[go: up one dir, main page]

JP2007236130A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2007236130A
JP2007236130A JP2006055981A JP2006055981A JP2007236130A JP 2007236130 A JP2007236130 A JP 2007236130A JP 2006055981 A JP2006055981 A JP 2006055981A JP 2006055981 A JP2006055981 A JP 2006055981A JP 2007236130 A JP2007236130 A JP 2007236130A
Authority
JP
Japan
Prior art keywords
stator
rotor
permanent magnet
electrical machine
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006055981A
Other languages
Japanese (ja)
Other versions
JP5066813B2 (en
Inventor
Yuichi Shibukawa
祐一 渋川
Tadayuki Hatsuda
匡之 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006055981A priority Critical patent/JP5066813B2/en
Publication of JP2007236130A publication Critical patent/JP2007236130A/en
Application granted granted Critical
Publication of JP5066813B2 publication Critical patent/JP5066813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary electric machine in which motor loss is reduced by shortening the length of magnetic path, as much as possible, and compound effect is not reduced, when independent driving is performed with a composite current. <P>SOLUTION: In the rotary electric machine where a rotor to which a permanent magnet is attached and a stator to which an armature winding is applied are opposing in the axial direction, magnetic path r formed via the rotor and the stator is constituted of a flux along the rotating shaft direction, and flux along the radial direction of an end face perpendicularly intersecting the rotating shaft and passes in the radial direction of the end face perpendicularly intersecting the rotating shaft. The rotor consists of a pair, arranged opposite so as to hold the stator in between. The stator consists of a pair arranged opposite so as to hold the rotor in between. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、回転電機に関し、特に、アキシャルギャップ型の回転電機に関する。   The present invention relates to a rotating electrical machine, and more particularly to an axial gap type rotating electrical machine.

従来、永久磁石を含むロータと電機子巻線を含むステータとがアキシャル(軸)方向に対向する回転界磁型のモータである、アキシャルギャップ型モータが知られている。
図8は、従来のアキシャルギャップ型モータの概略構造を示し、(a)はロータコアのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。図8に示すように、アキシャルギャップ型のモータ1は、固定子2と、固定子2の両側にエアギャップ(隙間)aを介して配置された一対の回転子3a,3bを有しており、円盤状に形成された各回転子3a,3bは、回転自在に支持された回転軸4により連結されている((b)参照)。
2. Description of the Related Art Conventionally, an axial gap type motor that is a rotating field type motor in which a rotor including a permanent magnet and a stator including an armature winding face each other in the axial (axial) direction is known.
8A and 8B show a schematic structure of a conventional axial gap motor, where FIG. 8A is a plan view seen from the stator side of the rotor core, and FIG. 8B is a cross-sectional view taken along line BB in FIG. . As shown in FIG. 8, the axial gap type motor 1 includes a stator 2 and a pair of rotors 3 a and 3 b disposed on both sides of the stator 2 via an air gap (gap) a. Each of the rotors 3a and 3b formed in a disk shape is connected by a rotating shaft 4 that is rotatably supported (see (b)).

固定子2は、固定子巻線5を巻回した固定子コア6を、略等間隔有して円環状に複数個(この例では4個、2個のみ図示)配置することにより形成されている((b)参照)。また、各回転子3a,3bは、各回転子ヨーク7a,7bと、各回転子ヨーク7a,7bの固定子2側に、固定子巻線5を巻回した固定子コア6に対応して配置された永久磁石8を有しており、各永久磁石8は、固定子2に対向すると共に、隣り合う同士が異なった極性になるように配置されている((a),(b)参照)。   The stator 2 is formed by arranging a plurality of stator cores 6 wound with a stator winding 5 in an annular shape (in this example, only four and two are shown) with substantially equal intervals. (See (b)). The rotors 3a and 3b correspond to the rotor cores 7a and 7b and the stator core 6 in which the stator winding 5 is wound on the stator 2 side of the rotor yokes 7a and 7b. It has the permanent magnet 8 arrange | positioned, and each permanent magnet 8 is arrange | positioned so that adjacent mutually may become a different polarity while facing the stator 2 (refer (a), (b)). ).

この従来のモータ1では、例えば、回転子3bの永久磁石8から固定子2を経て回転子3aの永久磁石8へと向かい((b)参照)、次に、回転子3aの外周縁に沿って隣接する永久磁石8へと向かって((a)参照)、永久磁石8から固定子2を経て回転子3bの永久磁石8へと向かい((b)参照)、更に、回転子3bの外周縁に沿って隣接する永久磁石8へと向かう磁路rが形成される。同様に、回転子3aの永久磁石8から、固定子2、回転子3bの永久磁石8、回転子3bの外周縁に沿って隣接する永久磁石8、固定子2、回転子3aの永久磁石8、回転子3aの外周縁に沿って隣接する永久磁石8へと、記載順に向かう磁路rが形成される。   In this conventional motor 1, for example, the permanent magnet 8 of the rotor 3 b goes through the stator 2 to the permanent magnet 8 of the rotor 3 a (see (b)), and then along the outer peripheral edge of the rotor 3 a. Toward the adjacent permanent magnet 8 (see (a)), from the permanent magnet 8 through the stator 2 to the permanent magnet 8 of the rotor 3b (see (b)), and further to the outside of the rotor 3b. A magnetic path r toward the adjacent permanent magnet 8 along the periphery is formed. Similarly, the permanent magnet 8 of the rotor 3a, the permanent magnet 8 of the stator 2, the rotor 3b, and the permanent magnet 8, the stator 2, and the permanent magnet 8 of the rotor 3a that are adjacent along the outer peripheral edge of the rotor 3b. A magnetic path r is formed in the order of description to the adjacent permanent magnet 8 along the outer peripheral edge of the rotor 3a.

つまり、各永久磁石8,8毎に、隣接する各永久磁石8,8との間で、向きを逆転させた2つの磁路rが形成される。なお、図中、○は進行方向が裏面側から表面側、×は進行方向が表面側から裏面側であることを表し、進行方向については一つの磁路rについてのみ示している。
このように、従来のアキシャルギャップ型のモータ1において形成される磁路rは、回転子3aから固定子2を経て回転子3bへ向かう磁路r1と、回転子3aと回転子3bのそれぞれで隣接する永久磁石8間の回転子外周縁に沿った磁路、即ち、モータ1の端面の外周縁を通る磁路r2により構成されている。
That is, for each permanent magnet 8, 8, two magnetic paths r having opposite directions are formed between the adjacent permanent magnets 8, 8. In the figure, ◯ indicates that the traveling direction is from the back side to the front side, and x indicates that the traveling direction is from the front side to the back side, and the traveling direction is shown for only one magnetic path r.
As described above, the magnetic path r formed in the conventional axial gap type motor 1 includes the magnetic path r1 from the rotor 3a through the stator 2 to the rotor 3b, and each of the rotor 3a and the rotor 3b. A magnetic path along the outer peripheral edge of the rotor between the adjacent permanent magnets 8, that is, a magnetic path r <b> 2 passing through the outer peripheral edge of the end surface of the motor 1 is formed.

