著しく向上させる上で、極めて重要な構成要素である。
Ingredient (d)
Component (d) is gallic acid (1,3,5-trihydroxybenzoic acid), and this polyhydric phenol carboxylic acid compound is formed when, for example, an electrodeposition paint is formed on the resin of the present invention. It is a very important component in remarkably improving the anticorrosion property of the paint coating film.

没食子酸は、被塗物である鋼材表面に発生した水酸化鉄、酸化鉄等から成る錆に浸透し、ポリフェノール(ピロガロール)性水酸基により錆とキレートを形成して、錆を安定化すると同時に錆の進行を防止し、さらに上記水酸基の還元作用による赤錆を安定な黒錆に転化する防食作用が広く知られている、天然物タンニンの加水分解生成物から誘導される有用な化合物である。   Gallic acid penetrates into rust composed of iron hydroxide, iron oxide, etc. generated on the surface of the steel material to be coated, forms rust and chelate with polyphenol (pyrogallol) hydroxyl group, stabilizes rust and rust. It is a useful compound derived from the hydrolysis product of the natural product tannin, which is widely known for its anti-corrosion action that prevents red rust due to the reduction action of the hydroxyl group and converts it into stable black rust.

本発明は、この有用な化合物の効果を最大限に発揮するための樹脂製造方法を提供するものであるが、本発明の水性塗料用樹脂を製造しようとする際に、例えば成分(a)における2官能性エポキシ化合物と、成分(d)における3官能以上の多価フェノール化合物とをそのまま反応させると、実際には反応系の著しい粘度上昇やゲル化が懸念されるなど反応制御が困難である。   The present invention provides a resin production method for maximizing the effect of this useful compound. When the aqueous coating resin of the present invention is to be produced, for example, in the component (a) When the bifunctional epoxy compound and the trifunctional or higher polyhydric phenol compound in component (d) are reacted as they are, it is actually difficult to control the reaction because there is a concern that the reaction system may be significantly increased in viscosity or gelled. .

また同時に、上記防食機能を有するポリフェノール性水酸基の多くが、反応により消失することとなり、期待する防食機能が十分に発現されない恐れがある。
従って、それを回避するために、本発明では上記の製法上の課題を解決するための新規な製造上の手段を提供している。次に本発明の樹脂の製造方法について具体的に説明する。
At the same time, many of the polyphenolic hydroxyl groups having the anticorrosion function are lost by the reaction, and the expected anticorrosion function may not be sufficiently exhibited.
Therefore, in order to avoid this problem, the present invention provides a novel manufacturing means for solving the above-mentioned problems in the manufacturing method. Next, the method for producing the resin of the present invention will be specifically described.

製法
成分(a)〜(e)を樹脂構成要素として反応させる場合においては、分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂に、(b)1価の活性水素化合物と(c)2価の活性水素化合物を出発樹脂(a)のエポキシ基に対して1未満の当量比で反応させて適度な分子鎖長延長を行うことにより反応中間体(X)を得る。この反応中間体の合成段階においては、上述の理由により(d)没食子酸は配合しない。
In the case where the process components (a) to (e) are reacted as resin constituents, (b) a monovalent active hydrogen compound and (b) a diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings in the molecular chain. c) A reaction intermediate (X) is obtained by reacting a divalent active hydrogen compound with an epoxy group of the starting resin (a) at an equivalent ratio of less than 1 and extending the molecular chain length appropriately. In the synthesis step of this reaction intermediate, (d) gallic acid is not blended for the reasons described above.

次いで(e)第2級モノアミン化合物を反応中間体(X)中に残っているエポキシ基を開環するように反応させる際に、(d)没食子酸を同時に反応させる。
その際に、アミン化合物添加に伴う塩基性雰囲気下において、没食子酸のカルボキシル基と樹脂のエポキシ基との反応選択性が向上し、没食子酸のフェノール性水酸基と樹脂中のエポキシ基との反応が抑制されると推定されるが、反応系の著しい粘度上昇やゲル化が回避されることを見出した。
その際に、反応中間体(X)中のエポキシ基に対して、(d)没食子酸と(e)第2級モノアミンがほぼ当量となるように配合し、付加反応させることが好ましい。
Next, when (e) the secondary monoamine compound is reacted so as to open the epoxy group remaining in the reaction intermediate (X), (d) gallic acid is reacted simultaneously.
At that time, the reaction selectivity between the carboxyl group of gallic acid and the epoxy group of the resin is improved in a basic atmosphere accompanying the addition of the amine compound, and the reaction between the phenolic hydroxyl group of gallic acid and the epoxy group in the resin is improved. It was estimated that the reaction was suppressed, but it was found that a significant increase in viscosity and gelation of the reaction system were avoided.
At that time, it is preferable that (d) gallic acid and (e) secondary monoamine are blended so as to be approximately equivalent to the epoxy group in the reaction intermediate (X), and an addition reaction is performed.

上記一連の樹脂合成反応を行うにあたり、出発原料となる(a)分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂のエポキシ当量は、150〜1,000のものを選択することが好ましい。前記のように成分(a)の好ましい平均分子量範囲が300〜2,000だからである。   In carrying out the series of resin synthesis reactions described above, the epoxy equivalent of the diglycidyl ether type epoxy resin containing (a) a plurality of oxazolidone rings in the molecular chain as a starting material should be selected from 150 to 1,000. Is preferred. This is because the preferable average molecular weight range of the component (a) is 300 to 2,000 as described above.

次に(b)1価の活性水素化合物と(c)2価の活性水素化合物を出発樹脂(a)のエポキシ基に対して1未満の当量比で反応させて反応中間体(X)を得るが、その残存エポキシ当量は500〜3,000になるように設計することが好ましい。反応中間体(X)のエポキシ当量が500未満では、合成樹脂の仕上がり粘度が低すぎる、あるいは同エポキシ当量が3,000を超えると、合成樹脂の仕上がり粘度が高すぎる、などの理由で水性塗料組成物の設計上好ましくない。   Next, (b) a monovalent active hydrogen compound and (c) a divalent active hydrogen compound are reacted with an epoxy group of the starting resin (a) at an equivalent ratio of less than 1 to obtain a reaction intermediate (X). However, the residual epoxy equivalent is preferably designed to be 500 to 3,000. If the epoxy equivalent of the reaction intermediate (X) is less than 500, the finished viscosity of the synthetic resin is too low, or if the epoxy equivalent exceeds 3,000, the finished viscosity of the synthetic resin is too high. It is not preferable in the design of the composition.

さらに、反応中間体(X)に(d)没食子酸及び(e)第2級モノアミンを反応させるにあたり、反応中間体(X)中のエポキシ基1当量当たり(d)没食子酸が0.02〜0.5当量、好ましくは0.05〜0.3当量となるような割合で反応を行うのが好ましい。没食子酸の反応当量が0.05未満であると、没食子酸の付加変性量が不足するために、目的とする没食子酸による防食効果がなくなる。また0.5当量を超えると、相対して(e)第2級アミンの反応当量が0.5当量未満と過度に少なくなり、仕上がる合成樹脂の水分散性が不足するために、目的の水性塗料組成物の調製が不可能になる恐れがある。   Further, when (d) gallic acid and (e) a secondary monoamine are reacted with the reaction intermediate (X), 0.02 to (d) gallic acid is added per equivalent of epoxy group in the reaction intermediate (X). It is preferable to carry out the reaction at a ratio of 0.5 equivalent, preferably 0.05 to 0.3 equivalent. When the reaction equivalent of gallic acid is less than 0.05, the amount of addition modification of gallic acid is insufficient, so that the intended anticorrosive effect by gallic acid is lost. On the other hand, if it exceeds 0.5 equivalents, the reaction equivalent of (e) secondary amine is excessively reduced to less than 0.5 equivalents, and the water dispersibility of the finished synthetic resin is insufficient. The preparation of the coating composition may be impossible.

本発明における水性塗料用樹脂の製造方法においては、反応中間体形成後のアミン変性の際に、同時に没食子酸変性を行うことによって反応を制御し、没食子酸の複数水酸基と樹脂のエポキシ基との反応による反応系の著しい粘度上昇やゲル化などの懸念される不良現象を実用上防止できることが判った。また同時に、上記防食機能を有するポリフェノール性水酸基の多くが、反応により消失することが無いため、期待する防食機能が十分に発現されるようになった。   In the method for producing a resin for water-based paints according to the present invention, the reaction is controlled by simultaneously modifying gallic acid during the amine modification after the formation of the reaction intermediate, and a plurality of hydroxyl groups of gallic acid and the epoxy group of the resin. It has been found that it is possible to practically prevent a defective phenomenon such as a significant increase in viscosity or gelation of the reaction system due to the reaction. At the same time, many of the polyphenolic hydroxyl groups having the anticorrosion function do not disappear due to the reaction, so that the expected anticorrosion function is fully expressed.

没食子酸は、水性塗料用樹脂中に、樹脂固形分に対して0.1〜5重量%、好ましくは0.4〜4重量%の量で配合される。没食子酸の量が上記上限を超えると、親水性が高くなり、防食性が発揮されなくなる。   Gallic acid is blended in the aqueous coating resin in an amount of 0.1 to 5% by weight, preferably 0.4 to 4% by weight, based on the solid content of the resin. When the amount of gallic acid exceeds the above upper limit, the hydrophilicity becomes high and the anticorrosion property is not exhibited.

