[go: up one dir, main page]

JP2007263970A - Carbon dioxide concentration measuring instrument - Google Patents

Carbon dioxide concentration measuring instrument Download PDF

Info

Publication number
JP2007263970A
JP2007263970A JP2007137779A JP2007137779A JP2007263970A JP 2007263970 A JP2007263970 A JP 2007263970A JP 2007137779 A JP2007137779 A JP 2007137779A JP 2007137779 A JP2007137779 A JP 2007137779A JP 2007263970 A JP2007263970 A JP 2007263970A
Authority
JP
Japan
Prior art keywords
carbon dioxide
concentration
gas
measuring
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007137779A
Other languages
Japanese (ja)
Inventor
Takeshi Ooyanai
健 大谷内
Masanori Sakakibara
巨規 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007137779A priority Critical patent/JP2007263970A/en
Publication of JP2007263970A publication Critical patent/JP2007263970A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

【課題】 溶液中の炭酸ガス濃度を簡便かつ迅速に測定するための測定器具を提供する。
【解決手段】
蓋付きの樹脂製の密閉容器と、秤量器具と、気相炭酸ガス測定手段と、気相中の炭酸ガス濃度から溶液中の炭酸ガス濃度を換算する手段と、を有する溶液中の炭酸ガス濃度測定器具とする。
特に、好ましくは、秤量器具としてメスシリンダーを用い、蓋と接合する容器部分が検知管の径より大きく、かつ30mmより小さい円形で、樹脂製のものを用いるのがよい。また、200〜1000mlの容積の密閉容器を用いるのが好ましい。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a measuring instrument for simply and rapidly measuring a carbon dioxide gas concentration in a solution.
[Solution]
Carbon dioxide gas concentration in a solution having a sealed resin container with a lid, a weighing device, a gas phase carbon dioxide gas measuring means, and a means for converting the carbon dioxide gas concentration in the solution from the carbon dioxide gas concentration in the gas phase Use a measuring instrument.
In particular, preferably, a measuring cylinder is used as the weighing instrument, and the container portion to be joined to the lid is circular with a diameter larger than that of the detection tube and smaller than 30 mm, and is made of resin. Moreover, it is preferable to use a sealed container having a volume of 200 to 1000 ml.
[Selection figure] None

Description

本発明は、溶液中の炭酸ガス濃度を測定するための測定器具に関し、例えば、生理的機能改善を目的とした水治療などに有用な炭酸泉中の炭酸ガスを現地で簡便かつ迅速に測定するのに適した、および軽量かつコンパクトな簡易測定器具に関する。   The present invention relates to a measuring instrument for measuring the concentration of carbon dioxide in a solution. For example, carbon dioxide in a carbonated spring that is useful for hydrotherapy for the purpose of improving physiological functions can be measured easily and quickly on the spot. And a simple measuring instrument that is light and compact.

炭酸泉は優れた保温作用があることから、古くから温泉を利用する浴場等で用いられている。炭酸泉の保温作用は、基本的に、含有炭酸ガスの末梢血管拡張作用により身体環境が改善されるためと考えられる。また、炭酸ガスの経皮進入によって、毛細血管床の増加及び拡張が起こり、皮膚の血行を改善する。このため退行性病変及び末梢循環障害の治療に効果があるとされている。
温泉法第2条によると、炭酸泉の炭酸ガス濃度が定義されており、250mg/l以上のものを指す。また、第13条の療養泉の定義としては、1000mg/l以上のものを指す。これらには上限は定められていないが、実際、天然に存在する炭酸泉は、濃度の高いものでも1500mg/l程度である。
一方、炭酸泉を人工的に得るために、炭酸塩と酸とを反応させる化学的方法やボイラーの燃焼ガスを利用する方法、絞りを有する配管中に炭酸ガスを直接吹き込む装置等がある。最近では、膜を用いて炭酸泉を製造する方法が多く提案されており、中でも、非多孔質の中空糸膜を用いた方法が炭酸ガスの溶解効率が最も良好である。
Since carbonated springs have an excellent heat retention effect, they have long been used in bathhouses that use hot springs. The warming action of carbonated spring is considered to be basically because the body environment is improved by the peripheral vasodilatory action of the contained carbon dioxide gas. In addition, the percutaneous approach of carbon dioxide gas increases and dilates the capillary bed, improving the blood circulation of the skin. For this reason, it is said that it is effective in the treatment of degenerative lesions and peripheral circulation disorders.
According to Article 2 of the Onsen Law, the carbon dioxide concentration of carbonated springs is defined and refers to those of 250 mg / l or more. Moreover, as a definition of the medical treatment spring of Article 13, the thing of 1000 mg / l or more is pointed out. Although there is no upper limit for these, in fact, the naturally occurring carbonated spring is about 1500 mg / l even at high concentrations.
On the other hand, in order to artificially obtain a carbonated spring, there are a chemical method for reacting carbonate and acid, a method using a combustion gas of a boiler, a device for directly blowing carbon dioxide into a pipe having a throttle, and the like. Recently, many methods for producing carbonated springs using membranes have been proposed, and among these, the method using a non-porous hollow fiber membrane has the best carbon dioxide dissolution efficiency.

