[go: up one dir, main page]

JP2007278847A - Intake deposited earth-and-sand monitoring system and monitoring method - Google Patents

Intake deposited earth-and-sand monitoring system and monitoring method Download PDF

Info

Publication number
JP2007278847A
JP2007278847A JP2006105641A JP2006105641A JP2007278847A JP 2007278847 A JP2007278847 A JP 2007278847A JP 2006105641 A JP2006105641 A JP 2006105641A JP 2006105641 A JP2006105641 A JP 2006105641A JP 2007278847 A JP2007278847 A JP 2007278847A
Authority
JP
Japan
Prior art keywords
sediment
intake
ultrasonic
monitoring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006105641A
Other languages
Japanese (ja)
Inventor
Akira Sugai
明 菅井
Yuji Adachi
祐二 足立
Hiroshi Asahi
宏 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006105641A priority Critical patent/JP2007278847A/en
Publication of JP2007278847A publication Critical patent/JP2007278847A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring system capable of acquiring easily and accurately the deposition state of earth and sand in an intake of a hydroelectric power station, without an operator having to visit the site. <P>SOLUTION: This system is equipped with a monitoring device 1 installed in the hydroelectric power station; and a deposited earth-and-sand measuring/managing device 30 installed near the intake, for measuring and managing the deposited earth-and-sand. The deposited earth-and-sand measuring/managing device 30 is equipped with an ultrasonic measuring device 31 for measuring the thickness of the deposited earth-and-sand in the intake, by utilizing an ultrasonic wave transmitted from an ultrasonic sensor 31a, an image processing part 33 for converting a measured signal measured by the ultrasonic measuring device 31 into an image signal, and a transmission part 34 for transmitting the image signal image-processed by the image processing part 33 to the monitoring device 1. The monitoring device 1 is equipped with a monitoring personal computer 2 for acquiring the image signal of the intake, by controlling the ultrasonic measuring device 31 and the image processing part 33, respectively, and a display for displaying the acquired image signal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水力発電所の取水口堆積土砂監視システム及び監視方法に関するものである。   The present invention relates to an intake sediment monitoring system and a monitoring method for a hydroelectric power plant.

河川から発電用水を取り込み、水車を回転させることにより発電を行う水力発電所においては、河川を流れる河川水を、図6に示すような取水口に一旦取り込んだ後、導水路を介して発電用の水車に導くようにしている。ところで、上記したような取水口は、コンクリート構造物により構成されているため、その底面には河川から土砂が流入して徐々に堆積する。堆積した土砂が取水口から水力発電所内に流入すると導水路や水車が摩耗するため、取水口内に堆積している土砂が発電所側に流入しないように土砂の堆積状況を把握しておく必要がある。
そこで、従来の水力発電所では、作業員が定期的に取水口まで出向いて行き、目視等により堆積している土砂の状況を把握するようにしていた。
In a hydroelectric power station that takes in water for power generation from a river and generates power by rotating a water turbine, once the river water flowing through the river is taken into a water intake as shown in FIG. 6, it is used for power generation through a water conduit. I am trying to guide you to a watermill. By the way, since the intake port as described above is composed of a concrete structure, sediment is gradually deposited on the bottom surface of the water intake from the river. If the accumulated sediment flows into the hydroelectric power plant from the intake, the waterway and the water wheel will wear out, so it is necessary to grasp the sediment accumulation status so that the sediment deposited in the intake does not flow into the power plant. is there.
Therefore, in conventional hydroelectric power stations, workers regularly visit the water intakes to grasp the state of sediment that has been deposited by visual inspection or the like.

なお、特許文献1には、常時監視が可能で熟練を必要とせず、水深及び水位などを容易に測定できる水中測定装置が開示されている。また、特許文献2には、土砂崩れや河川の氾濫などによって、実際に地形変化が生じているか否かを判別することができる地形変化監視システムが開示されている。
特開平11−23704号公報 特開2004−361157公報
Patent Document 1 discloses an underwater measuring device that can be constantly monitored, does not require skill, and can easily measure water depth, water level, and the like. Further, Patent Document 2 discloses a terrain change monitoring system that can determine whether or not a terrain change has actually occurred due to a landslide or river flooding.
Japanese Patent Laid-Open No. 11-23704 JP 2004-361157 A

しかしながら、取水口の水位(水深)は、通常2〜3m程度あるため、水が濁っていたり、或いは澱んでいたりすると、目視により土砂の堆積状況を把握することができない。このため、測量等を行って土砂の堆積状況を把握する必要があり、堆積土砂の測定に時間がかかるという欠点があった。
また取水口内の土砂の堆積状況は一様でないため、取水口全体の土砂の堆積状況を把握するためには、測量箇所を多くする必要があり、測量に時間がかかるという欠点があった。
さらに取水口内の土砂の堆積状況を把握するには、作業員が定期的に取水口まで行く必要があり、リアルタイムで把握することができないという欠点があった。このため、例えば大雨時など作業員が取水口に近づいて堆積状況を把握できないような状況下では、水力発電所内の導水路や水車に多量の土砂が流入するおそれがあった。
However, since the water level (water depth) of the intake port is usually about 2 to 3 m, if the water is cloudy or stagnant, the state of sediment accumulation cannot be visually observed. For this reason, it is necessary to perform surveying or the like to grasp the sedimentation state of the sediment, and there is a drawback that it takes time to measure the sediment.
Moreover, since the sedimentation situation in the intake is not uniform, in order to grasp the sedimentation situation in the entire intake, it is necessary to increase the number of surveying points, and there is a drawback that it takes time for the survey.
Furthermore, in order to grasp the state of sediment accumulation in the water intake, it is necessary for the worker to go to the water intake regularly, and there is a drawback that it is impossible to grasp in real time. For this reason, for example, when a worker is close to the water intake, such as during heavy rain, and the accumulation situation cannot be grasped, there is a possibility that a large amount of earth and sand flows into the waterway and the water wheel in the hydroelectric power plant.

そこで、本発明は、上記したような点を鑑みてなされたものであり、作業者が取水口に出向くことなく取水口内の土砂堆積状況を容易に且つ正確に把握することが可能な水力発電所の取水口堆積土砂監視システム及び監視方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described points, and a hydroelectric power plant that allows an operator to easily and accurately grasp the state of sediment accumulation in the water intake without going to the water intake. The purpose is to provide a monitoring system and monitoring method for sediment at the intake.

