JP2007305997A - Wire bonding process for insulated wire - Google Patents
Wire bonding process for insulated wire Download PDFInfo
- Publication number
- JP2007305997A JP2007305997A JP2007123848A JP2007123848A JP2007305997A JP 2007305997 A JP2007305997 A JP 2007305997A JP 2007123848 A JP2007123848 A JP 2007123848A JP 2007123848 A JP2007123848 A JP 2007123848A JP 2007305997 A JP2007305997 A JP 2007305997A
- Authority
- JP
- Japan
- Prior art keywords
- ball
- discharge
- wire
- spark
- bond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000008569 process Effects 0.000 title abstract description 24
- 239000004642 Polyimide Substances 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 9
- 238000005304 joining Methods 0.000 description 9
- 239000011162 core material Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000010265 fast atom bombardment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 241000219109 Citrullus Species 0.000 description 2
- 235000012828 Citrullus lanatus var citroides Nutrition 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004100 electronic packaging Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/4554—Coating
- H01L2224/45565—Single coating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/4554—Coating
- H01L2224/45599—Material
- H01L2224/4569—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85009—Pre-treatment of the connector or the bonding area
- H01L2224/8503—Reshaping, e.g. forming the ball or the wedge of the wire connector
- H01L2224/85035—Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
- H01L2224/85045—Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/852—Applying energy for connecting
- H01L2224/85201—Compression bonding
- H01L2224/85203—Thermocompression bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/852—Applying energy for connecting
- H01L2224/85201—Compression bonding
- H01L2224/85205—Ultrasonic bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00015—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30105—Capacitance
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
Description
本発明は、極細ワイヤの電子部品への接合に関するものであり、特に表面に絶縁体または不導体を具備したワイヤの接合に関する。 The present invention relates to bonding of fine wires to electronic components, and more particularly to bonding of wires having an insulator or nonconductor on the surface.
ワイヤボンディングは、チップを実装したリードフレームキャリア上の、半導体チップとリードとの間で電気的な接続を形成するために一般的に使用される手段であり、且つ効果的な手段である。ワイヤボンディング方は、熱圧縮超音波とパルス接合とを含んでいる。ワイヤは、一般的に金、アルミニウムまたは銅のような、導電性材料を使用している。 Wire bonding is a commonly used and effective means for forming electrical connections between semiconductor chips and leads on a lead frame carrier on which the chip is mounted. The wire bonding method includes thermal compression ultrasonic waves and pulse bonding. The wire typically uses a conductive material such as gold, aluminum or copper.
半導体産業は、電子部品実装(electronic packaging)の構成およびモジュールを、それらの機能を増加させることと同様に、より小型化する方向へと連続的に進んでいる。そのため、より高密度実装半導体にともなって、非常に極細なワイヤが、ワイヤボンディングによって、チップのパッドを回路基板の導電体に接合する電気的接続のために利用されている。
従って、作動するためのより小さな領域のために、これらの極細ワイヤを電気接点に接合することは、ますます手腕を問われるものとなっている。その上、高密度実装半導体チップは、隣接しているワイヤ間の間隔が減少する方向になっており、言い換えると、隣接しているワイヤが互いに接触した場合に、回路の短絡が発生する危険性が増加している。回路の短絡を回避するための1つの方法は、ワイヤ間の間隔を増加させるようにすることであるが、構成が高密度である場合には、その方法は必ずしも実行できる、または効果的なアプローチではない。 Therefore, joining these fine wires to electrical contacts is increasingly challenging because of the smaller area to operate. In addition, high-density mounting semiconductor chips have a tendency to reduce the spacing between adjacent wires. In other words, there is a risk that a short circuit will occur when adjacent wires contact each other. Has increased. One way to avoid circuit shorts is to increase the spacing between the wires, but if the configuration is dense, the method is not always feasible or an effective approach. is not.