なお、このようなアキシャルギャップ型のモータとしては、「ディスク型無軸受モータ」(特許文献1参照)がある。
特開平10−080113号公報
In addition, as such an axial gap type motor, there is a “disk type non-bearing motor” (see Patent Document 1).
Japanese Patent Laid-Open No. 10-080113

しかしながら、磁路rの長さが長くなると、鉄損が大きくなるため、モータ損失が大きくなってしまうことが避けられない。また、モータを、複合電流で独立駆動する場合には、磁気抵抗が高くなって、複合効果を低減させてしまう懸念がある。従って、磁路rの長さは、できるだけ短くすることが望ましい。
この発明の目的は、磁路の長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない回転電機を提供することである。
However, if the length of the magnetic path r is increased, the iron loss is increased, and thus it is inevitable that the motor loss is increased. In addition, when the motor is independently driven with a composite current, there is a concern that the magnetic resistance becomes high and the composite effect is reduced. Therefore, it is desirable to make the length of the magnetic path r as short as possible.
An object of the present invention is to provide a rotating electrical machine in which the length of a magnetic path is shortened as much as possible to reduce motor loss and the combined effect is not reduced when driven independently by a combined current.

上記目的を達成するため、この発明に係る回転電機は、永久磁石が装着された回転子と電機子巻線が装着された固定子がアキシャル方向に対向する回転電機において、前記回転子及び前記固定子を経て形成される磁路が、回転軸方向に沿う回転軸方向磁束と、回転軸に直交する端面の径方向に沿う径方向磁束により構成され、回転軸に直交する端面の径方向を通ることを特徴としている。   In order to achieve the above object, a rotating electrical machine according to the present invention is the rotating electrical machine in which the rotor on which a permanent magnet is mounted and the stator on which an armature winding is mounted face each other in the axial direction. A magnetic path formed through the child is composed of a magnetic flux in the rotation axis direction along the rotation axis direction and a magnetic flux in a radial direction along the radial direction of the end surface orthogonal to the rotation axis, and passes through the radial direction of the end surface orthogonal to the rotation axis. It is characterized by that.

この発明によれば、永久磁石が装着された回転子と電機子巻線が装着された固定子がアキシャル方向に対向する回転電機は、回転子及び固定子を経て形成される磁路が、回転軸方向に沿う回転軸方向磁束と、回転軸に直交する端面の径方向に沿う径方向磁束により構成されて、回転軸に直交する端面では端面径方向を通ることになる。これにより、磁路の長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない。   According to the present invention, the rotating electrical machine in which the rotor mounted with the permanent magnet and the stator mounted with the armature winding face each other in the axial direction has a magnetic path formed through the rotor and the stator rotating. The rotation direction magnetic flux along the axial direction and the radial direction magnetic flux along the radial direction of the end surface orthogonal to the rotation axis, and the end surface orthogonal to the rotation axis passes through the end surface radial direction. As a result, the length of the magnetic path is made as short as possible to reduce the motor loss, and the composite effect is not reduced when the composite current is independently driven.

以下、この発明を実施するための最良の形態について図面を参照して説明する。
(第1実施の形態)
図1は、この発明の第1実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。図1に示すように、アキシャルギャップ型のモータ(回転電機)10は、固定子(ステータ)11と、固定子11の両面側にエアギャップ(隙間)aを設けて配置された一対の回転子(ロータ)12a,12bを有しており、円盤状に形成された各回転子12a,12bは、回転自在に支持された回転軸13により連結されている((b)参照)。
The best mode for carrying out the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 shows a schematic structure of a motor according to a first embodiment of the present invention, where (a) is an explanatory plan view seen from the stator side of the rotor, and (b) is along the BB line of (a). FIG. As shown in FIG. 1, an axial gap type motor (rotating electric machine) 10 includes a stator (stator) 11 and a pair of rotors arranged with air gaps (gap) a provided on both sides of the stator 11. (Rotor) 12a, 12b is provided, and each rotor 12a, 12b formed in the shape of a disk is connected by a rotating shaft 13 that is rotatably supported (see (b)).

固定子11は、固定子巻線14を巻回した外側固定子コア15を、略等間隔有して円環状に複数個(この例では4個、2個のみ図示)配置すると共に、外側固定子コア15の内側に、固定子巻線14を巻回した内側固定子コア16を、略等間隔有して円環状に複数個(この例では4個、2個のみ図示)配置することにより形成されている((b)参照)。つまり、回転軸13の外側に、それぞれ固定子巻線14を巻回した外側固定子コア15と内側固定子コア16が、同心円状に接近して、且つ、電気角が180度異なる(U,U−)ように、配置されている。   The stator 11 has a plurality of outer stator cores 15 wound with a stator winding 14 arranged in an annular shape (in this example, only four and two are shown) with substantially equal intervals, and is fixed outside. By arranging a plurality of inner stator cores 16 around which the stator windings 14 are wound in an annular shape (four in this example, only two are shown in this example) with a substantially equal interval inside the child core 15. It is formed (see (b)). That is, the outer stator core 15 and the inner stator core 16 around which the stator windings 14 are wound, respectively, approach the concentric circles on the outer side of the rotating shaft 13 and the electrical angles differ by 180 degrees (U, U-).

