[go: up one dir, main page]

JP2007242872A - Multilayer printed wiring board, and manufacturing method thereof - Google Patents

Multilayer printed wiring board, and manufacturing method thereof Download PDF

Info

Publication number
JP2007242872A
JP2007242872A JP2006062910A JP2006062910A JP2007242872A JP 2007242872 A JP2007242872 A JP 2007242872A JP 2006062910 A JP2006062910 A JP 2006062910A JP 2006062910 A JP2006062910 A JP 2006062910A JP 2007242872 A JP2007242872 A JP 2007242872A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
conductor
conductor circuit
multilayer printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006062910A
Other languages
Japanese (ja)
Inventor
Koki Nakama
幸喜 中間
Yoshifumi Uchida
淑文 内田
Shingo Ueda
信吾 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Printed Circuits Inc
Original Assignee
Sumitomo Electric Printed Circuits Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Printed Circuits Inc filed Critical Sumitomo Electric Printed Circuits Inc
Priority to JP2006062910A priority Critical patent/JP2007242872A/en
Publication of JP2007242872A publication Critical patent/JP2007242872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer printed wiring board and a manufacturing method thereof which can be manufactured by a cheap and simple method and with a high yield. <P>SOLUTION: A double-sided flexible printed circuit board 1 for inner layers has conductor-circuit layers whereon conductor circuits 10 are formed. Also, bumps 8 of conductor members connected electrically with the conductor circuits 10 are formed to protrude them from the conductor circuits 10. Further, the double-sided flexible printed circuit board 1 and other conductor-circuit layers 22 are laminated via adhesive agents 23. The adhesive agent 23 is an anisotropic conductive adhesive agent containing conductive micro-particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子機器の部品として用いられる多層プリント配線板およびその製造方法に関する。   The present invention relates to a multilayer printed wiring board used as a component of an electronic device and a method for manufacturing the same.

近年、電子機器分野においては、電子機器の高密度化に伴い、電子機器の部品として用いられるプリント配線板の多層化が進んでおり、このような多層プリント配線板として、多層構造を有するフレキシブルプリント配線板や、フレキシブルプリント配線板とリジッドプリント配線板との複合基板であるリジッドフレックスプリント配線板等が使用されている。   In recent years, in the field of electronic equipment, with the increase in the density of electronic equipment, multilayered printed wiring boards used as parts of electronic equipment have progressed. As such multilayer printed wiring boards, flexible prints having a multilayer structure have been developed. A wiring board or a rigid flex printed wiring board that is a composite substrate of a flexible printed wiring board and a rigid printed wiring board is used.

ここで、従来、これらの多層プリント配線板の製造方法に関して、種々の方法が提案されている。例えば、基材上に所定の導体パターンによる導体回路と接続用パッドが形成された回路基板の表面に、樹脂層を介して銅箔を加圧、加熱して積層する工程と、接続用パッドに相当する位置の銅箔を選択的に除去して、接続用ランドを形成する工程と、レーザを用いて、接続用パッドに相当する位置の樹脂層にビアホールをあけ、接続用パッドを露出する工程と、当該ビアホールに金属めっき(電解銅めっき)を施すことにより、金属めっき層を被着させて、接続用ランドと接続用パッドを導通する工程からなり、これらの工程を繰り返すことにより、回路層を積み上げて形成するビルドアップ型多層プリント配線板の製造方法が開示されている(例えば、特許文献1参照)。   Here, conventionally, various methods have been proposed for manufacturing these multilayer printed wiring boards. For example, a step of pressurizing and heating a copper foil via a resin layer on a surface of a circuit board on which a conductor circuit with a predetermined conductor pattern and a connection pad are formed on a base material, and laminating the connection pad A step of selectively removing the copper foil at a corresponding position to form a connection land, and a step of using a laser to open a via hole in a resin layer at a position corresponding to the connection pad and exposing the connection pad And by applying metal plating (electrolytic copper plating) to the via hole, the metal plating layer is deposited, and the connection land and the connection pad are electrically connected. By repeating these steps, the circuit layer A method for manufacturing a build-up type multilayer printed wiring board formed by stacking layers is disclosed (for example, see Patent Document 1).

また、第1の銅箔にエッチングを施し、所定の導体パターンを形成する工程と、第1、第2の銅層の中間に設けられた複合金属箔の、当該導体パターンの面に、充填剤を配合した熱硬化性絶縁樹脂層を形成する工程と、熱硬化性絶縁樹脂層の表面に、引き剥がし可能な有機フィルムを設ける工程と、熱硬化性絶縁樹脂と有機フィルムに、レーザを照射して、導体パターンの表面に到達するビアホールを形成し、当該ビアホールに、導電性ペーストを充填し、多層配線板用材料を作成する工程と、有機フィルムを引き剥がす工程と、スルーホールが形成された内層回路基板の表面に、多層配線板用材料の熱硬化性絶縁樹脂層が接するように重ね、導電性ペーストと内層回路基板との接続位置を合わせて、加圧・加熱して積層一体化する工程からなり、これらの工程を繰り返すことにより、回路層を積み上げて形成するビルドアップ型多層プリント配線板の製造方法が開示されている(例えば、特許文献2参照)。
特開平8−279678号公報 特開平11−261219号公報
Further, the first copper foil is etched to form a predetermined conductor pattern, and the surface of the conductor pattern of the composite metal foil provided between the first and second copper layers is filled with a filler. Irradiating the thermosetting insulating resin and the organic film with a laser, a step of forming a thermosetting insulating resin layer containing the composition, a step of providing a peelable organic film on the surface of the thermosetting insulating resin layer, Forming a via hole reaching the surface of the conductor pattern, filling the via hole with a conductive paste, creating a multilayer wiring board material, peeling the organic film, and forming a through hole. Stack the inner layer circuit board so that the thermosetting insulating resin layer of the multilayer wiring board material is in contact with it, align the connection position of the conductive paste and the inner layer circuit board, and press and heat to integrate the layers. From the process Ri, by repeating these steps, the production method of the buildup type multilayer printed wiring board formed by stacking a circuit layer is disclosed (e.g., see Patent Document 2).
JP-A-8-279678 JP-A-11-261219

しかし、上記特許文献1に記載の製造方法においては、回路層を積み上げて形成する際に、各回路層を電気的に接続するための金属めっき層と接続用ランドを形成する必要があるため、多層プリント配線板の構造が複雑になるという問題があった。また、加圧、加熱による回路層の積層工程と、金属めっき層と接続用ランドを形成する工程を何度も繰り返さなければならないため、製造工程が複雑になるとともに、コストアップになるという問題があった。   However, in the manufacturing method described in Patent Document 1, when the circuit layers are stacked and formed, it is necessary to form a metal plating layer and a connection land for electrically connecting each circuit layer. There has been a problem that the structure of the multilayer printed wiring board becomes complicated. In addition, the circuit layer stacking process by pressurization and heating and the process of forming the metal plating layer and the connection land must be repeated many times, which complicates the manufacturing process and increases the cost. there were.

