[go: up one dir, main page]

JP2003160377A - Dielectric ceramic composition and multilayer ceramic component using the same - Google Patents

Dielectric ceramic composition and multilayer ceramic component using the same

Info

Publication number
JP2003160377A
JP2003160377A JP2001355700A JP2001355700A JP2003160377A JP 2003160377 A JP2003160377 A JP 2003160377A JP 2001355700 A JP2001355700 A JP 2001355700A JP 2001355700 A JP2001355700 A JP 2001355700A JP 2003160377 A JP2003160377 A JP 2003160377A
Authority
JP
Japan
Prior art keywords
glass
dielectric
tio
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2001355700A
Other languages
Japanese (ja)
Inventor
Takashi Kono
孝史 河野
Koichi Fukuda
晃一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Electronics Ltd
Ube Corp
Original Assignee
Ube Electronics Ltd
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Electronics Ltd, Ube Industries Ltd filed Critical Ube Electronics Ltd
Priority to JP2001355700A priority Critical patent/JP2003160377A/en
Publication of JP2003160377A publication Critical patent/JP2003160377A/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • C03C3/074Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】 【課題】Cu、Agといった低抵抗導体の同時焼成によ
る内装化、多層化ができる800〜1000℃以下の温
度で焼成可能で、かつ、低い誘電損失tanδ(高いQ
値)を有し、共振周波数の温度係数τの絶対値が小さ
くかつ積層セラミック部品等を適度な大きさに形成でき
るように比誘電率εが8から30程度の誘電体磁器組
成物を提供する。 【解決手段】一般式x(ZnTiO)−(1−x)
TiOで表され、xが0.5≦x<1の範囲内である
主成分100重量部に対して、ガラス成分を5重量部以
上150重量部以下含有する誘電体磁器組成物に関す
る。
(57) [Summary] A low-resistance conductor such as Cu or Ag can be fired at a temperature of 800 to 1000 ° C. or less, and can have a low dielectric loss tan δ (high Q).
Value), and a dielectric ceramic composition having a relative dielectric constant ε r of about 8 to 30 so that the absolute value of the temperature coefficient τ f of the resonance frequency is small and a multilayer ceramic part or the like can be formed to an appropriate size. provide. A general formula x (Zn 2 TiO 4) - (1-x)
The present invention relates to a dielectric ceramic composition containing 5 to 150 parts by weight of a glass component with respect to 100 parts by weight of a main component represented by TiO 2 and x in the range of 0.5 ≦ x <1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低抵抗導体である
Au、AgやCu等と同時焼成が可能で、積層セラミッ
ク部品に好適な低い誘電損失(高いQ値)を有する誘電
体磁器組成物、およびそれを用いた積層セラミックコン
デンサやLCフィルタ等の積層セラミック部品に関する
ものである。特に、ZnTiO、TiO及びガラ
ス成分からなる誘電体磁器組成物とそれを用いた積層セ
ラミック部品に関する。
TECHNICAL FIELD The present invention relates to a dielectric ceramic composition which can be co-fired with low resistance conductors such as Au, Ag and Cu and has a low dielectric loss (high Q value) suitable for laminated ceramic parts. , And a monolithic ceramic component such as a monolithic ceramic capacitor and an LC filter using the same. In particular, it relates to a dielectric ceramic composition composed of Zn 2 TiO 4 , TiO 2 and a glass component, and a laminated ceramic component using the same.

【0002】[0002]

【従来の技術】近年、マイクロ波回路の集積化に伴い、
小型でかつ誘電損失(tanδ)が小さく誘電特性が安
定した誘電体共振器が求められている。このような誘電
体共振器に使用される誘電体磁器組成物には、比誘電率
εrが比較的大きいこと、無負荷Q値が大きいこと、共
振周波数の温度係数τfが小さいことなどが要求されて
いる。一般に、比誘電率εrは大きいほど共振器を小さ
くできるが、共振周波数が高くなるほど共振器も小さく
なる。しかしながら共振器が小さくなりすぎると加工精
度が低下し、かつ電極の印刷精度の影響を受けやすくな
るため、用途等によって共振器が小さくなりすぎないよ
うに、比誘電率εrは適切な範囲のものが要求される。
本発明は、比誘電率εrが8から30程度の誘電体磁器
組成物に関するものである。
2. Description of the Related Art In recent years, with the integration of microwave circuits,
There is a demand for a compact dielectric resonator having a small dielectric loss (tan δ) and stable dielectric characteristics. The dielectric ceramic composition used for such a dielectric resonator has a relatively large relative permittivity ε r , a large unloaded Q value, and a small temperature coefficient τ f of the resonance frequency. Is required. Generally, the larger the relative permittivity ε r , the smaller the resonator, but the higher the resonance frequency, the smaller the resonator. However, if the resonator becomes too small, the processing accuracy will decrease and it will be easily affected by the printing accuracy of the electrodes.Therefore, the relative permittivity ε r should be within an appropriate range so that the resonator does not become too small depending on the application. Things are required.
The present invention relates to a dielectric ceramic composition having a relative dielectric constant ε r of about 8 to 30.