上記目的を達成するため、請求項1に記載の本発明は、水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視システムであって、水力発電所内に設置された監視装置と、前記取水口近傍に設置され、堆積土砂厚を測定する堆積土砂測定装置と、を備え、前記堆積土砂測定装置は、超音波センサを有し該超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定して測定信号を出力する超音波測定手段と、該超音波測定手段からの測定信号を画像信号に変換する画像処理手段と、該画像処理手段により画像処理した画像信号を前記監視装置に伝送する伝送手段と、を有し、前記監視装置は、前記超音波測定手段、及び前記画像処理手段を夫々制御して前記取水口の画像信号を取得する制御手段と、取得した画像信号を表示する表示手段と、を有することを特徴とする。   In order to achieve the above object, the present invention described in claim 1 is a water intake sedimentation monitoring system for a hydroelectric power station that monitors sediment deposited in a water intake for taking water for hydroelectric power generation. A monitoring device installed in the vicinity of the intake, and a sediment measuring device for measuring the sediment thickness, and the sediment measuring device has an ultrasonic sensor and is transmitted from the ultrasonic sensor. Ultrasonic measurement means that measures the sediment thickness in the intake using ultrasonic waves and outputs a measurement signal; image processing means that converts the measurement signal from the ultrasonic measurement means into an image signal; and Transmission means for transmitting the image signal processed by the image processing means to the monitoring device, and the monitoring device controls the ultrasonic measurement means and the image processing means, respectively, to control the image of the intake port. Get signal And control means, and having a display means for displaying an image signal acquired.

請求項2に記載の本発明は、水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視システムであって、水力発電所内に設置された監視装置と、前記取水口近傍に設置され、堆積土砂厚の管理を行う堆積土砂管理装置と、を備え、前記堆積土砂管理装置は、超音波センサを有し該超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定する超音波測定手段と、該超音波測定手段による堆積土砂の測定を定期的に実行させると共に、前記取水口内の堆積土砂厚が所定の厚さ以上のときに警報信号を出力する管理手段と、を有し、前記監視装置は、前記管理手段からの警報信号に基づいて警報を出力する警報出力手段を有することを特徴とする。   The present invention described in claim 2 is a water intake sedimentation monitoring system for a hydroelectric power plant that monitors sediment deposited in a water intake for taking water for hydroelectric power generation, and a monitoring device installed in the hydroelectric power plant, A sedimentation sediment management device installed in the vicinity of the water intake and managing sedimentation sediment thickness, and the sedimentation sediment management device has an ultrasonic sensor and uses ultrasonic waves transmitted from the ultrasonic sensor. Ultrasonic measurement means for measuring the sediment thickness in the intake, and periodically measuring sediment sediment by the ultrasonic measurement means, and when the sediment thickness in the intake is greater than or equal to a predetermined thickness Management means for outputting an alarm signal, and the monitoring device has an alarm output means for outputting an alarm based on an alarm signal from the management means.

請求項3に記載の本発明は、水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視システムであって、水力発電所内に設置された監視装置と、前記取水口近傍に設置され、堆積土砂厚の測定と管理を行う堆積土砂測定/管理装置と、を備え、前記堆積土砂測定/管理装置は、超音波センサを有し該超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定して測定信号を出力する超音波測定手段と、該超音波測定手段からの測定信号を画像信号に変換する画像処理手段と、前記画像処理手段により画像処理した画像信号を前記監視装置に伝送する伝送手段と、前記超音波測定手段による堆積土砂の測定を定期的に実行させると共に、前記取水口内の堆積土砂厚が所定の厚さ以上のときに警報信号を出力する管理手段と、を有し、前記監視装置は、前記超音波測定手段、及び前記画像処理手段を夫々制御して前記取水口の画像信号を取得する制御手段と、取得した画像信号を表示する表示手段と、前記管理手段からの警報信号に基づいて警報を出力する警報出力手段と、を有することを特徴とする。   The present invention described in claim 3 is a water intake sedimentation monitoring system of a hydroelectric power station that monitors sediment deposited in a water intake for taking water for hydroelectric power generation, and a monitoring device installed in the hydroelectric power station, A sedimentation sediment measurement / management device installed near the water intake and measuring and managing sedimentation sediment thickness, and the sedimentation sediment measurement / management device has an ultrasonic sensor and is transmitted from the ultrasonic sensor. Ultrasonic measurement means for measuring the sediment thickness in the intake using ultrasonic waves and outputting a measurement signal, image processing means for converting the measurement signal from the ultrasonic measurement means into an image signal, and Transmission means for transmitting the image signal processed by the image processing means to the monitoring device, and measurement of sedimentation sediment by the ultrasonic measurement means are periodically executed, and the sedimentation sediment thickness in the water intake is a predetermined thickness. More than Management means for outputting a warning signal at a time, and the monitoring device controls the ultrasonic measurement means and the image processing means, respectively, and obtains an image signal of the water intake, Display means for displaying the image signal, and alarm output means for outputting an alarm based on the alarm signal from the management means.

請求項4に記載の本発明は、請求項1乃至請求項3の何れか1項に記載の取水口堆積土砂監視システムにおいて、前記超音波センサを前記取水口に沿って移動させる移動手段を備えたことを特徴とする。
請求項5に記載の本発明は、請求項1乃至請求項3の何れか1項に記載の取水口堆積土砂監視システムにおいて、前記超音波センサを前記取水口に沿って複数配置したことを特徴とする。
According to a fourth aspect of the present invention, in the intake sedimentary sediment monitoring system according to any one of the first to third aspects, the ultrasonic sensor is moved along the intake port. It is characterized by that.
According to a fifth aspect of the present invention, in the intake sedimentary sediment monitoring system according to any one of the first to third aspects, a plurality of the ultrasonic sensors are arranged along the intake port. And

請求項6に記載の本発明は、水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視方法であって、超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定する測定ステップと、前記測定ステップにより測定した測定信号を画像信号に変換する画像処理ステップと、前記画像処理ステップにより画像処理した画像信号を表示する表示ステップと、を有することを特徴とする。
請求項7に記載の本発明は、水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視方法であって、超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定する測定ステップと、前記取水口内の堆積土砂厚が所定の厚さ以上のときに警報信号を出力する警報出力ステップと、を有することを特徴とする。
The present invention as set forth in claim 6 is a method for monitoring the sediment deposited in the intake of a hydroelectric power station for monitoring the sediment deposited in the intake for taking water for hydroelectric power generation, and uses ultrasonic waves transmitted from an ultrasonic sensor. Then, a measurement step for measuring the sediment thickness in the intake, an image processing step for converting the measurement signal measured by the measurement step into an image signal, and a display step for displaying the image signal image-processed by the image processing step It is characterized by having.
The present invention as set forth in claim 7 is a method for monitoring the sediment accumulated in the intake of a hydroelectric power station for monitoring the sediment deposited in the intake for taking water for hydroelectric power generation, and uses ultrasonic waves transmitted from an ultrasonic sensor. And a measuring step for measuring the sediment thickness in the intake and an alarm output step for outputting an alarm signal when the sediment thickness in the intake is equal to or greater than a predetermined thickness.