また、上記特許文献2に記載の製造方法においては、導電性ペーストを充填するためのビアホールを形成する必要があり、回路層を積み上げて形成する際に、ビアホールを形成し、導電性ペーストを充填する工程を何度も繰り返さなければならないため、製造工程が複雑になるとともに、コストアップになるという問題があった。   In addition, in the manufacturing method described in Patent Document 2, it is necessary to form via holes for filling the conductive paste. When the circuit layers are stacked and formed, the via holes are formed and filled with the conductive paste. Therefore, the manufacturing process is complicated and the cost is increased.

さらに、上記従来の製造方法においては、いずれかの製造工程において、パターンニング不良が発生すると、パターンニング不良部分が積層された多層プリント配線板全体が不良品となってしまい、結果として、積層工程における歩留まりが低下してしまうという問題があった。   Furthermore, in the above-described conventional manufacturing method, if a patterning failure occurs in any of the manufacturing processes, the entire multilayer printed wiring board on which the patterning failure portion is laminated becomes a defective product. There was a problem that the yield in the process would decrease.

そこで、本発明は、上述の問題に鑑みてなされたものであり、安価かつ簡単な方法で製造できるとともに、高い歩留まりにて製造できる多層プリント配線板およびその製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a multilayer printed wiring board that can be manufactured by a low-cost and simple method and that can be manufactured at a high yield, and a manufacturing method thereof. .

上記目的を達成するために、請求項1に記載の発明は、導体回路が形成された複数の導体回路層を備え、接着剤層を介して、複数の導体回路層が積層された多層プリント配線板において、接着剤層が、導電性微粒子を含有する異方導電性接着剤であるとともに、導体回路層の表面に、導体回路上に電気的に接続された導体部材が突出して形成されていることを特徴とする。   In order to achieve the above object, the invention according to claim 1 is a multilayer printed wiring comprising a plurality of conductor circuit layers in which conductor circuits are formed, and the plurality of conductor circuit layers are laminated via an adhesive layer. In the board, the adhesive layer is an anisotropic conductive adhesive containing conductive fine particles, and a conductor member electrically connected on the conductor circuit is formed on the surface of the conductor circuit layer so as to protrude. It is characterized by that.

同構成によれば、導電性微粒子を含有する異方導電性接着剤により、多数の導体部材間(または、導体回路−導体部材間)を導電接続することが可能になる。従って、上記従来技術のごとく、各導体回路層を電気的に接続するための金属めっき層と接続用ランドや、導電性ペーストを充填するためのビアホールを形成する必要がなくなる。その結果、多層プリント配線板の構造が簡単になるため、安価かつ簡単な工程で多層プリント配線板を製造できることになる。また、導体回路の接続と、導体回路層の接着が同一の部材でできるため、製造コストの更なる低減を図ることが可能になる。   According to this configuration, it is possible to conduct conductive connection between a large number of conductor members (or between conductor circuits and conductor members) by the anisotropic conductive adhesive containing conductive fine particles. Therefore, unlike the prior art described above, there is no need to form a metal plating layer and a connection land for electrically connecting each conductor circuit layer and a via hole for filling a conductive paste. As a result, since the structure of the multilayer printed wiring board is simplified, the multilayer printed wiring board can be manufactured by an inexpensive and simple process. Further, since the connection of the conductor circuit and the adhesion of the conductor circuit layer can be made with the same member, the manufacturing cost can be further reduced.

また、接着剤層を介して各導体回路層を積層する前に、不良箇所の有無を検査することができるため、良品のみを一括で積層することが可能になる。従って、高い歩留まりにて多層プリント配線板を製造することができる。さらに、加熱、加圧により、接着剤層を介して、各導体回路層を積層する際に、導体部材の高さのバラツキを是正して、各導体回路を電気的に接続することが可能になる。   In addition, since the presence or absence of a defective portion can be inspected before laminating each conductor circuit layer via the adhesive layer, only good products can be laminated at once. Therefore, a multilayer printed wiring board can be manufactured with a high yield. Furthermore, when laminating each conductor circuit layer via an adhesive layer by heating and pressurization, it is possible to correct the height variation of the conductor member and electrically connect each conductor circuit. Become.

請求項2に記載の発明は、請求項1に記載の多層プリント配線板であって、導電性微粒子が、接着剤層の厚み方向に配向していることを特徴とする。同構成によれば、異方導電性接着剤の面方向における高い導電抵抗によって隣り合う導体部材間の絶縁を維持して短絡を防止しつつ、異方導電性接着剤の厚み方向における低い導電抵抗によって多数の導体部材間(または、導体回路−導体部材間)を、小さい加圧力にて、一度に、かつ各々を独立して導電接続することが可能になる。   A second aspect of the present invention is the multilayer printed wiring board according to the first aspect, wherein the conductive fine particles are oriented in the thickness direction of the adhesive layer. According to this configuration, the low conductive resistance in the thickness direction of the anisotropic conductive adhesive is maintained while maintaining insulation between adjacent conductor members by the high conductive resistance in the surface direction of the anisotropic conductive adhesive and preventing a short circuit. Thus, a large number of conductor members (or conductor circuit-conductor members) can be electrically conductively connected to each other at a low pressure, and at a time.