これら炭酸泉のような炭酸ガスを含有する水中の炭酸ガス濃度の測定法としては、オルザット法、ガス吸収法、導電率法、熱伝導度法、赤外線吸収法、ガスクロマトグラフ法、質量分析法、イオン電極法、気相圧力・液相温度測定法、pHとアルカリ度から換算する方法等が知られている。
例えば、特許文献1には、ガス分離装置の流路をガス透過膜によって隔て、このガス分離装置の一方の流路に酸性溶液を添加して検水中の炭酸を炭酸ガスとして分離した検水を流通させ、他方の流路にアルカリ溶液を流通させてガス分離装置のガス透過膜を透過した炭酸ガスと反応させ、他方の流路の下流に炭酸ガスと反応したアルカリ溶液の導電率を測定することによって検水中の炭酸濃度を測定する方法が提案されている。
さらに、特許文献2には、水素イオン形強酸性陽イオン交換樹脂塔及び試料水流量検出部を備えた試料水導入配管と、これに合流する希釈水流量検出部を備えた希釈水注入配管と、希釈された試料水の導電率を測定する導電率検出部と、該二つの流量検出部と該導電率検出部の信号から試料水中の炭酸濃度を算出する演算部と、算出した炭酸濃度を表示する表示部と、を有する炭酸濃度測定装置が提案されている。
The methods for measuring the concentration of carbon dioxide in water containing carbon dioxide such as carbonate spring include the Orsat method, gas absorption method, conductivity method, thermal conductivity method, infrared absorption method, gas chromatograph method, mass spectrometry method, ion An electrode method, a gas phase pressure / liquid phase temperature measurement method, a method of converting from pH and alkalinity, and the like are known.
For example, Patent Document 1 discloses a test water obtained by separating a flow path of a gas separation device with a gas permeable membrane and adding an acidic solution to one flow path of the gas separation device to separate carbon dioxide in the test water as carbon dioxide gas. Circulate, cause the alkali solution to circulate through the other channel, react with the carbon dioxide gas that has permeated through the gas permeable membrane of the gas separator, and measure the conductivity of the alkali solution reacted with the carbon dioxide gas downstream of the other channel. Thus, a method for measuring the carbonic acid concentration in the test water has been proposed.
Further, Patent Document 2 discloses a sample water introduction pipe provided with a hydrogen ion type strongly acidic cation exchange resin tower and a sample water flow rate detection unit, and a dilution water injection pipe provided with a dilution water flow rate detection unit joined thereto. A conductivity detector for measuring the conductivity of the diluted sample water, the two flow rate detectors, an arithmetic unit for calculating the carbonate concentration in the sample water from the signals of the conductivity detector, and the calculated carbonate concentration. A carbonic acid concentration measuring device having a display unit for displaying has been proposed.

また、日本工業規格(JIS)では、試料をガス状で採取し、水酸化カリウム溶液に吸収させ、容積の変化からその百分率を算出して行うオルザット法が採用されている(JIS K1106)。
一方、鉱泉分析法では、あらかじめクエン酸―酒石酸塩を加えた水酸化ナトリウム標準溶液に試料をとり、静かに攪拌したのち、塩酸標準溶液でフェノールフタレインの微赤色が消えるまで滴定し、水酸化ナトリウム標準溶液の消費量から遊離二酸化炭素を定量すると定められている。
In addition, the Japanese Industrial Standard (JIS) employs the Orsat method in which a sample is taken in a gaseous form, absorbed in a potassium hydroxide solution, and the percentage is calculated from the change in volume (JIS K1106).
On the other hand, in the mineral spring analysis method, a sample is taken in a sodium hydroxide standard solution to which citric acid-tartrate has been added in advance, and after gently stirring, titration is carried out with hydrochloric acid standard solution until the faint red color of phenolphthalein disappears. It is stipulated that free carbon dioxide is quantified from the consumption of sodium standard solution.