ワイヤボンディング工程のサイクルは、一般的には、球形状をなす接合ワイヤのチップにフリーエアボール(free-air-ball:FAB)を形成することで開始される。図1は、非絶縁体の金ワイヤ100から形成されたFAB108の側面図であり、従来技術である電子フレイムオフ(electronic flame-off:EFO)スパーク工程を利用している。金ワイヤ100の終端部102は、毛細管(図示略)のチップから伸びており、EFO電極の近傍に配置されている。FABの形成は、EFO電極106からの電気放電すなわちスパーク104によって開始し、このスパーク104は、毛細管の下で伸びている接合ワイヤ100の終端部102を温度上昇させ、かつ溶解させる。表面張力は、接合ワイヤ100の溶かされた終端部102が、球形状を形成する要因となり、ワイヤ端部のさらなる材料の溶解を進行させる。このことが、FAB108を形成している。スパーク104が終了するとすぐに、FAB108は、ほとんど瞬時に固まる。その後FAB108は、適切な量の圧力、熱および超音波の動きを適切な時間だけ適用することによって、第1の接合位置において第1のボールボンド(ball bond)を形成するために、毛細管によって接合パッドの方へ押される。 A cycle of a wire bonding process is generally started by forming a free-air-ball (FAB) on a chip of a bonding wire having a spherical shape. FIG. 1 is a side view of a FAB 108 formed from a non-insulator gold wire 100, which uses a conventional electronic flame-off (EFO) spark process. The end portion 102 of the gold wire 100 extends from a capillary (not shown) tip and is disposed in the vicinity of the EFO electrode. The formation of the FAB is initiated by an electrical discharge or spark 104 from the EFO electrode 106, which raises the temperature and melts the end 102 of the bonding wire 100 extending under the capillary. The surface tension causes the melted end portion 102 of the bonding wire 100 to form a spherical shape, and further dissolves the material at the wire end. This forms the FAB 108. As soon as the spark 104 ends, the FAB 108 hardens almost instantaneously. The FAB 108 is then joined by a capillary tube to form a first ball bond at the first joining location by applying an appropriate amount of pressure, heat and ultrasonic motion for an appropriate time. It is pushed toward the pad.
ボールボンドが形成された後、毛細管は上昇し、接合ワイヤ100が毛細管の終端を通じて送り出される間に、第2の接合位置へ移動する。第1の接合位置と第2の接合位置との間にループが形成されるとすぐに、毛細管は第2(または縫い合わせ)のボンドを形成するために、適切な量の圧力、熱および超音波の動きを適切な時間だけ再度適用することによって、ワイヤ100を接合パッドに向かって押す。第2(または縫い合わせ)のボンドが形成された後、送り出されているワイヤが別の終端部を形成する間に、毛細管は所定の高さまで上昇する。その後、接合ワイヤ10は、第2のボンドから引き離され、次のFAB108を形成するために、十分な量のワイヤ終端部102が残る。 After the ball bond is formed, the capillary rises and moves to the second joining position while the joining wire 100 is fed out through the end of the capillary. As soon as a loop is formed between the first joining location and the second joining location, the capillary tube has an appropriate amount of pressure, heat and ultrasound to form a second (or stitched) bond. The wire 100 is pushed toward the bond pad by re-applying the movements for an appropriate amount of time. After the second (or stitched) bond is formed, the capillary is raised to a predetermined height while the wire being delivered forms another end. The bonding wire 10 is then pulled away from the second bond, leaving a sufficient amount of wire termination 102 to form the next FAB 108.
図2は、時間ごとの放電電流の変化によって示された、従来からの一般的なEFOスパークプロファイルを示したグラフである。標準的な発火放電は、一般的に電流値I1で構成されており、その電流値は、t0〜t1の間持続する。このことは、ワイヤ100を溶かして良好な(conforming)FAB108を形成するために、十分な熱と時間とを見越している。従って、非絶縁またはむき出しの接合ワイヤのための従来の方法は、EFO電極が、接合ボールを形成するために、単一の放電または高圧放電を行うことを利用している。スパークの間の一般的なEFOのメカニズムの入力は、電流、時間および放電ギャップである。万が一、入力/出力の読み取りに何らかの混乱があった場合、システムは、通常はそれ自身を修正できないエラーがあることを検出する機能を備えており、接合工程を中止する。 FIG. 2 is a graph showing a conventional general EFO spark profile indicated by a change in discharge current with time. A standard ignition discharge generally consists of a current value I1, which lasts between t0 and t1. This allows for sufficient heat and time to melt the wire 100 and form a forming FAB 108. Thus, conventional methods for non-insulated or bare bond wires make use of the EFO electrode performing a single discharge or a high pressure discharge to form a bonded ball. Common EFO mechanism inputs during spark are current, time and discharge gap. In the unlikely event that there is some confusion in the input / output reading, the system usually has the ability to detect that there is an error that cannot correct itself and abort the joining process.