請求項3に記載の発明は、請求項1または請求項2に記載の多層プリント配線板であって、導電性微粒子が、磁性を有する金属単体、磁性を有する2種類以上の合金、磁性を有する金属と他の金属との合金および磁性を有する金属を含む複合体のいずれかであることを特徴とする。   Invention of Claim 3 is the multilayer printed wiring board of Claim 1 or Claim 2, Comprising: Conductive microparticles have a metal single-piece | unit with magnetism, 2 or more types of alloys which have magnetism, and magnetism It is one of a composite containing an alloy of a metal and another metal and a metal having magnetism.

同構成によれば、磁性を有する金属が、互いに引き合うことにより、溶融流動時に導電性物質が導体部材間に挟まれた導電性物質に集合しやすくなり、結果として、導電性が向上することになる。   According to this configuration, the magnetic metals attract each other, so that the conductive material is easily gathered into the conductive material sandwiched between the conductor members during the melt flow, and as a result, the conductivity is improved. Become.

なお、本発明の導電性微粒子は、請求項4に記載の発明のように、導電性の向上と入手容易性の観点から、ニッケル、鉄、コバルトおよびこれらのうち2種類以上の合金のいずれかであることが好ましい。   In addition, the conductive fine particles of the present invention are any one of nickel, iron, cobalt, and two or more of these alloys from the viewpoint of improving conductivity and availability, as in the invention described in claim 4. It is preferable that

また、請求項5に記載の発明は、以下の工程を含むことを特徴とする多層プリント配線板の製造方法である。
a.基材の少なくとも一方の面に形成された導体回路層にエッチングして、導体回路を形成する工程。
b.導体回路層の表面に、導体回路上に電気的に接続される導体部材を、導体回路層から外側に向けて突出させて形成する工程。
c.工程a〜bにより製造された内層用のプリント回路基板と、他の導体回路層を、導電性微粒子を含有する異方導電性接着剤を介して、加熱、加圧により積層して一体化する工程。
d.他の導体回路層にエッチングして、他の導体回路を形成する工程。
The invention according to claim 5 is a method for producing a multilayer printed wiring board, comprising the following steps.
a. A step of etching a conductor circuit layer formed on at least one surface of a substrate to form a conductor circuit.
b. Forming a conductive member electrically connected to the conductor circuit on the surface of the conductor circuit layer by projecting outward from the conductor circuit layer;
c. The printed circuit board for the inner layer manufactured in steps a and b and another conductor circuit layer are laminated and integrated by heating and pressurizing via an anisotropic conductive adhesive containing conductive fine particles. Process.
d. A process of etching another conductor circuit layer to form another conductor circuit.

同構成によれば、導電性微粒子を含有する異方導電性接着剤により、多数の導体部材間を導電接続することが可能になる。従って、上記従来技術のごとく、各導体回路層を電気的に接続するための金属めっき層と接続用ランドや、導電性ペーストを充填するためのビアホールを形成する必要がなくなる。その結果、多層プリント配線板の構造が簡単になるため、安価かつ簡単な工程で多層プリント配線板を製造できることになる。また、導体回路の接続と、導体回路層の接着が同一の部材でできるため、製造コストの更なる低減を図ることが可能になる。   According to this configuration, it is possible to electrically connect a large number of conductor members with the anisotropic conductive adhesive containing conductive fine particles. Therefore, unlike the prior art described above, there is no need to form a metal plating layer and a connection land for electrically connecting each conductor circuit layer and a via hole for filling a conductive paste. As a result, since the structure of the multilayer printed wiring board is simplified, the multilayer printed wiring board can be manufactured by an inexpensive and simple process. Further, since the connection of the conductor circuit and the adhesion of the conductor circuit layer can be made with the same member, the manufacturing cost can be further reduced.

また、接着剤層を介して各導体回路層を積層する前に、不良箇所の有無を検査することができるため、良品のみを一括で積層することが可能になる。従って、高い歩留まりにて多層プリント配線板を製造することができる。さらに、加熱、加圧により、接着剤層を介して、各導体回路層を積層する際に、導体部材の高さのバラツキを是正して、各導体回路を電気的に接続することが可能になる。   In addition, since the presence or absence of a defective portion can be inspected before laminating each conductor circuit layer via the adhesive layer, only good products can be laminated at once. Therefore, a multilayer printed wiring board can be manufactured with a high yield. Furthermore, when laminating each conductor circuit layer via an adhesive layer by heating and pressurization, it is possible to correct the height variation of the conductor member and electrically connect each conductor circuit. Become.

請求項6に記載の発明は、請求項5に記載の多層プリント配線板の製造方法であって、導電性微粒子が、異方導電性接着剤の厚み方向に配向していることを特徴とする。同構成によれば、異方導電性接着剤の面方向における高い導電抵抗によって隣り合う導体部材間の絶縁を維持して短絡を防止しつつ、異方導電性接着剤の厚み方向における低い導電抵抗によって多数の導体部材間(または、導体回路−導体部材間)を、小さい加圧力にて、一度に、かつ各々を独立して導電接続することが可能になる。   Invention of Claim 6 is a manufacturing method of the multilayer printed wiring board of Claim 5, Comprising: Conductive microparticles are orientating in the thickness direction of anisotropic conductive adhesive, It is characterized by the above-mentioned. . According to this configuration, the low conductive resistance in the thickness direction of the anisotropic conductive adhesive is maintained while maintaining insulation between adjacent conductor members by the high conductive resistance in the surface direction of the anisotropic conductive adhesive and preventing a short circuit. Thus, a large number of conductor members (or conductor circuit-conductor members) can be electrically conductively connected to each other at a low pressure, and at a time.

請求項7に記載の発明は、請求項5または請求項6に記載の多層プリント配線板の製造方法であって、導体部材を、めっき法により形成することを特徴とする。同構成によれば、簡単な方法で、導体部材が形成できるため、多層プリント配線板の製造工程をより一層簡素化することができる。   The invention according to claim 7 is the method for manufacturing a multilayer printed wiring board according to claim 5 or 6, wherein the conductor member is formed by a plating method. According to this configuration, since the conductor member can be formed by a simple method, the manufacturing process of the multilayer printed wiring board can be further simplified.

本発明によれば、多層プリント配線板を、安価かつ簡単な方法で製造できるとともに、高い歩留まりにて製造できる。   According to the present invention, a multilayer printed wiring board can be manufactured by an inexpensive and simple method and at a high yield.