各回転子12a,12bは、各回転子ヨーク17a,17bと、各回転子ヨーク17a,17bの固定子11側に突設された、それぞれ複数個(この例では4個、2個のみ図示)の外側永久磁石18a及び内側永久磁石18bを有している。各回転子ヨーク17a,17bは、非磁性部材からなる隔壁部(溝状空間でも良い)19により平面が略4等分されており、それぞれ磁気的に隔離された4つの区画を有している((a)参照)。外側永久磁石18aは、固定子巻線14を巻回した外側固定子コア15に対応して配置され、内側永久磁石18bは、固定子巻線14を巻回した内側固定子コア16に対応して配置されている。なお、外側永久磁石18aと内側永久磁石18bは、固定子11に対向すると共に、回転子周方向及び回転子径方向の隣り合う同士が異なった極性になるように配置されている((a),(b)参照)。   Each of the rotors 12a and 12b has a plurality of rotor yokes 17a and 17b and a plurality of rotor yokes 17a and 17b protruding from the stator 11 side (only four and two are shown in this example). The outer permanent magnet 18a and the inner permanent magnet 18b are provided. Each of the rotor yokes 17a and 17b is divided into substantially four equal parts by a partition wall portion 19 (which may be a groove-like space) made of a nonmagnetic member, and has four sections that are magnetically isolated from each other. (See (a)). The outer permanent magnet 18 a is arranged corresponding to the outer stator core 15 wound with the stator winding 14, and the inner permanent magnet 18 b corresponds to the inner stator core 16 wound with the stator winding 14. Are arranged. The outer permanent magnet 18a and the inner permanent magnet 18b are arranged so as to face the stator 11 and have different polarities in the rotor circumferential direction and the rotor radial direction adjacent to each other ((a). (See (b)).

つまり、各回転子ヨーク17a,17bの固定子11側には、4つの区画毎に、固定子径方向に近接して外側永久磁石18aと内側永久磁石18bが配置されている((a)参照)。
このモータ10では、例えば、回転子12bの内側永久磁石18bから回転子ヨーク18bを通って外側永久磁石18aへ向かい、外側固定子コア15を経て、回転子12aの外側永久磁石18aから回転子ヨーク18aを通って内側永久磁石18bへ向かい、次に、内側固定子コア16を経て、回転子12bの内側永久磁石18bへと向かう磁路r((b)参照)が形成される。
That is, the outer permanent magnets 18a and the inner permanent magnets 18b are arranged on the stator 11 side of each of the rotor yokes 17a and 17b so as to be close to the stator radial direction every four sections (see (a)). ).
In the motor 10, for example, the inner permanent magnet 18 b of the rotor 12 b passes through the rotor yoke 18 b toward the outer permanent magnet 18 a, passes through the outer stator core 15, and then passes from the outer permanent magnet 18 a of the rotor 12 a to the rotor yoke. A magnetic path r (see (b)) is formed through the inner permanent magnet 18b through the inner stator core 16 and then toward the inner permanent magnet 18b of the rotor 12b.

このとき、磁路rは、外側固定子コア15及び内側固定子コア16での回転軸方向磁束と、各回転子12a,12bでの回転子径方向磁束により形成されることになる。そして、各回転子12a,12bでの、内側永久磁石18bと外側永久磁石18aの間の磁路r2((a)参照。固定子11側から見た状態を示し、一部磁石の表示を省略している)は、内側永久磁石18bと外側永久磁石18aが回転子径方向に近接配置されているので、回転子半径の一部となり、最短距離を通ることができる。   At this time, the magnetic path r is formed by the rotation direction magnetic flux in the outer stator core 15 and the inner stator core 16 and the rotor radial direction magnetic flux in each of the rotors 12a and 12b. Then, in each rotor 12a, 12b, a magnetic path r2 between the inner permanent magnet 18b and the outer permanent magnet 18a (see (a). Shown from the stator 11 side, and some magnets are not shown) In this case, since the inner permanent magnet 18b and the outer permanent magnet 18a are arranged close to each other in the rotor radial direction, they become a part of the rotor radius and can pass through the shortest distance.

この結果、回転軸13に直交する端面であるモータ10の端面を通る磁路r2を、従来の回転子外周縁に沿った磁路r2(図8(a)参照)よりも確実に短くすることができるので、磁路rの長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない。   As a result, the magnetic path r2 passing through the end face of the motor 10, which is the end face orthogonal to the rotating shaft 13, is surely made shorter than the magnetic path r2 along the outer peripheral edge of the conventional rotor (see FIG. 8A). Therefore, the length of the magnetic path r is made as short as possible to reduce the motor loss, and the composite effect is not reduced when the composite current is independently driven.

(第2実施の形態)
図2は、この発明の第2実施の形態に係るモータの概略構造を示し、(a)はステータのロータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。図2に示すように、モータ20は、回転子21と、回転子21の両面側にエアギャップ(隙間)aを設けて、対向配置された固定子22a,22bを有している。回転子21は、回転軸21aを介してケース23に装着されている。ケース23は、円筒状部23aと円筒状部23aの両開口を塞ぐ円盤状部23bにより形成されており、回転軸21aは、円盤状部23bに回転自在に支持されている。
(Second Embodiment)
2A and 2B show a schematic structure of a motor according to a second embodiment of the present invention, in which FIG. 2A is an explanatory plan view viewed from the rotor side of the stator, and FIG. 2B is taken along line BB in FIG. FIG. As shown in FIG. 2, the motor 20 includes a rotor 21 and stators 22 a and 22 b arranged to face each other with air gaps (gap) a provided on both sides of the rotor 21. The rotor 21 is attached to the case 23 via a rotating shaft 21a. The case 23 is formed by a cylindrical part 23a and a disk-like part 23b that covers both openings of the cylindrical part 23a, and the rotating shaft 21a is rotatably supported by the disk-like part 23b.

固定子22aは、固定子巻線14を巻回した固定子コア24aを、略等間隔有して円環状に複数個(この例では4個、2個のみ図示)配置することにより、固定子22bは、固定子巻線14を巻回した固定子コア24bを、略等間隔有して円環状に複数個(この例では4個、2個のみ図示)配置することにより、それぞれ形成されている((b)参照)。各固定子コア24a,24bは、ケース23の円盤状部23aに固着されている。つまり、それぞれ固定子巻線14を巻回した複数の固定子コア24aと固定子コア24bが、ケース23の内側面において対向し、且つ、回転軸21aの外側に円環状に、配置されている。   The stator 22a is formed by arranging a plurality of stator cores 24a around which the stator windings 14 are wound in an annular shape (in this example, only four and two are shown) at substantially equal intervals. 22b is formed by arranging a plurality of stator cores 24b around which the stator windings 14 are wound in an annular shape (in this example, only four and two are shown) with substantially equal intervals. (See (b)). The stator cores 24 a and 24 b are fixed to the disk-like portion 23 a of the case 23. That is, a plurality of stator cores 24a and stator cores 24b each wound around the stator winding 14 are opposed to each other on the inner surface of the case 23, and are arranged in an annular shape outside the rotating shaft 21a. .