絶縁ワイヤは、通常はその内部に金のような金属材料の導体コアを有しており、ポリイミドのような絶縁層が非導体ワイヤの表面に被覆されている。絶縁接合ワイヤ技術の導入は、接合ワイヤが短絡回路を形成することなく接触または交差することを可能にしていることで、高密度実装および高入力/出力機能性を可能にしている。しかしながら、絶縁接合ワイヤを利用している電子実装の小型化は、接合ワイヤと接合パッドとの間の接点において、絶縁材料が導電率を低下させる傾向にあるという、新しい問題を持ち込んでいる。確実な相互接続を形成することにおいて、絶縁材料の存在が、異物が混入しているように振舞うために、形成されているおのおののワイヤボンドが、導電性に障害が起きていないことを確実にする場合に、その絶縁材料を除去し、内部の導体を暴露する必要がある。このことは、高容量の生産設備の限界および工程、特にワイヤボンディング装置の性能を打ち破る。従って、ワイヤと接合パッドとの間の接合店において、ワイヤ表面から効果的に絶縁材料を移動する手段を考案する必要がある。 The insulated wire usually has a conductor core made of a metal material such as gold inside, and an insulating layer such as polyimide is coated on the surface of the non-conductor wire. The introduction of insulated bond wire technology allows high density packaging and high input / output functionality by allowing bond wires to contact or cross without forming a short circuit. However, the miniaturization of electronic packaging that utilizes insulated bond wires has introduced a new problem in that the insulating material tends to reduce the conductivity at the contact between the bond wire and the bond pad. In forming reliable interconnects, the presence of insulating material behaves as if foreign material is present, ensuring that each formed wire bond is not disturbed by conductivity. When doing so, it is necessary to remove the insulating material and expose the inner conductor. This breaks the limits and processes of high capacity production equipment, especially the performance of wire bonding equipment. Therefore, there is a need to devise means to effectively move the insulating material from the wire surface at the joint store between the wire and the joint pad.
接合工程中における絶縁ワイヤから絶縁材料を除去する手段の一例は、“ワイヤボンディングとそのための毛細管”との名称の特許文献1に開示されている。絶縁ワイヤの接合手段は、第1の接合パッドの第2の接合パッドへの電気的接続に関してそこに記載されている。そこでは、接合ワイヤを保持している毛細管ホルダのチップが、接合ワイヤが毛細管チップと第2の接合パッドとの間でこすられるように、第2の接合パッドの表面上を移動する。このことが、ワイヤの少なくとも一部の金属コアが第2の接合パッドに接触できるように、接合ワイヤの絶縁材料をはがしている。その後、ワイヤは熱圧着接合を利用して、第2の接合パッドに接合される。摩擦力を介して絶縁材料を機械的に除去するこのアプローチの欠点は、毛細管チップをこすることで接合するよりも前のサイクルタイムを増加させることである。言い換えると、導電性の増加に関しての利点との対応は、重要ではない。更にいうと、第2の接合が行われるよりも前に、絶縁材料を除去することは適用可能であるが、接合ワイヤの終端部のみが、毛細管チップから突き出し、FABが終端部から形成される第1のボールボンドに適用することは不可能である。終端部を機械的にこすること自体は、応用できない。 An example of means for removing the insulating material from the insulating wire during the bonding process is disclosed in Patent Document 1 entitled “Wire bonding and capillary tube therefor”. The means for bonding the insulated wire is described therein with respect to the electrical connection of the first bond pad to the second bond pad. There, the tip of the capillary holder holding the joining wire moves over the surface of the second joining pad so that the joining wire is rubbed between the capillary tip and the second joining pad. This strips the insulating material of the bonding wire so that at least a portion of the metal core of the wire can contact the second bonding pad. Thereafter, the wire is bonded to the second bonding pad using thermocompression bonding. The disadvantage of this approach of mechanically removing the insulating material via frictional force is that it increases the cycle time prior to joining by rubbing the capillary tip. In other words, the correspondence with the advantages with respect to increased conductivity is not important. Furthermore, it is possible to remove the insulating material before the second bonding is performed, but only the terminal end of the bonding wire protrudes from the capillary tip and the FAB is formed from the terminal end. It is impossible to apply to the first ball bond. Mechanically rubbing the terminal end itself is not applicable.