【0003】この種の誘電体磁器組成物として、BaO
−MgO−WO系材料(特開平6−236708号公
報)、Al−TiO−Ta系材料(特開
平9−52760号公報)などが提案されている。
As a dielectric ceramic composition of this type, BaO
-MgO-WO 3 based material (JP-A-6-236708), Al 2 O 3 -TiO 2 -Ta 2 O 5 based materials (JP-A 9-52760 JP) have been proposed.

【0004】[0004]

【発明が解決しようとする課題】最近、誘電体磁器組成
物を積層した積層セラミックスコンデンサやLCフィル
タ等の積層セラミック部品が開発されており、誘電体磁
器組成物と内部電極との同時焼成による積層化が行われ
ている。しかしながら、前記誘電体磁器組成物は焼成温
度が1300〜1400℃と高いため内部電極との同時
焼成を行うことは困難な面があり、積層化構造とするた
めには電極材料として高温に耐えるパラジウム(Pd)
や白金(Pt)等の材料に限定されていた。このため、
電極材料として低抵抗導体でかつ安価な銀(Ag)、A
g−Pd、およびCu等を使用して、1000℃以下の
低温で同時焼成可能な誘電体磁器組成物が求められてい
る。
Recently, multilayer ceramic parts such as multilayer ceramic capacitors and LC filters in which dielectric ceramic compositions are laminated have been developed, and the dielectric ceramic composition and internal electrodes are laminated by simultaneous firing. Is being implemented. However, since the firing temperature of the dielectric porcelain composition is as high as 1300 to 1400 ° C., it is difficult to perform the firing with the internal electrode at the same time, and in order to form a laminated structure, palladium which can withstand high temperature as an electrode material is used. (Pd)
It was limited to materials such as platinum and platinum (Pt). For this reason,
Low resistance conductor and cheap silver (Ag), A as electrode material
There is a demand for a dielectric ceramic composition that can be co-fired at a low temperature of 1000 ° C. or lower using g-Pd, Cu and the like.

【0005】本発明の目的は、Cu、Agといった低抵
抗導体の同時焼成による内装化、多層化ができる800
〜1000℃以下の温度で焼成可能で、かつ、低い誘電
損失tanδ(高いQ値)を有し、共振周波数の温度係
数τの絶対値が小さくかつ積層セラミック部品等を適
度な大きさに形成できるように比誘電率εが8から3
0程度の誘電体磁器組成物を提供することにある。ま
た、このような誘電体磁器組成物からなる誘電体層とC
uまたはAgを主成分とする内部電極とを有する積層セ
ラミックコンデンサやLCフィルタ等の積層セラミック
部品を提供することである。
An object of the present invention is to make a low resistance conductor such as Cu or Ag co-fired so that the interior and the multilayer structure can be realized.
Can be fired at a temperature of up to 1000 ° C, has a low dielectric loss tan δ (high Q value), has a small absolute value of the resonance frequency temperature coefficient τ f , and forms a multilayer ceramic component or the like in an appropriate size. So that the relative permittivity ε r is 8 to 3
It is to provide a dielectric ceramic composition of about 0. Further, a dielectric layer made of such a dielectric ceramic composition and C
It is an object of the present invention to provide a monolithic ceramic component such as a monolithic ceramic capacitor or an LC filter having an internal electrode containing u or Ag as a main component.

【0006】[0006]

【課題を解決するための手段】本発明者等は、従来の誘
電体磁器材料における上記課題を解決するために鋭意検
討した結果、下記の組成のものがこの要求を満足するも
のであることを見出した。
Means for Solving the Problems The inventors of the present invention have made earnest studies to solve the above problems in conventional dielectric ceramic materials, and as a result, found that the following compositions satisfy the above requirements. I found it.

【0007】本発明は、一般式x(ZnTiO)−
(1−x)TiOで表され、xが0.50≦x<1の
範囲内である主成分100重量部に対して、ガラス成分
を5重量部以上150重量部以下含有することを特徴と
する誘電体磁器組成物に関する。
The present invention has the general formula x (Zn 2 TiO 4 )-
(1-x) TiO 2 , wherein 5 parts by weight or more and 150 parts by weight or less of the glass component is contained with respect to 100 parts by weight of the main component having x in the range of 0.50 ≦ x <1. And a dielectric ceramic composition.