また、回転子21は、回転子コア25と、固定子巻線14を巻回した固定子コア24a(24b)に対応して回転子コア25に埋設状態に配置された、複数の永久磁石26を有している。なお、各永久磁石26は、隣り合う同士が異なった極性になるように配置されている((a),(b)参照)。
このモータ20では、例えば、回転子21の永久磁石26から、固定子22aの固定子コア24aを通って、固定子固定場所である円盤状部23bから円筒状部23aへ向かい、次に、円筒状部23aから円盤状部23b、更に、固定子22bの固定子コア24bを通って、永久磁石26へ向かう磁路r((b)参照)が形成される。
In addition, the rotor 21 includes a plurality of permanent magnets 26 that are embedded in the rotor core 25 corresponding to the rotor core 25 and the stator core 24 a (24 b) around which the stator winding 14 is wound. have. In addition, each permanent magnet 26 is arrange | positioned so that adjacent may become a different polarity (refer (a), (b)).
In this motor 20, for example, from the permanent magnet 26 of the rotor 21 through the stator core 24a of the stator 22a, the disk-shaped portion 23b, which is a stator fixing location, moves from the disk-shaped portion 23a to the cylindrical portion 23a. A magnetic path r (see (b)) is formed from the circular portion 23a to the disk-shaped portion 23b and further to the permanent magnet 26 through the stator core 24b of the stator 22b.

このとき、磁路rは、固定子コア24a、円筒状部23a及び固定子コア24aでの回転軸方向磁束と、円盤状部23bでのケース径方向磁束により形成されることになる。そして、固定子22aでの固定子コア24aから円盤状部23bを通って円筒状部23aへ、また、固定子22bでの円筒状部23aから円盤状部23bを通って固定子コア24aへ向かう磁路r2((a)参照。固定子11側から見た状態を示し、一部磁石の表示を省略している)は、永久磁石26と円筒状部23aが回転子径方向に沿って接近しているので、最短距離を取ることができる。   At this time, the magnetic path r is formed by the rotation axis direction magnetic flux in the stator core 24a, the cylindrical portion 23a and the stator core 24a, and the case radial direction magnetic flux in the disk-like portion 23b. Then, from the stator core 24a in the stator 22a to the cylindrical portion 23a through the disk-shaped portion 23b, and from the cylindrical portion 23a in the stator 22b to the stator core 24a through the disk-shaped portion 23b. In the magnetic path r2 (see (a), showing a state viewed from the stator 11 side, and some magnets are not shown), the permanent magnet 26 and the cylindrical portion 23a approach each other along the rotor radial direction. So you can take the shortest distance.

この結果、2つの固定子22a,22bを備え、各固定子22a,22bを固定子固定場所に固定した構成を有する場合、モータ20の端面側を通る磁路r2を、従来の回転子外周縁に沿った磁路r2(図8(a)参照)よりも確実に短くすることができるので、磁路rの長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない。   As a result, in the case where the two stators 22a and 22b are provided and the stators 22a and 22b are fixed to the stator fixing place, the magnetic path r2 passing through the end face side of the motor 20 is replaced with the conventional outer periphery of the rotor. Therefore, the length of the magnetic path r can be made as short as possible to reduce the motor loss, and the composite current can be independently driven. The combined effect is not reduced.

(第3実施の形態)
図3は、この発明の第3実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。図3に示すように、モータ30は、回転子21に代えて、回転子径方向に隣接して2列に永久磁石が配置された回転子31と、2つの固定子22a,22bに代えて、それぞれ外側と内側の2列に固定子を配置した2つの固定子32a,32bを有している。2つの固定子32a,32bは、固定子固定場所33(ケース23の円盤状部23bに相当)に固着されている。その他の構成及び作用は、モータ20と同様である。
(Third embodiment)
3A and 3B show a schematic structure of a motor according to a third embodiment of the present invention, in which FIG. 3A is an explanatory plan view seen from the stator side of the rotor, and FIG. 3B is taken along line BB in FIG. FIG. As shown in FIG. 3, the motor 30 is replaced with a rotor 31 in which permanent magnets are arranged in two rows adjacent to the rotor radial direction and the two stators 22 a and 22 b instead of the rotor 21. , And two stators 32a and 32b in which the stators are arranged in two rows on the outer side and the inner side, respectively. The two stators 32a and 32b are fixed to a stator fixing place 33 (corresponding to the disk-shaped portion 23b of the case 23). Other configurations and operations are the same as those of the motor 20.

つまり、2つの固定子32a,32bを形成する、それぞれ固定子巻線14を巻回した各外側固定子コア34a,34bと各内側固定子コア35a,35bは、回転子31の回転軸31aの外側に、互いに離間して同心円状に、且つ、電気角が180度異なる(U,U−)ように、配置されている((b)参照)。また、回転子31は、回転子コア36と、固定子巻線14を巻回した外側固定子コア34a,34bに対応して回転子コア36に埋設状態に配置された外側永久磁石37aと、固定子巻線14を巻回した内側固定子コア35a,35bに対応して回転子コア36に埋設状態に配置された内側永久磁石37bを有している。   That is, the outer stator cores 34a and 34b and the inner stator cores 35a and 35b, which form the two stators 32a and 32b and are wound with the stator winding 14, respectively, are connected to the rotating shaft 31a of the rotor 31. They are arranged on the outside so as to be concentrically spaced apart from each other and so that their electrical angles differ by 180 degrees (U, U−) (see (b)). Further, the rotor 31 includes a rotor core 36, an outer permanent magnet 37a disposed in an embedded state in the rotor core 36 corresponding to the outer stator cores 34a and 34b around which the stator winding 14 is wound, Corresponding to the inner stator cores 35a and 35b around which the stator winding 14 is wound, there is an inner permanent magnet 37b disposed in an embedded state in the rotor core 36.

回転子31は、非磁性部材からなる隔壁部(溝状空間でも良い)19により平面が略4等分されており、それぞれ磁気的に隔離された4つの区画を有している((a)参照)。この4つの区画毎に、固定子径方向に近接して外側永久磁石37aと内側永久磁石37bが配置されている((a)参照)。
このモータ30では、例えば、回転子31の内側永久磁石37bから、内側固定子コア35b、固定子固定場所33及び外側固定子コア34bを記載順に通って、外側永久磁石37aへ向かい、更に、外側固定子コア34a、固定子固定場所33及び内側固定子コア35aを記載順に通って、内側永久磁石37bへと向かう磁路r((b)参照)が形成される。
The rotor 31 is substantially divided into four equal parts by a partition wall portion 19 (which may be a groove-like space) made of a nonmagnetic member, and has four sections that are magnetically isolated from each other ((a)). reference). An outer permanent magnet 37a and an inner permanent magnet 37b are arranged in proximity to the stator radial direction for each of the four sections (see (a)).
In this motor 30, for example, the inner permanent magnet 37b of the rotor 31 is passed through the inner stator core 35b, the stator fixing place 33, and the outer stator core 34b in the order of description, toward the outer permanent magnet 37a. A magnetic path r (see (b)) toward the inner permanent magnet 37b is formed through the stator core 34a, the stator fixing place 33, and the inner stator core 35a in the order described.