図3は、図2中に示されているスパークプロファイルを適用した従来技術のEFOスパーク工程を利用して、絶縁金ワイヤ10から形成されたFAB18の側面図である。終端部12を伴った絶縁金ワイヤ10は、EFO電極16の近傍に配置され、スパーク14は、ワイヤ10の終端部12を溶かしてFAB18を形成するために発生される。特定の絶縁材料は、結果としてFAB18となる傾向を備えており、その球形状の表面の周りが絶縁層20で依然として実質的に覆われている。いくつかの清浄なコア材料22は、FABの底部において観察され、または絶縁層20の表面のまわりの所々に分散している。この現象は、ボールボンドと接合パッドとの間の接点において高電導性を備えたボールボンドを形成するためには望ましくないものである。 FIG. 3 is a side view of the FAB 18 formed from the insulated gold wire 10 using the prior art EFO spark process to which the spark profile shown in FIG. 2 is applied. The insulated gold wire 10 with the end portion 12 is disposed in the vicinity of the EFO electrode 16, and the spark 14 is generated to melt the end portion 12 of the wire 10 to form the FAB 18. Certain insulating materials have a tendency to result in FAB 18 and are still substantially covered by insulating layer 20 around their spherical surface. Some clean core material 22 is observed at the bottom of the FAB or is distributed around the surface of the insulating layer 20. This phenomenon is undesirable for forming a ball bond with high electrical conductivity at the contact between the ball bond and the bond pad.
そのような望ましくないFAB18の形成は、非絶縁またはむき出しのワイヤを使用する場合よりも、EFOがより一般的である間に、絶縁接合ワイヤを使用する場合に観察される。絶縁接合ワイヤに関しては、EFO工程の電流が、幾分変形した小さなボールを生産する傾向もあるかもしれないということも、観察されている。従って、問題は、従来のスパーク工程が、(図3に示しているような)絶縁層で汚染された、または非球状に変形したFABを生産する機会を増加させているということであり、それらはすべて、標準に適応しないFABとして一般的に言及される。変形したFABは、結果として成型不良ボンドとなるかもしれず、隣接したボールボンドと短絡回路を形成する要因となり、潜在的に瞬間接合の失敗または弱いボールボンドの要因となるであろう。そのために、それらはミクロ電子光学装置を故障させる要因となるであろう。さらに、絶縁材料からの汚染は、標準に適応しないFABの要因となるだけでなく、毛細管およびEFOメカニズムさえも汚染する可能性がある。接合ワイヤを受けるための毛細管オリフィスおよび時間ごとのEFO上の被覆の残余物の累積的な蓄積は、一貫性の無いFAB形成を助長する可能性もある。 Such undesirable FAB 18 formation is observed when using an insulated bond wire while EFO is more common than when using non-insulated or bare wire. It has also been observed that for insulated bond wires, the current of the EFO process may also tend to produce small balls that are somewhat deformed. Thus, the problem is that conventional spark processes are increasing the chances of producing FABs that are contaminated with insulating layers (as shown in FIG. 3) or non-spherically deformed, such as Are all commonly referred to as FABs that do not conform to the standard. A deformed FAB may result in a poorly formed bond, causing a short circuit with an adjacent ball bond and potentially causing a momentary bond failure or a weak ball bond. Therefore, they will be a factor that causes microelectro-optical devices to fail. Furthermore, contamination from insulating materials not only causes FABs that do not conform to the standard, but can also contaminate capillaries and even EFO mechanisms. The cumulative accumulation of capillary orifices to receive the bonding wire and the coating residue on the EFO over time can also facilitate inconsistent FAB formation.
それにもかかわらず、多くの場合、強固なボールボンドを形成することが可能ないくらかの残余絶縁材料を伴って、受容可能なFABを形成することは、依然として可能であるということが観察される。絶縁接合ワイヤの終端部が、放電またはスパークによる熱にさらされる場合、解けた部分はボールを形成する。ボールが形成されているとき、時々、被覆が上半球において均等な縞模様に分割し、スイカパターンと呼ばれるパターンを形成する。この場合、同様に被覆または絶縁材料は、下半球の強固なボールボンドが形成される可能性を妨げない。しかしながら、そのようなスイカパターンの発生は予測不可能なことであり、内部の導電性材料から接合パッドへの間で、そのような被覆の分割による強固な接合を形成するために、十分な接触が存在していることを頼りにすることは、賢明なことではない。 Nevertheless, it is often observed that it is still possible to form an acceptable FAB with some residual insulating material that is not capable of forming a strong ball bond. When the end of the insulated bonding wire is exposed to heat from discharge or spark, the unraveled part forms a ball. When the ball is formed, sometimes the coating divides into equal stripes in the upper hemisphere to form a pattern called a watermelon pattern. In this case as well, the coating or insulating material does not prevent the possibility of forming a strong ball bond in the lower hemisphere. However, the occurrence of such a watermelon pattern is unpredictable and sufficient contact is made between the inner conductive material and the bond pad to form a strong bond by dividing such a coating. It is not wise to rely on the existence of.