【0008】前記ガラス成分としては、PbO系ガラ
ス、ZnO系ガラス、SiO系ガラスあるいはPb
O、ZnO、Bi、BaO、B、Si
、ZrO 、TiO、Al、CaO、Sr
Oの群から選択された2種以上の金属酸化物からなるガ
ラスであることが好ましい。
As the glass component, PbO-based glass is used.
Glass, ZnO glass, SiOTwoGlass or Pb
O, ZnO, BiTwoOThree, BaO, BTwoOThree, Si
OTwo, ZrO Two, TiOTwo, AlTwoOThree, CaO, Sr
Gas composed of two or more metal oxides selected from the group of O
It is preferably lath.

【0009】また、本発明は、複数の誘電体層と、該誘
電体層間に形成された内部電極と、該内部電極に電気的
に接続された外部電極とを備える積層セラミック部品に
おいて、前記誘電体層が前記誘電体磁器組成物を焼成し
て得られる誘電体磁器にて構成され、前記内部電極がC
u単体若しくはAg単体、又はCu若しくはAgを主成
分とする合金材料にて形成されていることを特徴とする
積層セラミック部品に関する。
Further, the present invention provides a laminated ceramic component including a plurality of dielectric layers, internal electrodes formed between the dielectric layers, and external electrodes electrically connected to the internal electrodes, wherein the dielectric The body layer is composed of a dielectric ceramic obtained by firing the dielectric ceramic composition, and the internal electrode is C
The present invention relates to a monolithic ceramic component which is formed of u alone or Ag alone or an alloy material containing Cu or Ag as a main component.

【0010】ZnTiOとTiOおよびガラス成
分からなる特定の組成とすることにより、1000℃以
下の焼成温度で、比誘電率εが8〜30程度で、誘電
損失が小さく、共振周波数の温度係数の絶対値が60p
pm/℃以下とすることができる。また、これにより、
Cu若しくはAg単体、又はCu若しくはAgを主成分
とする内部電極を有する積層セラミック部品を提供する
ことができる。
By using a specific composition of Zn 2 TiO 4 and TiO 2 and a glass component, at a firing temperature of 1000 ° C. or less, the relative dielectric constant ε r is about 8 to 30, the dielectric loss is small, and the resonance frequency is low. Absolute value of temperature coefficient of 60p
It can be pm / ° C. or less. This also allows
It is possible to provide a monolithic ceramic component having Cu or Ag alone or an internal electrode containing Cu or Ag as a main component.

【0011】[0011]

【発明の実施の形態】以下、本発明の誘電体磁器組成物
について具体的に説明する。本発明の誘電体磁器組成物
は、一般式x(ZnTiO)−(1−x)TiO
で表され、xが0.5≦x<1の範囲内である主成分1
00重量部に対して、ガラス成分を5重量部以上150
重量部以下含有することを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The dielectric ceramic composition of the present invention will be specifically described below. The dielectric ceramic composition of the present invention has the general formula x (Zn 2 TiO 4 )-(1-x) TiO 2
, And x is within the range of 0.5 ≦ x <1 1
5 parts by weight or more and 150 parts by weight of glass component per 100 parts by weight
It is characterized by containing less than or equal to parts by weight.

【0012】前記組成においてxが0.5より小さい
と、τが+60ppm/℃以上になり好ましくない。
また、本発明の誘電体磁器組成物は、セラミックス母材
となる前記主成分100重量部に対してガラス成分が5
重量部未満では焼成温度が高くなり、150重量部を超
える場合にはガラスが溶出してセッターと反応する傾向
にある。
If x is less than 0.5 in the above composition, τ f becomes +60 ppm / ° C. or more, which is not preferable.
In addition, the dielectric ceramic composition of the present invention contains 5 parts by weight of the glass component with respect to 100 parts by weight of the main component serving as the ceramic base material.
If it is less than part by weight, the firing temperature becomes high, and if it exceeds 150 parts by weight, the glass tends to elute and react with the setter.

【0013】また、本発明に用いるZnTiOは酸
化亜鉛ZnOとTiOとをモル比2:1で混合し焼成
することにより得ることができる。ZnTiOの原
料として、TiOとZnOの他に、焼成時に酸化物と
なる硝酸塩、炭酸塩、水酸化物、塩化物、および有機金
属化合物等を使用してもよい。
Zn 2 TiO 4 used in the present invention can be obtained by mixing zinc oxide ZnO and TiO 2 in a molar ratio of 2: 1 and firing. As a raw material of Zn 2 TiO 4 , besides TiO 2 and ZnO, nitrates, carbonates, hydroxides, chlorides, which become oxides during firing, and organometallic compounds may be used.