このとき、磁路rは、外側固定子コア34a,34b及び内側固定子コア35a,35bでの回転軸方向磁束と、各固定子固定場所33での固定子径方向磁束により形成されることになる。そして、各固定子固定場所33での、外側永久磁石37aと内側永久磁石37bの間の磁路r2((a)参照。固定子32b側から見た状態を示し、一部磁石の表示を省略している)は、外側永久磁石37aと内側永久磁石37bが回転子径方向に沿って近接配置されているので、最短距離を通ることができる。   At this time, the magnetic path r is formed by the rotation axis direction magnetic flux in the outer stator cores 34 a and 34 b and the inner stator cores 35 a and 35 b and the stator radial magnetic flux in each stator fixing location 33. Become. Then, the magnetic path r2 between the outer permanent magnet 37a and the inner permanent magnet 37b (see (a) in each stator fixing location 33. The state seen from the stator 32b side is shown, and some of the magnets are not shown. Can be passed through the shortest distance because the outer permanent magnet 37a and the inner permanent magnet 37b are arranged close to each other along the rotor radial direction.

この結果、モータ30の端面側を通る磁路r2を、従来の回転子外周縁に沿った磁路r2(図8(a)参照)よりも確実に短くすることができるので、磁路rの長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない。   As a result, the magnetic path r2 passing through the end face side of the motor 30 can be reliably shortened compared to the magnetic path r2 (see FIG. 8A) along the outer periphery of the conventional rotor. The length is shortened as much as possible to reduce the motor loss, and the composite effect is not reduced when independently driven by the composite current.

(第4実施の形態)
図4は、この発明の第4実施の形態に係るモータの概略構造を示す、図1(b)と同様の断面説明図である。図4に示すように、モータ40は、固定子巻線14を巻回した内側固定子コア16と、この内側固定子コア16に対応して各回転子ヨーク17a,17bに配置された内側永久磁石18bに代えて、両回転子ヨーク17a,17bを連結する連結部材41を設けている。その他の構成及び作用は、モータ10と同様である。
(Fourth embodiment)
FIG. 4 is a cross-sectional explanatory view similar to FIG. 1B, showing the schematic structure of a motor according to a fourth embodiment of the present invention. As shown in FIG. 4, the motor 40 includes an inner stator core 16 around which the stator winding 14 is wound, and inner permanent cores disposed on the rotor yokes 17 a and 17 b corresponding to the inner stator core 16. Instead of the magnet 18b, a connecting member 41 for connecting both the rotor yokes 17a and 17b is provided. Other configurations and operations are the same as those of the motor 10.

このモータ40では、内側固定子コア16及び内側永久磁石18bの代わりに連結部材41を通る磁路rが形成される。これにより、モータ40の端面側を通る磁路r2を、従来の回転子外周縁に沿った磁路r2(図8(a)参照)よりも確実に短くすることができるので、磁路rの長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない。その上、内側固定子コアに形成するコイル数を削減することができるため、部品点数を少なくしてコストを低減することができる。   In the motor 40, a magnetic path r that passes through the connecting member 41 is formed instead of the inner stator core 16 and the inner permanent magnet 18b. As a result, the magnetic path r2 passing through the end face side of the motor 40 can be reliably shortened compared to the magnetic path r2 (see FIG. 8A) along the outer periphery of the conventional rotor. The length is made as short as possible to reduce the motor loss, and the composite effect is not reduced when independently driven by the composite current. In addition, since the number of coils formed on the inner stator core can be reduced, the number of parts can be reduced and the cost can be reduced.

なお、連結部材41に代えてエアギャップを設け、エアギャップを通る磁路rを形成しても良く、また、連結部材41は、内側固定子コア16に限らず外側固定子コア15に代えて設けても良く、更に、両回転子ヨーク17a,17bを連結する場合に限らず、2ステータ構造(図3参照)において固定子を連結する場合にも適用することができる。   An air gap may be provided in place of the connecting member 41 to form a magnetic path r passing through the air gap. The connecting member 41 is not limited to the inner stator core 16 and may be replaced with the outer stator core 15. Further, the present invention is not limited to the case where the two rotor yokes 17a and 17b are connected, and the present invention can be applied to the case where the stator is connected in a two-stator structure (see FIG. 3).

(第5実施の形態)
図5は、この発明の第5実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。図5に示すように、モータ45は、固定子46を、固定子巻線14を巻回した外側固定子コア15及び固定子巻線14を巻回した内側固定子コア16に代えて、固定子巻線14を縦巻きした一つの固定子コア47により形成している。その他の構成及び作用は、モータ10と同様である。
(Fifth embodiment)
5A and 5B show a schematic structure of a motor according to a fifth embodiment of the present invention, in which FIG. 5A is an explanatory plan view viewed from the stator side of the rotor, and FIG. 5B is along the BB line of FIG. FIG. As shown in FIG. 5, the motor 45 is fixed by replacing the stator 46 with an outer stator core 15 around which the stator winding 14 is wound and an inner stator core 16 around which the stator winding 14 is wound. It is formed by one stator core 47 in which the child winding 14 is vertically wound. Other configurations and operations are the same as those of the motor 10.

固定子コア47は、略等間隔有して円環状に複数個(この例では4個、2個のみ図示)配置されており、各固定子コア47の固定子径方向中央部には、固定子巻線14を回転軸13方向に沿う縦巻きするための溝47aが形成されている。この溝47aに、縦(回転軸方向)巻きにより固定子巻線14が巻回されている。各固定子コア47の溝47a形成部以外の端部47bは、それぞれ外側永久磁石18aと内側永久磁石18bに対向しており、この端部47bと各永久磁石18a,18bとの間には、エアギャップa(隙間)が設けられる。各永久磁石18a,18bは、同一の極性を有するもの同士が、固定子径方向同位置に、即ち、対向して配置されている。   A plurality of stator cores 47 are arranged in an annular shape (in this example, only four and two are shown) with substantially equal intervals, and fixed to the center of each stator core 47 in the radial direction of the stator. A groove 47a for vertically winding the child winding 14 along the direction of the rotary shaft 13 is formed. The stator winding 14 is wound around the groove 47a by vertical (rotating axis direction) winding. The end portions 47b of the stator cores 47 other than the grooves 47a forming portions face the outer permanent magnets 18a and the inner permanent magnets 18b, respectively, and between the end portions 47b and the permanent magnets 18a and 18b An air gap a (gap) is provided. The permanent magnets 18a and 18b having the same polarity are arranged at the same position in the stator radial direction, that is, facing each other.