絶縁接合ワイヤの従来のEFO工程のアプリケーションに見受けられる問題点を解決するために、EFOメカニズムの適切な改良または増強が、清浄なFABを生産するために望ましいことであり、再現可能に信頼性のあるボールボンドを得て、FABを要求量だけもたらす。 In order to solve the problems found in conventional EFO process applications for insulated bond wires, appropriate improvements or enhancements to the EFO mechanism are desirable to produce clean FAB and are reproducibly reliable. Obtain a ball bond and bring the FAB in the required amount
従って、本発明の目的は、接合のために暴露されたコアの洗浄剤を伴ったボールを生産する絶縁ワイヤ接合の、速くかつ効果的な手段を実行することである。 Accordingly, it is an object of the present invention to implement a fast and effective means of insulating wire bonding that produces balls with a core cleaning agent exposed for bonding.
従って、本発明はボールボンドを製作するために、絶縁線から適合するフリーエアボールを形成する手段であって、絶縁線のチップを電子フレイムオフ装置に近づけて配置するステップと、絶縁線のチップを溶解するための、前記電子フレイムオフ装置からの第1の放電を引き起こし、およびパイロットボール(pilot ball)生成するとその時点で前記放電を終了させるステップと、前記適合するフリーエアボールを生成するための第2の放電を引き起こすステップと、その後、ボールボンドを生成するために、前記適合するフリーエアボールを接合面に付着させるステップとを含んでいることを特徴とする、形成手段を提供する。 Accordingly, the present invention is a means for forming a free air ball adapted from an insulated wire to produce a ball bond, the step of placing the insulated wire tip close to the electronic flame-off device, and the insulated wire tip. To cause a first discharge from the electronic flame-off device to dissolve and to terminate the discharge at that time when generating a pilot ball, and to generate the suitable free air ball Providing means comprising the steps of: causing a second discharge, and then attaching the conforming free air ball to the bonding surface to create a ball bond.
好適な実施形態を示した添付図を参照している以下の本発明についてのより詳細な記載は、有用となるであろう。図の特殊性および関連した記載は、請求項によって定義された、本発明の広範囲な同一の大多数のものに代わるものとして理解されるべきではない。 The following more detailed description of the present invention, with reference to the accompanying drawings illustrating preferred embodiments, will be useful. The particularity of the figures and the associated description should not be understood as a substitute for the broad, identical majority of the invention as defined by the claims.
本発明に従うワイヤボンディング工程の好適な実施形態の例が、添付図を参照してここに記載されている。 An example of a preferred embodiment of a wire bonding process according to the present invention will now be described with reference to the accompanying drawings.
好適な実施形態は、絶縁ワイヤのチップにおいて、FABを形成するために2つの分離したスパークを利用する。図4は、本発明の好適な実施形態によるEFOスパーク工程を利用した第1のスパーク後に形成された、パイロットボールの側面図である。 The preferred embodiment utilizes two separate sparks to form the FAB in an insulated wire tip. FIG. 4 is a side view of a pilot ball formed after a first spark utilizing an EFO spark process according to a preferred embodiment of the present invention.
パイロットボールを形成するために、絶縁ワイヤ10の終端部12は、毛細管のチップ(図示略)から伸ばされ、EFO電極16を具備したEFO装置の近傍に配置される。スパーク工程は、EFO電極16からの放電またはスパーク24によって開始し、毛細管の下に伸びているボンディングワイヤ10の温度上昇および溶解が行われる。この第1のスパークは、ボールボンドを形成するために最終的に要求されるFABよりも小さい体積を持ったプレメルト(pre-melt)26または小さいボール28の形成において、好ましくはパイロットボールを形成するように制御されているのがよい。 In order to form a pilot ball, the end 12 of the insulated wire 10 is extended from a capillary tip (not shown) and placed in the vicinity of an EFO device having an EFO electrode 16. The spark process is started by the discharge from the EFO electrode 16 or the spark 24, and the temperature rise and melting of the bonding wire 10 extending under the capillary tube is performed. This first spark preferably forms a pilot ball in the formation of a pre-melt 26 or small ball 28 having a smaller volume than the FAB ultimately required to form the ball bond. It is good to be controlled as follows.
