[go: up one dir, main page]

JP2007210840A - Manufacturing method of dielectric ceramic composition - Google Patents

Manufacturing method of dielectric ceramic composition Download PDF

Info

Publication number
JP2007210840A
JP2007210840A JP2006033146A JP2006033146A JP2007210840A JP 2007210840 A JP2007210840 A JP 2007210840A JP 2006033146 A JP2006033146 A JP 2006033146A JP 2006033146 A JP2006033146 A JP 2006033146A JP 2007210840 A JP2007210840 A JP 2007210840A
Authority
JP
Japan
Prior art keywords
phase
tio
sintered body
temperature
zntio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033146A
Other languages
Japanese (ja)
Inventor
Yosuke Nimata
陽介 二俣
Hisashi Kosara
恒 小更
Tomohiro Arashi
友宏 嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006033146A priority Critical patent/JP2007210840A/en
Publication of JP2007210840A publication Critical patent/JP2007210840A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a dielectric ceramic composition which is composed of a sintered body of high density having ZnTiO<SB>3</SB>phase. <P>SOLUTION: The manufacturing method comprises producing a sintered body, which includes Zn<SB>2</SB>TiO<SB>4</SB>phase and TiO<SB>2</SB>phase and which includes Zn<SB>2</SB>TiO<SB>4</SB>phase as a main phase, by firing a molded product that is composed of the required composition of raw material powder, producing ZnTiO<SB>3</SB>phase from Zn<SB>2</SB>TiO<SB>4</SB>phase and TiO<SB>2</SB>phase by applying heat energy to the sintered body and changing the main phase of the sintered body into ZnTiO<SB>3</SB>phase. The application of the heat energy can be done by heat treating the sintered body by raising the temperature of the sintered body to the required temperature range and keeping the temperature for the required period of time, or by keeping the temperature of the sintered body in a temperature decreasing process of the firing at the required temperature range and for the required period of time. It is preferable for improving the quality factor that the firing is kept at a temperature range of 900-1,000°C and the application of the heat energy is kept at a temperature range of 750-900°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低温焼結可能である高周波用の誘電体磁器組成物の製造方法に関する。   The present invention relates to a method for producing a high frequency dielectric ceramic composition that can be sintered at a low temperature.

近年、AV機器、コンピュータ機器及び移動体通信機器等の分野では製品の小型化、高性能化が進み、それらに用いられる各種電子部品に関しても小型化、高性能化、サーフェスマウントデバイス(SMD)化に対する要求が非常に高まっている。そのため各種電子部品は内部に層状に電極導体を構成する積層部品の市場が拡大している。   In recent years, in the fields of AV equipment, computer equipment, mobile communication equipment, etc., miniaturization and high performance of products have progressed, and various electronic components used for them have also been miniaturized, high performance, and surface mount devices (SMD). The demand for is increasing. For this reason, the market for laminated components in which various electronic components are configured with electrode conductors in layers is expanding.

これら積層部品の内部導体としてはAu、Pt、Pd等の貴金属が用いられてきたが、コストダウンの観点よりこれら導体材料より比較的安価なAgもしくはCu、またはAgもしくはCuを主成分とする合金に変わりつつある。特にCuはコストダウンの効果が大きい。しかし、Cuを内部導体として用いる場合には、その融点より低い温度で安定に焼成できる誘電体材料が必要となる。   Noble metals such as Au, Pt, and Pd have been used as the internal conductors of these laminated parts. However, Ag or Cu that is relatively cheaper than these conductor materials or an alloy containing Ag or Cu as a main component from the viewpoint of cost reduction. Is changing. In particular, Cu has a large cost reduction effect. However, when Cu is used as the internal conductor, a dielectric material that can be stably fired at a temperature lower than its melting point is required.

この要求を満足する材料として、特許文献1の誘電体磁器組成物が知られている。この誘電体磁器組成物は、TiOが40〜90mol%、ZnOが60〜10mol%からなる誘電体磁器において、Bを0.1〜6wt%の範囲で含有している。TiOとZnOを主成分とする誘電体磁器は、その焼成温度は約1300℃と高く、そのためこれを用いて積層部品を構成する場合には、Cuのような低融点の金属を内部導体として用いることができなかった。特許文献1は、TiOとZnOを主成分とする誘電体磁器にB又はBを含むガラス成分を含有せしめることにより、Cu又はCuを主成分とする合金の融点以下での焼成を可能としている。 As a material that satisfies this requirement, the dielectric ceramic composition of Patent Document 1 is known. This dielectric ceramic composition contains B 2 O 3 in a range of 0.1 to 6 wt% in a dielectric ceramic composed of 40 to 90 mol% of TiO 2 and 60 to 10 mol% of ZnO. A dielectric ceramic mainly composed of TiO 2 and ZnO has a high firing temperature of about 1300 ° C. Therefore, when a laminated part is formed using this, a low melting point metal such as Cu is used as an inner conductor. It could not be used. Patent Document 1 discloses that a dielectric ceramic containing TiO 2 and ZnO as main components contains a glass component containing B 2 O 3 or B 2 O 3 so that the melting point of the alloy containing Cu or Cu as a main component is not higher than the melting point. Can be fired.

特許第3103296号公報Japanese Patent No. 3103296

特許文献1において、Cu又はCuを主成分とする合金を内部導体として使用可能な温度付近にて焼成すると、主にZnTiO+TiO(ルチル、以下TiO)、ZnTiO+TiO、ZnTiO+ZnTiOの3つの相が生成されること、それぞれの相は異なった誘電特性を有しており、生成相を安定化させることが、例えばバンドパスフィルタの品質を安定させる上で非常に重要であること、が開示されている。
この中で、ZnTiO相は945℃以上で焼成するとZnTiO相とTiO相に分解する(非特許文献1)。ところが、特許文献1によると、CuO及びB若しくはBを含むガラスを含有することにより、945℃に満たない870℃程度の温度でもZnTiO+TiO相を安定に生成できることを指摘している。
In Patent Document 1, when Cu or an alloy containing Cu as a main component is fired in the vicinity of a temperature at which it can be used as an internal conductor, mainly Zn 2 TiO 4 + TiO 2 (rutile, hereinafter referred to as TiO 2 ), ZnTiO 3 + TiO 2 , Zn 2 TiO 4 + ZnTiO 3 are generated in three phases, and each phase has different dielectric properties. Stabilizing the generated phase is very important for stabilizing the quality of the bandpass filter, for example. Is important.
Among them, the ZnTiO 3 phase decomposes into a Zn 2 TiO 4 phase and a TiO 2 phase when fired at 945 ° C. or higher (Non-patent Document 1). However, according to Patent Document 1, by containing glass containing CuO and B 2 O 3 or B 2 O 3 , a Zn 2 TiO 4 + TiO 2 phase is stably generated even at a temperature of about 870 ° C. which is less than 945 ° C. It points out what can be done.