このモータ45では、各固定子コア47において、回転子12bの内側永久磁石18bから、固定子コア47を通って回転子12bの外側永久磁石18aへ向かい、回転子ヨーク17bを通って回転子12bの内側永久磁石18bへ向かう磁路rと、回転子12aの内側永久磁石18bから、固定子コア47を通って回転子12aの外側永久磁石18aへ向かい、回転子ヨーク17aを通って回転子12aの内側永久磁石18bへ向かう磁路r((b)参照)が形成される。   In this motor 45, in each stator core 47, the rotor 12b passes from the inner permanent magnet 18b of the rotor 12b to the outer permanent magnet 18a of the rotor 12b through the stator core 47 and passes through the rotor yoke 17b. From the inner permanent magnet 18b of the rotor 12a to the outer permanent magnet 18a of the rotor 12a through the stator core 47 and through the rotor yoke 17a. A magnetic path r (see (b)) toward the inner permanent magnet 18b is formed.

この結果、モータ45の端面側を通る磁路r2を、従来の回転子外周縁に沿った磁路r2(図8(a)参照)よりも確実に短くすることができるので、磁路rの長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない。その上、小さいスペースにおいても固定子巻線14を巻回することが可能になるため、小型化することができる。   As a result, the magnetic path r2 passing through the end face side of the motor 45 can be surely shortened than the magnetic path r2 (see FIG. 8A) along the outer periphery of the conventional rotor. The length is made as short as possible to reduce the motor loss, and the composite effect is not reduced when independently driven by the composite current. In addition, since the stator winding 14 can be wound even in a small space, the size can be reduced.

(第6実施の形態)
図6は、この発明の第6実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。図6に示すように、モータ50は、コイルに複数の回転磁場が発生するように複合電流を流して駆動している。その他の構成及び作用は、モータ45と同様である。
(Sixth embodiment)
FIG. 6 shows a schematic structure of a motor according to a sixth embodiment of the present invention, in which (a) is an explanatory plan view seen from the stator side of the rotor, and (b) is taken along line BB in (a). FIG. As shown in FIG. 6, the motor 50 is driven by flowing a composite current so that a plurality of rotating magnetic fields are generated in the coil. Other configurations and operations are the same as those of the motor 45.

複合電流を流すことにより、2つの回転子の一方(A極対)には、回転子12bの内側永久磁石18bから、固定子コア47を通って回転子12bの外側永久磁石18aへ向かい、回転子ヨーク17bを通って回転子12bの内側永久磁石18bへ向かう磁路r3((b)参照)が形成され、他方(B極対)には、回転子12aの内側永久磁石18bから、固定子コア47を通って回転子12aの外側永久磁石18aへ向かい、回転子ヨーク17aを通って回転子12aの内側永久磁石18bへ向かう磁路r4((b)参照)が形成される。   By passing a composite current, one of the two rotors (A pole pair) rotates from the inner permanent magnet 18b of the rotor 12b through the stator core 47 to the outer permanent magnet 18a of the rotor 12b. A magnetic path r3 (see (b)) is formed through the child yoke 17b toward the inner permanent magnet 18b of the rotor 12b. A magnetic path r4 (see (b)) is formed through the core 47 toward the outer permanent magnet 18a of the rotor 12a and toward the inner permanent magnet 18b of the rotor 12a through the rotor yoke 17a.

この結果、モータ50の端面側を通る磁路r2を、従来の回転子外周縁に沿った磁路r2(図8(a)参照)よりも確実に短くすることができるので、磁路rの長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない。その上、複合電流でモータを駆動することにより、磁気抵抗が小さくなるので、複合効果を発揮し易くなる。   As a result, the magnetic path r2 passing through the end face side of the motor 50 can be reliably shortened compared to the magnetic path r2 (see FIG. 8A) along the conventional outer periphery of the rotor. The length is made as short as possible to reduce the motor loss, and the composite effect is not reduced when independently driven by the composite current. In addition, by driving the motor with a composite current, the magnetic resistance is reduced, so that the composite effect is easily exhibited.

(第7実施の形態)
図7は、この発明の第7実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。図7に示すように、モータ55は、外側永久磁石18a及び内側永久磁石18bを、ハルバッハ配列により配置している。その他の構成及び作用は、モータ10と同様である。
(Seventh embodiment)
7A and 7B show a schematic structure of a motor according to a seventh embodiment of the present invention, in which FIG. 7A is an explanatory plan view viewed from the stator side of the rotor, and FIG. 7B is taken along line BB in FIG. FIG. As shown in FIG. 7, the motor 55 has an outer permanent magnet 18a and an inner permanent magnet 18b arranged in a Halbach array. Other configurations and operations are the same as those of the motor 10.

この結果、モータ55の端面側を通る磁路r2を、従来の回転子外周縁に沿った磁路r2(図8(a)参照)よりも確実に短くすることができるので、磁路rの長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない。その上、永久磁石の配置をハルバッハ配列にすることにより、各回転子ヨーク17a,17bの厚さを薄くすることができるため、モータを小型化することができる。   As a result, the magnetic path r2 passing through the end face side of the motor 55 can be reliably shortened compared to the magnetic path r2 (see FIG. 8A) along the outer periphery of the conventional rotor. The length is made as short as possible to reduce the motor loss, and the composite effect is not reduced when independently driven by the composite current. In addition, by arranging the permanent magnets in the Halbach array, the thickness of each of the rotor yokes 17a and 17b can be reduced, so that the motor can be reduced in size.