以下に、本発明の好適な実施形態について説明する。図1は、本発明の実施形態における多層プリント配線板の製造方法を説明するための断面図であり、特に、本発明の多層プリント配線板の内層用の両面回路基板とその製造方法を説明するための図である。また、図2は、本発明の実施形態における多層プリント配線板の製造方法を説明するための断面図であり、特に、本発明の多層プリント配線板とその製造方法を説明するための図である。   Hereinafter, a preferred embodiment of the present invention will be described. FIG. 1 is a cross-sectional view for explaining a method for producing a multilayer printed wiring board in an embodiment of the present invention, and in particular, a double-sided circuit board for an inner layer of the multilayer printed wiring board according to the present invention and a method for producing the same. FIG. FIG. 2 is a cross-sectional view for explaining a method for producing a multilayer printed wiring board according to an embodiment of the present invention, and more particularly, a diagram for explaining the multilayer printed wiring board of the present invention and the method for producing the same. .

本発明の多層フレキシブルプリント配線板の製造方法としては、図1に示すように、まず、内層用の両面フレキシブルプリント回路基板1を製造する。より具体的には、図1(a)に示すように、例えば、柔軟な樹脂フィルム2の両面上に、導体回路層3を設けた基材4を用意する。なお、接着剤層(不図示)を介して、導体回路層3を設ける構成としても良いが、フレキシブルプリント回路基板1の屈曲性・柔軟性を考慮して、接着剤層を使用しないで、樹脂フィルム2の両面上に、導体回路層3を設ける構成とすることが好ましい。   As a manufacturing method of the multilayer flexible printed wiring board of this invention, as shown in FIG. 1, the double-sided flexible printed circuit board 1 for inner layers is manufactured first. More specifically, as shown to Fig.1 (a), the base material 4 which provided the conductor circuit layer 3 on both surfaces of the flexible resin film 2, for example is prepared. In addition, although it is good also as a structure which provides the conductor circuit layer 3 through an adhesive bond layer (not shown), considering the flexibility and flexibility of the flexible printed circuit board 1, it is resin without using an adhesive bond layer. The conductive circuit layer 3 is preferably provided on both surfaces of the film 2.

基材4を構成する樹脂フィルム2としては、柔軟性にすぐれた樹脂材料からなるものが使用される。かかる樹脂フィルムとしては、例えば、ポリエステルフィルムなどの、フレキシブルプリント配線板用として汎用性のある樹脂フィルムがいずれも使用可能である。また、特に、後述の加圧、加熱工程などを考慮して、柔軟性に加えて高い耐熱性をも有していることが好ましく、かかる樹脂フィルムとしては、例えば、ポリアミド系の樹脂フィルムや、ポリイミド、ポリアミドイミドなどのポリイミド系の樹脂フィルムが好適に使用される。また、導体回路層3を構成する金属箔としては、銅箔が好適に使用される。   As the resin film 2 constituting the substrate 4, a film made of a resin material having excellent flexibility is used. As such a resin film, for example, any resin film having versatility for a flexible printed wiring board, such as a polyester film, can be used. In particular, it is preferable to have high heat resistance in addition to flexibility in consideration of the pressurization and heating process described later. As such a resin film, for example, a polyamide-based resin film, A polyimide resin film such as polyimide or polyamideimide is preferably used. Moreover, as a metal foil which comprises the conductor circuit layer 3, a copper foil is used suitably.

次いで、図1(b)に示すように、この基材4にドリルやCOレーザ(YAGレーザ)等を用いて、貫通孔(以下、「スルーホール」という。)5を形成する。次いで、図1(c)に示すように、導体回路層3の表面に、めっき用のレジスト6を設けるとともに、めっき処理を施すことにより、図1(d)に示すように、スルーホール5の内面、および導体回路層3の表面の一部にめっき部7を形成して、樹脂フィルム2の両面に設けられた導体回路層3の電気的接続を行うとともに、導体回路層3の表面に、導体部材であるバンプ8を形成する。即ち、本実施形態においては、めっき部7を形成するためのめっき処理により、バンプ8を、めっき部7と同時に形成する構成としている。 Next, as shown in FIG. 1B, a through hole (hereinafter referred to as “through hole”) 5 is formed in the base material 4 using a drill, a CO 2 laser (YAG laser), or the like. Next, as shown in FIG. 1C, by providing a plating resist 6 on the surface of the conductor circuit layer 3 and performing a plating treatment, the through hole 5 is formed as shown in FIG. The plating part 7 is formed on a part of the inner surface and the surface of the conductor circuit layer 3, and the conductor circuit layer 3 provided on both surfaces of the resin film 2 is electrically connected, and on the surface of the conductor circuit layer 3, A bump 8 that is a conductor member is formed. That is, in the present embodiment, the bumps 8 are formed at the same time as the plating part 7 by a plating process for forming the plating part 7.

なお、めっき部7およびバンプ8の形成方法としては、例えば、電解銅めっき法、または無電解銅めっき法が使用できる。また、この際、当該バンプ8は、導体回路層3の表面に突出して形成される。より具体的には、図1(d)に示すように、樹脂フィルム2の両面上に設けられた導体回路層3から外側に向けて突出して形成される。   In addition, as a formation method of the plating part 7 and the bump 8, for example, an electrolytic copper plating method or an electroless copper plating method can be used. At this time, the bumps 8 are formed so as to protrude from the surface of the conductor circuit layer 3. More specifically, as shown in FIG. 1 (d), it is formed to protrude outward from the conductor circuit layer 3 provided on both surfaces of the resin film 2.

また、導体部材としては、例えば、銅、ニッケル、金、錫と鉛の合金(例えば、錫を95wt%以上含むはんだ)等を使用することができる。これらの金属を使用することにより、汎用性が高く、入手が容易な材料により電気的接続用のバンプ8を形成することが可能になる。   Further, as the conductor member, for example, copper, nickel, gold, an alloy of tin and lead (for example, solder containing 95 wt% or more of tin) or the like can be used. By using these metals, it is possible to form the bumps 8 for electrical connection with a material that is highly versatile and easily available.