上記のように本発明の水性塗料用樹脂は、エポキシ基体樹脂へのオキサゾリドン環の含有に加えて、没食子酸変性によるキレート化作用、及びアルカリ雰囲気下における還元作用による非常に高い耐食性、耐熱性が付与できる。   As described above, the resin for water-based paints of the present invention has extremely high corrosion resistance and heat resistance due to chelation by gallic acid modification and reduction in an alkaline atmosphere in addition to the inclusion of the oxazolidone ring in the epoxy base resin. Can be granted.

没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂(A)
本発明の水性塗料組成物の成分(A)の樹脂は、水性塗料用樹脂、即ち没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂(A)であり、数平均分子量が1,000〜5,000の範囲、好ましくは1,200〜4,000、より好ましくは1,500〜3,000となるように調製することが好ましい。数平均分子量が1,000未満の場合は、硬化形成塗膜の耐溶剤性及び耐食性等の物性が劣ることがある。反対に5,000を超える場合は、樹脂溶液の粘度制御が難しく合成が困難なばかりか、得られた樹脂の乳化分散等の操作上ハンドリングが困難となることがある。さらに高粘度であるがゆえに加熱・硬化時のフロー性が悪く塗膜外観を著しく損ねる場合がある。
Gallic acid / amine modified diglycidyl ether type epoxy resin (A)
The resin of the component (A) of the aqueous coating composition of the present invention is an aqueous coating resin, that is, a gallic acid / amine-modified diglycidyl ether type epoxy resin (A), and has a number average molecular weight of 1,000 to 5,000. It is preferable to prepare so that it may become 1,200-4,000, More preferably, it may become 1,500-3,000. When the number average molecular weight is less than 1,000, physical properties such as solvent resistance and corrosion resistance of the cured coating film may be inferior. On the other hand, when it exceeds 5,000, it is difficult to control the viscosity of the resin solution and it is difficult to synthesize it, and it may be difficult to handle in operation such as emulsification dispersion of the obtained resin. Furthermore, because of its high viscosity, the flowability during heating and curing is poor, and the appearance of the coating film may be significantly impaired.

上記水性塗料用樹脂は、ヒドロキシル価(KOH換算mg/g樹脂固形分)が50〜250の範囲となるように分子設計することが好ましい。ヒドロキシル価が50未満では塗膜の硬化不良を招き、反対に250を超えると硬化後塗膜中に過剰の水酸基が残存する結果、耐水性が低下することがある。ヒドロキシル価は好ましくは60〜240、より好ましくは80〜220である。   It is preferable that the water-based coating resin is molecularly designed so that a hydroxyl value (mg Kg converted resin solid content) is in the range of 50 to 250. When the hydroxyl value is less than 50, the coating film is poorly cured. On the other hand, when it exceeds 250, water resistance may be deteriorated as a result of excess hydroxyl groups remaining in the coating film after curing. The hydroxyl number is preferably 60 to 240, more preferably 80 to 220.

また上記水性塗料用樹脂は、アミン価(KOH換算mg/g樹脂固形分)が40〜150の範囲となるように分子設計することが好ましい。アミン価が40未満では前記酸中和による水媒体中での乳化分散不良を招き、反対に150を超えると硬化後塗膜中に過剰のアミノ基が残存する結果、耐水性が低下することがある。より好ましいアミン価は、50〜120である。更に好ましいアミン価は、50〜100である。   Moreover, it is preferable that the water-based coating resin is molecularly designed so that the amine value (KOH conversion mg / g resin solid content) is in the range of 40 to 150. If the amine value is less than 40, the acid neutralization causes poor emulsification and dispersion in an aqueous medium. On the other hand, if it exceeds 150, water resistance may decrease as a result of excess amino groups remaining in the coating film after curing. is there. A more preferred amine value is 50 to 120. A more preferred amine value is 50-100.

成分(B)
本発明における硬化剤(B)としては、加熱時に樹脂成分を硬化させることが可能であれば、どのような種類のものでも良いが、その中でも電着樹脂の硬化剤として好適なブロックポリイソシアネートが推奨される。
Ingredient (B)
The curing agent (B) in the present invention may be of any type as long as the resin component can be cured at the time of heating. Among them, a block polyisocyanate suitable as a curing agent for an electrodeposition resin is used. Recommended.

上記ブロックポリイソシアネートの原料であるポリイソシアネートの例としては、ヘキサメチレンジイソシアネート(3量体を含む)、テトラメチレンジイソシアネート、トリメチルヘキサメチレンジイシシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)等の脂環族ポリイソシアネート、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネートが挙げられる。これらを適当な封止剤でブロック化することにより、上記ブロックポリイソシアネートを得ることができる。   Examples of the polyisocyanate that is a raw material of the block polyisocyanate include aliphatic diisocyanates such as hexamethylene diisocyanate (including trimer), tetramethylene diisocyanate, and trimethylhexamethylene diisocyanate, isophorone diisocyanate, 4,4′- Examples thereof include alicyclic polyisocyanates such as methylene bis (cyclohexyl isocyanate), and aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate. The blocked polyisocyanate can be obtained by blocking these with an appropriate sealant.

上記封止剤の例としては、n−ブタノール、n−ヘキシルアルコール、2−エチルヘキサノール、ラウリルアルコール、フェノールカルビノール、メチルフェニルカルビノール等の一価のアルキル(又は芳香族)アルコール類、エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2−エチルヘキシルエーテル等のセロソルブ類、フェノール、パラーt−ブチルフェノール、クレゾール等のフェノール類、ジメチルケトオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、メチルアミルケトオキシム、シクロヘキサノンオキシム等のオキシム類、及びε−カプロラクタム、γ−ブチロラクタムに代表されるラクタム類が好ましく用いられる。とくにオキシム類及びラクタム類の封止剤は低温で解離するため、低温硬化性の観点から好適である。   Examples of the sealing agent include monovalent alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol, and methylphenyl carbinol, ethylene glycol Cellosolves such as monohexyl ether, ethylene glycol mono 2-ethylhexyl ether, phenols such as phenol, para-t-butylphenol, cresol, dimethyl ketoxime, methyl ethyl ketoxime, methyl isobutyl ketoxime, methyl amyl ketoxime, cyclohexanone oxime, etc. Oximes and lactams represented by ε-caprolactam and γ-butyrolactam are preferably used. In particular, sealants for oximes and lactams are suitable from the viewpoint of low-temperature curability because they dissociate at low temperatures.

上記ブロックポリイソシアネートは封止剤の単独あるいは複数種の使用によってあらかじめブロック化しておくことが望まれる。ブロック化率については、あらかじめ樹脂組成物と反応させる目的がなければ、塗料の貯蔵安定性確保のためにも100%にしておくことが好ましい。   It is desirable that the block polyisocyanate be blocked beforehand by using a sealing agent alone or by using a plurality of types. The blocking rate is preferably set to 100% in order to ensure the storage stability of the paint unless there is a purpose of reacting with the resin composition in advance.

上記没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂(A)は、該樹脂中のアミノ基を適当量の塩酸、硝酸、次亜リン酸等の無機酸、または蟻酸、酢酸、乳酸、スルファミン酸、アセチルグリシン酸等の有機酸で中和処理し、カチオン化エマルションとして水中に乳化分散させることによって調製される。また乳化分散する際には、通常、(B)硬化剤をコアとし、(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂をシェル(殻)として含むエマルション粒子を形成させる。   The gallic acid / amine-modified diglycidyl ether type epoxy resin (A) has an amino group in the resin with an appropriate amount of inorganic acid such as hydrochloric acid, nitric acid, hypophosphorous acid, formic acid, acetic acid, lactic acid, sulfamic acid, It is prepared by neutralizing with an organic acid such as acetylglycine acid and emulsifying and dispersing in water as a cationized emulsion. When emulsifying and dispersing, usually, emulsion particles containing (B) a curing agent as a core and (A) a gallic acid / amine-modified diglycidyl ether type epoxy resin as a shell are formed.

該エマルション粒子の平均粒子径は、0.01〜0.5μm、好ましくは0.02〜0.3μm、より好ましくは0.05〜0.2μmである。平均粒子径が0.01μm未満であると、樹脂成分を水分散するのに必要な中和剤が過量となり、一定電気量あたりの電着塗着効率が低下する。また平均粒子径0.5μmを超えると、粒子の分散性が低下するために、電着塗料の貯蔵安定性が低くなるので好ましくない。   The average particle diameter of the emulsion particles is 0.01 to 0.5 μm, preferably 0.02 to 0.3 μm, and more preferably 0.05 to 0.2 μm. If the average particle size is less than 0.01 μm, the neutralizing agent necessary for water-dispersing the resin component becomes excessive, and the electrodeposition efficiency per a certain amount of electricity decreases. On the other hand, when the average particle diameter exceeds 0.5 μm, the dispersibility of the particles is lowered, and therefore the storage stability of the electrodeposition paint is lowered, which is not preferable.

成分(C)
本発明で用いられる水性塗料組成物に含まれる希土類金属化合物(C)は、セリウム(Ce)、イットリウム(Y)、ネオジム(Nd)、プラセオジム(Pr)、及びイッテルビウム(Yb)からなる群より選択される少なくとも1種の希土類金属を含む化合物であるのが好ましい。このうちより好ましい希土類金属としては、イッテルビウム(Yb)、ネオジム(Nd)、及びプラセオジム(Pr)である。これらの希土類金属を含む希土類金属化合物が水性塗料組成物に含まれることによって、下地密着性に優れた前処理皮膜を得ることができる。
Ingredient (C)
The rare earth metal compound (C) contained in the aqueous coating composition used in the present invention is selected from the group consisting of cerium (Ce), yttrium (Y), neodymium (Nd), praseodymium (Pr), and ytterbium (Yb). Preferably, the compound contains at least one rare earth metal. Among these, more preferred rare earth metals are ytterbium (Yb), neodymium (Nd), and praseodymium (Pr). When the rare earth metal compound containing these rare earth metals is contained in the aqueous coating composition, a pretreatment film having excellent base adhesion can be obtained.