このように、この発明によれば、永久磁石が装着された回転子と電機子巻線が装着された固定子がアキシャル方向に対向する回転電機は、回転子及び固定子を経て形成される磁路が、回転軸方向に沿う回転軸方向磁束と、回転軸に直交する端面の径方向に沿う径方向磁束により構成されて、回転軸に直交する端面では端面径方向を通ることになるので、磁路の長さをできるだけ短くして、モータ損失を少なくすると共に、複合電流で独立駆動する際に複合効果を低減させることがない。   As described above, according to the present invention, the rotating electrical machine in which the rotor mounted with the permanent magnet and the stator mounted with the armature winding are opposed in the axial direction is a magnetic field formed through the rotor and the stator. Since the path is constituted by the rotation axis direction magnetic flux along the rotation axis direction and the radial direction magnetic flux along the radial direction of the end surface orthogonal to the rotation axis, the end surface orthogonal to the rotation axis passes through the end surface radial direction. The length of the magnetic path is made as short as possible to reduce the motor loss, and the composite effect is not reduced when independently driven by the composite current.

この発明の第1実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。The schematic structure of the motor which concerns on 1st Embodiment of this invention is shown, (a) is plane explanatory drawing seen from the stator side of the rotor, (b) is sectional explanatory drawing in alignment with the BB line of (a). is there. この発明の第2実施の形態に係るモータの概略構造を示し、(a)はステータのロータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。The schematic structure of the motor which concerns on 2nd Embodiment of this invention is shown, (a) is plane explanatory drawing seen from the rotor side of the stator, (b) is sectional explanatory drawing in alignment with the BB line of (a). is there. この発明の第3実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。The schematic structure of the motor which concerns on 3rd Embodiment of this invention is shown, (a) is plane explanatory drawing seen from the stator side of the rotor, (b) is sectional explanatory drawing in alignment with the BB line of (a). is there. この発明の第4実施の形態に係るモータの概略構造を示す、図1(b)と同様の断面説明図である。It is a cross-sectional explanatory drawing similar to FIG.1 (b) which shows schematic structure of the motor which concerns on 4th Embodiment of this invention. この発明の第5実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。The schematic structure of the motor which concerns on 5th Embodiment of this invention is shown, (a) is plane explanatory drawing seen from the stator side of the rotor, (b) is sectional explanatory drawing in alignment with the BB line of (a). is there. この発明の第6実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。The schematic structure of the motor which concerns on 6th Embodiment of this invention is shown, (a) is plane explanatory drawing seen from the stator side of the rotor, (b) is sectional explanatory drawing in alignment with the BB line of (a). is there. この発明の第7実施の形態に係るモータの概略構造を示し、(a)はロータのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。The schematic structure of the motor which concerns on 7th Embodiment of this invention is shown, (a) is plane explanatory drawing seen from the stator side of the rotor, (b) is sectional explanatory drawing in alignment with the BB line of (a). is there. 従来のアキシャルギャップ型モータの概略構造を示し、(a)はロータコアのステータ側から見た平面説明図、(b)は(a)のB−B線に沿う断面説明図である。The schematic structure of the conventional axial gap type | mold motor is shown, (a) is plane explanatory drawing seen from the stator side of the rotor core, (b) is sectional explanatory drawing in alignment with the BB line of (a).

符号の説明Explanation of symbols

10,20,30,40,45,50,55 モータ
11,22a,22b,32a,32b,46 固定子
12a,12b,21,31 回転子
13,21a 回転軸
14 固定子巻線
15,34a,34b 外側固定子コア
16,35a,35b 内側固定子コア
17a,17b 回転子ヨーク
18a,37a 外側永久磁石
18b,37b 内側永久磁石
19 隔壁部
23 ケース
23a 円筒状部
23b 円盤状部
24a,24b,47 固定子コア
25,36 回転子コア
26 永久磁石
33 固定子固定場所
41 連結部材
47a 溝
47b 端部
a エアギャップ
r,r2 磁路
10, 20, 30, 40, 45, 50, 55 Motor 11, 22a, 22b, 32a, 32b, 46 Stator 12a, 12b, 21, 31 Rotor 13, 21a Rotating shaft 14 Stator winding 15, 34a, 34b Outer stator core 16, 35a, 35b Inner stator core 17a, 17b Rotor yoke 18a, 37a Outer permanent magnet 18b, 37b Inner permanent magnet 19 Partition part 23 Case 23a Cylindrical part 23b Disc-like part 24a, 24b, 47 Stator core 25, 36 Rotor core 26 Permanent magnet 33 Stator fixing place 41 Connecting member 47a Groove 47b End a Air gap r, r2 Magnetic path

Claims (8)

永久磁石が装着された回転子と電機子巻線が装着された固定子がアキシャル方向に対向する回転電機において、
前記回転子及び前記固定子を経て形成される磁路が、回転軸方向に沿う回転軸方向磁束と、回転軸に直交する端面の径方向に沿う径方向磁束により構成され、回転軸に直交する端面の径方向を通ることを特徴とする回転電機。
In a rotating electrical machine in which a rotor mounted with a permanent magnet and a stator mounted with an armature winding are opposed in the axial direction,
A magnetic path formed through the rotor and the stator is composed of a rotation axis direction magnetic flux along the rotation axis direction and a radial direction magnetic flux along the radial direction of the end surface orthogonal to the rotation axis, and is orthogonal to the rotation axis. A rotating electrical machine characterized by passing through a radial direction of an end face.
前記回転子が、前記固定子を挟み込むように、対向配置された一対からなることを特徴とする請求項1に記載の回転電機。   The rotating electrical machine according to claim 1, wherein the rotor is composed of a pair arranged to face each other so as to sandwich the stator. 前記固定子が、前記回転子を挟み込むように、対向配置された一対からなることを特徴とする請求項1に記載の回転電機。   The rotating electrical machine according to claim 1, wherein the stator is composed of a pair arranged to face each other so as to sandwich the rotor. 前記電機子巻線を巻回した固定子コアが、固定子径方向に2列配置されていることを特徴とする請求項2または3に記載の回転電機。   4. The rotating electrical machine according to claim 2, wherein the stator core around which the armature winding is wound is arranged in two rows in the stator radial direction. 対向配置された一対の回転子の回転子コア同士、或いは対向配置された一対の固定子の固定子コア同士を連結する連結部材又はエアギャップを設け、2列配置された前記固定子コアの一方と前記連結部材又は前記エアギャップを通る磁路を形成したことを特徴とする請求項4に記載の回転電機。   One of the stator cores arranged in two rows by providing a connecting member or an air gap for connecting the rotor cores of a pair of opposed rotors or a pair of stator cores of a pair of opposed stators. The rotating electrical machine according to claim 4, wherein a magnetic path passing through the connecting member or the air gap is formed. 前記固定子の固定子コアに、前記電機子巻線を回転軸方向に沿う縦巻により巻回し、回転子径方向同位置の前記永久磁石を同一極性にしたことを特徴とする請求項2に記載の回転電機。   The armature winding is wound around the stator core of the stator by vertical winding along the rotation axis direction, and the permanent magnets at the same position in the rotor radial direction have the same polarity. The rotating electrical machine described. コイルに複数の回転磁場が発生するように複合電流を流して駆動することを特徴とする請求項1〜6のいずれか一項に記載の回転電機。   The rotating electrical machine according to any one of claims 1 to 6, wherein the rotating electrical machine is driven by flowing a composite current so that a plurality of rotating magnetic fields are generated in the coil. 前記永久磁石を、ハルバッハ配列により配置したことを特徴とする請求項1〜7のいずれか一項に記載の回転電機。   The rotating electric machine according to claim 1, wherein the permanent magnets are arranged in a Halbach array.
JP2006055981A 2006-03-02 2006-03-02 Rotating electric machine Expired - Fee Related JP5066813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055981A JP5066813B2 (en) 2006-03-02 2006-03-02 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055981A JP5066813B2 (en) 2006-03-02 2006-03-02 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2007236130A true JP2007236130A (en) 2007-09-13
JP5066813B2 JP5066813B2 (en) 2012-11-07