水中の炭酸ガス濃度を測定する方法において、前述した導電率、ガスクロマトグラフ装置や質量分析装置等を用いる方法をはじめとして、大きな分析装置を用いる方法では、炭酸ガスを精度良く定量することは可能であるが、装置の操作等において専門技術を必要とするため、工場管理室等の実験設備のある場所で、専門技術者の手によって行わなければならなく、かつ高価であるという欠点があった。また、このような方法を用いるには、現地から試料を運搬する必要があるが、運搬による刺激や経時変化によって、水中の炭酸ガスの濃度低下が起き、正しい測定ができないという欠点もあった。   In the method for measuring the concentration of carbon dioxide in water, carbon dioxide can be accurately quantified with methods using large analyzers, including the methods described above using conductivity, gas chromatographs, mass spectrometers, etc. However, since specialized techniques are required for the operation of the apparatus, it has to be carried out by a professional engineer at a place where there is an experimental facility such as a factory management room, and it is disadvantageous in that it is expensive. In addition, in order to use such a method, it is necessary to transport a sample from the field, but there is a drawback that the concentration of carbon dioxide gas in the water is lowered due to stimulation or change with time, and correct measurement cannot be performed.

それに対し、鉱泉分析法は現地で分析する目的に定められたものであり、現地での測定が可能であるが、数種類の試薬を要し、またビュレット等で中和滴定をする技術を必要とする欠点があった。
イオン電極法も現地で使用することできるが、日々変動が大きく毎日の校正が必要で、かつ500mg/l以上の高濃度の測定では、電極に炭酸ガスの気泡が付着し、精度良い分析が不向きなため、試料を希釈する必要があった。また、応答時間が遅いという欠点もあった。
pHとアルカリ度から換算する方法は、pHとアルカリ度を求めれば炭酸ガス濃度が換算できる簡便な方法で、特許文献3にも記載されているが、水によって異なるアルカリ度に影響されるため、それを毎回測定する必要があり、しかも、pHをかなり精度良く測定する必要があった。
On the other hand, the mineral spring analysis method is established for the purpose of local analysis and can be measured locally, but it requires several types of reagents and requires a technique for neutralization titration with a burette or the like. There was a drawback.
The ion electrode method can also be used in the field, but daily fluctuations are large and daily calibration is required. In addition, carbon dioxide bubbles are attached to the electrode when measuring at high concentrations of 500 mg / l or more, making accurate analysis unsuitable. Therefore, it was necessary to dilute the sample. In addition, there is a drawback that the response time is slow.
The method of converting from pH and alkalinity is a simple method that can convert the concentration of carbon dioxide gas by determining pH and alkalinity, and is also described in Patent Document 3, but is affected by different alkalinity depending on water. It was necessary to measure it every time, and it was necessary to measure the pH fairly accurately.

気相圧力・液相温度測定法は、密閉容器内に試料を充満させ、試料中に溶解している炭酸ガスを刺激によってガス化し、そのガスの圧力と液相の温度から炭酸ガス濃度を算出する方法である。この方法では、ヘンリーの法則に従い炭酸ガス濃度が算出される。ヘンリーの法則とは、一定の温度で一定の液体に溶解する気体の量は、その気体の圧力に比例するというものである。圧力と温度のみで炭酸ガス濃度を測定することができるため簡便で、炭酸飲料のように炭酸ガスが高濃度に溶解した水の測定によく用いられている。しかし、炭酸飲料に比べて低濃度の、例えば炭酸泉中の炭酸ガス濃度を、この方法を用いて測定しても、ガスの圧力が小さいため測定が困難であった。また、価格が数十万円以上と高価で、手軽に購入できるものではなかった。   The gas phase pressure / liquid phase temperature measurement method fills a sample in a sealed container, gasifies carbon dioxide dissolved in the sample by stimulation, and calculates the carbon dioxide concentration from the gas pressure and liquid phase temperature. It is a method to do. In this method, the carbon dioxide concentration is calculated according to Henry's law. Henry's law is that the amount of gas that dissolves in a certain liquid at a certain temperature is proportional to the pressure of that gas. Since carbon dioxide concentration can be measured only by pressure and temperature, it is simple and is often used for measuring water in which carbon dioxide is dissolved at a high concentration, such as carbonated beverages. However, even if the concentration of carbon dioxide gas in a carbonated spring, for example, in a carbonated spring, which is lower than that of a carbonated beverage, is measured using this method, the measurement is difficult because the gas pressure is small. In addition, the price was expensive, with several hundred thousand yen or more, and it was not easy to purchase.

特開平5−80009号公報JP-A-5-80009 特開平11−258191号公報JP 11-258191 A 特開平10−277121号公報JP-A-10-277121

本発明の目的は、上述の課題を解決するものである。すなわち、溶液中、特に水中の炭酸ガス濃度を現地で簡便かつ迅速に測定する方法、およびそれに用いる軽量、コンパクトな簡易測定器具を提供することにある。   The object of the present invention is to solve the above-mentioned problems. That is, an object of the present invention is to provide a method for measuring carbon dioxide concentration in a solution, particularly in water, simply and quickly on site, and a lightweight and compact simple measuring instrument used therefor.