各種電子部品の使用条件はGHz帯域に高周波化されてきている。このような高周波域において、ZnTiO相では誘電特性が十分ではなく、ZnTiO相の方が高い誘電特性を得ることができる。特に、ZnTiO相は品質係数の低下が顕著となる。そこで、ZnTiO相が生成しない温度で焼成することも考えられるが、緻密な焼結体を得ることが困難である。焼結体の密度が低いと、各種電子部品に用いたときの強度不足が懸念される。
本発明は以上の背景に鑑み、ZnTiO相を主相とする緻密な焼結体からなる誘電体磁器組成物を製造することを目的とする。また本発明は、そのような誘電体磁器組成物において、高い品質係数を得ることを目的とする。
The use conditions of various electronic components have been increased in frequency in the GHz band. In such a high frequency region, the dielectric properties are not sufficient in the Zn 2 TiO 4 phase, and higher dielectric properties can be obtained in the ZnTiO 3 phase. In particular, the Zn 2 TiO 4 phase has a significant decrease in quality factor. Then, although it can also be considered to fire at a temperature at which no Zn 2 TiO 4 phase is generated, it is difficult to obtain a dense sintered body. When the density of the sintered body is low, there is a concern about insufficient strength when used for various electronic components.
In view of the above background, an object of the present invention is to produce a dielectric ceramic composition comprising a dense sintered body having a ZnTiO 3 phase as a main phase. Another object of the present invention is to obtain a high quality factor in such a dielectric ceramic composition.

Phase Diagrams for Ceramists, Fig.303, System ZnO-TiO2 by Dulin and RasePhase Diagrams for Ceramists, Fig.303, System ZnO-TiO2 by Dulin and Rase

例えば、900℃以上の温度で焼成することによってZnTiO相がZnTiO相とTiO相に分解したとしても、その後に当該焼結体に所定の熱処理を施すことにより、ZnTiO相を生成できることを本発明者等は確認した。そして、熱処理によってZnTiO相が生成された焼結体は、高い温度で焼成しているため、緻密な焼結体を得ることができる。 For example, even if the ZnTiO 3 phase is decomposed into a Zn 2 TiO 4 phase and a TiO 2 phase by firing at a temperature of 900 ° C. or higher, the sintered body is then subjected to a predetermined heat treatment to thereby change the ZnTiO 3 phase. The present inventors have confirmed that it can be generated. Then, the sintered body ZnTiO 3-phase is generated by the heat treatment, since the firing at high temperatures, it is possible to obtain a dense sintered body.

本発明はこのような検討結果に基づいてなされたものであり、所定組成の原料粉末からなる成形体を焼成して、ZnTiO相及びTiO相を含み、かつZnTiO相を主相とする焼結体を作製し、焼結体に熱エネルギを付与することによって、ZnTiO相及びTiO相からZnTiO相を生成させ、かつ焼結体の主相をZnTiO相とする、ことを特徴とする誘電体磁器組成物の製造方法である。
本発明において、熱エネルギの付与は、焼結体を所定温度域まで昇温し、かつ所定時間保持する熱処理とすることができる。また、熱エネルギの付与は、焼成の降温過程における焼結体を所定温度域で所定時間保持してもよい。
本発明において、焼成は900〜1000℃の温度域で保持し、熱エネルギの付与は750〜900℃の温度域で保持するものとすることが好ましい。
The present invention has been made on the basis of such examination results. A molded body made of a raw material powder having a predetermined composition is fired to contain a Zn 2 TiO 4 phase and a TiO 2 phase, and a Zn 2 TiO 4 phase is obtained. By producing a sintered body as a main phase and applying thermal energy to the sintered body, a ZnTiO 3 phase is generated from the Zn 2 TiO 4 phase and the TiO 2 phase, and the main phase of the sintered body is ZnTiO 3. It is a manufacturing method of the dielectric ceramic composition characterized by making into a phase.
In the present invention, the application of thermal energy can be a heat treatment in which the sintered body is heated to a predetermined temperature range and held for a predetermined time. In addition, for the application of thermal energy, the sintered body in the temperature lowering process of firing may be held in a predetermined temperature range for a predetermined time.
In the present invention, firing is preferably held in a temperature range of 900 to 1000 ° C, and application of thermal energy is preferably maintained in a temperature range of 750 to 900 ° C.

以上説明したように、本発明によれば、ZnTiO相を有する緻密な焼結体からなる誘電体磁器組成物を製造することができ、さらに高い品質係数を得ることができる。 As described above, according to the present invention, a dielectric ceramic composition composed of a dense sintered body having a ZnTiO 3 phase can be produced, and a higher quality factor can be obtained.

以下、本発明を実施の形態に基づいて詳細に説明する。
本発明は、始めに、ZnTiO相を主相とする焼成体を得る。そして、この焼結体に熱処理を施すことにより、当該焼結体をZnTiO相が主相の焼結体とする。
非特許文献1によれば、ZnTiO相がZnTiO相とTiO相に分解する温度は945℃である。しかし、実際にはこの温度よりも低い温度でZnTiO相がZnTiO相とTiO相に分解する。後述する実施例に示すように、低温焼成のためBを添加した材料では、860〜890℃の範囲にZnTiO相がZnTiO相とTiO相に分解する温度(以下、単に分解温度ということがある)が存在する。従って本発明では、この分解温度以上の温度で焼成を行う。具体的な焼成の温度は、焼成の対象となる組成物の組成等によって適宜定める必要があるが、後述する組成の範囲であれば、900℃以上、好ましくは910℃以上の温度で所定時間保持すればよい。焼成温度は、必要以上に高くする必要がなく、1000℃以下、好ましくは950℃以下とすればよい。焼成における保持時間は、0.1〜10時間、好ましくは0.5〜5時間程度とすればよい。焼成雰囲気は、大気中とすればよい。
Hereinafter, the present invention will be described in detail based on embodiments.
In the present invention, first, a fired body having a Zn 2 TiO 4 phase as a main phase is obtained. Then, by subjecting this sintered body to heat treatment, the sintered body is made into a sintered body whose main phase is ZnTiO 3 phase.
According to Non-Patent Document 1, the temperature at which the ZnTiO 3 phase decomposes into the Zn 2 TiO 4 phase and the TiO 2 phase is 945 ° C. However, actually, the ZnTiO 3 phase decomposes into a Zn 2 TiO 4 phase and a TiO 2 phase at a temperature lower than this temperature. As shown in the examples described later, in the material added with B 2 O 3 for low-temperature firing, the temperature at which the ZnTiO 3 phase decomposes into the Zn 2 TiO 4 phase and the TiO 2 phase in the range of 860 to 890 ° C. (hereinafter, Simply called decomposition temperature). Therefore, in the present invention, firing is performed at a temperature equal to or higher than the decomposition temperature. The specific firing temperature needs to be appropriately determined depending on the composition of the composition to be fired, etc., but within the composition range described later, it is maintained at a temperature of 900 ° C. or higher, preferably 910 ° C. or higher for a predetermined time. do it. The firing temperature does not need to be higher than necessary, and may be 1000 ° C. or lower, preferably 950 ° C. or lower. The holding time in firing may be about 0.1 to 10 hours, preferably about 0.5 to 5 hours. The firing atmosphere may be in the air.