Family

ID=38556146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055981A Expired - Fee Related JP5066813B2 (en) 2006-03-02 2006-03-02 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5066813B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807835A (en) * 2009-02-13 2010-08-18 马涅蒂-马瑞利公司 Electric machines with a single stator and two mutually independent rotors and road vehicles containing them
JP2010263718A (en) * 2009-05-08 2010-11-18 Daihatsu Motor Co Ltd Axial gap motor
JP2011172302A (en) * 2010-02-16 2011-09-01 Daihatsu Motor Co Ltd Axial gap motor
JP2011193676A (en) * 2010-03-16 2011-09-29 Daihatsu Motor Co Ltd Axial gap motor
JP2012034458A (en) * 2010-07-29 2012-02-16 Daihatsu Motor Co Ltd Axial gap motor
JP2012034483A (en) * 2010-07-30 2012-02-16 Daihatsu Motor Co Ltd Axial gap motor
WO2016003014A1 (en) * 2014-07-02 2016-01-07 전자부품연구원 Motor using complex magnetic flux
DE102014001023B4 (en) * 2014-01-27 2025-04-10 eMoSys GmbH Electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946964A (en) * 1995-07-27 1997-02-14 Agency Of Ind Science & Technol Generator
JP2002535955A (en) * 1999-01-22 2002-10-22 インスティテュト.フュル.ミクロテクニック.マインツ.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Disk motor
JP2003235221A (en) * 2002-02-12 2003-08-22 Nissan Motor Co Ltd Stator supporting structure of dynamo-electric machine
JP2004140937A (en) * 2002-10-18 2004-05-13 Fujitsu General Ltd Axial gap type motor
JP2007135315A (en) * 2005-11-10 2007-05-31 Silicon Valley Micro M Corp Polyphase ac vehicle motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946964A (en) * 1995-07-27 1997-02-14 Agency Of Ind Science & Technol Generator
JP2002535955A (en) * 1999-01-22 2002-10-22 インスティテュト.フュル.ミクロテクニック.マインツ.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Disk motor
JP2003235221A (en) * 2002-02-12 2003-08-22 Nissan Motor Co Ltd Stator supporting structure of dynamo-electric machine
JP2004140937A (en) * 2002-10-18 2004-05-13 Fujitsu General Ltd Axial gap type motor
JP2007135315A (en) * 2005-11-10 2007-05-31 Silicon Valley Micro M Corp Polyphase ac vehicle motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807835A (en) * 2009-02-13 2010-08-18 马涅蒂-马瑞利公司 Electric machines with a single stator and two mutually independent rotors and road vehicles containing them
JP2010263718A (en) * 2009-05-08 2010-11-18 Daihatsu Motor Co Ltd Axial gap motor
JP2011172302A (en) * 2010-02-16 2011-09-01 Daihatsu Motor Co Ltd Axial gap motor
JP2011193676A (en) * 2010-03-16 2011-09-29 Daihatsu Motor Co Ltd Axial gap motor
JP2012034458A (en) * 2010-07-29 2012-02-16 Daihatsu Motor Co Ltd Axial gap motor
JP2012034483A (en) * 2010-07-30 2012-02-16 Daihatsu Motor Co Ltd Axial gap motor
DE102014001023B4 (en) * 2014-01-27 2025-04-10 eMoSys GmbH Electric machine
WO2016003014A1 (en) * 2014-07-02 2016-01-07 전자부품연구원 Motor using complex magnetic flux
KR20160004410A (en) * 2014-07-02 2016-01-13 전자부품연구원 Motor using complex flux
KR101597965B1 (en) * 2014-07-02 2016-02-29 전자부품연구원 Motor using complex flux
US10491068B2 (en) 2014-07-02 2019-11-26 Korea Electronics Technology Institute Motor using complex magnetic flux

Also Published As

Publication number Publication date
JP5066813B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP6128419B2 (en) Rotating electric machine
JP5739651B2 (en) Rotor and motor
JP5066813B2 (en) Rotating electric machine
WO2009081766A1 (en) Motor and rotor for dynamo-electric machine
JP2019062673A (en) Variable magnetic flux type permanent magnet type rotating electric machine
KR20120134505A (en) Switched reluctance motor
US9024498B2 (en) Rotating electrical machine
CN102904400A (en) Transverse Switched Reluctance Motor
JP2011250651A (en) Axial gap motor
JP5869306B2 (en) Rotor and motor
JP5826596B2 (en) Rotor and motor
JP2007202363A (en) Rotary-electric machine
WO2014069288A1 (en) Inner rotor motor
JP2012165506A (en) Axial gap motor
JP6609138B2 (en) Axial gap type rotating electrical machine
JP2014073011A (en) Stator for rotary electric machine and rotary electric machine
JP2013169071A (en) Rotor and motor
JP4378327B2 (en) Drive device
JP7391783B2 (en) How to assemble magnetic poles, motors, and magnetic poles
JP2013169073A (en) Rotor and motor
JP2017046386A (en) Permanent magnet electric motor
JP2006304532A (en) Rotor structure of axial gap rotating electric machine
JP5643471B2 (en) Stepping motor
JP5572115B2 (en) Rotating motor
JP4680980B2 (en) Electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5066813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

LAPS Cancellation because of no payment of annual fees