図5は、本発明の好適な実施形態によるEFOスパーク工程を利用した第2のスパーク後に形成された、FAB34の側面図を示している。第1のスパーク24の終了後、プレメルト26または小さいボール28は、好ましくは同じ位置に保持されているのがよく、第2のスパーク30がEFO電極16から発生する。第1のスパーク24の後に形成されたプレメルト26または小さいボール28は、第2のスパーク30によって、所望の大きさのFAB34に適合するまでさらに溶解され、形状が形成される。実験では、FAB34は、清浄なコアメタル(core metal)36を実質的に具備しているように見られ、絶縁被覆38は、FAB34の頂点部のみを覆うように減少していた。このFAB34は、基準に適合しており、ワイヤボンドの導電性がその表面に含まれた、広がったコアメタルの広範囲に形成されることを促進している。 FIG. 5 shows a side view of the FAB 34 formed after a second spark utilizing an EFO spark process according to a preferred embodiment of the present invention. After the end of the first spark 24, the premelt 26 or small ball 28 is preferably held in the same position and a second spark 30 is generated from the EFO electrode 16. The premelt 26 or small ball 28 formed after the first spark 24 is further melted and shaped by the second spark 30 until it fits the FAB 34 of the desired size. In the experiment, the FAB 34 appeared to have substantially a clean core metal 36 and the insulation coating 38 was reduced to cover only the apex of the FAB 34. This FAB 34 complies with the standards and facilitates the wire bond conductivity to be formed over a wide area of the spread core metal contained on its surface.
図6は、本発明の実施形態による、時間ごとの放電電流変化によって示された、EFOスパークプロファイルを示したグラフである。そのプロファイルは、EFO放電時間(t)に対するEFO電流(I)によって示されている。第1のスパーク24は、t0〜t2の期間中、電流I3で発生している。t2〜t3において、遅れが発生しており、放電が終了している。その後、第2のスパーク30が、t3〜t4の期間中、別の電流I2で発生している。 FIG. 6 is a graph showing an EFO spark profile indicated by the change in discharge current over time according to an embodiment of the present invention. The profile is shown by EFO current (I) versus EFO discharge time (t). The first spark 24 is generated with the current I3 during the period from t0 to t2. From t2 to t3, a delay has occurred and the discharge has ended. Thereafter, the second spark 30 is generated with another current I2 during the period from t3 to t4.
図の唯一の目的に関しては、第1の電流I3が、第2の電流I2よりも大きく示されていることであり、そのことは、第2の電流I2が第1の電流I3よりも大きい、または同じであってもよい。形成された溶けたボールの大きさは、スパークの電流および継続時間の量に依存しているため、プレメルト26または小さいボール28が最終的に基準に適合する(conforming)所望のFAB34よりも小さくなり、最終的な清浄な生成されたFAB34が、ボールボンドを形成するために必要な、要求された大きさとなるように、変数は変化し、制御されることが可能である。 For the sole purpose of the figure, the first current I3 is shown larger than the second current I2, which means that the second current I2 is larger than the first current I3. Or they may be the same. Since the size of the melted ball formed depends on the amount of spark current and duration, the premelt 26 or small ball 28 will eventually be smaller than the desired FAB 34 conforming to the criteria. The variables can be varied and controlled so that the final clean produced FAB 34 is the required size required to form the ball bond.
第1のスパークに使用された電流が、1600mA〜3000mAの間であり、継続時間が100μs〜1000μsであることは、好適な条件である。第1のスパークと第2のスパークとの間の遅れは、好ましくは30ms未満であるのがよい。第2のスパークを発生するために使用される電流は、1800mA〜3200mAの間であり、それは200μs〜1000μsの遅れで発生されるのが好ましい。的確な電流の大きさとスパークの遅れとは、使用されるワイヤの直径と目標とされるボールの大きさとに依存している。上記の変数は、ワイヤ直径が0.8ミル〜1.0ミル、かつ形成されるFABのボールの大きさが、直径で40μm〜55μmであるものに最適であろう。 It is a suitable condition that the current used for the first spark is between 1600 mA and 3000 mA and the duration is between 100 μs and 1000 μs. The delay between the first spark and the second spark is preferably less than 30 ms. The current used to generate the second spark is between 1800 mA and 3200 mA, which is preferably generated with a delay of 200 μs to 1000 μs. The exact current magnitude and spark delay depend on the diameter of the wire used and the target ball size. The above variables would be optimal for wire diameters of 0.8 mils to 1.0 mils and FAB ball sizes formed from 40 μm to 55 μm in diameter.