焼成により得られる焼結体は、ZnTiO相を主相とする。なお、本発明において、XRD(X-Ray Diffraction)による回折線のピークが最も高い相を主相と定義する。ここで、焼成により得られる焼結体は、主相であるZnTiO相の他にTiO相が含まれる。TiO相が含まれていても、XRDによる回折線において、ZnTiO相のピークが最も高い限り、ZnTiO相が主相である。 The sintered body obtained by firing has a Zn 2 TiO 4 phase as a main phase. In the present invention, the phase having the highest diffraction line peak by XRD (X-Ray Diffraction) is defined as the main phase. Here, the sintered body obtained by firing includes a TiO 2 phase in addition to the main phase Zn 2 TiO 4 phase. Even if the TiO 2 phase is included, the Zn 2 TiO 4 phase is the main phase as long as the peak of the Zn 2 TiO 4 phase is the highest in the XRD diffraction line.

以上のようにして得られたZnTiO相を主相とする焼結体に熱エネルギを付与することにより、焼結体の主相をZnTiO相とする。ZnTiO相は、付与された熱エネルギによってZnTiO相とTiO相が反応することにより生成される。本発明において、焼結体に熱エネルギを付与する形態は、少なくとも2つある。1つは、焼成工程が完了した焼結体に対して所定温度、所定時間保持する熱処理を行う方法である。この方法を、以下、焼成後熱処理ということがある。また、他の方法は、焼結工程の降温過程で、焼結体を所定温度、所定時間保持するというものである。この方法を、以下、降温熱処理ということがある。焼成後熱処理及び降温熱処理は、ともに焼結体に含まれるZnTiO相とTiO相からZnTiO相を生成し、かつZnTiO相を主相とするに足る熱エネルギを当該焼結体に対して付与する点で共通する。
熱エネルギの付与によっても、ZnTiO相とTiO相が残存することもあるが、ZnTiO相が主相である限り、本発明に包含される。
By applying thermal energy to the sintered body having the main phase of the Zn 2 TiO 4 phase obtained as described above, the main phase of the sintered body is changed to the ZnTiO 3 phase. The ZnTiO 3 phase is generated by the reaction of the Zn 2 TiO 4 phase and the TiO 2 phase with the applied thermal energy. In the present invention, there are at least two forms of applying thermal energy to the sintered body. One is a method of performing a heat treatment for holding a predetermined temperature and a predetermined time on a sintered body for which the firing step has been completed. Hereinafter, this method may be referred to as post-baking heat treatment. Another method is to hold the sintered body at a predetermined temperature for a predetermined time in the temperature lowering process of the sintering step. Hereinafter, this method may be referred to as a temperature lowering heat treatment. Both the post-firing heat treatment and the temperature lowering heat treatment generate a ZnTiO 3 phase from the Zn 2 TiO 4 phase and the TiO 2 phase contained in the sintered body and provide sufficient thermal energy to make the ZnTiO 3 phase the main phase. It is common in the point given to.
Although the Zn 2 TiO 4 phase and the TiO 2 phase may remain due to the application of thermal energy, they are included in the present invention as long as the ZnTiO 3 phase is the main phase.

焼成後熱処理は、750〜900℃の温度範囲で行うことが好ましい。焼成後熱処理における保持温度が750℃未満では、相当長時間保持しなければ、焼結体に対して付与される熱エネルギが不足して、ZnTiO相を主相とする焼結体をZnTiO相が主相の焼結体に相変化させることができない。また、焼成後熱処理における保持温度が900℃を超えると、分解温度に近いか又は分解温度以上となるために、ZnTiO相を焼結体の主相とすることが困難である。誘電特性を考慮すると、保持温度は810〜890℃とすることが好ましく、840〜880℃とすることがより好ましい。なお、保持温度は、一定の温度を維持する場合に限らず、上記温度範囲内で温度を変動させることもできる。また、保持温度を変動させる場合、上記温度範囲外の温度になったとしても、上記温度範囲内での保持時間を確保できていれば、本発明の効果を享受することができる。 The post-firing heat treatment is preferably performed in a temperature range of 750 to 900 ° C. When the holding temperature in the heat treatment after firing is less than 750 ° C., if the holding temperature is not maintained for a considerable time, the thermal energy applied to the sintered body is insufficient, and a sintered body having a Zn 2 TiO 4 phase as a main phase is obtained. The ZnTiO 3 phase cannot be changed into a main phase sintered body. In addition, when the holding temperature in the heat treatment after firing exceeds 900 ° C., it is close to the decomposition temperature or higher than the decomposition temperature, so that it is difficult to use the ZnTiO 3 phase as the main phase of the sintered body. Considering dielectric characteristics, the holding temperature is preferably 810 to 890 ° C, more preferably 840 to 880 ° C. The holding temperature is not limited to maintaining a constant temperature, and the temperature can be varied within the above temperature range. Further, when the holding temperature is varied, even if the temperature is outside the above temperature range, the effect of the present invention can be enjoyed if the holding time within the above temperature range can be secured.