本発明によれば、超音波測定手段を用いて取水口内に堆積する土砂厚を測定するので、河川が濁っていたり、或いは澱んでいたりした場合でも土砂の堆積状況を短時間で正確に測定することができる。
また本発明は、水力発電所内に設置された監視装置の制御装置により、取水口近傍に設置した堆積土砂測定装置の超音波測定手段及び画像処理手段を夫々制御して取水口の画像信号を取得し、取得した画像信号を表示手段に表示するようにしているので、水力発電所において取水口内に堆積する土砂の状況をリアルタイムで把握することができる。
According to the present invention, since the thickness of the sediment deposited in the water intake is measured using the ultrasonic measurement means, the sediment deposition state is accurately measured in a short time even when the river is cloudy or stagnant. be able to.
Further, the present invention obtains the image signal of the intake by controlling the ultrasonic measurement means and the image processing means of the sediment measurement apparatus installed in the vicinity of the intake by the control device of the monitoring apparatus installed in the hydroelectric power plant. In addition, since the acquired image signal is displayed on the display means, it is possible to grasp in real time the state of sediment deposited in the water intake at the hydroelectric power plant.

また本発明は、取水口近傍に設置した堆積土砂管理装置の管理手段の制御により、超音波測定手段により取水口内の堆積土砂厚を定期的に測定し、取水口内の堆積土砂厚が所定の厚さ以上となったときに監視装置に設けられている警報出力手段に対して警報信号を出力するようにしているので、取水口内の堆積土砂が導水路に流入する前に水力発電所の作業者に土砂が導水路に流入する虞があることを知らせることが可能になる。
また本発明は、超音波センサを取水口に沿って移動させる移動手段を備えるようにすると、1つの超音波センサで取水口全体の土砂の堆積状況を短時間で把握することが出来る。
また超音波センサを取水口に沿って複数配置しても取水口全体の土砂の堆積状況を短時間で把握することが出来る。また、この場合は、超音波センサが複数個必要になるが、超音波センサを取水口に沿って移動させる移動手段が不要になるので移動手段のメンテナンス等を行う必要がなく、コスト面から有利になる。
Further, according to the present invention, the sedimentation sediment thickness in the intake port is periodically measured by the ultrasonic measurement unit under the control of the management unit of the sediment control apparatus installed near the intake port, and the sediment thickness in the intake port is a predetermined thickness. Since the alarm signal is output to the alarm output means provided in the monitoring device when the temperature exceeds the limit, the operator of the hydroelectric power station before the sediment in the intake port flows into the water conduit It is possible to inform that there is a risk of earth and sand flowing into the conduit.
Further, according to the present invention, when a moving means for moving the ultrasonic sensor along the water inlet is provided, it is possible to grasp the sediment state of the entire water inlet in a short time with one ultrasonic sensor.
Further, even if a plurality of ultrasonic sensors are arranged along the water intake, it is possible to grasp the sediment accumulation state of the entire water intake in a short time. In this case, a plurality of ultrasonic sensors are required. However, since no moving means for moving the ultrasonic sensors along the water inlet is required, there is no need for maintenance of the moving means, which is advantageous in terms of cost. become.

以下、図面を参照しながら本発明の実施形態について説明する。
図1は本発明の実施形態である水力発電所の取水口堆積土砂監視システムの構成を示した図である。
この図1に示す水力発電所の取水口堆積土砂監視システムは、水力発電所内に設置される監視装置1と、河川の取水口の近傍に設置される堆積土砂測定/管理装置30とから構成される。
監視装置1には制御手段である監視用パーソナルコンピュータ(以下、「監視用パソコン」という)2と警報出力手段である警報装置3が設けられている。
監視用パソコン2は、社内回線網4を介して堆積土砂測定/管理装置30の伝送部34に接続され、堆積土砂測定/管理装置30から取水口内に堆積している土砂の画像信号を取得可能になっている。なお、監視装置1の監視用パソコン2と堆積土砂測定/管理装置30の伝送部34との間はローカルエリアネットワーク(LAN:Local Area Network)やインターネット等を介して接続してもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a water intake sedimentation monitoring system for a hydroelectric power plant according to an embodiment of the present invention.
1 is composed of a monitoring device 1 installed in a hydroelectric power plant and a sediment measurement / control device 30 installed in the vicinity of a river water intake. The
The monitoring device 1 is provided with a monitoring personal computer (hereinafter referred to as “monitoring personal computer”) 2 as control means and an alarm device 3 as alarm output means.
The monitoring personal computer 2 is connected to the transmission unit 34 of the sediment sediment measurement / management device 30 via the in-house network 4 and can acquire an image signal of sediment accumulated in the water intake from the sediment sediment measurement / management device 30. It has become. Note that the monitoring personal computer 2 of the monitoring device 1 and the transmission unit 34 of the sediment measurement / management device 30 may be connected via a local area network (LAN), the Internet, or the like.

図2は監視用パソコン2のハードウェアの構成例を示した図である。
この図2においてCPU(Central Processing Unit)11は、監視用パソコン2全体の制御を司る。ROM(Read Only Memory)12は、プログラムデータ等が記憶されており、必要に応じてバス10を介してCPU11が読み出しを行うことで、ここに格納されたプログラムに従った処理を実行する。RAM(Random Access Memory)13には、CPU11が各種処理を実行するのに必要なデータやプログラム等が適宜保持される。ハードディスクドライブ(HDD)14は、記憶媒体としてハードディスク(HD)15を備えており、CPU11がHD15に対してデータやプログラム等の記録又は読み出しを行う。この場合、CPU11はHDD14のHD15に記憶されているアプリケーションプログラムを読み出し、RAM13に展開することで、そのアプリケーションプログラムに従った各種処理を実行する。
また内部バス10にはディスプレイ16が接続されると共に、入力手段であるキーボード17やマウス18が接続されている。また内部バス10にはモデム19が接続されており、モデム19を介して社内回線網4に接続される。また内部バス10にはプリンタI/Fを介してプリンタ20等の出力装置が接続されている。
FIG. 2 is a diagram illustrating a hardware configuration example of the monitoring personal computer 2.
In FIG. 2, a CPU (Central Processing Unit) 11 controls the entire monitoring personal computer 2. A ROM (Read Only Memory) 12 stores program data and the like, and the CPU 11 reads the data via the bus 10 as necessary, thereby executing processing according to the stored program. A RAM (Random Access Memory) 13 appropriately stores data, programs, and the like necessary for the CPU 11 to execute various processes. The hard disk drive (HDD) 14 includes a hard disk (HD) 15 as a storage medium, and the CPU 11 records or reads data, programs, and the like on the HD 15. In this case, the CPU 11 reads out an application program stored in the HD 15 of the HDD 14 and develops it in the RAM 13 to execute various processes according to the application program.
In addition, a display 16 is connected to the internal bus 10, and a keyboard 17 and a mouse 18 as input means are connected. A modem 19 is connected to the internal bus 10 and is connected to the in-house network 4 via the modem 19. Further, an output device such as a printer 20 is connected to the internal bus 10 via a printer I / F.