【0014】本発明の誘電体磁器組成物では、ガラスを
所定量含有することを特徴とする。ここで、ガラスとは
非結晶質の固体物質で、溶融により得られたものをい
う。ガラスの中に一部結晶化したものを含む結晶化ガラ
スもガラスに含まれる。固体物質としては、酸化物から
成る無機物質があげられ、本発明に用いるガラスとして
は、PbO系ガラス、ZnO系ガラス、SiO系ガラ
ス、その他金属酸化物からなるガラスが挙げられる。P
bO系ガラスは、PbOを含有するガラスであり、Pb
O−SiO、PbO−B、PbO−P
含有するガラスや、RO−PbO−SiO,R
−CaO−PbO−SiO、RO−ZnO−PbO
−SiO、RO−Al−PbO−SiO
含有するガラス(但しここでRはNaO、KO)な
どが例示される。ZnO系ガラスは、ZnOを含有する
ガラスであり、ZnO−Al−BaO−Si
、ZnO−Al−RO−SiO、などが
例示される。SiO系ガラスは、SiOを含有する
ガラスであり、SiO−Al−RO、SiO
−Al−BaO、などが例示される。
The dielectric ceramic composition of the present invention is characterized by containing a predetermined amount of glass. Here, the glass is an amorphous solid substance, which is obtained by melting. Crystallized glass including partially crystallized glass is also included in the glass. The solid substance may be an inorganic substance made of an oxide, and the glass used in the present invention may be a PbO type glass, a ZnO type glass, a SiO 2 type glass, or a glass made of another metal oxide. P
The bO-based glass is a glass containing PbO and contains PbO.
O-SiO 2, PbO-B 2 O 3, or glass containing PbO-P 2 O 5, R 2 O-PbO-SiO 2, R 2 O
-CaO-PbO-SiO 2, R 2 O-ZnO-PbO
-SiO 2, R 2 O-Al 2 O 3 -PbO-SiO 2 glass (however, where R is Na 2 O, K 2 O) containing the like are exemplified. ZnO-based glass is a glass containing ZnO, ZnO-Al 2 O 3 -BaO-Si
O 2, ZnO-Al 2 O 3 -R 2 O-SiO 2, etc. are exemplified. SiO 2 glass is a glass containing SiO 2, SiO 2 -Al 2 O 3 -R 2 O, SiO
2 -Al 2 O 3 -BaO, etc. are exemplified.

【0015】さらに、本発明に用いるガラスとしては、
PbO系ガラス、ZnO系ガラス、SiO系ガラスの
他にも、各種金属酸化物からなるガラスも使用すること
ができ、PbO、ZnO、Bi、BaO、B
、SiO、ZrO、TiO、Al、Ca
O、SrOの群から選択された2種以上の金属酸化物か
らなるガラスも用いられる。ガラスは非晶質ガラスや結
晶質ガラスのどちらを用いてもよい。PbOを含有する
と焼成温度は低下する傾向にあるが、無負荷Q値が低下
する傾向にあり、ガラス中のPbO成分の含有量は、4
0重量%以下が好ましい。また、ガラス中にSiO
Al成分を同時に含むガラス(即ち、SiO
Al系ガラス)は、本発明に用いるガラスとして
特に好適である。特に本発明では、ZnO−Al
−BaO−SiOが、高い無負荷Q値を得ることがで
きる点から好ましい。
Further, as the glass used in the present invention,
In addition to PbO-based glass, ZnO-based glass, and SiO 2 -based glass, glasses made of various metal oxides can also be used, and PbO, ZnO, Bi 2 O 3 , BaO, B 2 O can be used.
3 , SiO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , Ca
Glass made of two or more kinds of metal oxides selected from the group consisting of O and SrO is also used. As the glass, either amorphous glass or crystalline glass may be used. When PbO is contained, the firing temperature tends to decrease, but the unloaded Q value tends to decrease, and the content of PbO component in the glass is 4
It is preferably 0% by weight or less. In addition, glass containing SiO 2 and Al 2 O 3 components at the same time in the glass (that is, SiO 2
Al 2 O 3 based glass) is particularly suitable as the glass used in the present invention. In particular, according to the present invention, ZnO-Al 2 O 3
-BaO-SiO 2 is preferable from the viewpoint that it is possible to obtain a high unloaded Q value.

【0016】本発明によれば、一般式x(ZnTiO
)−(1−x)TiOで表され、xが0.5≦x<
1の範囲内である主成分100重量部に対して、ガラス
成分を5重量部以上150重量部以下含有させることに
より、800〜1000℃の焼成温度で低温焼結可能
で、かつ比誘電率εrが8〜30程度で、無負荷Q値が
大きく、共振周波数の温度係数τfが±60ppm/℃
以内という特性を有する誘電体磁器組成物を得ることが
できる。
According to the invention, the general formula x (Zn 2 TiO 2
4 )-(1-x) TiO 2 and x is 0.5 ≦ x <
By including 5 parts by weight or more and 150 parts by weight or less of the glass component with respect to 100 parts by weight of the main component within the range of 1, it is possible to perform low-temperature sintering at a firing temperature of 800 to 1000 ° C. and a relative dielectric constant ε. r is about 8 to 30, the unloaded Q value is large, and the temperature coefficient τ f of the resonance frequency is ± 60 ppm / ° C.
It is possible to obtain a dielectric porcelain composition having the property of being within.