上記希土類金属化合物(C)としては、水溶性であるか又は水分散性である化合物を使用することができる。なかでも、水に対する溶解度が1g/dm以上である水可溶性化合物を用いる場合は、少量の使用で高い耐食効果が得られるため、好ましい。これを用いることにより、鉛化合物と同等、又はそれ以上の優れた防食性を有する塗膜が得ることができる。 As the rare earth metal compound (C), a water-soluble or water-dispersible compound can be used. Especially, when using the water soluble compound whose solubility with respect to water is 1 g / dm < 3 > or more, since a high corrosion-resistant effect is acquired by use of a small amount, it is preferable. By using this, it is possible to obtain a coating film having an excellent anticorrosion property equal to or higher than that of a lead compound.

好ましい希土類金属化合物(C)としては、例えば、蟻酸セリウム、蟻酸イットリウム、蟻酸プラセオジム、蟻酸イッテルビウム、酢酸セリウム、酢酸イットリウム、酢酸プラセオジム、酢酸ネオジム、酢酸イッテルビウム、乳酸セリウム、乳酸イットリウム、乳酸イッテルビウム、乳酸ネオジム、乳酸プラセオジム、シュウ酸イッテルビウム等の有機酸塩;硝酸セリウム、硝酸イットリウム、硝酸ネオジム、硝酸サマリウム、硝酸イッテルビウム、硝酸プラセオジム、アミド硫酸ネオジム、アミド硫酸イッテルビウム等の無機酸塩又は無機化合物等を挙げることができる。希土類金属化合物(C)として、希土類金属の硝酸塩を用いるのがより好ましい。   Preferred rare earth metal compounds (C) include, for example, cerium formate, yttrium formate, praseodymium formate, ytterbium formate, cerium acetate, yttrium acetate, praseodymium acetate, neodymium acetate, ytterbium acetate, cerium lactate, yttrium lactate, ytterbium lactate, neodymium lactate Organic acid salts such as praseodymium lactate and ytterbium oxalate; inorganic acid salts or inorganic compounds such as cerium nitrate, yttrium nitrate, neodymium nitrate, samarium nitrate, ytterbium nitrate, praseodymium nitrate, neodymium amidosulfate and ytterbium amidosulfate Can do. It is more preferable to use a rare earth metal nitrate as the rare earth metal compound (C).

本発明の複層塗膜形成方法に用いられる水性塗料組成物は、希土類金属化合物(C)に加えてさらに亜鉛化合物(D)を含有していてもよい。さらに亜鉛化合物(D)が含まれることによって、前処理工程における電解反応生成物として、アルカリ難溶性の希土類金属―亜鉛の複合化合物を形成することができる。このため、複層塗膜のより高い密着性および電着塗装後の防錆性を発現することができる。   The aqueous coating composition used in the multilayer coating film forming method of the present invention may further contain a zinc compound (D) in addition to the rare earth metal compound (C). Further, by including the zinc compound (D), it is possible to form a rare-earth alkali-zinc composite compound having poor alkali solubility as an electrolytic reaction product in the pretreatment step. For this reason, higher adhesion of the multilayer coating film and rust prevention after electrodeposition coating can be expressed.

希土類金属化合物(C)と併用する目的の亜鉛化合物(D)としては、例えば蟻酸亜鉛、酢酸亜鉛などのカルボン酸塩、硝酸亜鉛あるいは硫酸亜鉛などの無機酸塩に代表される水溶性塩が挙げられる。さらに、塗料組成物中で亜鉛イオンを生じる酸化亜鉛と縮合リン酸亜鉛との複合化合物、および(ポリ)リン酸亜鉛、リンモリブデン酸亜鉛などを用いることもできる。これらの亜鉛化合物は、一般に顔料(水分散性化合物)として用いることができるものである。   Examples of the zinc compound (D) intended to be used in combination with the rare earth metal compound (C) include water-soluble salts represented by carboxylate salts such as zinc formate and zinc acetate, and inorganic acid salts such as zinc nitrate and zinc sulfate. It is done. Furthermore, a composite compound of zinc oxide and condensed zinc phosphate that generates zinc ions in the coating composition, (poly) zinc phosphate, zinc phosphomolybdate, and the like can also be used. These zinc compounds can generally be used as pigments (water-dispersible compounds).

上述のように希土類金属化合物(C)および亜鉛化合物(D)は、いずれも水溶性もしくは水分散性化合物であるのが好ましい。
希土類化合物(C)に加えて亜鉛化合物(D)を使用する場合は、希土類金属の重量:銅または亜鉛の重量比が1:20〜20:1で配合されていることが好ましい。
As described above, both the rare earth metal compound (C) and the zinc compound (D) are preferably water-soluble or water-dispersible compounds.
When the zinc compound (D) is used in addition to the rare earth compound (C), it is preferable that the weight ratio of the rare earth metal: copper or zinc is 1:20 to 20: 1.

希土類金属の重量:亜鉛の重量の比が上記範囲を超える場合は、複合化合物の形成による密着性および耐食性の向上効果が低下する恐れがある。なお、上記重量比は、希土類金属化合物(C)、及び亜鉛化合物(D)それぞれに含まれる金属量を算出し、各成分の金属量の重量比を示したものである。   When the ratio of the weight of the rare earth metal to the weight of zinc exceeds the above range, the effect of improving the adhesion and corrosion resistance due to the formation of the composite compound may be reduced. In addition, the said weight ratio calculates the metal amount contained in each of rare earth metal compound (C) and zinc compound (D), and shows the weight ratio of the metal amount of each component.

本発明に用いられる水性塗料組成物は、水性塗料組成物中に含まれる希土類金属化合物(C)の量が、塗料固形分に対して、希土類金属に換算して合計0.05〜10重量%である。   In the aqueous coating composition used in the present invention, the amount of the rare earth metal compound (C) contained in the aqueous coating composition is 0.05 to 10% in total in terms of the rare earth metal with respect to the solid content of the coating. It is.

水性塗料組成物がさらに亜鉛化合物(D)を含む場合は、これらの金属は、塗料固形分に対して、金属量に換算して、合計0.05〜10重量%含むことが好ましい。金属換算量が0.05重量%未満では、十分な下地防錆に基づく耐食性が得られない場合がある。また、金属換算量が10重量%を超えると、水性塗料組成物成分の分散安定性や電着塗膜の平滑性および耐水性が低下する場合がある。希土類金属(C)の金属換算量、希土類金属化合物(C)および亜鉛化合物(D)の金属換算量は、より好ましくは0.08〜8重量%であり、さらに好ましくは0.1〜5重量%である。   When the aqueous coating composition further contains a zinc compound (D), these metals are preferably included in a total amount of 0.05 to 10% by weight in terms of the amount of metal with respect to the solid content of the coating. When the metal conversion amount is less than 0.05% by weight, corrosion resistance based on sufficient base rust prevention may not be obtained. On the other hand, when the metal equivalent exceeds 10% by weight, the dispersion stability of the aqueous coating composition component, the smoothness of the electrodeposition coating film, and the water resistance may be lowered. The metal equivalent amount of the rare earth metal (C), the metal equivalent amount of the rare earth metal compound (C) and the zinc compound (D) is more preferably 0.08 to 8% by weight, still more preferably 0.1 to 5% by weight. %.

上記希土類金属化合物(C)、希土類金属化合物(C)および亜鉛化合物(D)の、水性塗料組成物への導入は、特に制限されるものではなく、通常の顔料分散法と同様にして行うことができる。例えば、分散用樹脂中に予め希土類金属化合物(C)、そして必要に応じた亜鉛化合物(D)を分散させて分散ペーストを作製し、この分散ペーストを水性塗料組成物へ配合することができる。また、希土類金属化合物(C)または亜鉛化合物(D)として、水溶性希土類金属化合物または水溶性亜鉛化合物を用いる場合には、塗料用樹脂エマルジョン作製後にそのまま加えてもよい。なお、顔料分散用樹脂としては、カチオン電着塗料用の一般的なもの(エポキシ系スルホニウム塩型樹脂、エポキシ系4級アンモニウム塩型樹脂、エポキシ系3級アミン型樹脂、アクリル系4級アンモニウム塩型樹脂など)が用いることができる。   The introduction of the rare earth metal compound (C), the rare earth metal compound (C) and the zinc compound (D) into the aqueous coating composition is not particularly limited, and should be performed in the same manner as a normal pigment dispersion method. Can do. For example, a rare earth metal compound (C) and a zinc compound (D) as required can be dispersed in a dispersion resin in advance to prepare a dispersion paste, and this dispersion paste can be blended into an aqueous coating composition. Further, when a water-soluble rare earth metal compound or a water-soluble zinc compound is used as the rare earth metal compound (C) or the zinc compound (D), it may be added as it is after the preparation of the resin emulsion for paint. In addition, as a resin for pigment dispersion, a general one for cationic electrodeposition coating (epoxy sulfonium salt type resin, epoxy type quaternary ammonium salt type resin, epoxy type tertiary amine type resin, acrylic type quaternary ammonium salt) Type resin).