次いで、図1(e)に示すように、エッチング用のレジスト9を設けるとともに、常法によりエッチングして、導体回路層3の不要部分を除去して、図1(f)に示す、複数の導体回路10を形成する。この際、本実施形態においては、図1(f)に示すように、上述の導体部材であるバンプ8が、導体回路10上に電気的に接続される構成となっている。   Next, as shown in FIG. 1 (e), an etching resist 9 is provided, and etching is performed by an ordinary method to remove unnecessary portions of the conductor circuit layer 3, and a plurality of the resists shown in FIG. Conductor circuit 10 is formed. At this time, in the present embodiment, as shown in FIG. 1 (f), the bump 8, which is the above-described conductor member, is electrically connected on the conductor circuit 10.

以上の工程により、内層用の両面フレキシブルプリント回路基板1が製造される。次いで、内層用の両面フレキシブルプリント回路基板1を用いて、多層プリント配線板を製造する。   The double-sided flexible printed circuit board 1 for the inner layer is manufactured by the above process. Next, a multilayer printed wiring board is manufactured using the double-sided flexible printed circuit board 1 for the inner layer.

なお、導体回路が形成された複数の導体回路層を、接着剤層を介して積層する多層プリント配線板として、ここでは、2つの内層用の両面フレキシブルプリント回路基板1と、この両面フレキシブルプリント回路基板1の表面に導体回路層が積層された多層フレキシブルプリント配線板を例に挙げて説明する。   Here, as a multilayer printed wiring board in which a plurality of conductor circuit layers on which conductor circuits are formed are laminated via an adhesive layer, here, two double-sided flexible printed circuit boards 1 for inner layers, and this double-sided flexible printed circuit A multilayer flexible printed wiring board in which a conductor circuit layer is laminated on the surface of the substrate 1 will be described as an example.

まず、図2(a)に示すように、2つの内層用の両面フレキシブルプリント回路基板1の間、および当該両面フレキシブルプリント回路基板1と他の導体回路層22の間に、接着剤層23を挟む。次いで、図2(b)に示すように、加熱、加圧を行うことにより、当該接着剤層23を介して、両面フレキシブルプリント回路基板1と他の導体回路層22を積層する。そして、図2(c)に示すように、両面フレキシブルプリント回路基板1に積層された他の導体回路層22にエッチングして、他の導体回路24を形成することにより、本発明の多層フレキシブルプリント配線板20が製造される。   First, as shown in FIG. 2A, an adhesive layer 23 is provided between two double-sided flexible printed circuit boards 1 for inner layers and between the double-sided flexible printed circuit board 1 and another conductor circuit layer 22. Pinch. Next, as shown in FIG. 2B, the double-sided flexible printed circuit board 1 and the other conductor circuit layer 22 are laminated via the adhesive layer 23 by heating and pressing. Then, as shown in FIG. 2 (c), the other conductor circuit layer 22 laminated on the double-sided flexible printed circuit board 1 is etched to form another conductor circuit 24, whereby the multilayer flexible print of the present invention is formed. The wiring board 20 is manufactured.

ここで、本実施形態においては、図3に示すように、接着剤層23として、導電性微粒子25を含む異方導電性の接着剤を使用する構成としている。異方導電性接着剤に使用される導電性微粒子25としては、例えば、球状の金属微粒子や、金属でめっきされた球状の樹脂粒子を使用することができるが、微細な金属微粒子が多数、直鎖状に繋がった形状、または針形状である、所謂アスペクト比が大きい形状を有する金属微粒子を使用することもできる。   Here, in this embodiment, as shown in FIG. 3, an anisotropic conductive adhesive containing conductive fine particles 25 is used as the adhesive layer 23. As the conductive fine particles 25 used for the anisotropic conductive adhesive, for example, spherical metal fine particles or spherical resin particles plated with a metal can be used. It is also possible to use metal fine particles having a shape connected in a chain shape or a needle shape, that is, a shape having a so-called large aspect ratio.

接着剤層23として、導電性微粒子25を含有する異方導電性の接着剤を使用し、また、上述のごとく、導体回路層3の表面に、導体回路10上に電気的に接続される導体部材であるバンプ8を突出させて(導体回路層3から外側に向けて突出させて)形成することにより、導電性微粒子25を含有する異方導電性接着剤により、多数のバンプ8間(または、導体回路24−バンプ8間)を導電接続することが可能になる。   As the adhesive layer 23, an anisotropic conductive adhesive containing conductive fine particles 25 is used, and as described above, a conductor electrically connected to the surface of the conductor circuit layer 3 on the conductor circuit 10 By forming the bumps 8 that are members to protrude (to protrude outward from the conductor circuit layer 3), the anisotropic conductive adhesive containing the conductive fine particles 25 can be used between the bumps 8 (or The conductive circuit 24 and the bump 8) can be conductively connected.

従って、上記従来技術のごとく、各導体回路層を電気的に接続するための金属めっき層と接続用ランドや、導電性ペーストを充填するためのビアホールを形成する必要がなくなる。その結果、多層フレキシブルプリント配線板20の構造が簡単になるため、安価かつ簡単な工程で多層フレキシブルプリント配線板20を製造できることになる。   Therefore, unlike the prior art described above, there is no need to form a metal plating layer and a connection land for electrically connecting each conductor circuit layer and a via hole for filling a conductive paste. As a result, since the structure of the multilayer flexible printed wiring board 20 is simplified, the multilayer flexible printed wiring board 20 can be manufactured by an inexpensive and simple process.

また、各導体回路10、24の接続と、各導体回路層3、22の接着が同一の部材(即ち、接着剤層23)でできるため、製造コストの低減を図ることが可能になる。   Moreover, since the connection of each conductor circuit 10 and 24 and adhesion | attachment of each conductor circuit layer 3 and 22 can be performed with the same member (namely, adhesive bond layer 23), it becomes possible to aim at reduction of manufacturing cost.

また、接着剤層23を介して各導体回路層3、22を積層する前に、不良箇所の有無を検査することができるため、良品のみを一括で積層することが可能になる。従って、高い歩留まりにて多層フレキシブルプリント配線板20を製造することができる。   In addition, since the presence or absence of a defective portion can be inspected before the conductor circuit layers 3 and 22 are laminated through the adhesive layer 23, it is possible to laminate only non-defective products at once. Therefore, the multilayer flexible printed wiring board 20 can be manufactured with a high yield.