かかる課題を解決しうる本発明の要旨は、炭酸ガス濃度を測定する器具であり、蓋付きの樹脂製の密閉容器と、秤量器具と、気相炭酸ガス測定手段と、気相中の炭酸ガス濃度から溶液中の炭酸ガス濃度を換算する手段と、を有する溶液中の炭酸ガス濃度測定器具である。
好ましくは、秤量器具としてメスシリンダーを用い、蓋と接合する容器部分が検知管の径より大きく、かつ30mmより小さい円形で、樹脂製のものを用いるのがよい。また、200〜1000mlの容積の密閉容器を用いるのが好ましい。
The gist of the present invention that can solve such a problem is an instrument for measuring the concentration of carbon dioxide, a sealed resin container with a lid, a weighing instrument, a gas-phase carbon dioxide measuring means, and carbon dioxide in the gas phase. And a means for measuring the carbon dioxide concentration in the solution from the concentration.
Preferably, a graduated cylinder is used as a weighing instrument, and a container made of a resin having a circular shape with a diameter larger than the diameter of the detection tube and smaller than 30 mm is used. Moreover, it is preferable to use a sealed container having a volume of 200 to 1000 ml.

本発明の溶液中の炭酸ガス測定器具は、軽量、コンパクトであり、これを用いることによって、溶液中の炭酸ガス濃度を現地で簡便かつ迅速に測定できる。 The carbon dioxide measuring instrument in the solution of the present invention is lightweight and compact, and by using this instrument, the carbon dioxide concentration in the solution can be measured easily and quickly on site.

以下、溶液として水を用いた例、すなわち、炭酸泉中の炭酸ガス濃度を測定する場合について、本発明を具体的に説明する。
本発明の測定器具は、炭酸ガス濃度がおよそ100mg/l以上と見込まれる溶液に用いることが好ましい。これは、各種天然および人工炭酸泉装置で調整した炭酸泉の濃度範囲内で、炭酸飲料にも適応できる。
また、本発明の測定器具は、およそpHは6以下の溶液に用いることが好ましい。水中の炭酸ガスは、pHによって、炭酸ガス、重炭酸イオン、炭酸イオンの割合が変化し、pHが高いほど後者の比率が高くなる。pHが6以下ではほぼ100%炭酸ガスであるが、それを超えると、徐々に重炭酸イオンになりやすくなり、pHが8になると炭酸ガスでは存在しなくなる。そのため、pHが6〜8の試料を分析しようとすると、試料を振とうすることでpHが高くなり、水中の炭酸ガスが重炭酸イオンに変化してしまい、精度良い分析ができなくなる。さらにpH8以上では水中の炭酸ガスは存在しなくなるため、分析すること自体意味がない。
Hereinafter, the present invention will be specifically described with respect to an example in which water is used as the solution, that is, the case where the carbon dioxide concentration in the carbonated spring is measured.
The measuring instrument of the present invention is preferably used for a solution whose carbon dioxide concentration is expected to be about 100 mg / l or more. This can be applied to carbonated beverages within the concentration range of carbonated springs adjusted with various natural and artificial carbonated spring devices.
The measuring instrument of the present invention is preferably used for a solution having a pH of about 6 or less. The ratio of carbon dioxide, bicarbonate ions, and carbonate ions varies depending on the pH of carbon dioxide in water. The higher the pH, the higher the latter ratio. When the pH is 6 or less, it is almost 100% carbon dioxide gas. However, when the pH is exceeded, it gradually becomes bicarbonate ions, and when the pH is 8, the carbon dioxide gas does not exist. Therefore, when trying to analyze a sample having a pH of 6 to 8, the pH is increased by shaking the sample, and the carbon dioxide gas in the water is changed to bicarbonate ions, so that accurate analysis cannot be performed. Further, since the carbon dioxide gas in water does not exist at pH 8 or higher, there is no point in analyzing itself.