【0017】本発明では、焼成前にZnTiO、T
iOおよびガラス粒子は、個別に粉砕し混合される
か、あるいは、各粒子を混合後粉砕されるが、焼成前の
これら原料粒子の平均粒子径は5μm未満、好ましくは
1μm以下であることにより、さらに低温焼成が可能と
なる。なお、平均粒子径を過度に小さくすると取り扱い
が困難になる場合があるので、0.05μm以上とする
のが好ましい。
In the present invention, Zn 2 TiO 4 , T before firing is used.
The io 2 and glass particles are individually crushed and mixed, or each particle is crushed after mixing, but the average particle size of these raw material particles before firing is less than 5 μm, preferably 1 μm or less. Further, low temperature firing becomes possible. If the average particle size is made too small, it may be difficult to handle. Therefore, the average particle size is preferably 0.05 μm or more.

【0018】次に、本発明の誘電体磁器組成物の製造方
法について説明する。まず、酸化チタンと酸化亜鉛を所
定の比率に秤量し、水、アルコール等の溶媒と共に湿式
混合する。続いて、水、アルコール等を除去した後、粉
砕し、酸素含有雰囲気(例えば空気雰囲気)下にて90
0〜1200℃で約1〜5時間程度仮焼成する。このよ
うにして得られた仮焼粉はZnTiOである。この
ZnTiO、TiOおよびガラスを所定の比率に
秤量し、水、アルコール等の溶媒と共に湿式混合する。
続いて、水、アルコール等を除去した後、粉砕して原料
粉末を作製する。
Next, a method for producing the dielectric ceramic composition of the present invention will be described. First, titanium oxide and zinc oxide are weighed in a predetermined ratio and wet-mixed with a solvent such as water or alcohol. Then, after removing water, alcohol, etc., the product is crushed and then crushed in an oxygen-containing atmosphere (for example, air atmosphere) to 90
Calcination is performed at 0 to 1200 ° C. for about 1 to 5 hours. The calcined powder thus obtained is Zn 2 TiO 4 . The Zn 2 TiO 4 , TiO 2 and glass are weighed in a predetermined ratio and wet mixed with a solvent such as water or alcohol.
Then, after removing water, alcohol, etc., it grind | pulverizes and produces raw material powder.

【0019】本発明の誘電体磁器組成物の誘電特性はペ
レットの形状で評価する。詳しくは、前記原料粉末にポ
リビニルアルコールの如き有機バインダーを混合して均
質にし、乾燥、粉砕をおこなった後、ペレット形状に加
圧成形(圧力100〜1000Kg/cm程度)す
る。得られた成形物を空気の如き酸素含有ガス雰囲気下
にて800〜1000℃で焼成することにより、Zn
TiO相、TiO相およびガラス相が共存する誘電
体磁器組成物を得ることができる。
The dielectric properties of the dielectric ceramic composition of the present invention are evaluated by the shape of pellets. Specifically, the raw material powder is mixed with an organic binder such as polyvinyl alcohol, homogenized, dried and pulverized, and then pressure-molded into a pellet shape (pressure 100 to 1000 kg / cm 2 ). The obtained molded product is fired at 800 to 1000 ° C. in an oxygen-containing gas atmosphere such as air to obtain Zn 2
It is possible to obtain a dielectric ceramic composition in which a TiO 4 phase, a TiO 2 phase and a glass phase coexist.

【0020】こうして得られた誘電体磁器組成物は、必
要により適当な形状、およびサイズに加工、あるいはド
クターブレード法等によるシート成形、およびシートと
電極による積層化を行うことにより、各種積層セラミッ
ク部品の材料として利用できる。積層セラミック部品と
しては、積層セラミックコンデンサ、LCフィルタ、誘
電体共振器、誘電体基板などが挙げられる。
The thus-obtained dielectric ceramic composition is processed into various shapes and sizes as required, or is formed into a sheet by a doctor blade method or the like, and laminated with a sheet and an electrode to obtain various laminated ceramic parts. It can be used as a material. Examples of the monolithic ceramic parts include monolithic ceramic capacitors, LC filters, dielectric resonators and dielectric substrates.