さらに、加熱、加圧により、接着剤層23を介して、各導体回路層3、22を積層する際に、バンプ8の高さのバラツキを是正して、各導体回路10、24を電気的に接続することが可能になる。   Further, when the conductor circuit layers 3 and 22 are laminated through the adhesive layer 23 by heating and pressurization, the height variation of the bumps 8 is corrected, and the conductor circuits 10 and 24 are electrically connected. It becomes possible to connect to.

また、図3に示すように、導電性微粒子25を、異方導電性接着剤を形成する時点で異方導電性接着剤の厚み方向にかけた磁場の中を通過させることにより、当該厚み方向(磁場方向であって、図3の矢印Xで示す方向)に配向させて用いることもできる。   Further, as shown in FIG. 3, by passing the conductive fine particles 25 through a magnetic field applied in the thickness direction of the anisotropic conductive adhesive at the time of forming the anisotropic conductive adhesive, the thickness direction ( It can also be used by being oriented in the magnetic field direction (direction indicated by arrow X in FIG. 3).

導電性微粒子25をこのような配向にすることにより、異方導電性接着剤の面方向における高い導電抵抗によって隣り合うバンプ8の絶縁を維持して短絡を防止しつつ、異方導電性接着剤の厚み方向における低い導電抵抗によって多数のバンプ8間(または、導体回路24−バンプ8間)を、小さい加圧力にて、一度に、かつ各々を独立して導電接続することが可能になる。   By arranging the conductive fine particles 25 in such an orientation, the anisotropic conductive adhesive is maintained while maintaining insulation of the bumps 8 adjacent to each other by a high conductive resistance in the surface direction of the anisotropic conductive adhesive and preventing a short circuit. Due to the low conductive resistance in the thickness direction, a large number of bumps 8 (or between the conductor circuit 24 and the bumps 8) can be electrically conductively connected at a time and independently with a small applied pressure.

また、使用する導電性微粒子25としては、金属微粒子が使用でき、当該金属微粒子は、その一部に磁性体が含まれるものが良く、磁性を有する金属単体、磁性を有する2種類以上の合金、磁性を有する金属と他の金属との合金および磁性を有する金属を含む複合体のいずれかであることが好ましい。これは、磁性を有する金属が、互いに引き合うことにより、溶融流動時に導電性物質が電極間に挟まれた導電性物質に集合しやすくなり、結果として、導電性が向上することになるからである。例えば、導電性の向上と入手容易性の観点から、直鎖状に繋がった形状を有するニッケル、鉄、コバルトおよびこれらのうち2種類以上の合金等を挙げることができる。   Further, as the conductive fine particles 25 to be used, metal fine particles can be used, and the metal fine particles preferably include a magnetic substance in a part thereof, a single metal having magnetism, two or more kinds of alloys having magnetism, It is preferably any one of an alloy of a metal having magnetism and another metal and a composite containing a metal having magnetism. This is because the metal having magnetism attracts each other, so that the conductive substance is likely to gather in the conductive substance sandwiched between the electrodes during the melt flow, and as a result, the conductivity is improved. . For example, from the viewpoints of improvement in conductivity and availability, nickel, iron, cobalt, and two or more kinds of alloys, etc., having a linearly connected shape can be exemplified.

また、本実施形態においては、上述のごとく、めっき部7を形成するためのめっき処理により、バンプ8を、めっき部7と同時に形成する構成としている。このような方法を使用することにより、簡単な方法で、導体部材が形成できるため、多層プリント配線板の製造工程をより一層簡素化することができる。   In the present embodiment, as described above, the bumps 8 are formed at the same time as the plating portion 7 by the plating process for forming the plating portion 7. By using such a method, since the conductor member can be formed by a simple method, the manufacturing process of the multilayer printed wiring board can be further simplified.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨に基づいて種々の設計変更をすることが可能であり、それらを本発明の範囲から除外するものではない。   In addition, this invention is not limited to the said embodiment, A various design change is possible based on the meaning of this invention, and they are not excluded from the scope of the present invention.

例えば、上述の実施形態においては、内層用の回路基板として、基材4の両面上に、導体回路層3を設けた両面フレキシブルプリント回路基板1を使用したが、基材4の少なくとも一方の面に導体回路層が形成された片面回路基板を使用する構成としても良い。   For example, in the above-described embodiment, the double-sided flexible printed circuit board 1 in which the conductor circuit layer 3 is provided on both surfaces of the base material 4 is used as the circuit board for the inner layer, but at least one surface of the base material 4 Alternatively, a single-sided circuit board on which a conductor circuit layer is formed may be used.

また、上述の実施形態においては、多層プリント配線板の例として、多層構造を有するフレキシブルプリント配線板を挙げて説明したが、本発明は、他の積層構造を有する多層プリント配線板に適用できることは言うまでもない。例えば、フレキシブルプリント配線板とリジッドプリント配線板との複合基板であるリジッドフレックスプリント配線板等に適用することができる。   In the above-described embodiment, a flexible printed wiring board having a multilayer structure has been described as an example of the multilayer printed wiring board. However, the present invention can be applied to multilayer printed wiring boards having other laminated structures. Needless to say. For example, the present invention can be applied to a rigid flex printed wiring board that is a composite substrate of a flexible printed wiring board and a rigid printed wiring board.

本発明の活用例としては、電子機器の部品として用いられる多層プリント配線板およびその製造方法が挙げられる。   Examples of utilization of the present invention include a multilayer printed wiring board used as a component of an electronic device and a manufacturing method thereof.