EFO電極によるパイロットボールに発火された第2の連続的な放電またはスパークの目的は、第1のボールボンドで準備された清浄なボールの再形成である。FAB34の上半球上に依然として残っている絶縁層38は、強固な合金接合を作り出すことから、接合工程を妨げないであろう。基準に適合しないボールが、下半球上において汚染される、またはボールが、第1のスパーク24の後で、被覆の妨害によってまったく形成されない場合でさえも、第2のスパーク30は、基準に適合したFAB34の形成を促進する助けになる。 The purpose of the second continuous discharge or spark ignited on the pilot ball by the EFO electrode is the reformation of a clean ball prepared with the first ball bond. The insulating layer 38 still remaining on the upper hemisphere of the FAB 34 will not interfere with the bonding process because it creates a strong alloy bond. A ball that does not meet the criteria is contaminated on the lower hemisphere, or the second spark 30 meets the criteria even if the ball is not formed at all by blockage after the first spark 24. It helps to promote the formation of FAB34.
絶縁接合ワイヤが試験的に接合することを介して、第1の放電の発火によって減少された体積のプレメルト26または小さいボール28を形成すること、その後清浄なFABのより首尾一貫した生産をする工程である、第2の放電が観察される。プレメルト26または小さいボール28が清浄である場合、そのボールは、第2のスパーク30の結果として、清浄なままである。しかしながら、プレメルト26または小さいボール28が汚染されている場合、形成された最終的なFAB34は、第2のスパーク30の結果として、清浄化される。 Forming a reduced volume pre-melt 26 or small ball 28 by firing of the first discharge, through a test bond of insulated bond wires, followed by a more consistent production of clean FAB A second discharge is observed. If the premelt 26 or small ball 28 is clean, the ball remains clean as a result of the second spark 30. However, if the premelt 26 or small balls 28 are contaminated, the final FAB 34 formed is cleaned as a result of the second spark 30.
従って、ワイヤボンディング工程が、第1のボールボンドに形成に関して受け入れられないような、基準に適合しないFABの形成によって停止することを防止するために、EFOのスパーク工程に替わるロジックが提案された。ロジックの改良は初歩的な強化であり、他のハードウェアの変更は、一般的に本質的な要素ではない。しかしながら、電気回路の他の変更は、EFO電極のデザインの変更およびより良い電極材料の選択と同様に、大量生産の環境において、工程の操作を行うためにも協働されてもよい。 Accordingly, logic has been proposed to replace the EFO spark process in order to prevent the wire bonding process from stopping due to non-conforming FAB formation that is unacceptable for formation in the first ball bond. Logic improvements are rudimentary enhancements, and other hardware changes are generally not essential. However, other changes in the electrical circuit may also be coordinated to operate the process in a mass production environment, as well as EFO electrode design changes and selection of better electrode materials.
ここに記載された発明は、変化、改良および/または他の明確に記載されたもの以上の追加を受け入れる余地があり、本発明は、上述の思想および意図の中にそれらすべての変化、改良を含んでいることが、理解されるであろう。 The invention described herein is susceptible to variations, modifications, and / or additions beyond those specifically set forth, and the invention contemplates all such variations and modifications within the spirit and intent described above. It will be understood that it contains.
10 ワイヤ
12 終端部
14 スパーク
16 EFO電極
18 FAB
20 絶縁層
22 コア材料
24 第1のスパーク
26 プレメルト
28 小さいボール
30 第2のスパーク
34 FAB
36 コアメタル
38 絶縁被覆
100 金ワイヤ
102 終端部
104 スパーク
106 EFO電極
108 FAB
10 Wire 12 Terminal 14 Spark 16 EFO Electrode 18 FAB
20 Insulating layer 22 Core material 24 First spark 26 Premelt 28 Small ball 30 Second spark 34 FAB
36 Core metal 38 Insulation coating 100 Gold wire 102 Termination part 104 Spark 106 EFO electrode 108 FAB
Claims (11)
絶縁線のチップを電子フレイムオフ装置に近づけて配置するステップと、
前記電子フレイムオフ装置からの第1の放電を生成して絶縁線のチップを溶解し、パイロットボールを作製し、次いで前記放電を終了させるステップと、
第2の放電を生成し、前記適合するフリーエアボールを作製するステップと、
前記適合するフリーエアボールを接合面に付着させ、ボールボンドを作製するステップと、
を含んでいることを特徴とする、方法。 In order to produce a ball bond, a method of forming a free air ball conforming to a standard from an insulated wire,
Placing the insulated wire tip close to the electronic flame-off device; and
Generating a first discharge from the electronic flame-off device to melt the tip of the insulated wire, producing a pilot ball, and then terminating the discharge;
Generating a second discharge to produce the adapted free air ball;
Attaching the conforming free air ball to the bonding surface to create a ball bond;
A method characterized by comprising:
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79905606P | 2006-05-09 | 2006-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007305997A true JP2007305997A (en) | 2007-11-22 |
Family
ID=38839611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007123848A Pending JP2007305997A (en) | 2006-05-09 | 2007-05-08 | Wire bonding process for insulated wire |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2007305997A (en) |