このように構成される監視用パソコン2においては、作業者がキーボード17やマウス18により所要の操作を行うことで、堆積土砂測定/管理装置30から取水口内に堆積している土砂の画像信号を得ることができるため、取水口内に堆積している土砂の画像をディスプレイ16上にリアルタイムで表示することができる。一方、監視装置1の警報装置3は、例えばスピーカなどの音声出力装置や表示装置等により構成され、既存の設備である中継盤5及び遠方監視制御盤(TC盤)6を介して堆積土砂測定/管理装置30の堆積土砂管理部36から警報情報が送られてきた時に警報音を発生したり或いは警報画面を表示したりする。   In the monitoring personal computer 2 configured as described above, the operator performs a necessary operation with the keyboard 17 and the mouse 18, and thereby the image signal of the sediment accumulated in the water intake is received from the sediment sediment measurement / management device 30. Since it can be obtained, the image of the earth and sand accumulated in the water intake can be displayed on the display 16 in real time. On the other hand, the alarm device 3 of the monitoring device 1 is composed of, for example, a voice output device such as a speaker, a display device, etc., and measures sediment sediment through a relay panel 5 and a remote monitoring control panel (TC panel) 6 which are existing facilities. / When alarm information is sent from the sediment control unit 36 of the management device 30, an alarm sound is generated or an alarm screen is displayed.

堆積土砂測定/管理装置30は、超音波センサ31aを備えた超音波測定器(超音波測定手段)31、センサ駆動部(センサ移動手段)32、画像処理部(画像処理手段)33、伝送部(伝送手段)34、モデム35、及び堆積土砂管理部(管理手段)36を備え、取水口内に堆積している土砂の測定及び管理を行っている。
超音波測定器31は、超音波センサ31aから超音波を発信したときに河川の底面から発射されてくる反射音を受信して河川の底面に堆積している堆積土砂厚を測定する。
The sediment measurement / management apparatus 30 includes an ultrasonic measuring device (ultrasonic measuring means) 31 including an ultrasonic sensor 31a, a sensor driving unit (sensor moving unit) 32, an image processing unit (image processing unit) 33, and a transmission unit. (Transmission means) 34, modem 35, and sediment sediment management section (management means) 36 are provided to measure and manage sediment deposited in the water intake.
The ultrasonic measuring device 31 receives the reflected sound emitted from the bottom of the river when the ultrasonic wave is transmitted from the ultrasonic sensor 31a, and measures the sediment thickness deposited on the bottom of the river.

本実施形態では、超音波センサ31aに図示しない駆動装置等が取り付けられており、取水口の縦断面に沿って取り付けたレール41上を移動可能に構成されている。超音波センサ31aの移動はセンサ駆動部32により制御が行われる。
センサ駆動部32は、監視用パソコン2から伝送部34に伝送されてくる制御信号または堆積土砂管理部36からの制御信号により超音波センサ31aの駆動を制御するようにしている。
画像処理部33は、監視用パソコン2から伝送部34に伝送されてくる制御信号に基づいて超音波測定器31で測定した測定信号を画像信号に変換する。
In the present embodiment, a driving device or the like (not shown) is attached to the ultrasonic sensor 31a, and is configured to be movable on the rail 41 attached along the longitudinal section of the water intake. The movement of the ultrasonic sensor 31 a is controlled by the sensor driving unit 32.
The sensor driving unit 32 controls the driving of the ultrasonic sensor 31 a by a control signal transmitted from the monitoring personal computer 2 to the transmission unit 34 or a control signal from the sediment control unit 36.
The image processing unit 33 converts the measurement signal measured by the ultrasonic measuring device 31 into an image signal based on the control signal transmitted from the monitoring personal computer 2 to the transmission unit 34.

図3は、画像処理部33において画像に変換された画像の一例を示した図である。
超音波センサ31aを用いて測定を行った場合は、河川底面のコンクリート等の堅い構造物とこの構造物51上に堆積した砂や泥等の堆積土砂とでは、超音波センサ31aから発信した発信波の反射強度が異なる。この結果、超音波測定器31で取水口内を測定した測定信号を画像処理部33で画像処理すると、図3に示すような、コンクリート構造部51上に堆積した堆積土砂52の画像を得ることができる。
伝送部34はモデム35を備えており、モデム35を介して監視用パソコン2から伝送されてくる制御信号をセンサ駆動部32や画像処理部33に伝送したり、監視用パソコン2の制御により画像処理部33において画像処理された画像信号を、モデム35を介して監視用パソコン2に伝送したりする。
FIG. 3 is a diagram illustrating an example of an image converted into an image by the image processing unit 33.
When the measurement is performed using the ultrasonic sensor 31a, the transmission transmitted from the ultrasonic sensor 31a is performed between the hard structure such as concrete on the bottom of the river and the sediment such as sand and mud deposited on the structure 51. Wave reflection intensity is different. As a result, when the measurement signal measured in the water intake by the ultrasonic measuring device 31 is image-processed by the image processing unit 33, an image of the accumulated sediment 52 deposited on the concrete structure unit 51 as shown in FIG. 3 can be obtained. it can.
The transmission unit 34 includes a modem 35, and a control signal transmitted from the monitoring personal computer 2 via the modem 35 is transmitted to the sensor driving unit 32 and the image processing unit 33, and an image is controlled by the control of the monitoring personal computer 2. The image signal subjected to the image processing in the processing unit 33 is transmitted to the monitoring personal computer 2 via the modem 35.

堆積土砂管理部36は、例えばパーソナルコンピュータなどにより構成され、定期的に超音波測定器31とセンサ駆動部32の制御を行って取水口内に堆積している土砂厚の測定を実行させると共に、超音波測定器31で測定された堆積土砂の厚さが、取水口内の導水路や水車に土砂が流入する虞がある所定の厚さ以上になったときに、中継盤5及びTC盤6を介して監視装置1の警報装置3に警報信号を出力する。なお、堆積土砂管理部36から警報信号を出力する堆積土砂の厚さは任意に設定可能であることは言うまでもない。また、堆積土砂管理部36の主要なハード構成は図2と同じなので図示を省略する。   The sediment control unit 36 is constituted by, for example, a personal computer, and periodically controls the ultrasonic measuring device 31 and the sensor driving unit 32 to execute measurement of the sediment thickness deposited in the water intake. When the thickness of sedimentary sediment measured by the sonic measuring instrument 31 exceeds a predetermined thickness that may cause sediment to flow into the water conduit or water turbine in the intake, the relay panel 5 and the TC panel 6 are used. The alarm signal is output to the alarm device 3 of the monitoring device 1. Needless to say, the thickness of the sediment that outputs an alarm signal from the sediment management unit 36 can be arbitrarily set. The main hardware configuration of the sediment control unit 36 is the same as that shown in FIG.