【0021】本発明の積層セラミック部品は、複数の誘
電体層と、該誘電体層間に形成された内部電極と、該内
部電極に電気的に接続された外部電極とを備えており、
前記誘電体層が前記誘電体磁器組成物を焼成して得られ
る誘電体磁器にて構成され、前記内部電極がCu単体若
しくはAg単体、又はCu若しくはAgを主成分とする
合金材料にて形成されている。本発明の積層セラミック
部品は、誘電体磁器組成物を含有する誘電体層と、Cu
単体若しくはAg単体、又はCu若しくはAgを主成分
とする合金材料とを、同時焼成することにより得られ
る。
The multilayer ceramic component of the present invention comprises a plurality of dielectric layers, internal electrodes formed between the dielectric layers, and external electrodes electrically connected to the internal electrodes.
The dielectric layer is made of a dielectric ceramic obtained by firing the dielectric ceramic composition, and the internal electrodes are made of Cu simple substance or Ag simple substance, or an alloy material containing Cu or Ag as a main component. ing. The multilayer ceramic component of the present invention comprises a dielectric layer containing a dielectric ceramic composition and Cu.
It is obtained by co-firing a simple substance or a simple substance of Ag, or an alloy material containing Cu or Ag as a main component.

【0022】上記積層セラミック部品の1実施形態とし
て、例えば図1に示したトリプレートタイプの共振器が
挙げられる。図1は、本発明に係る1実施形態のトリプ
レートタイプの共振器を示す斜視図である。図1に示す
ように、トリプレートタイプの共振器は、複数の誘電体
層と、該誘電体層間に形成された内部電極2と、該内部
電極に電気的に接続された外部電極3とを備える積層セ
ラミック部品である。トリプレートタイプの共振器は、
内部電極2を中央部に配置して複数枚の誘電体セラミッ
クス層1を積層して得られる。内部電極2は、図1に示
した第1の面Aからこれに対向する第2の面Bまで貫通
するように形成されており、第1の面Aのみ開放面で、
第1の面Aを除く共振器の5面には外部電極3が形成さ
れており、第2の面Bにおいて内部電極2と外部電極3
が接続されている。内部電極2の材料は、CuまたはA
gあるいは、それらを主成分として構成されている。本
発明の誘電体磁器組成物では低温で焼成できるため、こ
れらの内部電極の材料が使用できる。
As an embodiment of the above-mentioned laminated ceramic component, for example, a triplate type resonator shown in FIG. 1 can be cited. FIG. 1 is a perspective view showing a triplate type resonator according to one embodiment of the present invention. As shown in FIG. 1, the triplate-type resonator includes a plurality of dielectric layers, an internal electrode 2 formed between the dielectric layers, and an external electrode 3 electrically connected to the internal electrode. It is a multilayer ceramic component provided. The triplate type resonator is
It is obtained by stacking a plurality of dielectric ceramic layers 1 with the internal electrode 2 arranged in the central portion. The internal electrode 2 is formed so as to penetrate from the first surface A shown in FIG. 1 to the second surface B opposite thereto, and only the first surface A is an open surface,
The external electrodes 3 are formed on the five surfaces of the resonator except the first surface A, and the internal electrodes 2 and the external electrodes 3 are formed on the second surface B.
Are connected. The material of the internal electrode 2 is Cu or A
g, or these are the main components. Since the dielectric ceramic composition of the present invention can be fired at a low temperature, these internal electrode materials can be used.

【0023】[0023]

【実施例】実施例1 酸化チタン(TiO)0.33モル、酸化亜鉛(Zn
O)0.66モルをエタノールと共にボールミルにい
れ、12時間湿式混合した。溶液を脱媒後、粉砕し、空
気雰囲気下1000℃で仮焼成し、ZnTiO仮焼
粉を得た。このZnTiO仮焼粉とTiOを表1
に示した配合量で調製したものを母材とした。この母材
と母材100重量部に対してZnO 52重量%、Si
6重量%、Al 12重量%、B
30重量%から構成されるガラス粉末10重量部を添加
したものをボールミルにいれ、24時間湿式混合した。
溶液を脱媒後、原料粒子の平均粒子径が1μmになるま
で粉砕し、この粉砕物に適量のポリビニルアルコール溶
液を加えて乾燥後、直径12mm、厚み4mmのペレッ
トに成形し、空気雰囲気下において、900℃で2時間
焼成した。図2に作製した焼結体のX線回折図を示し
た。図2に示したように本発明の誘電体磁器組成物の焼
結体においてもZnTiO相とTiO相が共存し
ていることがわかる。
Example 1 0.33 mol of titanium oxide (TiO 2 ) and zinc oxide (Zn)
0.66 mol of O) was put in a ball mill together with ethanol and wet-mixed for 12 hours. After the solution was desolvated, it was pulverized and calcined at 1000 ° C. in an air atmosphere to obtain a Zn 2 TiO 4 calcined powder. Table 1 shows the Zn 2 TiO 4 calcined powder and TiO 2.
The material prepared with the compounding amount shown in was used as the base material. 52% by weight of ZnO, Si based on 100 parts by weight of the base material
O 2 6 wt%, Al 2 O 3 12 wt%, B 2 O 3
What was added with 10 parts by weight of glass powder composed of 30% by weight was put into a ball mill and wet-mixed for 24 hours.
After desolvation of the solution, the raw material particles were pulverized until the average particle size became 1 μm, an appropriate amount of polyvinyl alcohol solution was added to the pulverized product, and the mixture was dried, and then formed into pellets having a diameter of 12 mm and a thickness of 4 mm, and the pellet was placed in an air atmosphere It was baked at 900 ° C. for 2 hours. The X-ray diffraction diagram of the produced sintered body is shown in FIG. As shown in FIG. 2, it can be seen that the Zn 2 TiO 4 phase and the TiO 2 phase coexist also in the sintered body of the dielectric ceramic composition of the present invention.