KR (1) | KR100904745B1 (en) |
SG (2) | SG156688A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018026321A1 (en) * | 2016-08-05 | 2018-02-08 | Heraeus Materials Singapore Pte., Ltd. | Process for electrically connecting the contact surfaces of electronic components by a bonding wire having an electrically insulating coating |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI528481B (en) * | 2014-02-13 | 2016-04-01 | 新川股份有限公司 | Ball forming device, wire bonding device, and ball forming method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6442831A (en) * | 1987-08-10 | 1989-02-15 | Hitachi Ltd | Semiconductor device |
JPH04188737A (en) * | 1990-11-21 | 1992-07-07 | Mitsubishi Materials Corp | Wire bonder |
JPH10303234A (en) * | 1997-04-25 | 1998-11-13 | Matsushita Electric Ind Co Ltd | Wire bonding method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2506152B2 (en) * | 1988-06-21 | 1996-06-12 | 株式会社日立製作所 | Wire bonding method for coated wire |
JP3704328B2 (en) * | 2002-06-26 | 2005-10-12 | 株式会社新川 | Wire bonding wire initial ball forming method and wire bonding apparatus |
JP3727615B2 (en) * | 2002-06-26 | 2005-12-14 | 株式会社新川 | Wire bonding wire initial ball forming method and wire bonding apparatus |
-
2007
- 2007-05-07 SG SG200907162-2A patent/SG156688A1/en unknown
- 2007-05-07 SG SG200703271-7A patent/SG137756A1/en unknown
- 2007-05-08 JP JP2007123848A patent/JP2007305997A/en active Pending
- 2007-05-09 KR KR20070044898A patent/KR100904745B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6442831A (en) * | 1987-08-10 | 1989-02-15 | Hitachi Ltd | Semiconductor device |
JPH04188737A (en) * | 1990-11-21 | 1992-07-07 | Mitsubishi Materials Corp | Wire bonder |
JPH10303234A (en) * | 1997-04-25 | 1998-11-13 | Matsushita Electric Ind Co Ltd | Wire bonding method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018026321A1 (en) * | 2016-08-05 | 2018-02-08 | Heraeus Materials Singapore Pte., Ltd. | Process for electrically connecting the contact surfaces of electronic components by a bonding wire having an electrically insulating coating |
Also Published As
Publication number | Publication date |
---|---|
KR100904745B1 (en) | 2009-06-29 |
SG137756A1 (en) | 2007-12-28 |
KR20070110196A (en) | 2007-11-16 |
SG156688A1 (en) | 2009-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7021521B2 (en) | Bump connection and method and apparatus for forming said connection | |
JPH0441519B2 (en) | ||
US6896170B2 (en) | Wire bonder for ball bonding insulated wire and method of using same | |
TWI635548B (en) | Wire bonding method and package structure | |
CA2252102A1 (en) | Two-step projecting bump for semiconductor chip and method for forming the same | |
JP2007305997A (en) | Wire bonding process for insulated wire | |
US20040072396A1 (en) | Semiconductor electronic device and method of manufacturing thereof | |
US6612024B1 (en) | Method of mounting a device to a mounting substrate | |
TW201411793A (en) | Semiconductor device and method for manufacturing same | |
US20120178189A1 (en) | Method for forming an over pad metalization (opm) on a bond pad | |
US20070262119A1 (en) | Wire bonding process for insulated wires | |
US20100126763A1 (en) | Wire bonding method, electronic apparatus, and method of manufacturing same | |
US9799624B1 (en) | Wire bonding method and wire bonding structure | |
JP2004153230A (en) | Semiconductor device and wiring board, and manufacturing method of wiring board | |
TW594024B (en) | Method for treating and testing semiconductor component | |
TWI478221B (en) | Semiconductor device manufacturing method and bonding device | |
KR100715978B1 (en) | Wire bonding capillary with a device for producing spark | |
Carr et al. | Robust wirebonding of X-Wire™ insulated bonding wire technology | |
KR20070081226A (en) | How to form free air balls of insulated wire | |
US9165904B1 (en) | Insulated wire bonding with EFO before second bond | |
KR100485590B1 (en) | Wafer bumping method for using solder paste print | |
KR100213441B1 (en) | Wire bonding apparatus having discharge stick | |
JPH09214119A (en) | Forming method of multistage bump | |
JPH0469943A (en) | Capillary tip | |
JPH04225540A (en) | wire bonding equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101019 |