焼成後熱処理において、保持温度によって好ましい保持時間を設定することができる。つまり、保持温度が低い場合には保持時間を長くし、保持温度が高い場合には保持時間を短くすることができる。例えば、保持温度が800℃の場合に、ZnTiO相を主相とする焼結体をZnTiO相が主相の焼結体に相変化させ、かつ誘電特性、特に品質係数を向上させるためには、保持時間を50時間以上とする必要がある。また、例えば、保持温度が860℃の場合には、ZnTiO相を主相とする焼結体をZnTiO相が主相の焼結体に相変化させ、かつ品質係数を向上させるために、保持時間は12時間程度で足りる。 In the heat treatment after firing, a preferable holding time can be set depending on the holding temperature. That is, the holding time can be lengthened when the holding temperature is low, and the holding time can be shortened when the holding temperature is high. For example, when the holding temperature is 800 ° C., the sintered body having the main phase of the Zn 2 TiO 4 phase is changed to the sintered body having the main phase of the ZnTiO 3 phase, and the dielectric characteristics, particularly the quality factor is improved. For this purpose, the holding time needs to be 50 hours or more. In addition, for example, when the holding temperature is 860 ° C., in order to change the sintered body whose main phase is the Zn 2 TiO 4 phase into the sintered body whose main phase is the ZnTiO 3 phase, and to improve the quality factor. In addition, a holding time of about 12 hours is sufficient.

焼成後熱処理を行う雰囲気は特に限定されず、焼成と同様に大気中で行うことができる。また、焼成後熱処理を行う雰囲気の酸素濃度を、大気よりも高くすることもできる。焼成後熱処理による相変化、さらには誘電特性向上の効果が得られやすくなる。   The atmosphere in which the heat treatment after the baking is performed is not particularly limited, and can be performed in the air similarly to the baking. In addition, the oxygen concentration in the atmosphere in which the heat treatment after firing is performed can be made higher than that in the air. It becomes easy to obtain the effect of the phase change by the heat treatment after firing, and further the improvement of the dielectric properties.

降温熱処理の条件は、焼成後熱処理と基本的には同様とすればよい。ただし、当該焼結体は、焼成による熱エネルギを蓄積しているため、焼成後熱処理に比べて軽度の熱エネルギの付与で相変化、さらには誘電特性向上を為し得る。同じ保持温度であれば、焼成後熱処理よりもより短時間で相変化、さらには誘電特性向上の効果を得ることができる。例えば、後述する実施例において、保持温度が860℃の場合、降温熱処理は6時間の保持で焼成後熱処理の12時間の保持と同様の品質係数(Q・f(×GHz))を得ることができる。   The conditions for the temperature lowering heat treatment may be basically the same as the heat treatment after firing. However, since the sintered body accumulates thermal energy due to firing, it can undergo phase change and further improve dielectric characteristics by applying mild thermal energy as compared with heat treatment after firing. If the holding temperature is the same, the effect of phase change and further improvement of dielectric properties can be obtained in a shorter time than the heat treatment after firing. For example, in the examples described later, when the holding temperature is 860 ° C., the temperature lowering heat treatment can be obtained by holding for 6 hours and obtaining the same quality factor (Q · f (× GHz)) as the holding for 12 hours of post-firing heat treatment. it can.

降温熱処理においても、保持温度は一定の温度とする必要はない。上記温度範囲において降温速度を遅くすることによっても降温熱処理を実現することができる。焼成の降温過程において、例えば、810〜890℃の温度範囲を10時間かけて降温することによって降温熱処理とすることができる。   Even in the temperature lowering heat treatment, the holding temperature does not need to be constant. The temperature lowering heat treatment can also be realized by slowing the temperature lowering rate in the above temperature range. In the temperature lowering process of firing, for example, a temperature lowering heat treatment can be performed by lowering the temperature range of 810 to 890 ° C. over 10 hours.

本発明において、焼成前の工程は常法に従えばよい。つまり、所定の原料粉末を湿式混合、乾燥した後に仮焼きする。仮焼きは、800〜1000℃の温度範囲で0.1〜10時間保持すればよい。仮焼き後、所定粒度まで粉砕し、造粒した後に所定形状に加圧成形する。その後、上述した焼成を行う。   In the present invention, the step before firing may be performed according to a conventional method. That is, a predetermined raw material powder is wet-mixed and dried and then calcined. The calcining may be held at a temperature range of 800 to 1000 ° C. for 0.1 to 10 hours. After calcining, the mixture is pulverized to a predetermined particle size, granulated, and then pressed into a predetermined shape. Then, the baking mentioned above is performed.

本発明によって得られる誘電体磁器組成物は、ZnTiO相を主相とする。また、この誘電体磁器組成物は、主相のほかに、ZnTiO相及び/又はTiO相を含むことができる。このような相構成を有する誘電体磁器組成物は、後述する実施例からも明らかなように、860℃以下の比較的低温の焼成で得ることができる。しかし、このような低温で焼成された誘電体磁器組成物は、焼結密度が低い。 The dielectric ceramic composition obtained by the present invention has a ZnTiO 3 phase as a main phase. Further, the dielectric ceramic composition may include a Zn 2 TiO 4 phase and / or a TiO 2 phase in addition to the main phase. The dielectric ceramic composition having such a phase structure can be obtained by firing at a relatively low temperature of 860 ° C. or lower, as is apparent from Examples described later. However, the dielectric ceramic composition fired at such a low temperature has a low sintered density.

ZnTiO相を主相とする誘電体磁器組成物を得るための具体的な組成としては、例えば特許文献1に記載されているように、TiO:40〜90mol%、ZnO:60〜10mol%とすることができる。TiOとZnOを主成分とする誘電体磁器はその組成比を選択することにより、任意の温度係数を広範に得ることが可能であるが、TiOが90mol%を超える場合、つまりZnOが10mol%より少ない場合は、温度係数がほぼ一定となり広範に選択できる効果が十分に得られない。またTiOが40mol%より少ない場合、つまりZnOが60mol%を超える場合は、その温度係数は大きな正の値をとるが、一般にコイル素子の温度係数は正であることから、温度補償用誘電体磁器組成物としては有用でない。好ましいTiO及びZnOの量はTiO:45〜80mol%、ZnO:20〜55mol%、さらに好ましいTiO及びZnOの量はTiO:50〜60mol%、ZnO:50〜40mol%である。 As a specific composition for obtaining a dielectric ceramic composition having a ZnTiO 3 phase as a main phase, as described in Patent Document 1, for example, TiO 2 : 40 to 90 mol%, ZnO: 60 to 10 mol% It can be. A dielectric ceramic mainly composed of TiO 2 and ZnO can obtain a wide range of arbitrary temperature coefficients by selecting the composition ratio. However, when TiO 2 exceeds 90 mol%, that is, ZnO is 10 mol. If it is less than%, the temperature coefficient is almost constant, and a wide selection effect cannot be obtained sufficiently. When TiO 2 is less than 40 mol%, that is, when ZnO exceeds 60 mol%, the temperature coefficient takes a large positive value. However, since the temperature coefficient of the coil element is generally positive, the temperature compensation dielectric It is not useful as a porcelain composition. Preferable amounts of TiO 2 and ZnO are TiO 2 : 45 to 80 mol%, ZnO: 20 to 55 mol%, and more preferable amounts of TiO 2 and ZnO are TiO 2 : 50 to 60 mol% and ZnO: 50 to 40 mol%.