図1(a)〜(f)は、本発明の実施形態における多層プリント配線板の製造方法を説明するための断面図であり、特に、本発明の多層プリント配線板の内層用の両面回路基板とその製造方法を説明するための図である。1A to 1F are cross-sectional views for explaining a method for producing a multilayer printed wiring board in an embodiment of the present invention, and in particular, a double-sided circuit board for an inner layer of the multilayer printed wiring board of the present invention. It is a figure for demonstrating and its manufacturing method. 図2(a)〜(c)は、本発明の実施形態における多層プリント配線板の製造方法を説明するための断面図であり、特に、本発明の多層プリント配線板とその製造方法を説明するための図である。2A to 2C are cross-sectional views for explaining a method for producing a multilayer printed wiring board in an embodiment of the present invention, and in particular, a multilayer printed wiring board according to the present invention and a method for producing the same. FIG. 本発明の実施形態における多層プリント配線板の異方導電性接着剤に使用される導電性微粒子を説明するための概略図である。It is the schematic for demonstrating the electroconductive fine particles used for the anisotropic conductive adhesive of the multilayer printed wiring board in embodiment of this invention.

符号の説明Explanation of symbols

1…両面フレキシブルプリント回路基板、2…樹脂フィルム、3…導体回路層、4…基材、5…貫通孔(スルーホール)、6…レジスト、7…めっき部、8…バンプ、9…レジスト、10…導体回路、20…多層フレキシブルプリント配線板、22…導体回路層、23…接着剤層、24…導体回路、25…導電性微粒子   DESCRIPTION OF SYMBOLS 1 ... Double-sided flexible printed circuit board, 2 ... Resin film, 3 ... Conductor circuit layer, 4 ... Base material, 5 ... Through-hole (through hole), 6 ... Resist, 7 ... Plating part, 8 ... Bump, 9 ... Resist, DESCRIPTION OF SYMBOLS 10 ... Conductor circuit, 20 ... Multilayer flexible printed wiring board, 22 ... Conductor circuit layer, 23 ... Adhesive layer, 24 ... Conductor circuit, 25 ... Conductive microparticle

Claims (7)

導体回路が形成された複数の導体回路層を備え、接着剤層を介して、前記複数の導体回路層が積層された多層プリント配線板において、
前記接着剤層が、導電性微粒子を含有する異方導電性接着剤であるとともに、前記導体回路層の表面に、前記導体回路上に電気的に接続された導体部材が突出して形成されていることを特徴とする多層プリント配線板。
In a multilayer printed wiring board comprising a plurality of conductor circuit layers in which conductor circuits are formed, and the plurality of conductor circuit layers are laminated via an adhesive layer,
The adhesive layer is an anisotropic conductive adhesive containing conductive fine particles, and a conductor member electrically connected to the conductor circuit is formed on the surface of the conductor circuit layer so as to protrude. A multilayer printed wiring board characterized by that.
前記導電性微粒子が、前記接着剤層の厚み方向に配向していることを特徴とする請求項1に記載の多層プリント配線板。   The multilayer printed wiring board according to claim 1, wherein the conductive fine particles are oriented in a thickness direction of the adhesive layer. 前記導電性微粒子が、磁性を有する金属単体、磁性を有する2種類以上の合金、磁性を有する金属と他の金属との合金および磁性を有する金属を含む複合体のいずれかであることを特徴とする請求項1または請求項2に記載の多層プリント配線板。   The conductive fine particles are any of a simple metal having magnetism, two or more kinds of alloys having magnetism, an alloy of a metal having magnetism with another metal, and a composite containing a metal having magnetism. The multilayer printed wiring board according to claim 1 or 2. 前記導電性微粒子が、ニッケル、鉄、コバルトおよびこれらのうち2種類以上の合金のいずれかであることを特徴とする請求項3に記載の多層プリント配線板。   The multilayer printed wiring board according to claim 3, wherein the conductive fine particles are any one of nickel, iron, cobalt, and two or more kinds of alloys thereof. 以下の工程を含むことを特徴とする多層プリント配線板の製造方法。
a.基材の少なくとも一方の面に形成された導体回路層にエッチングして、導体回路を形成する工程。
b.前記導体回路層の表面に、前記導体回路上に電気的に接続される導体部材を、前記導体回路層から外側に向けて突出させて形成する工程。
c.工程a〜bにより製造された内層用のプリント回路基板と、他の導体回路層を、導電性微粒子を含有する異方導電性接着剤を介して、加熱、加圧により積層して一体化する工程。
d.前記他の導体回路層にエッチングして、他の導体回路を形成する工程。
The manufacturing method of the multilayer printed wiring board characterized by including the following processes.
a. A step of etching a conductor circuit layer formed on at least one surface of a substrate to form a conductor circuit.
b. Forming a conductor member electrically connected to the conductor circuit on the surface of the conductor circuit layer by projecting outward from the conductor circuit layer;
c. The printed circuit board for the inner layer manufactured in steps a and b and another conductor circuit layer are laminated and integrated by heating and pressurizing via an anisotropic conductive adhesive containing conductive fine particles. Process.
d. Etching the other conductor circuit layer to form another conductor circuit.
前記導電性微粒子が、前記異方導電性接着剤の厚み方向に配向していることを特徴とする請求項5に記載の多層プリント配線板の製造方法。   6. The method for producing a multilayer printed wiring board according to claim 5, wherein the conductive fine particles are oriented in the thickness direction of the anisotropic conductive adhesive. 前記導体部材を、めっき法により形成することを特徴とする請求項5または請求項6に記載の多層プリント配線板の製造方法。   The method for manufacturing a multilayer printed wiring board according to claim 5, wherein the conductor member is formed by a plating method.
JP2006062910A 2006-03-08 2006-03-08 Multilayer printed wiring board, and manufacturing method thereof Pending JP2007242872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062910A JP2007242872A (en) 2006-03-08 2006-03-08 Multilayer printed wiring board, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062910A JP2007242872A (en) 2006-03-08 2006-03-08 Multilayer printed wiring board, and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010143101A Division JP5066226B2 (en) 2010-06-23 2010-06-23 Multilayer printed wiring board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007242872A true JP2007242872A (en) 2007-09-20

Family

ID=38588123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062910A Pending JP2007242872A (en) 2006-03-08 2006-03-08 Multilayer printed wiring board, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007242872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104308A1 (en) * 2008-02-18 2009-08-27 セイコーインスツル株式会社 Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio-controlled watch
JP2012028463A (en) * 2010-07-21 2012-02-09 Sumitomo Electric Printed Circuit Inc Manufacturing method of multilayer printed wiring board and multilayer printed wiring board
JP2021044374A (en) * 2019-09-11 2021-03-18 大日本印刷株式会社 Manufacturing method of through silicon via board, wiring board and wiring board