その他の成分
本発明の塗装方法において用いられる水性塗料組成物においては、必ずしも必要成分ではないが、目的に応じて、さらに顔料を配合してもよい。但しここでいう顔料には、希土類金属化合物(C)及び亜鉛化合物(D)は含まれない。顔料としては、通常塗料に使用されるものならばとくに制限なく使用することができる。その例としては、カーボンブラック、二酸化チタン、グラファイト等の着色顔料、カオリン、珪酸アルミ(クレー)、タルク、炭酸カルシウム、また無機コロイド(シリカゾル、アルミナゾル、チタンゾル、ジルコニアゾルなど)等の体質顔料、リン酸系顔料(リンモリブデン酸アルミニウム、(ポリ)リン酸亜鉛、リン酸カルシウムなど)やモリブデン酸系顔料(リンモリブデン酸アルミニウム、リンモリブデン酸亜鉛など)、等の重金属フリー型防錆顔料が挙げられる。
Other components The water-based coating composition used in the coating method of the present invention is not necessarily a necessary component, but a pigment may be further blended depending on the purpose. However, the pigment here does not include the rare earth metal compound (C) and the zinc compound (D). As the pigment, any pigment that is usually used in paints can be used without particular limitation. Examples include pigments such as carbon black, titanium dioxide and graphite, extender pigments such as kaolin, aluminum silicate (clay), talc, calcium carbonate, and inorganic colloids (silica sol, alumina sol, titanium sol, zirconia sol, etc.), phosphorus Examples include heavy metal-free rust preventive pigments such as acid pigments (aluminum phosphomolybdate, (poly) zinc phosphate, calcium phosphate, etc.) and molybdate pigments (aluminum phosphomolybdate, zinc phosphomolybdate, etc.).

さらにビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシランなどのシランカップリング剤も合わせて使用できる。これら無機コロイドおよびシランカップリング剤を併用すると、下地塗膜密着性の向上などに作用し、結果として耐食性が向上する効果がもたらされる利点がある。   Furthermore, silane coupling agents such as vinyltriethoxysilane and γ-methacryloxypropyltrimethoxysilane can also be used. When these inorganic colloids and silane coupling agents are used in combination, there is an advantage that the effect of improving the adhesion of the base coating film and the effect of improving the corrosion resistance as a result.

これらの中でも、本発明の水性塗料組成物に使用する顔料としてとくに重要なものは、二酸化チタン、カーボンブラック、珪酸アルミ(クレー)、シリカ、リンモリブデン酸アルミ、ポリリン酸亜鉛である。とくに二酸化チタン、カーボンブラックは着色顔料として隠蔽性が高く、しかも安価であることから、電着塗料用に最適である。
なお、上記顔料は単独で使用することもできるが、目的に合わせて複数種を使用するのが一般的である。
Among these, titanium dioxide, carbon black, aluminum silicate (clay), silica, aluminum phosphomolybdate, and zinc polyphosphate are particularly important as pigments used in the aqueous coating composition of the present invention. In particular, titanium dioxide and carbon black are most suitable for electrodeposition paints because they are highly concealed as color pigments and are inexpensive.
In addition, although the said pigment can also be used independently, it is common to use multiple types according to the objective.

前記水性塗料組成物中に含有される前記顔料(P)および樹脂固形分(V)の合計重量(P+V)に対する前記顔料の重量比{P/(P+V)}(以後、PWCと称する)が、5〜30重量%の範囲にあることが好ましい。但し、ここでいう顔料には、希土類金属化合物(C)、亜鉛化合物(D)は含まないものと定義する。   The weight ratio {P / (P + V)} of the pigment to the total weight (P + V) of the pigment (P) and the resin solid content (V) contained in the aqueous coating composition (hereinafter referred to as PWC) is: It is preferably in the range of 5 to 30% by weight. However, it is defined that the pigment here does not include the rare earth metal compound (C) and the zinc compound (D).

上記重量比が5重量%未満では、顔料不足により塗膜に対する水、酸素などの腐食要因の遮断性が過度に低下し、実用レベルでの耐候性や耐食性を発現できないことがある。
ただし、そのような不都合を生じない場合は、顔料濃度を極力ゼロとし、クリア、もしくはクリアに近い水性塗料組成物を調製して、本発明に用いてもよい。
また、上記重量比が30重量%を超えると、顔料過多により硬化時の粘性増大を招き、フロー性が低下して塗膜外観が著しく悪くなることがあるので注意を要する。
When the weight ratio is less than 5% by weight, the barrier property against corrosion factors such as water and oxygen on the coating film is excessively lowered due to insufficient pigment, and weather resistance and corrosion resistance at a practical level may not be exhibited.
However, if such inconvenience does not occur, the pigment concentration may be set to zero as much as possible, and a clear or nearly clear aqueous coating composition may be prepared and used in the present invention.
Further, if the weight ratio exceeds 30% by weight, it is necessary to pay attention because excessive pigment causes an increase in viscosity at the time of curing, resulting in a decrease in flowability and a marked deterioration in the appearance of the coating film.

上記樹脂固形分(V)は、水性塗料の主樹脂である前記(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂、および(B)硬化剤の他、顔料分散樹脂をも含めた電着塗膜を構成する全樹脂バインダーの合計固形分量を示す。   The resin solid content (V) is an electrodeposition including a pigment dispersion resin in addition to the (A) gallic acid / amine-modified diglycidyl ether type epoxy resin, which is a main resin of an aqueous paint, and (B) a curing agent. The total solid content of all resin binders constituting the coating film is shown.

水性塗料組成物
上記水性塗料組成物は、全固形分濃度が5〜40重量%、好ましくは、10〜25重量%の範囲となるように調整する。全固形分濃度の調節には水性媒体(水単独かまたは水と親水性有機溶剤との混合物)を用いる。
Aqueous paint composition The aqueous paint composition is adjusted so that the total solid content is in the range of 5 to 40 wt%, preferably 10 to 25 wt%. An aqueous medium (water alone or a mixture of water and a hydrophilic organic solvent) is used to adjust the total solid concentration.

また水性塗料組成物のpHは、5〜7であるのが好ましく、5.5〜6.5であるのがさらに好ましい。pHが5未満であると、電着塗装効率や膜外観が低下することがある。また7を超えると、塗料組成物中の希土類金属イオン、基体樹脂エマルションの安定性が低下する傾向がある。pHが高い場合は、硝酸、硫酸などの無機酸、あるいは蟻酸、酢酸などの有機酸を用いてpHを下げることができる。pHが低い場合は、アミンなどの有機塩基、あるいはアンモニア、水酸化ナトリウムなどの無機塩基を用いてpHを上げることができる。これらの無機酸、有機酸、無機塩基および有機塩基を必要に応じた量で用いることによりpHを調整することができる。使用する酸および塩基の種類は、特に制限されるものではない。   Further, the pH of the aqueous coating composition is preferably 5 to 7, and more preferably 5.5 to 6.5. If the pH is less than 5, electrodeposition coating efficiency and film appearance may be lowered. If it exceeds 7, the stability of the rare earth metal ions and the base resin emulsion in the coating composition tends to be lowered. When the pH is high, the pH can be lowered using an inorganic acid such as nitric acid or sulfuric acid, or an organic acid such as formic acid or acetic acid. When the pH is low, the pH can be increased using an organic base such as amine or an inorganic base such as ammonia or sodium hydroxide. The pH can be adjusted by using these inorganic acids, organic acids, inorganic bases and organic bases in amounts as required. The type of acid and base used is not particularly limited.

本発明に用いる水性塗料組成物は、塗料伝導度は1,500〜4,000μS/cmであるのが好ましい。塗料伝導度が1,500μS/cm未満では、前処理工程により得られる効果が不充分になり、また前処理皮膜や電着塗膜のつきまわり性が不足する恐れがある。また4,000μS/cmを超えると、前処理皮膜や電着塗膜の外観不良を招く恐れがあるので好ましくない。なお、本明細書において「前処理皮膜」とは、希土類金属化合物(C)の電解生成物、希土類金属化合物(C)および亜鉛化合物(D)の電解生成物が、被塗物上に析出することにより得られる被膜をいう。   The aqueous coating composition used in the present invention preferably has a coating conductivity of 1,500 to 4,000 μS / cm. When the paint conductivity is less than 1,500 μS / cm, the effect obtained by the pretreatment process becomes insufficient, and the throwing power of the pretreatment film or the electrodeposition film may be insufficient. On the other hand, if it exceeds 4,000 μS / cm, the appearance of the pretreatment film or electrodeposition coating film may be deteriorated, which is not preferable. In the present specification, the term “pretreatment film” means that an electrolysis product of a rare earth metal compound (C), an electrolysis product of a rare earth metal compound (C), and a zinc compound (D) are deposited on an object to be coated. The film obtained by this.

水性塗料組成物の塗料電導度は、市販の導電率計を使用して測定することができる。導電率計として、例えば東亜電波工業株式会社製CM−305などが挙げられる。
さらに塗料組成物中には少量の添加剤を導入しても良い。添加剤の例としては紫外線吸収剤、酸化防止剤、界面活性剤、塗膜表面平滑剤、硬化触媒(ジブチル錫オキサイド、ジオクチル錫ジラウレート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジベンゾエートあるいはジオクチル錫ジベンゾエートなどの有機スズ化合物)などを挙げることができる。
The paint conductivity of the aqueous paint composition can be measured using a commercially available conductivity meter. Examples of the conductivity meter include CM-305 manufactured by Toa Denpa Kogyo Co., Ltd.
Further, a small amount of additives may be introduced into the coating composition. Examples of additives include UV absorbers, antioxidants, surfactants, coating surface smoothers, curing catalysts (dibutyltin oxide, dioctyltin dilaurate, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin diacetate, dibutyltin And organic tin compounds such as dibenzoate or dioctyltin dibenzoate).