次に本実施形態の取水口堆積土砂監視システムによる堆積土砂の監視方法を説明する。
図4は本実施形態の取水口堆積土砂監視システムによる堆積土砂の監視方法の第1実施形態を示したフローチャートである。
この図4に示す堆積土砂の監視方法は、作業者が監視用パソコン2のキーボード17やマウス18を操作してCPU11がHD15に予め記録されているプログラムを実行することにより実現される。
この場合、監視用パソコン2は、先ず、伝送部34を介して超音波測定器31に制御信号を出力し、取水口内に堆積している堆積土砂厚を測定させる(S1)。次に、伝送部34を介して画像処理部33を制御する制御信号を出力し、超音波測定器31で測定された測定信号を画像信号に変換させる(S2)。次に、監視用パソコン2は、伝送部34に対して制御信号を出力して画像処理部33において変換した画像信号を監視用パソコン2へ伝送させる(S3)。そして、伝送された画像信号を監視用パソコン2のディスプレイ16上に表示させる。
Next, a method for monitoring sedimentary sediment by the intake sediment sediment monitoring system of the present embodiment will be described.
FIG. 4 is a flowchart showing the first embodiment of the sediment monitoring method by the intake sediment sediment monitoring system of the present embodiment.
The sediment monitoring method shown in FIG. 4 is realized by the operator operating the keyboard 17 and mouse 18 of the monitoring personal computer 2 and the CPU 11 executing a program recorded in advance on the HD 15.
In this case, the monitoring personal computer 2 first outputs a control signal to the ultrasonic measuring device 31 via the transmission unit 34 to measure the sediment thickness deposited in the water intake (S1). Next, a control signal for controlling the image processing unit 33 is output via the transmission unit 34, and the measurement signal measured by the ultrasonic measuring device 31 is converted into an image signal (S2). Next, the monitoring personal computer 2 outputs a control signal to the transmission unit 34 and transmits the image signal converted by the image processing unit 33 to the monitoring personal computer 2 (S3). Then, the transmitted image signal is displayed on the display 16 of the monitoring personal computer 2.

図5は、本実施形態の取水口堆積土砂監視システムによる堆積土砂の監視方法の第2実施形態を示したフローチャートである。
この図5に示す堆積土砂の監視方法は、堆積土砂測定/管理装置30の堆積土砂管理部36のCPUがHDに予め記録されているプログラムを実行することにより実現される。
この場合、堆積土砂管理部36は、先ず、超音波測定器31を制御して取水口内に堆積している堆積土砂厚を測定させる(S11)。次に、超音波測定器31で測定された堆積土砂厚が所定の厚さ以上か否かの判別を行い、所定厚以上であると判別したときは(S12でY)、監視装置1の警報装置3に対して警報信号を出力する(S13)。
FIG. 5 is a flowchart showing a second embodiment of the sediment monitoring method by the intake sediment sediment monitoring system of the present embodiment.
5 is realized by the CPU of the sediment management unit 36 of the sediment measurement / management apparatus 30 executing a program recorded in advance on the HD.
In this case, the sediment control unit 36 first controls the ultrasonic measuring device 31 to measure the sediment thickness deposited in the water intake (S11). Next, it is determined whether or not the sediment thickness measured by the ultrasonic measuring device 31 is equal to or greater than a predetermined thickness. If it is determined that the thickness is equal to or greater than the predetermined thickness (Y in S12), an alarm of the monitoring device 1 is issued. An alarm signal is output to the device 3 (S13).

一方、超音波測定器31で測定された堆積土砂厚が所定の厚以上でなければ(S12でN)、監視装置1の警報装置3に対して警報信号を出力することなく処理を終えるようにする。なお、本実施形態では、堆積土砂管理部36からの警報信号を監視装置1の警報装置3に対してのみ出力する場合を例に挙げて説明したが、これはあくまでも一例であり、堆積土砂管理部36からの警報信号を監視装置1の監視用パソコン2に出力し、監視用パソコン2において警報信号に応じた警報画面を画像処理部33からの画像信号と併せて表示しても良い。   On the other hand, if the sediment thickness measured by the ultrasonic measuring instrument 31 is not equal to or greater than the predetermined thickness (N in S12), the process is terminated without outputting an alarm signal to the alarm device 3 of the monitoring device 1. To do. In the present embodiment, the case where the alarm signal from the sediment control unit 36 is output only to the alarm device 3 of the monitoring device 1 has been described as an example. However, this is only an example, and the sediment control is performed. The alarm signal from the unit 36 may be output to the monitoring personal computer 2 of the monitoring device 1, and an alarm screen corresponding to the alarm signal may be displayed together with the image signal from the image processing unit 33 on the monitoring personal computer 2.

このように本実施形態の取水口堆積土砂監視システムにおいては、超音波測定器(超音波測定手段)31を利用して取水口内に堆積している土砂の厚さを測定するようにしているので、河川が濁っていたり或いは澱んでいたりする場合でも、取水口内の土砂の堆積状況を短時間で正確に把握することができる。
また水力発電所内に設置された監視装置1の監視用パソコン2により、取水口近傍に設置した堆積土砂測定/管理装置30の超音波測定器31、センサ駆動部32及び画像処理部33を夫々制御して取水口の画像信号を取得し、取得した画像信号を監視用パソコン2のディスプレイ(表示手段)16に表示するので、水力発電所において取水口内に堆積する土砂の状況をリアルタイムで把握することができる。
As described above, in the intake sediment sediment monitoring system of the present embodiment, the thickness of the sediment deposited in the intake port is measured using the ultrasonic measuring device (ultrasonic measuring means) 31. Even when the river is cloudy or stagnant, it is possible to accurately grasp the state of sediment accumulation in the water intake in a short time.
In addition, the monitoring personal computer 2 of the monitoring device 1 installed in the hydroelectric power station controls the ultrasonic measuring device 31, the sensor driving unit 32, and the image processing unit 33 of the sediment measurement / management device 30 installed in the vicinity of the water intake. Since the image signal of the intake port is acquired and the acquired image signal is displayed on the display (display means) 16 of the monitoring personal computer 2, it is possible to grasp in real time the state of sediment accumulated in the intake port at the hydroelectric power plant. Can do.

また本実施形態の取水口堆積土砂監視システムにおいては、取水口近傍に設置した堆積土砂測定/管理装置30の堆積土砂管理部(管理手段)36の制御により超音波測定器31により取水口内の堆積土砂厚を定期的に測定し、取水口内の堆積土砂の厚さが所定の厚さ以上となったときに、監視装置1内に設けられている警報装置(警報出力手段)3に対して警報信号を出力するようにしている。これにより、取水口内の堆積土砂が導水路に流入する前に水力発電所の作業者に土砂が流入する虞があることを知らせることが可能になる。また、このように構成すると大雨等が降って河川からの流入が増大する出水時等においても、取水口内の土砂の流入状況を十分に把握することができ、水力発電所内の導水路や水車へ多量の土砂が流入するのを防ぐことができる。   Further, in the intake sediment sediment monitoring system of the present embodiment, sedimentation in the intake by the ultrasonic measuring device 31 is controlled by the sediment control unit (management means) 36 of the sediment measurement / management apparatus 30 installed in the vicinity of the intake. Periodically measure the sediment thickness and alert the alarm device (alarm output means) 3 provided in the monitoring device 1 when the sediment thickness in the water intake reaches a predetermined thickness or more. A signal is output. This makes it possible to notify the operator of the hydroelectric power plant that there is a risk of sediment flowing in before the sediment sediment in the intake port flows into the water conduit. In addition, with this configuration, it is possible to fully understand the inflow of sediment in the intake, even during flooding when heavy rain falls and the inflow from the river increases. A large amount of earth and sand can be prevented from flowing in.