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330736A (en) * 1995-06-01 1996-12-13 Toray Ind Inc Multilayer board and manufacture thereof
JPH08335759A (en) * 1995-06-07 1996-12-17 Toshiba Corp Printed wiring board and its production
JPH1093240A (en) * 1996-09-10 1998-04-10 Yamaichi Electron Co Ltd Multilayer wiring board and method of manufacturing multilayer wiring board
JPH10190221A (en) * 1996-12-26 1998-07-21 Sumise Device:Kk Manufacture of printed wiring board
JPH10303561A (en) * 1997-04-30 1998-11-13 Hitachi Chem Co Ltd Multi-layer wiring board and its manufacture
JPH1140293A (en) * 1997-07-23 1999-02-12 Jsr Corp Multi-layer connector and adapter device for circuit board inspection
JPH11112150A (en) * 1997-09-30 1999-04-23 Hokuriku Electric Ind Co Ltd Multilayered substrate and its manufacture
JP2000114693A (en) * 1998-10-06 2000-04-21 Hitachi Chem Co Ltd Manufacture of wiring board
JP2001015920A (en) * 1999-06-30 2001-01-19 Toshiba Corp Multilayer printed wiring board and its manufacture
JP2001326469A (en) * 2000-05-16 2001-11-22 Toshiba Chem Corp Printed wiring board and method of manufacturing the same
JP2003158364A (en) * 2001-11-22 2003-05-30 Hitachi Chem Co Ltd Method of manufacturing printed wiring board
JP2005146043A (en) * 2003-11-12 2005-06-09 Sumitomo Electric Ind Ltd Anisotropic conductive adhesive

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330736A (en) * 1995-06-01 1996-12-13 Toray Ind Inc Multilayer board and manufacture thereof
JPH08335759A (en) * 1995-06-07 1996-12-17 Toshiba Corp Printed wiring board and its production
JPH1093240A (en) * 1996-09-10 1998-04-10 Yamaichi Electron Co Ltd Multilayer wiring board and method of manufacturing multilayer wiring board
JPH10190221A (en) * 1996-12-26 1998-07-21 Sumise Device:Kk Manufacture of printed wiring board
JPH10303561A (en) * 1997-04-30 1998-11-13 Hitachi Chem Co Ltd Multi-layer wiring board and its manufacture
JPH1140293A (en) * 1997-07-23 1999-02-12 Jsr Corp Multi-layer connector and adapter device for circuit board inspection
JPH11112150A (en) * 1997-09-30 1999-04-23 Hokuriku Electric Ind Co Ltd Multilayered substrate and its manufacture
JP2000114693A (en) * 1998-10-06 2000-04-21 Hitachi Chem Co Ltd Manufacture of wiring board
JP2001015920A (en) * 1999-06-30 2001-01-19 Toshiba Corp Multilayer printed wiring board and its manufacture
JP2001326469A (en) * 2000-05-16 2001-11-22 Toshiba Chem Corp Printed wiring board and method of manufacturing the same
JP2003158364A (en) * 2001-11-22 2003-05-30 Hitachi Chem Co Ltd Method of manufacturing printed wiring board
JP2005146043A (en) * 2003-11-12 2005-06-09 Sumitomo Electric Ind Ltd Anisotropic conductive adhesive

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104308A1 (en) * 2008-02-18 2009-08-27 セイコーインスツル株式会社 Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio-controlled watch
JPWO2009104308A1 (en) * 2008-02-18 2011-06-16 セイコーインスツル株式会社 Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio timepiece
US8020265B2 (en) 2008-02-18 2011-09-20 Seiko Instruments Inc. Method of manufacturing a piezoelectric vibrator
JP2012028463A (en) * 2010-07-21 2012-02-09 Sumitomo Electric Printed Circuit Inc Manufacturing method of multilayer printed wiring board and multilayer printed wiring board
JP2021044374A (en) * 2019-09-11 2021-03-18 大日本印刷株式会社 Manufacturing method of through silicon via board, wiring board and wiring board
JP7512576B2 (en) 2019-09-11 2024-07-09 大日本印刷株式会社 Through-hole electrode substrate, wiring substrate, and method for manufacturing wiring substrate

Similar Documents

Publication Publication Date Title
JP4990826B2 (en) Multilayer printed circuit board manufacturing method
WO2004016054A1 (en) Wiring substrate and wiring substrate connection structure
JP5261756B1 (en) Multilayer wiring board
JP2007281480A (en) Printed-circuit board using bump, and its manufacturing method
US20090242238A1 (en) Buried pattern substrate
JP2017084997A (en) Printed wiring board and method of manufacturing the same
JP2010232249A (en) Multilayer printed wiring board and manufacturing method of the same
TWI414217B (en) Embedded multilayer printed circuit board and method for manufacturing same
TW202339570A (en) Multilayer substrate, multilayer substrate production method, and electronic device
JP2006165496A (en) Parallel multi-layer printed board having inter-layer conductivity through via post
JP2007242872A (en) Multilayer printed wiring board, and manufacturing method thereof
JP5176500B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP5066226B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3905802B2 (en) Printed wiring board and manufacturing method thereof
JP2011249457A (en) Wiring board having embedded component, and manufacturing method for the same
JP2008016651A (en) Component built-in wiring board and its manufacturing method
JP5515210B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP5323395B2 (en) Electronic module and method for manufacturing electronic module
JP2008181914A (en) Multilayer printed wiring board and manufacturing method thereof
JP5516069B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
US20090159318A1 (en) Printed circuit board and manufacturing method thereof
JP2014130919A (en) Multi-layer printed wiring board and manufacturing method of the same
JP2014007256A (en) Wiring board and method for manufacturing the same
JP4795711B2 (en) Circuit forming material, circuit board using the circuit forming material, and manufacturing method thereof
JP2011071560A (en) Manufacturing method of component built-in wiring board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20080710

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD02 Notification of acceptance of power of attorney

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Effective date: 20081106

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A131 Notification of reasons for refusal

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A911

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100707

RD03 Notification of appointment of power of attorney

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A912