複層塗膜形成方法
本発明の水性塗料組成物に被塗物を浸漬させて、以下の複層塗膜形成方法により塗装が行われる。
上記複層塗膜形成方法とは、
上記水性塗料組成物中において、被塗物を陰極として、50V未満の電圧を印加する前処理工程、および
上記水性塗料組成物中において、被塗物を陰極として50〜450Vの電圧を印加する、電着工程、を包含する。
Multilayer coating film forming method The object to be coated is immersed in the aqueous coating composition of the present invention, and coating is performed by the following multilayer coating film forming method.
With the multilayer coating film forming method,
In the aqueous coating composition, a pretreatment step in which a voltage of less than 50 V is applied with the article to be coated as a cathode, and in the aqueous coating composition, a voltage of 50 to 450 V is applied with the article to be coated as a cathode. An electrodeposition step.

被塗物として、未処理の金属素材、例えば冷延鋼板、高強度鋼、高張力鋼、鋳鉄、亜鉛及び亜鉛めっき鋼、アルミニウム及びアルミニウム合金等が挙げられる。これらの中でも、本発明の方法によって特に優れた耐食効果を得ることができる素材は、冷延鋼板である。   Examples of the object to be coated include untreated metal materials such as cold rolled steel sheet, high strength steel, high tensile steel, cast iron, zinc and galvanized steel, aluminum and aluminum alloy. Among these, a cold-rolled steel sheet is a material that can obtain a particularly excellent corrosion resistance effect by the method of the present invention.

上記方法により調製された本発明の水性塗料組成物に、被塗物を陰極として浸漬する。そして前処理工程において、50V未満の電圧を印加して、被塗物に対して陰極電解を行うことによって、主に希土類金属化合物(C)の電解反応生成物、希土類金属化合物(C)および亜鉛化合物(D)の電解反応生成物を、極めて優先的に析出させることが可能であることが見いだされた。   The object to be coated is immersed in the aqueous coating composition of the present invention prepared by the above method as a cathode. In the pretreatment step, by applying a voltage of less than 50 V and cathodic electrolysis is performed on the article to be coated, the electrolytic reaction product of the rare earth metal compound (C), the rare earth metal compound (C) and zinc are mainly used. It has been found that the electrolytic reaction product of compound (D) can be deposited very preferentially.

印加電圧が50V以上であると、上記複合金属水酸化物の析出よりも、むしろ塗料ビヒクルである(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂および(B)硬化剤の析出が顕著化するので、前処理皮膜形成の目的に反するために好ましくない。   When the applied voltage is 50 V or higher, the precipitation of (A) gallic acid / amine-modified diglycidyl ether type epoxy resin and (B) curing agent, which is a paint vehicle, rather than the precipitation of the above composite metal hydroxide becomes remarkable. Therefore, it is not preferable because it is contrary to the purpose of forming the pretreatment film.

希土類金属化合物(C)の電解反応生成物、希土類金属化合物(C)の電解反応生成物、または希土類金属化合物(C)および亜鉛化合物(D)の電解反応生成物の選択的析出を可能とする前処理工程の印加電圧として、好ましい範囲は1〜40V、より好ましい範囲は1〜20Vである。   Enables selective deposition of an electrolysis reaction product of the rare earth metal compound (C), an electrolysis reaction product of the rare earth metal compound (C), or an electrolysis reaction product of the rare earth metal compound (C) and the zinc compound (D). The applied voltage in the pretreatment step is preferably 1 to 40V, and more preferably 1 to 20V.

前処理工程では、水性塗料組成物を含む浴槽の浴温を15〜35℃に調整した上で行うのが好ましい。前処理工程に続いて行われる電着塗装において通常用いられる浴温と同程度の温度で前処理工程を行うのが、前処理工程後に連続して行われる電着塗装工程との関係上好ましいからである。   In the pretreatment step, the bath temperature of the bath containing the aqueous coating composition is preferably adjusted to 15 to 35 ° C. It is preferable to perform the pretreatment step at the same temperature as the bath temperature normally used in the electrodeposition coating performed after the pretreatment step because of the relationship with the electrodeposition coating step continuously performed after the pretreatment step. It is.

前処理における通電時間は、通常10〜300秒、好ましくは30〜180秒である。
処理時間が短すぎる場合は皮膜生成しないか、生成しても厚みが不足することとなり、耐食性が劣る恐れがある。また通電時間が長すぎる場合は、時として無光沢のヤケあるいはコゲと呼ばれる外観不良が発生する。また、過剰の処理時間は生産性を極端に低下させる恐れがあり好ましくない。
The energization time in the pretreatment is usually 10 to 300 seconds, preferably 30 to 180 seconds.
If the treatment time is too short, the film is not formed, or even if it is formed, the thickness is insufficient, and the corrosion resistance may be inferior. If the energization time is too long, an appearance defect called matte burn or burnt sometimes occurs. In addition, an excessive treatment time is not preferable because the productivity may be extremely reduced.

前処理における、希土類金属化合物(C)、あるいは希土類金属化合物(C)および(D)銅化合物、または希土類金属化合物(C)および亜鉛化合物(D)の電解反応生成物の析出量を、0.01mg/m以上にすることによって、特異的に高い防錆皮膜を形成することができる。好ましい析出量は、0.1〜100mg/mである。 The precipitating amount of the rare earth metal compound (C), the rare earth metal compound (C) and (D) copper compound, or the electrolytic reaction product of the rare earth metal compound (C) and zinc compound (D) is set to 0.0. By setting it to 01 mg / m 2 or more, a specifically high rust preventive film can be formed. A preferable precipitation amount is 0.1 to 100 mg / m 2 .

5mg/m未満においては、形成皮膜による下地密着性が低下するために、必要な防錆性が発現しない。逆に、1,000mg/mを超えると、皮膜の表面平滑性が損なわれるので、電着塗膜形成後の外観が低下する場合があるので好ましくない。 If it is less than 5 mg / m 2 , the underlying adhesion due to the formed film is lowered, so that the necessary rust preventive properties are not exhibited. On the other hand, if it exceeds 1,000 mg / m 2 , the surface smoothness of the film is impaired, and the appearance after the electrodeposition coating film formation may be deteriorated.

本発明の前処理工程によって、電解生成物が析出する機構は以下のように考えられる。前処理工程における上記電解条件によって、陰極の金属表面では溶存酸素や水素イオン、水等の浴中化学種が還元を受け、水酸化物イオン(OH)が生成する。この被処理金属表面で生成した水酸化物イオンが、まず該金属表面近傍の希土類金属イオンと反応することで、希土類金属の水酸化物の沈殿が生成し、皮膜として金属表面に析出する。 The mechanism by which the electrolytic product is precipitated by the pretreatment process of the present invention is considered as follows. Depending on the electrolysis conditions in the pretreatment step, dissolved oxygen, hydrogen ions, water and other chemical species in the bath are reduced on the metal surface of the cathode, and hydroxide ions (OH ) are generated. The hydroxide ions generated on the surface of the metal to be treated first react with the rare earth metal ions in the vicinity of the metal surface, whereby a precipitate of the rare earth metal hydroxide is generated and deposited as a film on the metal surface.

こうして析出した電解生成物である、希土類金属の水酸化物からなる皮膜は、下地の基材および電着塗膜との密着性に特に優れており、電着塗装後の焼付け乾燥過程において、少なくとも一部が、希土類の水酸化物より脱水生成した酸化物からなる被膜に変化し、高い耐食性を示すようになると考えられる。   A film made of the rare earth metal hydroxide, which is an electrolytic product thus deposited, is particularly excellent in adhesion to the base material and the electrodeposition coating film, and at least in the baking and drying process after electrodeposition coating. It is considered that a part of the film changes from a rare earth hydroxide to a film made of oxide dehydrated and exhibits high corrosion resistance.

また、水性塗料組成物中にさらに亜鉛化合物(D)を含めることによって、電解反応生成物として、アルカリ難溶性の希土類金属―亜鉛の複合化合物を析出させることができる。こうして得られる複合化合物は、得られる複層塗膜のより高い密着性および電着塗装後の耐食性を発現することができる。   Further, by further including the zinc compound (D) in the aqueous coating composition, it is possible to deposit a rare-earth alkali-zinc complex compound as an electrolytic reaction product. The composite compound thus obtained can exhibit higher adhesion of the resulting multilayer coating and corrosion resistance after electrodeposition coating.

しかも本発明の前処理工程の上記電解条件においては、主に上記前処理錆皮膜が優先的に形成し、(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂および(B)硬化剤の析出による電着塗膜の形成は抑制される傾向にあるので、極めて好都合である。   Moreover, in the electrolysis conditions of the pretreatment step of the present invention, the pretreatment rust film is mainly formed preferentially, and (A) precipitation of gallic acid / amine-modified diglycidyl ether type epoxy resin and (B) curing agent Since the formation of the electrodeposition coating film due to is apt to be suppressed, it is very convenient.

本発明の電着塗装工程では、印加電圧を50〜450V、好ましくは100〜400Vまで昇圧することで、塗料ビヒクルである(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹および(B)硬化剤、そして必要に応じた顔料を、優先的に析出させることができる。印加電圧が50V未満では、上記電着塗料のビヒクル成分の析出性が不足する恐れがある。また印加電圧が450Vを超えると、上記ビヒクル成分が適正量を超えて析出する結果、実用に耐えない膜外観を呈する恐れがあるので好ましくない。   In the electrodeposition coating step of the present invention, the applied voltage is increased to 50 to 450 V, preferably 100 to 400 V, so that (A) a gallic acid / amine-modified diglycidyl ether type epoxy resin and (B) curing are applied. Agents and optionally pigments can be preferentially deposited. If the applied voltage is less than 50 V, the precipitation of the vehicle component of the electrodeposition paint may be insufficient. On the other hand, when the applied voltage exceeds 450 V, the above-mentioned vehicle component is deposited in excess of an appropriate amount, and as a result, a film appearance that cannot be put into practical use may be exhibited.