さらに本実施形態では取水口の縦断面に沿って取り付けたレール41に沿って超音波センサ31aを駆動可能に構成したことで、レール41に沿って超音波センサ31aを移動させるセンサ移動手段を備えたことで、取水口全体の土砂の堆積状況を短時間で把握することが出来る。
なお、センサ移動手段の代わりに超音波センサ31aを取水口に沿って複数配置するようにしても同様の効果が得られる。また、この場合は超音波センサ31aが複数個必要になるが、超音波センサ31aを取水口に沿って移動させるためのレール41や駆動装置等が不要になると共に、これらのメンテナンス等も不要になるため、超音波センサ31aが複数個配置した方がセンサ移動手段を備える場合に比べてコスト的に有利になる。
Further, in the present embodiment, the ultrasonic sensor 31a is configured to be driven along the rail 41 attached along the longitudinal section of the water intake port, thereby providing a sensor moving means for moving the ultrasonic sensor 31a along the rail 41. Therefore, it is possible to grasp the sedimentation status of the entire intake in a short time.
The same effect can be obtained by arranging a plurality of ultrasonic sensors 31a along the water inlet instead of the sensor moving means. In this case, a plurality of ultrasonic sensors 31a are required. However, the rail 41 and the driving device for moving the ultrasonic sensors 31a along the water outlet are unnecessary, and the maintenance and the like are unnecessary. Therefore, the arrangement of a plurality of ultrasonic sensors 31a is advantageous in terms of cost compared to the case where the sensor moving means is provided.

また本実施形態では、監視装置1の監視パソコン2により取水口内の堆積土砂厚を測定する堆積土砂測定装置と、堆積土砂管理部36により堆積土砂厚を定期的に測定して管理を行う堆積土砂管理装置とが一体的に構成されている場合を例に挙げて説明したが、これはあくまでも一例であり、堆積土砂測定装置と堆積土砂管理装置とは別体で構成されていても良いことは言うまでもない。   Moreover, in this embodiment, the sedimentation sediment measuring apparatus which measures the sedimentation sediment thickness in a water intake by the monitoring personal computer 2 of the monitoring apparatus 1, and the sedimentation sediment which carries out management by measuring sedimentation sediment thickness regularly by the sedimentation sediment management part 36. Although the case where the management device is configured integrally is described as an example, this is only an example, and the sediment measurement device and the sediment management device may be configured separately. Needless to say.

本発明の実施形態である水力発電所の取水口堆積土砂監視システムの構成を示した図。The figure which showed the structure of the intake sediment sediment monitoring system of the hydroelectric power station which is embodiment of this invention. 監視用パソコン2のハードウェアの構成例を示した図。The figure which showed the structural example of the hardware of the personal computer 2 for monitoring. 画像処理部において画像に変換された画像の一例を示した図。The figure which showed an example of the image converted into the image in the image process part. 本実施形態の取水口堆積土砂監視システムによる堆積土砂の監視方法の第1実施形態を示したフローチャート。The flowchart which showed 1st Embodiment of the monitoring method of sedimentary sediment by the intake sediment sediment monitoring system of this embodiment. 本実施形態の取水口堆積土砂監視システムによる堆積土砂の監視方法の第2実施形態を示したフローチャート。The flowchart which showed 2nd Embodiment of the monitoring method of sedimentary sediment by the intake sediment sediment monitoring system of this embodiment. 水力発電所の取水口の構造を示した図。The figure which showed the structure of the intake of a hydroelectric power station.

符号の説明Explanation of symbols

1…監視装置、2…監視用PC、3…警報装置、4…社内回線網、5…中継盤、6…TC盤、10…内部バス、11…CPU、12…ROM、13…RAM、14…HDD、15…HD、16…ディスプレイ、17…キーボード、18…マウス、19…モデム、20…プリンタ、30…堆積土砂測定/管理装置、31…超音波測定器、31a…超音波センサ、32…センサ駆動部、33…画像処理部、34…伝送部、35…モデム、36…堆積土砂管理部、41…レール、51…コンクリート構造部、52…堆積土砂   DESCRIPTION OF SYMBOLS 1 ... Monitoring apparatus, 2 ... Monitoring PC, 3 ... Alarm apparatus, 4 ... Internal network, 5 ... Relay board, 6 ... TC board, 10 ... Internal bus, 11 ... CPU, 12 ... ROM, 13 ... RAM, 14 ... HDD, 15 ... HD, 16 ... Display, 17 ... Keyboard, 18 ... Mouse, 19 ... Modem, 20 ... Printer, 30 ... Sediment measurement / management apparatus, 31 ... Ultrasonic measuring instrument, 31a ... Ultrasonic sensor, 32 DESCRIPTION OF SYMBOLS Sensor drive part 33 ... Image processing part 34 ... Transmission part 35 ... Modem 36 ... Deposit sediment control part 41 ... Rail 51 ... Concrete structure part 52 ... Deposit sediment

Claims (7)