本発明において、ZnTiO相のZnの一部をBaで置換することができる。このBaの置換は、後述する実施例にて示すように、ZnTiO相の生成を促進することができる。Znの一部をBaで置換する場合、上記組成に対してBaOをさらに添加する。この場合、10mol%以下の範囲でZnOの一部をBaOで置換することが好ましい。置換量が多くなると、本発明の熱処理による誘電特性の向上の効果を十分に得られなくなる。より好ましいBaOの量は0.5〜5mol%、さらに好ましいBaOの量は1〜3mol%である。 In the present invention, a part of Zn in the ZnTiO 3 phase can be replaced with Ba. This substitution of Ba can promote the formation of a ZnTiO 3 phase, as shown in Examples described later. When a part of Zn is replaced with Ba, BaO is further added to the above composition. In this case, it is preferable to substitute a part of ZnO with BaO within a range of 10 mol% or less. When the amount of substitution increases, the effect of improving the dielectric properties by the heat treatment of the present invention cannot be sufficiently obtained. A more preferable amount of BaO is 0.5 to 5 mol%, and a more preferable amount of BaO is 1 to 3 mol%.

上記組成の誘電体磁器組成物において、Bを含有することにより、低温焼成を可能とする。この場合の、B2の含有量は0.1〜6wt%が好ましい。Bの含有量が0.1wt%より少ない場合は焼成温度の低温化が不十分であり、焼成温度がCu又はCuを主成分とする合金の融点以上の温度となる。また、B2の含有量が6wt%を超える場合は耐酸性が弱くなり、メッキ時に素地が酸に浸食され誘電特性が劣化するため好ましくない。なお、Bはガラス化したB成分でもその効果は十分に得られる。Bを成分のひとつとして含むガラスとしては、ZnO−SiO−B系、SiO−B系、Bi−ZnO−B系などが挙げられ、本発明ではそれらいずれのガラスも有用に利用することができる。 The dielectric ceramic composition having the above composition can be fired at a low temperature by containing B 2 O 3 . In this case, the content of B 2 O 3 is preferably 0.1 to 6 wt%. When the content of B 2 O 3 is less than 0.1 wt%, the firing temperature is not sufficiently lowered, and the firing temperature is equal to or higher than the melting point of Cu or an alloy containing Cu as a main component. In addition, when the content of B 2 O 3 exceeds 6 wt%, the acid resistance is weak, and the base is eroded by acid during plating and the dielectric properties deteriorate, which is not preferable. Incidentally, B 2 O 3 is the effect can be sufficiently obtained even in B 2 O 3 component vitrified. Examples of the glass containing B 2 O 3 as one of the components include ZnO—SiO 2 —B 2 O 3 series, SiO 2 —B 2 O 3 series, Bi 2 O 3 —ZnO—B 2 O 3 series, and the like. In the present invention, any of these glasses can be used effectively.

TiO及びZnOをTiO:47mol%、ZnO:53mol%となるように秤量し、ボールミルにて湿式混合しその後に乾燥した。次に乾燥した粉末を大気中、950℃にて2時間仮焼きを行い、仮焼き粉末をボールミルにて最終平均粒径が0.1〜0.3μm程度になるまで湿式粉砕し、後に乾燥した。この粉末は、ZnTiO相を主相とする。
次に、この粉末にBを0.6wt%添加した後に、ボールミルにて湿式混合しその後に乾燥した。次に乾燥した粉末を大気中、800℃にて2時間仮焼きを行い、仮焼き粉末をボールミルにて最終平均粒径が0.1〜0.3μm程度になるまで湿式粉砕し、後に乾燥して誘電体粉末を得た。
TiO 2 and ZnO were weighed so as to be TiO 2 : 47 mol% and ZnO: 53 mol%, wet-mixed with a ball mill, and then dried. Next, the dried powder was calcined in the atmosphere at 950 ° C. for 2 hours, and the calcined powder was wet-pulverized with a ball mill until the final average particle size was about 0.1 to 0.3 μm, and then dried. . This powder has a ZnTiO 3 phase as a main phase.
Next, 0.6 wt% of B 2 O 3 was added to the powder, and then wet mixed by a ball mill and then dried. Next, the dried powder is calcined at 800 ° C. for 2 hours in the air, and the calcined powder is wet-pulverized with a ball mill until the final average particle size is about 0.1 to 0.3 μm, and then dried. Thus, a dielectric powder was obtained.

次に、得られた誘電体粉末を造粒して顆粒を作製した。この顆粒を1000kgf/cmの圧力で成形して12mmφの成形体を得た。次いで、成形体を820℃、845℃、860℃、890℃及び920℃で2時間、大気中で焼成した。得られた焼結体に対して、大気中、800℃で36時間保持する熱処理(焼結後熱処理)を施した。 Next, the obtained dielectric powder was granulated to produce granules. This granule was molded at a pressure of 1000 kgf / cm 2 to obtain a molded body of 12 mmφ. Next, the molded body was fired in the air at 820 ° C., 845 ° C., 860 ° C., 890 ° C. and 920 ° C. for 2 hours. The obtained sintered body was subjected to a heat treatment (post-sintering heat treatment) held at 800 ° C. for 36 hours in the air.