通電時間は30〜300秒、好ましくは30〜180秒である。処理時間が30秒より短い場合は、電着塗膜が生成しないか、生成しても厚みが不足しているために耐食性が劣る恐れがある。また過剰の処理時間は生産性を極端に低下させる恐れがあり好ましくない。   The energization time is 30 to 300 seconds, preferably 30 to 180 seconds. When the treatment time is shorter than 30 seconds, the electrodeposition coating film is not generated, or even if it is generated, the thickness is insufficient, so that the corrosion resistance may be inferior. Further, excessive treatment time is not preferable because it may cause extremely low productivity.

こうして得られる未硬化複層塗膜を、120〜200℃、好ましくは140〜180℃にて硬化反応を行うことによって、高い架橋度の電着硬化塗膜を得ることができる。ただし、200℃を超えると、塗膜が過度に堅く、かつ脆くなり、一方120℃未満では硬化が充分でなく、耐溶剤性や膜強度等の膜物性が低くなる恐れがあり好ましくない。   By subjecting the uncured multilayer coating film thus obtained to a curing reaction at 120 to 200 ° C., preferably 140 to 180 ° C., an electrodeposition cured coating film having a high degree of crosslinking can be obtained. However, if it exceeds 200 ° C., the coating film becomes excessively hard and brittle, while if it is less than 120 ° C., curing is not sufficient, and film physical properties such as solvent resistance and film strength may be lowered.

以下に製造例、実施例及び比較例を挙げて本発明を更に詳しく説明する。各例中の「部」は「重量部」を表し、「%」は「重量%」を表す。   Hereinafter, the present invention will be described in more detail with reference to production examples, examples and comparative examples. In each example, “part” represents “part by weight”, and “%” represents “% by weight”.

製造例1(没食子酸・オキサゾリドン環変性アミン化エポキシ樹脂)
成分(a)の製造
攪拌機、デカンター、窒素導入管、温度計および滴下ロートを備え付けた反応容器に、エポキシ当量188のビスフェノールA型エポキシ樹脂(商品名DER−331J、ダウケミカル社製)2400部とメタノール141部、メチルイソブチルケトン168部、ジラウリン酸ジブチル錫0.5部を仕込み、40℃で攪拌し均一に溶解させた後、2,4−/2,6−トリレンジイソシアネート(80/20重量比混合物)320部を30分間かけて滴下したところ発熱し、70℃まで上昇した。これにN,N−ジメチルベンジルアミン5部を加え、系内の温度を120℃まで昇温し、メタノールを留去しながらエポキシ当量が232になるまで120℃で3時間反応を続けて、(a)分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂を得た。また赤外吸収スペクトル等の測定から、樹脂中にオキサゾリドン環(吸収波数;1750cm−1)を有していることが確認された。
Production Example 1 (Gallic acid / oxazolidone ring-modified aminated epoxy resin)
Production of component (a) In a reaction vessel equipped with a stirrer, decanter, nitrogen inlet tube, thermometer and dropping funnel, 2400 parts of bisphenol A type epoxy resin having an epoxy equivalent of 188 (trade name DER-331J, manufactured by Dow Chemical Co., Ltd.) After 141 parts of methanol, 168 parts of methyl isobutyl ketone and 0.5 part of dibutyltin dilaurate were charged and stirred at 40 ° C. to dissolve uniformly, 2,4- / 2,6-tolylene diisocyanate (80/20 wt. When 320 parts of a specific mixture) were added dropwise over 30 minutes, heat was generated and the temperature rose to 70 ° C. To this was added 5 parts of N, N-dimethylbenzylamine, the temperature in the system was raised to 120 ° C., and the reaction was continued at 120 ° C. for 3 hours until the epoxy equivalent reached 232 while distilling off methanol. a) A diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings in the molecular chain was obtained. Also from the measurement, such as infrared absorption spectrum, oxazolidone ring (absorption wave; 1750 cm -1) in the resin was confirmed to have.

反応中間体(X)の製造(成分(a)と(b)及び(c)との反応)
上記成分(a)に対して、さらにメチルイソブチルケトン644部、成分(b):2−エチルヘキサン酸413部、成分(c):ビスフェノールA341部を加え、系内の温度を120℃に保持し、エポキシ当量が840になるまで反応させた後、系内の温度が90℃になるまで冷却した。
Production of reaction intermediate (X) (reaction of components (a) with (b) and (c))
To the component (a), 644 parts of methyl isobutyl ketone, component (b): 413 parts of 2-ethylhexanoic acid, and component (c): 341 parts of bisphenol A are added, and the temperature in the system is kept at 120 ° C. The reaction was continued until the epoxy equivalent reached 840, and then the system was cooled to 90 ° C.

水性塗料用樹脂の製造(反応中間体(X)と成分(d)及び(e)との反応)
ついで成分(d):没食子酸144部、成分(e1):N−メチルエタノールアミン142部、成分(e2):ジ(2−エチルヘキシル)アミン157部、及び成分(e3):ジエチレントリアミンジケチミン(固形分73%のメチルイソブチルケトン溶液)197部の混合物を添加し120℃で1時間反応させた。その後、メチルイソブチルケトン145部で希釈し、固形分80重量%の水性塗料用樹脂ワニスを得た。この樹脂の数平均分子量は1,800、アミン価56、水酸基価は180であった。
Production of waterborne resin (reaction of reaction intermediate (X) with components (d) and (e))
Subsequently, component (d): 144 parts of gallic acid, component (e1): 142 parts of N-methylethanolamine, component (e2): 157 parts of di (2-ethylhexyl) amine, and component (e3): diethylenetriamine diketimine (solid A mixture of 197 parts of a methyl isobutyl ketone solution (min. 73%) was added and reacted at 120 ° C. for 1 hour. Then, it diluted with 145 parts of methyl isobutyl ketone, and obtained the resin varnish for water-based paints of 80 weight% of solid content. The number average molecular weight of this resin was 1,800, the amine value was 56, and the hydroxyl value was 180.

比較製造例1(従来型アミン変性エポキシ樹脂の製造)
成分(a)の製造
攪拌機、デカンター、窒素導入管、温度計および滴下ロートを備え付けた反応容器に、エポキシ当量188のビスフェノールA型エポキシ樹脂(商品名DER−331J、ダウケミカル社製)2,400部とメタノール141部、メチルイソブチルケトン168部、ジラウリン酸ジブチル錫0.5部を仕込み、40℃で攪拌し均一に溶解させた後、2,4−/2,6−トリレンジイソシアネート(80/20重量比混合物)320部を30分間かけて滴下したところ発熱し、70℃まで上昇した。これにN,N−ジメチルベンジルアミン5部を加え、系内の温度を120℃まで昇温し、メタノールを留去しながらエポキシ当量が232になるまで120℃で3時間反応を続けて、(a)分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂を得た。また赤外吸収スペクトル等の測定から、樹脂中にオキサゾリドン環(吸収波数;1750cm−1)を有していることが確認された。
Comparative Production Example 1 ( Production of conventional amine-modified epoxy resin)
Production of component (a) In a reaction vessel equipped with a stirrer, decanter, nitrogen inlet tube, thermometer and dropping funnel, bisphenol A type epoxy resin having an epoxy equivalent of 188 (trade name DER-331J, manufactured by Dow Chemical Co., Ltd.) 2,400 Of methanol, 141 parts of methanol, 168 parts of methyl isobutyl ketone, and 0.5 part of dibutyltin dilaurate, and stirred at 40 ° C. to dissolve uniformly, then 2,4- / 2,6-tolylene diisocyanate (80 / When 20 parts by weight of the mixture (20 weight ratio mixture) was added dropwise over 30 minutes, heat was generated and the temperature rose to 70 ° C. To this was added 5 parts of N, N-dimethylbenzylamine, the temperature in the system was raised to 120 ° C., and the reaction was continued at 120 ° C. for 3 hours until the epoxy equivalent reached 232 while distilling off methanol. a) A diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings in the molecular chain was obtained. Also from the measurement, such as infrared absorption spectrum, oxazolidone ring (absorption wave; 1750 cm -1) in the resin was confirmed to have.

反応中間体(Y)の製造(成分(a)と(b)及び(c)との反応)
上記成分(a)に対して、さらにメチルイソブチルケトン644部、成分(b):2−エチルヘキサン酸413部、成分(c):ビスフェノールA341部を加え、系内の温度を120℃に保持し、エポキシ当量が840になるまで反応させた後、系内の温度が90℃になるまで冷却した。
Production of reaction intermediate (Y) (reaction of components (a) with (b) and (c))
To the component (a), 644 parts of methyl isobutyl ketone, component (b): 413 parts of 2-ethylhexanoic acid, and component (c): 341 parts of bisphenol A are added, and the temperature in the system is kept at 120 ° C. The reaction was continued until the epoxy equivalent reached 840, and then the system was cooled to 90 ° C.