容器内の試料量は容器容積の1〜50%、好ましくは2〜30%、より好ましくは5〜20%にする。低すぎると、分析精度が低下し、高すぎると、振とうしても炭酸ガスが気相に追い出しにくくなる。
振とうにより新たに構成される気相中の炭酸ガス濃度は、10%を超えない範囲で試料量を選択するのが好ましい。ヘンリーの法則によれば、圧力が高いほど、水中へのガス溶解度が大きくなり、また、温度が高いほど溶解度が小さくなるが、気相が高圧になる気相圧力・液相温度測定法に比べ、本発明は低圧であるため、水中へのガス溶解度が小さくなり、温度の影響も受けにくくなる。また、容器内に入れる試料量は正しく秤量することが重要で、その誤差がそのまま測定誤差に影響してくる。ただし、秤量するとはいえ、どんなものを用いても良いわけではなく、先の細いピペット類は秤量、注入時に試料から炭酸ガスが抜ける可能性が高いので、メスシリンダーなどの先の細くないものが好ましい。
The amount of sample in the container is 1 to 50% of the container volume, preferably 2 to 30%, more preferably 5 to 20%. If it is too low, the analysis accuracy will be lowered, and if it is too high, it will be difficult for carbon dioxide to be driven out into the gas phase even if shaken.
It is preferable to select the sample amount within a range where the carbon dioxide concentration in the gas phase newly constituted by shaking does not exceed 10%. According to Henry's law, the higher the pressure, the greater the solubility of the gas in water, and the higher the temperature, the smaller the solubility, but compared to the gas phase pressure / liquid phase temperature measurement method where the gas phase becomes high pressure. Since the present invention is at a low pressure, the solubility of gas in water is reduced and it is difficult to be affected by temperature. In addition, it is important to accurately weigh the amount of sample put in the container, and the error directly affects the measurement error. However, although it is weighed, it does not mean that anything can be used, and thin pipettes such as graduated cylinders, which have a high possibility that carbon dioxide gas will escape from the sample during weighing and injection, are not acceptable. preferable.

振とうは、腕で行っても十分気相へ追い出すことが可能であるが、その場合、振幅が3cm以上、振とう速度が120回/分以上、振とう時間が15秒以上で行うのが好ましい。それ未満であると、炭酸ガスを充分、気相に追い出すことが困難となる。   Shaking can be expelled sufficiently to the gas phase even with the arm, but in that case, the amplitude is 3 cm or more, the shaking speed is 120 times / minute or more, and the shaking time is 15 seconds or more. preferable. If it is less than that, it will be difficult to expel the carbon dioxide gas sufficiently into the gas phase.

気相中の炭酸ガス濃度を測定する方法としては、検知管式のガス測定器を用いて測定する方法が簡便で好ましい。
検知管式ガス測定器については、JIS K0804で規定されており、検知管式ガス採取器と検知管からなるガス測定器をいう。 特長としては、化学分析機器、液体試薬などを使用しないため、測定の準備が要らず、かつ軽量なため、携帯に便利で、現地での測定に適している。また、測定操作は非常に簡単で、測定者による測定誤差が少なく、測定結果は数分で得られるなどが挙げられる。
As a method for measuring the carbon dioxide concentration in the gas phase, a method of measuring using a detector tube type gas measuring device is simple and preferable.
The detector tube type gas measuring device is defined by JIS K0804, and means a gas measuring device comprising a detector tube type gas sampling device and a detector tube. As a feature, it does not require chemical preparation equipment, liquid reagents, etc., so it does not require measurement preparation and is lightweight, so it is convenient to carry and suitable for on-site measurement. In addition, the measurement operation is very simple, the measurement error by the measurer is small, and the measurement result can be obtained in a few minutes.

ガス採取器は、内部を加圧状態又は減圧状態にして、検知管に一定量の試料ガスを通気する機能をもつもので、検知管取り付け口の内部に取り付けたオリフィスなどによって、試料ガスを検知管に通気する速度の調節を行う。種類としては、検知管を接続したガス採取器のシリンダー内部をピストンによって減圧状態にし、試料ガスを検知管に通して吸引するシリンダー形真空方式、ガス採取器のシリンダー内部に、いったん試料ガスを採取してから、ピストンによって試料ガスを検知管に通して排出するシリンダー形送入方式、蛇腹を圧縮し、内部ばねなどの応力によって蛇腹内を減圧状態にし、試料ガスを検知管に通して吸引する蛇腹形などの3種類がある。また、簡易的には使い捨てタイプのシリンジを代用することもできる。   The gas sampler has a function to ventilate a certain amount of sample gas into the detection tube by pressurizing or depressurizing the inside, and the sample gas is detected by an orifice installed inside the detection tube attachment port. Adjust the rate at which air is vented to the tube. The type is a cylinder type vacuum system in which the inside of the cylinder of the gas sampling device connected to the detection tube is depressurized by a piston, and the sample gas is sucked through the detection tube. After that, the cylinder type feeding system that discharges the sample gas through the detection tube by the piston, compresses the bellows, decompresses the bellows by the stress of the internal spring, and sucks the sample gas through the detection tube There are three types such as bellows. In addition, a disposable syringe can be used instead.