焼結後及び熱処理後に、各焼結体の相をXRD(X-Ray Diffraction)により同定した。その結果を図1(焼結後)、図2(熱処理後)に示す。
図1に示すように、焼成温度が820℃、845℃及び860℃の焼結体の相構成は、ZnTiO相が主相をなしている点で共通している。ところが、焼成温度が890℃になると、それまで存在していたZnTiO相を示すいくつかのピークが消失する一方、ZnTi相及びTiO相を示すピークを新たに見出すことができる。ZnTi相を示すピークが最も高く、ZnTi相が主相を構成している。
以上のXRD観察結果より、860℃と890℃との間に、ZnTiO相がZnTi相及びTiO相に分解する臨界温度が存在しているものと推察できる。次に、図1及び図2を比較すると、熱処理を施した890℃及び920℃焼成品には、熱処理前には存在しなかったZnTiO相のピークが確認できる。これは、ZnTi相及びTiO相から熱処理によりZnTiO相が生成されたことを示している。
After sintering and after heat treatment, the phase of each sintered body was identified by XRD (X-Ray Diffraction). The results are shown in FIG. 1 (after sintering) and FIG. 2 (after heat treatment).
As shown in FIG. 1, the phase structures of the sintered bodies having the firing temperatures of 820 ° C., 845 ° C., and 860 ° C. are common in that the ZnTiO 3 phase is the main phase. However, when the firing temperature is 890 ° C., some peaks indicating the ZnTiO 3 phase that existed until then disappear, while peaks indicating the ZnTi 2 O 4 phase and the TiO 2 phase can be newly found. The peak showing the ZnTi 2 O 4 phase is the highest, and the ZnTi 2 O 4 phase constitutes the main phase.
From the above XRD observation results, it can be inferred that there exists a critical temperature between 860 ° C. and 890 ° C. at which the ZnTiO 3 phase decomposes into a ZnTi 2 O 4 phase and a TiO 2 phase. Next, when FIG. 1 and FIG. 2 are compared, the ZnTiO 3 phase peak that did not exist before the heat treatment can be confirmed in the heat-treated 890 ° C. and 920 ° C. fired products. This indicates that a ZnTiO 3 phase was generated from the ZnTi 2 O 4 phase and the TiO 2 phase by heat treatment.

図3は、焼成を920℃で行った焼結体であって、熱処理を800℃、860℃で行ったもののXRDチャートを対比して示している。また、熱処理後の比誘電率(εr)及び品質係数(Q・f(×GHz))を測定した結果を図3中に示している。なお、比誘電率(εr)及び品質係数(Q・f(×GHz))は、日本工業規格「マイクロ波用ファインセラミックスの誘電特性の試験方法」(JIS R1627)に従って測定した。
また、焼成を920℃で行った焼結体、その後熱処理を800℃、860℃で行った焼結体をSTEM/EDS(Scanning Transmission Electron Microscope/Energy Dispersive X-ray Spectrometer)を用いて定量分析を行った。その結果を図4に示す。
図3及び図4に示すように、熱処理温度が800℃程度でもZnTi相及びTiO相からZnTiO相を生成させることはできるものの、品質係数(Q・f(×GHz))は低いレベルに留まっている。これは、ZnTiO相に歪み又は欠陥が存在することによって、健全なZnTiO相が有する特性を発揮していないものと解される。つまり、ZnTiO相を主相とし、かつ高い品質係数(Q・f(×GHz))を得るために付与すべき熱エネルギは、保持温度及び保持時間の積により特定される。
FIG. 3 shows a comparison of XRD charts of sintered bodies that were fired at 920 ° C. and heat-treated at 800 ° C. and 860 ° C. Moreover, the result of having measured the dielectric constant ((epsilon) r) and quality factor (Q * f (* GHz)) after heat processing is shown in FIG. The relative dielectric constant (εr) and the quality factor (Q · f (× GHz)) were measured in accordance with Japanese Industrial Standard “Test Method for Dielectric Properties of Microwave Fine Ceramics” (JIS R1627).
In addition, a sintered body that was fired at 920 ° C., and then a sintered body that was heat-treated at 800 ° C. and 860 ° C., were quantitatively analyzed using a STEM / EDS (Scanning Transmission Electron Microscope / Energy Dispersive X-ray Spectrometer). went. The result is shown in FIG.
As shown in FIGS. 3 and 4, although the ZnTiO 3 phase can be generated from the ZnTi 2 O 4 phase and the TiO 2 phase even when the heat treatment temperature is about 800 ° C., the quality factor (Q · f (× GHz)) is Remains at a low level. This is due to the presence of distortion or defect in ZnTiO 3-phase, it is understood to not exhibit characteristic of the healthy ZnTiO 3 phases. That is, the thermal energy to be applied to obtain a high quality factor (Q · f (× GHz)) with the ZnTiO 3 phase as the main phase is specified by the product of the holding temperature and the holding time.

次に、TiO及びZnOを表1に示す主成分の量に秤量し、さらに表1に示す焼成温度、熱処理温度及び熱処理時間とする以外は、上記と同様にして焼結体を得た。得られた各焼結体について、上記と同様にして比誘電率(εr)及び品質係数(Q・f(×GHz))を測定した。その結果を表1に併せて示す。 Next, TiO 2 and ZnO were weighed to the amounts of the main components shown in Table 1, and a sintered body was obtained in the same manner as above except that the firing temperature, heat treatment temperature and heat treatment time shown in Table 1 were used. About each obtained sintered compact, it carried out similarly to the above, and measured the dielectric constant ((epsilon) r) and the quality factor (Q * f (* GHz)). The results are also shown in Table 1.

Figure 2007210840
Figure 2007210840

表1に示すように、焼成後の熱処理温度が高くなるにつれて品質係数(Q・f(×GHz))が向上する。熱処理時間が36時間の場合、820℃以上の熱処理温度において、熱処理を施さない焼結体を超える品質係数(Q・f(×GHz))を得ることができる。また、熱処理時間について言えば、熱処理時間を長くすることにより品質係数(Q・f(×GHz))が向上する。熱処理温度が860℃の場合、12時間以上の熱処理時間において、熱処理を施さない焼結体を超える品質係数(Q・f(×GHz))を得ることができる。また、熱処理温度が800℃であっても、熱処理時間を60時間と長くすることにより、熱処理を施さない焼結体を超える品質係数(Q・f(×GHz))を得ることができる。また、No.11は熱処理を酸素雰囲気で行ったものであるが、熱処理を施さない焼結体を超える品質係数(Q・f(×GHz))を得ることができる。   As shown in Table 1, the quality factor (Q · f (× GHz)) improves as the heat treatment temperature after firing increases. When the heat treatment time is 36 hours, at a heat treatment temperature of 820 ° C. or higher, a quality factor (Q · f (× GHz)) exceeding that of the sintered body not subjected to the heat treatment can be obtained. As for the heat treatment time, the quality factor (Q · f (× GHz)) is improved by increasing the heat treatment time. When the heat treatment temperature is 860 ° C., a quality factor (Q · f (× GHz)) exceeding the sintered body not subjected to the heat treatment can be obtained in a heat treatment time of 12 hours or more. Even when the heat treatment temperature is 800 ° C., the quality factor (Q · f (× GHz)) exceeding the sintered body not subjected to the heat treatment can be obtained by increasing the heat treatment time to 60 hours. No. No. 11 is obtained by performing the heat treatment in an oxygen atmosphere, and a quality factor (Q · f (× GHz)) exceeding that of the sintered body not subjected to the heat treatment can be obtained.