水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視システムであって、
水力発電所内に設置された監視装置と、前記取水口近傍に設置され、堆積土砂厚を測定する堆積土砂測定装置と、を備え、
前記堆積土砂測定装置は、超音波センサを有し該超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定して測定信号を出力する超音波測定手段と、該超音波測定手段からの測定信号を画像信号に変換する画像処理手段と、該画像処理手段により画像処理した画像信号を前記監視装置に伝送する伝送手段と、を有し、
前記監視装置は、前記超音波測定手段、及び前記画像処理手段を夫々制御して前記取水口の画像信号を取得する制御手段と、取得した画像信号を表示する表示手段と、を有することを特徴とする取水口堆積土砂監視システム。
An intake sedimentation monitoring system for a hydroelectric power station that monitors sediment deposited in an intake for taking water for hydropower generation,
A monitoring device installed in a hydroelectric power plant, and a sedimentation sediment measuring device installed in the vicinity of the intake and measuring sedimentation sediment thickness,
The sedimentation sediment measuring device has an ultrasonic sensor, measures the sedimentation sediment thickness in the intake using ultrasonic waves transmitted from the ultrasonic sensor, and outputs a measurement signal; and Image processing means for converting a measurement signal from the ultrasonic measurement means into an image signal, and transmission means for transmitting the image signal processed by the image processing means to the monitoring device,
The monitoring device includes a control unit that acquires the image signal of the intake port by controlling the ultrasonic measurement unit and the image processing unit, respectively, and a display unit that displays the acquired image signal. Intake sediment sediment monitoring system.
水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視システムであって、
水力発電所内に設置された監視装置と、前記取水口近傍に設置され、堆積土砂厚の管理を行う堆積土砂管理装置と、を備え、
前記堆積土砂管理装置は、超音波センサを有し該超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定する超音波測定手段と、該超音波測定手段による堆積土砂の測定を定期的に実行させると共に、前記取水口内の堆積土砂厚が所定の厚さ以上のときに警報信号を出力する管理手段と、を有し、
前記監視装置は、前記管理手段からの警報信号に基づいて警報を出力する警報出力手段を有することを特徴とする取水口堆積土砂監視システム。
An intake sedimentation monitoring system for a hydroelectric power station that monitors sediment deposited in an intake for taking water for hydropower generation,
A monitoring device installed in a hydroelectric power plant, and a sedimentation sediment management device installed in the vicinity of the water intake for managing sedimentary sediment thickness,
The sediment management apparatus has an ultrasonic sensor, and measures ultrasonic deposition means for measuring the sediment thickness in the water intake using ultrasonic waves transmitted from the ultrasonic sensor, and deposits by the ultrasonic measurement means. Management means for periodically executing measurement of earth and sand and outputting an alarm signal when the sediment thickness in the intake is greater than or equal to a predetermined thickness,
The monitoring apparatus has an alarm output means for outputting an alarm based on an alarm signal from the management means.
水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視システムであって、
水力発電所内に設置された監視装置と、前記取水口近傍に設置され、堆積土砂厚の測定と管理を行う堆積土砂測定/管理装置と、を備え、
前記堆積土砂測定/管理装置は、超音波センサを有し該超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定して測定信号を出力する超音波測定手段と、該超音波測定手段からの測定信号を画像信号に変換する画像処理手段と、前記画像処理手段により画像処理した画像信号を前記監視装置に伝送する伝送手段と、前記超音波測定手段による堆積土砂の測定を定期的に実行させると共に、前記取水口内の堆積土砂厚が所定の厚さ以上のときに警報信号を出力する管理手段と、を有し、
前記監視装置は、前記超音波測定手段、及び前記画像処理手段を夫々制御して前記取水口の画像信号を取得する制御手段と、取得した画像信号を表示する表示手段と、前記管理手段からの警報信号に基づいて警報を出力する警報出力手段と、を有することを特徴とする取水口堆積土砂監視システム。
An intake sedimentation monitoring system for a hydroelectric power station that monitors sediment deposited in an intake for taking water for hydropower generation,
A monitoring device installed in a hydroelectric power plant, and a sedimentation sediment measurement / management device installed near the intake and measuring sedimentary sediment thickness and management,
The sedimentation sediment measurement / management device includes an ultrasonic measurement unit that has an ultrasonic sensor, measures the sedimentation sediment thickness in the water intake using ultrasonic waves transmitted from the ultrasonic sensor, and outputs a measurement signal. An image processing means for converting a measurement signal from the ultrasonic measurement means into an image signal, a transmission means for transmitting an image signal processed by the image processing means to the monitoring device, and sedimentary sediment by the ultrasonic measurement means And a management means for outputting an alarm signal when the sediment thickness in the intake is greater than or equal to a predetermined thickness.
The monitoring device controls the ultrasonic measurement unit and the image processing unit to acquire an image signal of the intake port, a display unit that displays the acquired image signal, and a management unit And an alarm output means for outputting an alarm based on the alarm signal.
請求項1乃至請求項3の何れか1項に記載の取水口堆積土砂監視システムにおいて、前記超音波センサを前記取水口に沿って移動させる移動手段を備えたことを特徴とする取水口堆積土砂監視システム。   The intake sedimentary sediment monitoring system according to any one of claims 1 to 3, further comprising moving means for moving the ultrasonic sensor along the intake port. Monitoring system. 請求項1乃至請求項3の何れか1項に記載の取水口堆積土砂監視システムにおいて、前記超音波センサを前記取水口に沿って複数配置したことを特徴とする取水口堆積土砂監視システム。   The intake sedimentary sediment monitoring system according to any one of claims 1 to 3, wherein a plurality of the ultrasonic sensors are arranged along the intake port. 水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視方法であって、
超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定する測定ステップと、前記測定ステップにより測定した測定信号を画像信号に変換する画像処理ステップと、前記画像処理ステップにより画像処理した画像信号を表示する表示ステップと、を有することを特徴とする取水口堆積土砂監視方法。
A method for monitoring sediment accumulation in a water intake of a hydroelectric power station for monitoring sediment deposited in a water intake for taking water for hydroelectric power generation,
A measurement step for measuring the sediment thickness in the intake using ultrasonic waves transmitted from an ultrasonic sensor, an image processing step for converting a measurement signal measured in the measurement step into an image signal, and the image processing step And a display step for displaying an image signal image-processed by the method.
水力発電用水を取水する取水口内に堆積した土砂を監視する水力発電所の取水口堆積土砂監視方法であって、
超音波センサから発信される超音波を利用して前記取水口内の堆積土砂厚を測定する測定ステップと、前記取水口内の堆積土砂厚が所定の厚さ以上のときに警報信号を出力する警報出力ステップと、を有することを特徴とする取水口堆積土砂監視方法。
A method for monitoring sediment accumulation in a water intake of a hydroelectric power station for monitoring sediment deposited in a water intake for taking water for hydroelectric power generation,
A measurement step for measuring the sediment thickness in the intake using ultrasonic waves transmitted from an ultrasonic sensor, and an alarm output for outputting an alarm signal when the sediment thickness in the intake is greater than or equal to a predetermined thickness A method for monitoring intake sedimentation sediment.
JP2006105641A 2006-04-06 2006-04-06 Intake deposited earth-and-sand monitoring system and monitoring method Pending JP2007278847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006105641A JP2007278847A (en) 2006-04-06 2006-04-06 Intake deposited earth-and-sand monitoring system and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105641A JP2007278847A (en) 2006-04-06 2006-04-06 Intake deposited earth-and-sand monitoring system and monitoring method

Publications (1)

Publication Number Publication Date
JP2007278847A true JP2007278847A (en) 2007-10-25

Family

ID=38680439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105641A Pending JP2007278847A (en) 2006-04-06 2006-04-06 Intake deposited earth-and-sand monitoring system and monitoring method

Country Status (1)

Country Link
JP (1) JP2007278847A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131858A (en) * 2017-05-09 2017-09-05 中国地质大学(北京) A kind of method for calculating Lake Bank broken sea dam deposit thickness
CN113815680A (en) * 2021-09-16 2021-12-21 宁夏大学 Railway track sand burying detection system and early warning method