検知管は、内径が均一で全長が揃ったガラス管などの透明な管に一定量の検知剤又は前処理剤を詰め、これが緩まないように栓などを当て、さらに、管の両端を密閉したもので、使用時に開封して用いる。ガス吸引器により一定量検知管にガスを吸引することによって、検知管内に充填された検知剤が反応ガスと鋭敏に反応、変色する。二酸化炭素の場合は、まず、検知剤に含浸してあるヒドラジンと反応し、カルバミン酸が生成され、それが、さらに検知剤に含浸されているpH指示薬を変色させる方式が適している。
検知管の読み取り方式には、検知管の表面に印刷してある濃度目盛りを直読して、対象ガスの濃度を求める直読式、添付の濃度表と検知剤の変色長さとを比較して、対象ガスの濃度を求める濃度表式の2種類がある。
検知管には、濃度範囲によって種類が幾つかあるが、振とうにより新たに構成されるガス濃度を測定できる範囲内のものを選択する。
The detection tube is filled with a certain amount of detection agent or pretreatment agent in a transparent tube such as a glass tube with a uniform inner diameter and the same overall length, and a stopper is applied to prevent this from loosening, and both ends of the tube are sealed. It is used at the time of use. By sucking a certain amount of gas into the detection tube by the gas suction device, the detection agent filled in the detection tube reacts with the reaction gas and changes its color. In the case of carbon dioxide, a method of reacting with hydrazine impregnated in the detection agent to produce carbamic acid, which further discolors the pH indicator impregnated in the detection agent is suitable.
The detection method of the detection tube is a direct reading method that directly reads the concentration scale printed on the surface of the detection tube to obtain the concentration of the target gas, and compares the attached concentration table with the color change length of the detection agent. There are two types of concentration formulas for determining the gas concentration.
There are several types of detector tubes depending on the concentration range, but the detector tube is selected within the range in which the newly constructed gas concentration can be measured.

容器に加える試料量は、容器の体積と容器に加える試料量の差が、検知管式のガス検知管で使用する吸引量の2倍以上であるのが好ましく、より好ましくは、5倍以上である。この範囲以下であると、検知管に試料のガス以外に大気が混入しやすくなる。   The amount of sample added to the container is preferably such that the difference between the volume of the container and the amount of sample added to the container is at least twice the amount of suction used in the detector tube type gas detector tube, more preferably more than five times. is there. If it is below this range, the atmosphere is likely to be mixed into the detector tube in addition to the sample gas.

また本発明の簡易測定器具で準備するものは、蓋付きの密閉容器、秤量器具、気相中の炭酸ガスを測定する手段、気相中の炭酸ガス濃度から溶液中の炭酸ガス濃度を換算する手段である。気相中の炭酸ガス濃度から溶液中の炭酸ガス濃度を換算する手段としては、水中の炭酸ガス濃度と本法を用いて測定した気相中の炭酸ガス濃度の検量線を用いる。
密閉容器には蓋付きを用いる。これを用いることで、一連の操作の時間が短縮できし、また、容器が何回も使用可能となる。
また、蓋と接合する容器部分が、検知管の外径より大きく、かつ30mmより小さい円形である密閉容器を用いるとよい。容器内のガスを分析するときに大気開放にするが、この範囲にすることで、容器内のガスが大気に置換されにくくなる。
What is prepared with the simple measuring instrument of the present invention is a closed container with a lid, a weighing instrument, a means for measuring carbon dioxide in the gas phase, and converts the carbon dioxide concentration in the solution from the carbon dioxide concentration in the gas phase. Means. As a means for converting the carbon dioxide gas concentration in the solution from the carbon dioxide gas concentration in the gas phase, a calibration curve of the carbon dioxide gas concentration in water and the carbon dioxide gas concentration in the gas phase measured using this method is used.
Use a sealed container with a lid. By using this, the time for a series of operations can be shortened, and the container can be used many times.
Moreover, it is good to use the airtight container whose container part joined to a lid | cover is a circle larger than the outer diameter of a detection tube and smaller than 30 mm. When the gas in the container is analyzed, the atmosphere is opened to the atmosphere. By setting this range, the gas in the container is hardly replaced with the atmosphere.

さらに、樹脂製の容器を用いると軽くて携帯に便利であり、市販されているペットボトル入り清涼飲料水の空容器を用いることもできる。
密閉容器の容量は200〜1000mlが好ましい。この範囲より小さいと精度が落ち、逆に範囲より大きいと、精度には影響しないが、持ち運びの面で不便である。
Furthermore, when a resin container is used, it is light and convenient to carry, and a commercially available empty container for soft drinks in a plastic bottle can also be used.
The capacity of the sealed container is preferably 200 to 1000 ml. If it is smaller than this range, the accuracy is lowered. Conversely, if it is larger than the range, the accuracy is not affected, but it is inconvenient in terms of carrying.