水性塗料用樹脂の製造(反応中間体(Y)と成分(e)との反応)
ついで成分(e1):N−メチルエタノールアミン148部、成分(e2):ジ(2−エチルヘキシル)アミン386部、及び成分(e3):ジエチレントリアミンジケチミン(固形分73%のメチルイソブチルケトン溶液)205部の混合物を添加し120℃で1時間反応させた。その後、メチルイソブチルケトン223部で希釈し、固形分80重量%の水性塗料用樹脂ワニスを得た。この樹脂の数平均分子量は1,840、アミン価70、水酸基価は160であった。
Manufacture of resin for water-based paint (reaction between reaction intermediate (Y) and component (e))
Next, component (e1): N-methylethanolamine 148 parts, component (e2): di (2-ethylhexyl) amine 386 parts, and component (e3): diethylenetriamine diketimine (methyl isobutyl ketone solution with a solid content of 73%) 205 Part of the mixture was added and reacted at 120 ° C. for 1 hour. Thereafter, the resultant was diluted with 223 parts of methyl isobutyl ketone to obtain a resin varnish for an aqueous paint having a solid content of 80% by weight. The number average molecular weight of this resin was 1,840, the amine value was 70, and the hydroxyl value was 160.

製造例2(ブロックポリイソシアネート硬化剤の製造)
攪拌機、窒素導入管、冷却管及び温度計を備え付けた反応容器にイソホロンジイソシアネート222部を入れ、メチルイソブチルケトン56部で希釈した後ブチル錫ラウレート0.2部を加え、50℃まで昇温の後、メチルエチルケトオキシム17部を内容物温度が70℃を超えないように加えた。そして赤外吸収スペクトルによりイソシアネート残基の吸収が実質上消滅するまで70℃で1時間保温し、その後n−ブタノール43部で希釈することによって固形分70%の目的のブロックポリイソシアネートを得た。
Production Example 2 ( Production of Block Polyisocyanate Curing Agent)
After adding 222 parts of isophorone diisocyanate to a reaction vessel equipped with a stirrer, nitrogen introducing pipe, cooling pipe and thermometer, diluting with 56 parts of methyl isobutyl ketone, adding 0.2 part of butyltin laurate and raising the temperature to 50 ° C 17 parts of methyl ethyl ketoxime was added such that the temperature of the contents did not exceed 70 ° C. Then, the infrared absorption spectrum was kept at 70 ° C. for 1 hour until the absorption of the isocyanate residue substantially disappeared, and then diluted with 43 parts of n-butanol to obtain the target block polyisocyanate having a solid content of 70%.

製造例3(製造例1の水性塗料用樹脂による樹脂エマルションの製造)
製造例1で得られた水性塗料用樹脂1,250部中へ、上記製造例2で製造したブロックポリイソシアネート硬化剤357部、酢酸20部を加えた後、イオン交換水で不揮発分32%まで希釈した後、減圧下で不揮発分36%まで濃縮し、カチオン変性エポキシ樹脂を主体とする水性エマルション(以下、E1と記す)を得た。
Production Example 3 (Production of Resin Emulsion with Water-Based Paint Resin of Production Example 1)
After adding 357 parts of the block polyisocyanate curing agent produced in Production Example 2 and 20 parts of acetic acid to 1,250 parts of the aqueous coating resin obtained in Production Example 1, the non-volatile content is reduced to 32% with ion-exchanged water. After dilution, the solution was concentrated to 36% non-volatile content under reduced pressure to obtain an aqueous emulsion (hereinafter referred to as E1) mainly composed of a cation-modified epoxy resin.

比較製造例2(比較製造例1の水性塗料用樹脂による樹脂エマルションの製造)
比較製造例1で得られた水性塗料用樹脂1,250部中へ、上記製造例2で製造したブロックポリイソシアネート硬化剤357部、酢酸20部を加えた後、イオン交換水で不揮発分32%まで希釈した後、減圧下で不揮発分36%まで濃縮し、カチオン変性エポキシ樹脂を主体とする水性エマルション(以下、E2と記す)を得た。
Comparative Production Example 2 (Production of Resin Emulsion with Aqueous Paint Resin of Comparative Production Example 1)
After adding 357 parts of the block polyisocyanate curing agent produced in Production Example 2 and 20 parts of acetic acid to 1,250 parts of the resin for water-based paint obtained in Comparative Production Example 1, the non-volatile content is 32% with ion-exchanged water. After dilution to a non-volatile content of 36% under reduced pressure, an aqueous emulsion mainly composed of a cation-modified epoxy resin (hereinafter referred to as E2) was obtained.

実施例及び比較例(水性塗料組成物の調製)
製造例2及び比較製造例2で得られた各種カチオン樹脂エマルション(E1〜E2)及び脱イオン水を使用してクリア塗料組成物(固形分濃度は全て20%)を調製した。各塗料中には硬化促進剤としてジブチル錫オキシドの乳化エマルションペーストを錫量にして塗料固形分量の1.5%になるように配合した。
Examples and Comparative Examples (Preparation of aqueous coating composition)
A clear coating composition (all solid content concentrations of 20%) was prepared using the various cationic resin emulsions (E1 to E2) and deionized water obtained in Production Example 2 and Comparative Production Example 2. In each paint, an emulsion emulsion paste of dibutyltin oxide was added as a hardening accelerator so that the amount of tin was 1.5% of the solid content of the paint.

希土類金属化合物、あるいは希土類金属化合物と亜鉛化合物は、酢酸塩または硝酸塩などは水溶性であるので、水性塗料組成物へ直接加えて、表1〜4に示す金属としての添加量(重量%)に調節することによって各水性塗料組成物を調製した。以上の各種材料の組み合わせは下記表1〜4に示した。   The rare earth metal compound, or the rare earth metal compound and the zinc compound are water-soluble in acetate or nitrate, so they are added directly to the water-based coating composition, so that the addition amount (% by weight) as a metal shown in Tables 1 to 4 Each aqueous coating composition was prepared by adjusting. The combinations of the above various materials are shown in Tables 1 to 4 below.

(複層塗膜の調製及び耐食試験)
実施例および比較例における各水性塗料組成物の調製においては、表1〜4に示すように、各希土類金属化合物を金属量に換算して0.5重量%含めた。また、亜鉛化合物を併用する場合(実施例6〜10、比較例6〜10)は、希土類金属化合物を金属量にして0.3重量%に変更した上で、さらに亜鉛化合物を金属量に換算して0.2重量%を含めた。こうして得られた水性塗料組成物を浴槽に注ぎ、陰極として表面未処理冷延鋼板を浸漬した。次いで、すべての実施例と比較例において、印加電圧を2段階にて昇圧することによって、前処理工程(印加電圧5V、通電時間60秒)及び電着塗装工程(印加電圧180V、通電時間150秒)を連続的に実施した。電着塗装工程における電着塗膜の乾燥膜厚が20μmになるように塗装した後、170×20分で硬化し、塗膜評価を行った。表1〜4に、実施例及び比較例の各水性塗料組成物から調製した複層塗膜の耐食試験結果を示した。
(Preparation of multilayer coating and corrosion resistance test)
In the preparation of each aqueous coating composition in Examples and Comparative Examples, as shown in Tables 1 to 4, each rare earth metal compound was included in an amount of 0.5% by weight in terms of metal amount. Moreover, when using a zinc compound together (Examples 6-10, Comparative Examples 6-10), after converting a rare earth metal compound into a metal amount and changing to 0.3% by weight, the zinc compound is further converted into a metal amount. 0.2% by weight was included. The aqueous coating composition thus obtained was poured into a bathtub, and a surface-untreated cold-rolled steel sheet was immersed as a cathode. Next, in all of the examples and comparative examples, the applied voltage was boosted in two stages, so that the pretreatment process (applied voltage 5 V, energization time 60 seconds) and the electrodeposition coating process (applied voltage 180 V, energization time 150 seconds). ) Was carried out continuously. After coating so that the dry film thickness of the electrodeposition coating film in an electrodeposition coating process might be 20 micrometers, it hardened | cured in 170 * 20 minutes and evaluated the coating film. Tables 1 to 4 show the corrosion resistance test results of the multilayer coating films prepared from the aqueous coating compositions of Examples and Comparative Examples.

Figure 2007314689
(注)各成分配合:表中の数値は金属量に換算した重量である。
Figure 2007314689
(Note) Composition of each component: The values in the table are weights converted to metal amounts.

Figure 2007314689
(注)各成分配合:表中の数値は金属量に換算した重量である。
Figure 2007314689
(Note) Composition of each component: The numerical values in the table are weights converted to metal amounts.

Figure 2007314689
(注)各成分配合:表中の数値は金属量に換算した重量である。
Figure 2007314689
(Note) Composition of each component: The values in the table are weights converted to metal amounts.

Figure 2007314689
(注)各成分配合:表中の数値は金属量に換算した重量である。
Figure 2007314689
(Note) Composition of each component: The values in the table are weights converted to metal amounts.

表中の評価試験の手順について以下に示す。
耐食試験
・塩水噴霧試験:ナイフにて素地に達するクロスカットを入れた塗板を、JIS Z 2371に準拠した塩水噴霧試験を行った。試験時間840時間において、下記項目について評価した。
・ブリスター評価:試験後の評価板片面全体における塗面のブリスター状態(個数)にて評価した。
◎;非常に少ない
○;少ない
△;やや多い
×;多い
・剥離評価:試験後の評価板を水洗、乾燥した後テープを剥離し、カット部からの片側最大剥離幅にて評価した(mm)。
◎:2mm未満
○:2〜3mm未満
△:3〜6mm未満
×:6mm以上
The procedure of the evaluation test in the table is shown below.
Corrosion resistance test / salt spray test: A salt spray test in accordance with JIS Z 2371 was performed on a coated plate with a crosscut reaching the substrate with a knife. The following items were evaluated at a test time of 840 hours.
-Blister evaluation: It evaluated by the blister state (number) of the coating surface in the whole evaluation board single side | surface after a test.
◎; Very little ○; Less △; Somewhat more ×; Many ・ Peeling evaluation: The evaluation plate after the test was washed with water and dried, and then the tape was peeled off, and evaluated by the maximum peel width on one side from the cut part (mm). .
◎: Less than 2 mm ○: Less than 2-3 mm △: Less than 3-6 mm ×: 6 mm or more

塗料電導度の測定
実施例及び比較例によって得られた水性塗料組成物200mlを含む電着浴において、25℃で、導電率計(東亜電波工業株式会社製 CM−305)を用いて電導度を測定した。
Measurement of paint conductivity In an electrodeposition bath containing 200 ml of the aqueous paint composition obtained in Examples and Comparative Examples, the conductivity was measured at 25 ° C. using a conductivity meter (CM-305, manufactured by Toa Denpa Kogyo Co., Ltd.). It was measured.