TiO、ZnO及びBaOを、組成式:(Zn1−xBa)TiO(x=0.005、0.01、0.03、0.05、0.1、0.15)となるように秤量し、以後は実施例1と同様にして焼結体を得た。なお、焼成温度は920℃とした。得られた焼結体の相構成をXRD(X-Ray Diffraction)により同定した。
その結果を図5に示すが、x=0.03になるとZnTiO((Zn,Ba)TiO)相を示すピークが観察され、さらにxが大きくなる、つまりBaの置換量が多くなるとZnTiO相((Zn,Ba)TiO)が増加する傾向にある。つまり、ZnTiOにおいて、Znの一部をBaで置換することにより、ZnTiO((Zn,Ba)TiO)相の生成を促進することができる。
TiO 2 , ZnO and BaO are represented by the composition formula: (Zn 1−x Ba x ) TiO 3 (x = 0.005, 0.01, 0.03, 0.05, 0.1, 0.15). After that, the sintered body was obtained in the same manner as in Example 1. The firing temperature was 920 ° C. The phase structure of the obtained sintered body was identified by XRD (X-Ray Diffraction).
The result is shown in FIG. 5. When x = 0.03, a peak indicating a ZnTiO 3 ((Zn, Ba) TiO 3 ) phase is observed, and when x is further increased, that is, when the amount of substitution of Ba is increased, ZnTiO 3 is observed. The three phases ((Zn, Ba) TiO 3 ) tend to increase. That is, in ZnTiO 3, by replacing a part of Zn in Ba, may facilitate the production of ZnTiO 3 ((Zn, Ba) TiO 3) phase.

TiO、ZnO及びBaOを表2に示す主成分の量に秤量し、さらに表2に示す焼成温度、熱処理温度及び熱処理時間とする以外は、実施例1と同様にして焼結体を得た。得られた各焼結体について、実施例1と同様にして比誘電率(εr)及び品質係数(Q・f(×GHz))を測定した。その結果を表2に併せて示す。なお、表2のNo.20、23、26及び29が上記組成式のx=0.05に相当し、同様にNo.21、24、27及び30が上記組成式のx=0.1に、No.22、25、28及び31が上記組成式のx=0.15に相当する。 A sintered body was obtained in the same manner as in Example 1 except that TiO 2 , ZnO, and BaO were weighed to the amounts of the main components shown in Table 2 and the firing temperature, heat treatment temperature, and heat treatment time shown in Table 2 were set. . About each obtained sintered compact, it carried out similarly to Example 1, and measured the dielectric constant ((epsilon) r) and the quality factor (Q * f (* GHz)). The results are also shown in Table 2. In Table 2, No. 20, 23, 26 and 29 correspond to x = 0.05 in the above composition formula. Nos. 21, 24, 27, and 30 indicate x = 0.1 in the above composition formula. 22, 25, 28 and 31 correspond to x = 0.15 in the above composition formula.

Figure 2007210840
Figure 2007210840

表2より、Znの一部をBaに置換した場合にも、熱処理温度が高いか、または熱処理時間が長いと品質係数(Q・f(×GHz))が向上する傾向にある。
Znの一部をBaに置換した場合には、熱処理温度が800℃、かつ熱処理時間が12時間であっても、熱処理を施さない焼結体を超える品質係数(Q・f(×GHz))を得ることができる。Znの一部をBaに置換していない実施例に比べて、短時間の保持で高い品質係数(Q・f(×GHz))を得ることができる。
また、BaOの量については、2.35mol%の場合に品質係数(Q・f(×GHz))が最も高くなっているので、1.5〜3mol%の添加量とすることが好ましい。
From Table 2, even when a part of Zn is replaced with Ba, the quality factor (Q · f (× GHz)) tends to be improved when the heat treatment temperature is high or the heat treatment time is long.
When a part of Zn is replaced with Ba, even if the heat treatment temperature is 800 ° C. and the heat treatment time is 12 hours, the quality factor (Q · f (× GHz)) exceeds that of the sintered body not subjected to the heat treatment. Can be obtained. Compared to the example in which a part of Zn is not replaced with Ba, a high quality factor (Q · f (× GHz)) can be obtained by holding in a short time.
Moreover, about the quantity of BaO, since the quality factor (Q * f (* GHz)) is the highest in the case of 2.35 mol%, it is preferable to set it as the addition amount of 1.5-3 mol%.

TiO及びZnOをTiO:47mol%、ZnO:53mol%となるように秤量し、以後は実施例1と同様に成形体を作製した。その成形体を、大気中で、920℃、2時間保持する焼成を行い、表3に示すように、その降温過程の所定温度で所定時間保持する処理を行った。得られた焼結体について、実施例1と同様に比誘電率(εr)及び品質係数(Q・f(×GHz))を測定した。その結果を表3に併せて示す。 TiO 2 and ZnO were weighed so as to be TiO 2 : 47 mol% and ZnO: 53 mol%. Thereafter, a molded body was produced in the same manner as in Example 1. The molded body was baked in the air at 920 ° C. for 2 hours, and as shown in Table 3, the temperature was kept at a predetermined temperature for a predetermined time. About the obtained sintered compact, the dielectric constant ((epsilon) r) and the quality factor (Q * f (* GHz)) were measured like Example 1. FIG. The results are also shown in Table 3.

Figure 2007210840
Figure 2007210840

表3に示すように、焼成後に改めて熱処理を行うことなく、焼成の降温過程における焼結体を所定温度で所定時間保持することによっても、品質係数(Q・f(×GHz))を向上できる。この品質係数(Q・f(×GHz))向上の効果は、保持温度が高いほど、保持時間が長いほど顕著となる。   As shown in Table 3, the quality factor (Q · f (× GHz)) can also be improved by holding the sintered body in the temperature-decreasing process at a predetermined temperature for a predetermined time without performing another heat treatment after the baking. . The effect of improving the quality factor (Q · f (× GHz)) becomes more prominent as the holding temperature is higher and the holding time is longer.