【0024】こうして得られた誘電体磁器組成物を直径
7mm、厚み3mmの大きさに加工した後、誘電共振法
によって、共振周波数7〜11GHzにおける無負荷Q
値、比誘電率εrおよび共振周波数の温度係数τfを求め
た。その結果を表2に示した。
The dielectric ceramic composition thus obtained was processed into a size having a diameter of 7 mm and a thickness of 3 mm and then subjected to an unloaded Q at a resonance frequency of 7 to 11 GHz by a dielectric resonance method.
The value, the relative permittivity ε r, and the temperature coefficient τ f of the resonance frequency were obtained. The results are shown in Table 2.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】また前記母材とガラスとの混合物100g
に対して、結合剤としてポリビニルブチラール9g、可
塑剤としてジブチルフタレート6gおよび溶剤としてト
ルエン60gとイソプロピルアルコール30gを添加し
ドクターブレード法により厚さ100μmのグリーンシ
ートを作製した。そして、このグリーンシートを、65
℃の温度で200kg/cmの圧力を加える熱圧着に
より、22層積層した。その際、内部電極としてAgを
印刷した層が厚み方向の中央部にくるように配置した。
得られた積層体を900℃で2時間焼成した後、外部電
極を形成して、トリプレートタイプの共振器を作製し
た。大きさは、幅4.9mm、高さ1.7mm、長さ
8.4mmである。
100 g of a mixture of the base material and glass
On the other hand, 9 g of polyvinyl butyral as a binder, 6 g of dibutyl phthalate as a plasticizer, 60 g of toluene as a solvent and 30 g of isopropyl alcohol were added, and a green sheet having a thickness of 100 μm was prepared by a doctor blade method. And this green sheet, 65
Twenty-two layers were laminated by thermocompression bonding with a pressure of 200 kg / cm 2 at a temperature of ° C. At that time, the layer printed with Ag as the internal electrode was arranged so as to come to the central portion in the thickness direction.
The obtained laminate was fired at 900 ° C. for 2 hours, and then an external electrode was formed to produce a triplate type resonator. The size is 4.9 mm in width, 1.7 mm in height, and 8.4 mm in length.

【0028】得られたトリプレートタイプの共振器につ
いて共振周波数2GHzで無負荷Q値を評価した。その
結果、焼成温度は900℃で、収縮率は19%、比誘電
率ε rは21、共振周波数の温度係数τfは0ppm/℃
で無負荷Qは210であった。このように、本発明に係
る誘電体磁器組成物を使用することにより、優れた特性
を有するトリプレートタイプの共振器が得られた。
The obtained triplate-type resonator is
The unloaded Q value was evaluated at a resonance frequency of 2 GHz. That
As a result, the firing temperature was 900 ° C, the shrinkage rate was 19%, and the relative dielectric
Rate ε rIs 21, the temperature coefficient τ of the resonance frequencyfIs 0 ppm / ° C
The unloaded Q was 210. Thus, according to the present invention,
By using the dielectric ceramic composition
A triplate-type resonator having is obtained.

【0029】実施例2〜4 上記実施例1と同様にZnTiOとTiOを表1
に示した配合量で混合したものを母材とし、この母材と
ガラスを表1に示した配合量で混合後、実施例1と同一
条件でペレット形状の焼結体を作製して、実施例1と同
様な方法で種々の特性を評価した。その結果を表2に示
した。
Examples 2 to 4 Zn 2 TiO 4 and TiO 2 are shown in Table 1 as in Example 1 above.
A base material was obtained by mixing in the compounding amounts shown in Table 1. After mixing the base material and glass in the compounding amounts shown in Table 1, a pellet-shaped sintered body was prepared under the same conditions as in Example 1 and Various properties were evaluated in the same manner as in Example 1. The results are shown in Table 2.