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588120U (en) * 1978-12-13 1980-06-18
JPS57125811A (en) * 1981-01-29 1982-08-05 Hitachi Kiden Kogyo Ltd Method for measuring quantity of deposition of sand or the like in waterway
JPS57125810A (en) * 1981-01-29 1982-08-05 Hitachi Kiden Kogyo Ltd Method for measuring quantity of deposition of sand or the like in waterway
JPS60210786A (en) * 1984-04-03 1985-10-23 Kaiyo Kagaku Gijutsu Center Ultrasonic distance measuring apparatus
JPS60210707A (en) * 1984-04-03 1985-10-23 Kaiyo Kagaku Gijutsu Center Measuring apparatus for thickness of layer of underwater product
JPS60161808U (en) * 1984-04-03 1985-10-28 海洋科学技術センタ− Device for measuring layer thickness of marine organisms
JPS61194319A (en) * 1985-02-25 1986-08-28 Fueroo:Kk Measured value correctness judgement of under-water supersonic wave sand deposit meter
JPS62184308A (en) * 1986-02-08 1987-08-12 Chubu Electric Power Co Inc Deposit thickness measuring instrument for tank bottom deposit
JPS6351219U (en) * 1986-09-22 1988-04-06
JPH02176009A (en) * 1988-12-27 1990-07-09 Penta Ocean Constr Co Ltd Deposition measurement device near the dam intake
JPH03156597A (en) * 1989-11-14 1991-07-04 Fujitsu Ltd Camera system for monitor
JPH0926079A (en) * 1995-07-12 1997-01-28 Kansei Kogyo Kk Method and device for investigating soil sedimentation amount in underground piping
JPH1068118A (en) * 1996-08-27 1998-03-10 Kansai Electric Power Co Inc:The Inflow earth and sand detector
JPH10160549A (en) * 1996-11-28 1998-06-19 Kaijo Corp Displaying method for sediment measuring device
JPH1123704A (en) * 1997-06-27 1999-01-29 Wall Natsuto:Kk Method and instrument for underwater measurement
JP2001141438A (en) * 1999-11-16 2001-05-25 Honda Electronic Co Ltd Device for measuring thickness of bottom mud
JP2004048245A (en) * 2002-07-10 2004-02-12 Matsushita Electric Works Ltd Image monitor system
JP2004164504A (en) * 2002-11-15 2004-06-10 Hitachi Ltd Monitoring system

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588120U (en) * 1978-12-13 1980-06-18
JPS57125811A (en) * 1981-01-29 1982-08-05 Hitachi Kiden Kogyo Ltd Method for measuring quantity of deposition of sand or the like in waterway
JPS57125810A (en) * 1981-01-29 1982-08-05 Hitachi Kiden Kogyo Ltd Method for measuring quantity of deposition of sand or the like in waterway
JPS60210786A (en) * 1984-04-03 1985-10-23 Kaiyo Kagaku Gijutsu Center Ultrasonic distance measuring apparatus
JPS60210707A (en) * 1984-04-03 1985-10-23 Kaiyo Kagaku Gijutsu Center Measuring apparatus for thickness of layer of underwater product
JPS60161808U (en) * 1984-04-03 1985-10-28 海洋科学技術センタ− Device for measuring layer thickness of marine organisms
JPS61194319A (en) * 1985-02-25 1986-08-28 Fueroo:Kk Measured value correctness judgement of under-water supersonic wave sand deposit meter
JPS62184308A (en) * 1986-02-08 1987-08-12 Chubu Electric Power Co Inc Deposit thickness measuring instrument for tank bottom deposit
JPS6351219U (en) * 1986-09-22 1988-04-06
JPH02176009A (en) * 1988-12-27 1990-07-09 Penta Ocean Constr Co Ltd Deposition measurement device near the dam intake
JPH03156597A (en) * 1989-11-14 1991-07-04 Fujitsu Ltd Camera system for monitor
JPH0926079A (en) * 1995-07-12 1997-01-28 Kansei Kogyo Kk Method and device for investigating soil sedimentation amount in underground piping
JPH1068118A (en) * 1996-08-27 1998-03-10 Kansai Electric Power Co Inc:The Inflow earth and sand detector
JPH10160549A (en) * 1996-11-28 1998-06-19 Kaijo Corp Displaying method for sediment measuring device
JPH1123704A (en) * 1997-06-27 1999-01-29 Wall Natsuto:Kk Method and instrument for underwater measurement
JP2001141438A (en) * 1999-11-16 2001-05-25 Honda Electronic Co Ltd Device for measuring thickness of bottom mud
JP2004048245A (en) * 2002-07-10 2004-02-12 Matsushita Electric Works Ltd Image monitor system
JP2004164504A (en) * 2002-11-15 2004-06-10 Hitachi Ltd Monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131858A (en) * 2017-05-09 2017-09-05 中国地质大学(北京) A kind of method for calculating Lake Bank broken sea dam deposit thickness
CN107131858B (en) * 2017-05-09 2019-03-15 中国地质大学(北京) A method of calculating Lake Bank broken sea dam deposition thickness
CN113815680A (en) * 2021-09-16 2021-12-21 宁夏大学 Railway track sand burying detection system and early warning method

Similar Documents

Publication Publication Date Title
Ciuriuc et al. Digital tools for floating offshore wind turbines (FOWT): A state of the art
Tsakiris et al. Signature of bedload particle transport mode in the acoustic signal of a geophone
Topczewski et al. Monitoring of scour around bridge piers and abutments
Jaksic et al. Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin
Pandey et al. Three-dimensional velocity measurements around bridge piers in gravel bed
Santos et al. Operation and maintenance of floating offshore wind turbines
Bin Ali et al. Rapid detection of sewer defects and blockages using acoustic-based instrumentation
CN106093923B (en) A kind of online displacement monitoring evaluation method of submarine pipeline based on hydrophone
JP2007278847A (en) Intake deposited earth-and-sand monitoring system and monitoring method
JP2013020601A (en) Tsunami monitoring system
Løken et al. Experiments on turbulence from colliding ice floes
Delatte et al. Application of nondestructive evaluation to subway tunnel systems
McMichael et al. Comparing fish screen performance to physical design criteria
JP5190863B2 (en) Suspension substance concentration distribution analyzer and program
KR100459007B1 (en) System for real time bridge scour monitoring
George et al. Numerical and experimental assessment of hydrodynamic force of a heaving porous disk
JP2005030912A (en) Water quality environment monitoring method and monitoring system
Do et al. Proactive detection of wastewater overflows for smart sanitary sewer systems: Case study in South Australia
CN116519056A (en) River bottom siltation dynamic monitoring method based on unmanned ship
JP4525163B2 (en) Ocean model steady state determination method, ocean model steady state determination device and program thereof
JP2008196889A (en) Water quality measuring system
WO2017154761A1 (en) Diagnostic device, diagnostic system, diagnostic method, and computer-readable recording medium
KR102111637B1 (en) System and method for predicting wave using observation data
JP2009168464A (en) Contamination monitoring system and method
JPH0526784A (en) Central control method for malfunction generation in construction machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20100210

Free format text: JAPANESE INTERMEDIATE CODE: A871

A975 Report on accelerated examination

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615