本発明を実施例により具体的に説明する。
(実施例1)
密閉容器として、清涼飲料水の500mlペットボトル空容器、秤量器具として、50ml樹脂製メスシリンダー、気相中の炭酸ガスを測定する装置として、ガス採取器(ガステック製・GV−100S)、ガス検知管(ガステック製・製品名2L・目盛り範囲0.25〜3.0%、100ml吸引)用意した。
測定する試料はメスシリンダーで正確に50ml量りとり、500mlペットボトルに静かに流し込んだ。ペットボトルをキャップで密閉して、30秒手で振とうした。その後ペットボトルのキャップを外し、採取器に取り付けた検知管をペットボトルの中に入れ、50ml吸引し、値を読んだ。
はじめに、水温40℃の異なった炭酸ガス濃度の炭酸水を用意して、気相中の炭酸ガス濃度との検量線を作成した。なお、検量線に用いた水中の炭酸ガス濃度は、pHとアルカリ度から換算した値を用いた。表1及び図1にpHとアルカリ度から換算した値と、検知管による指示値との関係を示す。
The present invention will be specifically described with reference to examples.
Example 1
As a sealed container, a 500 ml plastic bottle empty container for soft drinks, as a weighing instrument, as a 50 ml resin graduated cylinder, as a device for measuring carbon dioxide in the gas phase, as a gas sampler (manufactured by GASTECH, GV-100S), gas A detector tube (manufactured by Gastec, product name 2L, scale range 0.25 to 3.0%, 100 ml suction) was prepared.
The sample to be measured was accurately weighed 50 ml with a graduated cylinder and gently poured into a 500 ml plastic bottle. The plastic bottle was sealed with a cap and shaken by hand for 30 seconds. After that, the cap of the plastic bottle was removed, the detection tube attached to the collector was put into the plastic bottle, 50 ml was sucked, and the value was read.
First, carbonated water with different carbon dioxide concentrations having a water temperature of 40 ° C. was prepared, and a calibration curve with the concentration of carbon dioxide in the gas phase was prepared. In addition, the value converted from pH and alkalinity was used for the carbon dioxide gas concentration in water used for the calibration curve. Table 1 and FIG. 1 show the relationship between the value converted from pH and alkalinity and the indicated value by the detector tube.

Figure 2007263970
Figure 2007263970

この図1を検量線として、次に、pHとアルカリ度から換算した炭酸ガス濃度が、200、780、1270mg/lの炭酸水について、本発明の検知管の指示値を図1の検量線から換算した炭酸ガス濃度と比較した。その結果を表2に示す。   Using this FIG. 1 as a calibration curve, the indicator value of the detector tube of the present invention is calculated from the calibration curve of FIG. 1 for carbonated water whose carbon dioxide concentrations converted from pH and alkalinity are 200, 780 and 1270 mg / l. Comparison was made with the converted carbon dioxide concentration. The results are shown in Table 2.

(実施例2)
実施例1と同様な方法で、同じ検量線を利用して、水温を変えた試料の測定を行った。その結果を表2に示す。検知管の指示値から換算した炭酸ガス濃度はpHとアルカリ度から換算した値とほぼ等しい値を示した。また、温度の影響も少ない。
(Example 2)
In the same manner as in Example 1, the same calibration curve was used to measure samples with different water temperatures. The results are shown in Table 2. The carbon dioxide concentration converted from the indicated value of the detector tube showed a value almost equal to the value converted from pH and alkalinity. Moreover, there is little influence of temperature.

(比較例1)
pHとアルカリ度から換算した炭酸ガス濃度の測定値が10mg/lの試料を測定した。その結果を表2に示すが、検知管が変色せず、測定不能であった。
(Comparative Example 1)
A sample having a measured value of carbon dioxide concentration converted from pH and alkalinity of 10 mg / l was measured. The results are shown in Table 2, and the detection tube did not change color and was not measurable.

Figure 2007263970
Figure 2007263970

本発明に係る炭酸ガス濃度測定器具、温泉、炭酸泉 炭酸飲料水などの炭酸ガス溶液中の炭酸濃度の測定において公的に用いることが可能である。   The carbon dioxide concentration measuring instrument, hot spring, carbonated spring and the like according to the present invention can be publicly used in the measurement of the carbon dioxide concentration in a carbon dioxide solution such as carbonated drinking water.

検知管の指示値と炭酸ガス濃度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the instruction | indication value of a detection tube, and a carbon dioxide gas density | concentration.