実施例1における焼結後のXRDチャートを示す。The XRD chart after sintering in Example 1 is shown. 実施例1における熱処理後のXRDチャートを示す。The XRD chart after the heat processing in Example 1 is shown. 実施例1において、焼成を920℃で行った焼結体であって、熱処理を800℃、860℃で行ったもののXRDチャートを示す。2 shows an XRD chart of a sintered body that was fired at 920 ° C. and heat-treated at 800 ° C. and 860 ° C. in Example 1. FIG. 実施例1において、焼成を920℃で行った焼結体、その後熱処理を800℃又は860℃で行った焼結体をSTEM/EDSにより簡易定量分析を行った。In Example 1, the sintered body subjected to firing at 920 ° C., and then the sintered body subjected to heat treatment at 800 ° C. or 860 ° C. were subjected to simple quantitative analysis by STEM / EDS. 実施例2における焼結後のXRDチャートを示す。The XRD chart after sintering in Example 2 is shown.

Claims (4)

所定組成の原料粉末からなる成形体を焼成して、ZnTiO相及びTiO相を含み、かつZnTiO相を主相とする焼結体を作製し、
前記焼結体に熱エネルギを付与することによって、ZnTiO相及びTiO相からZnTiO相を生成させ、かつ前記焼結体の主相をZnTiO相とする、ことを特徴とする誘電体磁器組成物の製造方法。
Firing a molded body made of a raw material powder of a predetermined composition to produce a sintered body containing a Zn 2 TiO 4 phase and a TiO 2 phase and having a Zn 2 TiO 4 phase as a main phase,
By applying thermal energy to the sintered body, a ZnTiO 3 phase is generated from the Zn 2 TiO 4 phase and the TiO 2 phase, and the main phase of the sintered body is a ZnTiO 3 phase. A method for producing a dielectric ceramic composition.
前記熱エネルギの付与が、前記焼結体を所定温度域まで昇温し、かつ所定時間保持する熱処理であることを特徴とする請求項1に記載の誘電体磁器組成物の製造方法。   2. The method for producing a dielectric ceramic composition according to claim 1, wherein the application of the thermal energy is a heat treatment in which the sintered body is heated to a predetermined temperature range and held for a predetermined time. 前記熱エネルギの付与が、前記焼成の降温過程における前記焼結体を、所定温度域で所定時間保持することを特徴とする請求項1に記載の誘電体磁器組成物の製造方法。   2. The method for producing a dielectric ceramic composition according to claim 1, wherein the application of the thermal energy holds the sintered body in the temperature lowering process of the firing for a predetermined time in a predetermined temperature range. 前記焼成が、900〜1000℃の温度域で保持し、
前記熱エネルギの付与が、750〜900℃の温度域で保持することを特徴とする請求項1〜3のいずれかに記載の誘電体磁器組成物の製造方法。
The firing is held in a temperature range of 900 to 1000 ° C.,
The method for producing a dielectric ceramic composition according to any one of claims 1 to 3, wherein the application of the thermal energy is held in a temperature range of 750 to 900 ° C.
JP2006033146A 2006-02-10 2006-02-10 Manufacturing method of dielectric ceramic composition Pending JP2007210840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033146A JP2007210840A (en) 2006-02-10 2006-02-10 Manufacturing method of dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033146A JP2007210840A (en) 2006-02-10 2006-02-10 Manufacturing method of dielectric ceramic composition

Publications (1)

Publication Number Publication Date
JP2007210840A true JP2007210840A (en) 2007-08-23

Family

ID=38489606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033146A Pending JP2007210840A (en) 2006-02-10 2006-02-10 Manufacturing method of dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP2007210840A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101415A (en) * 1996-09-30 1998-04-21 Kyocera Corp Dielectric porcelain composition, dielectric porcelain and method for producing the same
JP3103296B2 (en) * 1995-06-30 2000-10-30 ティーディーケイ株式会社 Dielectric porcelain, method of manufacturing the same, and electronic component using the same
JP2003160375A (en) * 2001-11-21 2003-06-03 Ube Electronics Ltd Dielectric ceramic composition and multilayer ceramic component using the same
JP2003160377A (en) * 2001-11-21 2003-06-03 Ube Electronics Ltd Dielectric ceramic composition and multilayer ceramic component using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103296B2 (en) * 1995-06-30 2000-10-30 ティーディーケイ株式会社 Dielectric porcelain, method of manufacturing the same, and electronic component using the same
JPH10101415A (en) * 1996-09-30 1998-04-21 Kyocera Corp Dielectric porcelain composition, dielectric porcelain and method for producing the same
JP2003160375A (en) * 2001-11-21 2003-06-03 Ube Electronics Ltd Dielectric ceramic composition and multilayer ceramic component using the same
JP2003160377A (en) * 2001-11-21 2003-06-03 Ube Electronics Ltd Dielectric ceramic composition and multilayer ceramic component using the same

Similar Documents

Publication Publication Date Title
JP4506802B2 (en) Dielectric porcelain composition
JP3305626B2 (en) Dielectric porcelain composition and ceramic electronic component using this dielectric porcelain composition
EP1888486A2 (en) Dielectric ceramic composition having wide sintering temperature range and reduced exaggerated grain growth
JP4813659B2 (en) Reduction-stable ceramic material
US6842329B2 (en) Ceramic mass and a capacitor having the ceramic mass
Sayyadi-Shahraki et al. Microwave dielectric properties and chemical compatibility with silver electrode of Li2TiO3 ceramic with Li2O–ZnO–B2O3 glass additive
JP4524411B2 (en) Dielectric porcelain composition
KR100808472B1 (en) Dielectric ceramic composition and its manufacturing method
JP5454833B2 (en) Ceramic substrate and manufacturing method thereof
TWI538895B (en) Dielectric ceramic composition,dielectric ceramic,electronic device,and communication device
JP4188488B2 (en) Dielectric porcelain composition
US5858893A (en) Ceramic composition with low dielectric constant and method of making same
JP5481781B2 (en) Dielectric porcelain
JP4645935B2 (en) Low-temperature fired porcelain composition and method for producing the same
JP2008063188A (en) Compounding material for ptc thermistor and semiconductor ceramic composition for ptc thermister
JP4775583B2 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP2007210840A (en) Manufacturing method of dielectric ceramic composition
JP7315902B2 (en) Dielectric porcelain composition and electronic parts
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP4616615B2 (en) Method for producing dielectric ceramic composition
TWI394736B (en) Low temperature co-firing process and product of laminated ceramic element without adding hydrogen
JP2009227483A (en) Dielectric ceramic composition
JP2004168600A (en) Dielectric porcelain composition, method for manufacturing the same, and electronic component
JP2005035870A (en) Low-temperature fired dielectric ceramic and its manufacturing method
JP2006124270A (en) Dielectric porcelain composition and method for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120125