表1〜4から明らかなように、本発明の没食子酸・アミン変性エポキシ樹脂をバインダーとして用いた水性塗料組成物により得られる複層塗膜は、それぞれ相対する従来型アミン変性エポキシ樹脂を用いた水性塗料組成物により得られる複層塗膜と比較して、より優れた耐食性を有することが確認された。   As is clear from Tables 1 to 4, the multilayer coating film obtained from the aqueous coating composition using the gallic acid / amine-modified epoxy resin of the present invention as a binder used a conventional amine-modified epoxy resin that was opposed to each other. Compared with the multilayer coating film obtained by an aqueous coating composition, it was confirmed that it has superior corrosion resistance.

本発明の水性塗料組成物は、一種の水性塗料組成物を用いて、少なくとも2段階の印加電圧にて通電することによって、陰極電解処理(前処理工程)及び電着塗装工程を実用的に区分かつ連続的に実施することができる、複層塗膜形成方法により、前処理工程および電着塗装工程を効率的に統合しつつ、かつ従来よりも優れた塗膜密着性および耐食性を有する複層塗膜を得ることができる。
The water-based paint composition of the present invention is practically divided into a cathodic electrolysis process (pretreatment process) and an electrodeposition coating process by energizing at least two stages of applied voltage using a kind of water-based paint composition. In addition, the multi-layer coating film forming method that can be carried out continuously and efficiently integrates the pretreatment process and the electrodeposition coating process, and has a coating film adhesion and corrosion resistance superior to conventional ones. A coating film can be obtained.

Claims (4)

(A)没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂、(B)硬化剤および(C)希土類金属化合物を含有する水性塗料組成物であって、該没食子酸・アミン変性ジグリシジルエーテル型エポキシ樹脂(A)が、(a)式
Figure 2007314689
(式中、Rはジグリシジルエポキシ化合物のグリシジルオキシ基を除いた残基、R’はジイソシアネート化合物からイソシアネート基を除いた残基、nは正の整数を意味する。)を有する、分子鎖中に複数のオキサゾリドン環を含有するジグリシジルエーテル型エポキシ樹脂;(b)1価の活性水素化合物;(c)2価の活性水素化合物;(d)没食子酸および(e)第2級モノアミン化合物を反応させて得られる、数平均分子量1,000〜5,000の樹脂であることを特徴とする水性塗料組成物。
(A) An aqueous coating composition containing a gallic acid / amine-modified diglycidyl ether type epoxy resin, (B) a curing agent and (C) a rare earth metal compound, the gallic acid / amine modified diglycidyl ether type epoxy resin (A) is the formula (a)
Figure 2007314689
(Wherein R represents a residue obtained by removing a glycidyloxy group of a diglycidyl epoxy compound, R ′ represents a residue obtained by removing an isocyanate group from a diisocyanate compound, and n represents a positive integer). A diglycidyl ether type epoxy resin containing a plurality of oxazolidone rings; (b) a monovalent active hydrogen compound; (c) a divalent active hydrogen compound; (d) gallic acid and (e) a secondary monoamine compound. A water-based coating composition, which is a resin having a number average molecular weight of 1,000 to 5,000 obtained by reaction.
前記希土類金属化合物(C)が、セリウム(Ce)、イットリウム(Y)、ネオジム(Nd)、プラセオジム(Pr)及びイッテルビウム(Yb)からなる群より選択される少なくとも1種の希土類金属を含む化合物である水性塗料組成物。   The rare earth metal compound (C) is a compound containing at least one rare earth metal selected from the group consisting of cerium (Ce), yttrium (Y), neodymium (Nd), praseodymium (Pr) and ytterbium (Yb). An aqueous paint composition. 前記希土類金属化合物(C)が、塗料固形分に対して、希土類金属に換算して0.05〜10重量%含まれていることを特徴とする水性塗料組成物。   An aqueous coating composition comprising 0.05 to 10% by weight of the rare earth metal compound (C) in terms of rare earth metal based on the solid content of the coating. さらに亜鉛化合物(D)を含み、前記希土類金属化合物(C):亜鉛化合物の配合重量比が1:20〜20:1であることを特徴とする水性塗料組成物。
The aqueous coating composition further comprising a zinc compound (D), wherein the blending weight ratio of the rare earth metal compound (C): zinc compound is 1:20 to 20: 1.
JP2006146755A 2006-05-26 2006-05-26 Water-based paint composition Pending JP2007314689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146755A JP2007314689A (en) 2006-05-26 2006-05-26 Water-based paint composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146755A JP2007314689A (en) 2006-05-26 2006-05-26 Water-based paint composition

Publications (1)

Publication Number Publication Date
JP2007314689A true JP2007314689A (en) 2007-12-06

Family

ID=38848843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146755A Pending JP2007314689A (en) 2006-05-26 2006-05-26 Water-based paint composition

Country Status (1)

Country Link
JP (1) JP2007314689A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006655A (en) * 2009-05-26 2011-01-13 Kansai Paint Co Ltd Cationic electrodeposition coating composition
WO2014054549A1 (en) * 2012-10-02 2014-04-10 関西ペイント株式会社 Cationic electrodeposition coating composition
CN105176314A (en) * 2015-10-20 2015-12-23 苏州赛斯德工程设备有限公司 Room-temperature-curing waterborne epoxy resin coating and preparation method thereof
JP2017094330A (en) * 2012-11-13 2017-06-01 中国塗料株式会社 Curable organopolysiloxane antifouling composite coating and antifouling substrate coated with the composite coating
CN114870413A (en) * 2022-04-14 2022-08-09 杭州特种纸业有限公司 Recycling method of zinc chloride solution for vulcanized fiber paper
CN116217891A (en) * 2023-03-17 2023-06-06 中国科学院宁波材料技术与工程研究所 Intrinsic antibacterial epoxy resin precursor, composition, preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006655A (en) * 2009-05-26 2011-01-13 Kansai Paint Co Ltd Cationic electrodeposition coating composition
WO2014054549A1 (en) * 2012-10-02 2014-04-10 関西ペイント株式会社 Cationic electrodeposition coating composition
JPWO2014054549A1 (en) * 2012-10-02 2016-08-25 関西ペイント株式会社 Cationic electrodeposition coating composition
JP2017094330A (en) * 2012-11-13 2017-06-01 中国塗料株式会社 Curable organopolysiloxane antifouling composite coating and antifouling substrate coated with the composite coating
CN105176314A (en) * 2015-10-20 2015-12-23 苏州赛斯德工程设备有限公司 Room-temperature-curing waterborne epoxy resin coating and preparation method thereof
CN114870413A (en) * 2022-04-14 2022-08-09 杭州特种纸业有限公司 Recycling method of zinc chloride solution for vulcanized fiber paper
CN116217891A (en) * 2023-03-17 2023-06-06 中国科学院宁波材料技术与工程研究所 Intrinsic antibacterial epoxy resin precursor, composition, preparation method and application thereof
CN116217891B (en) * 2023-03-17 2024-01-23 中国科学院宁波材料技术与工程研究所 Intrinsic antibacterial epoxy resin precursor, composition, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2008538383A (en) Multi-layer coating formation method
JP4058841B2 (en) Cationic electrodeposition coating composition and coating film
JP6441126B2 (en) Method for preparing cationic electrodeposition coating composition
JP2007314689A (en) Water-based paint composition
JP2008195925A (en) Method for forming electrodeposition coating film
JP4777099B2 (en) Multi-layer coating formation method
JP2010214283A (en) Method for forming multilayer coated film
JP4777098B2 (en) Multi-layer coating including a new composite chemical coating
JP2002167696A (en) Method for depositing coating film and object to be coated
JP5666316B2 (en) Cathodic electrodeposition paint containing organometallic compound
JP5249819B2 (en) Electrodeposition coating composition and electrodeposition coating method
JP7333198B2 (en) Method for preparing cationic electrodeposition coating composition
JP6406848B2 (en) Electrodeposition coating composition
JPH0733848A (en) Modified epoxy resin having block isocyanate component and linked cationic group, its production and its use
JPH0853637A (en) Cathodic electrodeposition coating composition containing cerium
JP2000191958A (en) Cationic electrodeposition coating composition, formation of multiple coating film and multiple coating film
JP2007314690A (en) Water-based paint composition
JP2008231452A (en) Method for depositing multilayer coating film
JP2007314688A (en) Resin for aqueous coating, method for producing the same and aqueous coating composition
JP2020100732A (en) Cationic electrodeposition coating composition and method for producing cationic electrodeposition coating film
JP2011202047A (en) Cationic electrocoating composition
JP2020020009A (en) Coating method of cationic electrodeposition paint
JP2002294175A (en) Cathodic electrodeposition coating material composition
JP2009108359A (en) Multi-layer coating formation method
EP3354700B1 (en) Method for preparing cationic electrodeposition coating material composition