Claims (4)

炭酸ガス濃度を測定する器具であり、
蓋付きの樹脂製の密閉容器と、秤量器具と、気相炭酸ガス測定手段と、気相中の炭酸ガス濃度から溶液中の炭酸ガス濃度を換算する手段と、を有する溶液中の炭酸ガス濃度測定器具。
An instrument for measuring carbon dioxide concentration,
Carbon dioxide gas concentration in a solution having a sealed resin container with a lid, a weighing device, a gas phase carbon dioxide gas measuring means, and a means for converting the carbon dioxide gas concentration in the solution from the carbon dioxide gas concentration in the gas phase measurement tool.
秤量器具として、メスシリンダーを用いる請求項1記載の溶液中の炭酸ガス濃度測定器具。   The instrument for measuring the concentration of carbon dioxide in a solution according to claim 1, wherein a measuring cylinder is used as the weighing instrument. 蓋と接合する容器部分が、検知管の外径より大きく、かつ30mmより小さい円形である密閉容器を用いる請求項1または2記載の溶液中の炭酸ガス濃度測定器具。   The instrument for measuring the concentration of carbon dioxide in a solution according to claim 1 or 2, wherein the container part to be joined to the lid is a closed container having a circular shape larger than the outer diameter of the detection tube and smaller than 30 mm. 200〜1000mlの容積の密閉容器を用いる請求項1〜3のいずれか1項に記載の溶液中の炭酸ガス濃度測定器具。 The instrument for measuring the concentration of carbon dioxide in a solution according to any one of claims 1 to 3, wherein a sealed container having a volume of 200 to 1000 ml is used.
JP2007137779A 2007-05-24 2007-05-24 Carbon dioxide concentration measuring instrument Pending JP2007263970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137779A JP2007263970A (en) 2007-05-24 2007-05-24 Carbon dioxide concentration measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137779A JP2007263970A (en) 2007-05-24 2007-05-24 Carbon dioxide concentration measuring instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002132257A Division JP4091790B2 (en) 2002-05-08 2002-05-08 Method for measuring carbon dioxide concentration in solution

Publications (1)

Publication Number Publication Date
JP2007263970A true JP2007263970A (en) 2007-10-11

Family

ID=38637074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137779A Pending JP2007263970A (en) 2007-05-24 2007-05-24 Carbon dioxide concentration measuring instrument

Country Status (1)

Country Link
JP (1) JP2007263970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110608A (en) * 2008-11-10 2010-05-20 Toyohiko Urakawa Continuous temperature raising method of natural high concentration carbonated mineral spring
CN103592357A (en) * 2012-12-12 2014-02-19 青岛理工大学 Precise concrete carbonization measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184589A (en) * 1994-12-28 1996-07-16 Sumitomo Metal Mining Co Ltd Analytical method for carbonic acid in aqueous solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184589A (en) * 1994-12-28 1996-07-16 Sumitomo Metal Mining Co Ltd Analytical method for carbonic acid in aqueous solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110608A (en) * 2008-11-10 2010-05-20 Toyohiko Urakawa Continuous temperature raising method of natural high concentration carbonated mineral spring
CN103592357A (en) * 2012-12-12 2014-02-19 青岛理工大学 Precise concrete carbonization measurement method
CN103592357B (en) * 2012-12-12 2015-07-15 青岛理工大学 Precise concrete carbonization measurement method

Similar Documents

Publication Publication Date Title
Andersen et al. A micro method for determination of pH, carbon dioxide tension, base excess and standard bicarbonate in capillary blood
US8848189B2 (en) Method and device for express analysis of acetone traces in gases
US2680060A (en) Ultramicrogasometer for determining gases in body fluids
CA2980434C (en) Method of measuring carbonation levels in open-container beverages
CN101551338B (en) Method for determining formaldehyde in air
CN103033482B (en) Full-automatic determining instrument of red blood cell osmotic fragility
CN113533708B (en) Diabetes screening device based on urine acetone detection
CN102735304A (en) Device and method for detecting gas in liquid
JP4091790B2 (en) Method for measuring carbon dioxide concentration in solution
JP2007263970A (en) Carbon dioxide concentration measuring instrument
JPH10325837A (en) Calibration of measuring apparatus for electolyte and metabolite by analysis of gas in blood
Dennis et al. Gas analysis
CN207163843U (en) A kind of easy device of gas method measure soil calcium carbonate content
CN215866706U (en) Diabetes screening device based on urine acetone detection
JP5811632B2 (en) Carbon dioxide concentration meter
WO2020256941A1 (en) Salivary urea nitrogen rapid detection
Mountford Measuring dissolved oxygen as an indicator of primary productivity
JP2008292437A (en) Carbon dioxide fugacity sensor for sea water
Kitagawa et al. A quantitative detector-tube method for breath-alcohol estimation
CN2446515Y (en) Disposable arsenic detector by silver salt process
Sendroy Jr et al. Determination of lung volume by respiration of oxygen without forced breathing
Kenten Gasometric analysis in plant investigation
CN210863754U (en) A kind of preparation device of carboxyhemoglobin saturation
Tsukahara et al. Development of an acid extraction-NDIR method for the determination of total dissolved inorganic carbon using small sample volumes
Polyzopoulos A Manometric Method for the Determination of Soil Carbonates in the Field

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100603