【0030】実施例5〜9 上記実施例1と同様にZnTiOとTiOを表1
に示した配合量で混合したものを母材とし、この母材と
ガラスを表1に示した配合量で混合後、実施例1と同一
条件でペレット形状の焼結体を作製して、実施例1と同
様な方法で種々の特性を評価した。その結果を表2に示
した。
Examples 5 to 9 As in Example 1 above, Zn 2 TiO 4 and TiO 2 are shown in Table 1.
A base material was obtained by mixing in the compounding amounts shown in Table 1. After mixing the base material and glass in the compounding amounts shown in Table 1, a pellet-shaped sintered body was prepared under the same conditions as in Example 1 and Various properties were evaluated in the same manner as in Example 1. The results are shown in Table 2.

【0031】実施例10〜14 上記実施例1と同様にZnTiOとTiOを表1
に示した配合量で混合したものを母材とし、この母材と
表1記載の種々のガラスを表1に示した配合量で混合
後、実施例1と同一条件でペレット形状の焼結体を作製
して、実施例1と同様な方法で種々の特性を評価した。
その結果を表2に示した。
Examples 10 to 14 Table 1 shows Zn 2 TiO 4 and TiO 2 as in Example 1 above.
A base material was obtained by mixing in the compounding amounts shown in Table 1. The base material and various glasses shown in Table 1 were mixed in the compounding amounts shown in Table 1, and pelletized sintered bodies were prepared under the same conditions as in Example 1. Was manufactured, and various characteristics were evaluated by the same method as in Example 1.
The results are shown in Table 2.

【0032】実施例15、16 上記実施例1と同様にZnTiOとTiOを表1
に示した配合量で混合したものを母材とし、この母材と
表1記載の種々のガラスを表1に示した配合量で混合
後、粒子径が表1記載の平均粒子径になるまで粉砕し、
実施例1と同一条件でペレット形状の焼結体を作製し
て、実施例1と同様な方法で種々の特性を評価した。そ
の結果を表2に示した。
Examples 15 and 16 Zn 2 TiO 4 and TiO 2 are shown in Table 1 as in Example 1 above.
As a base material, the base material is mixed with the compounding amounts shown in Table 1. After mixing the base material and various glasses shown in Table 1 with the compounding amounts shown in Table 1, until the particle size reaches the average particle size shown in Table 1. Crush,
A pellet-shaped sintered body was produced under the same conditions as in Example 1, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.

【0033】比較例1〜4 上記実施例1と同様にZnTiOとTiOを表1
に示した配合量で混合したものを母材とし、この表1記
載のガラスを表1に示した配合量で混合後、実施例1と
同一条件でペレット形状の焼結体を作製した。しかしな
がらガラスの添加量が母材100重量部に対して5重量
部未満の条件では1000℃以下では焼結できず120
0℃まで高めないと緻密化することができなかった。ま
た150重量部を超えた場合にはガラスが溶出してセッ
ターと反応し、良好な焼結体は得られなかった。その結
果を表2に示した。
Comparative Examples 1 to 4 Zn 2 TiO 4 and TiO 2 are shown in Table 1 as in Example 1 above.
The glass having the compounding amount shown in Table 1 was used as a base material, the glass shown in Table 1 was mixed with the compounding amount shown in Table 1, and a pellet-shaped sintered body was produced under the same conditions as in Example 1. However, if the amount of glass added is less than 5 parts by weight with respect to 100 parts by weight of the base material, sintering cannot be performed below 1000 ° C.
If it was not raised to 0 ° C., it could not be densified. On the other hand, when the amount exceeded 150 parts by weight, the glass was eluted and reacted with the setter, and a good sintered body could not be obtained. The results are shown in Table 2.

【0034】比較例5〜7 上記実施例1と同様にZnTiOとTiOを表1
に示した配合量で混合したものを母材とし、この母材と
ガラスを表1に示した配合量で混合後、実施例1と同一
条件でペレット形状の焼結体を作製した。しかしながら
x<0.5の条件では共振周波数の温度係数τfが+6
0ppm/℃以上となった。その結果を表2に示した。
Comparative Examples 5 to 7 As in Example 1 above, Zn 2 TiO 4 and TiO 2 are shown in Table 1.
A base material was obtained by mixing in the compounding amounts shown in Table 1. After mixing the base material and glass in the compounding amounts shown in Table 1, pellet-shaped sintered bodies were produced under the same conditions as in Example 1. However, under the condition of x <0.5, the temperature coefficient τ f of the resonance frequency is +6.
It became 0 ppm / ° C or higher. The results are shown in Table 2.

【0035】[0035]

【発明の効果】本発明の誘電体磁器組成物によれば、比
誘電率εrが8から30で、かつ無負荷Q値が大きく、
しかも共振周波数の温度係数τfが±60ppm/℃以
内と小さい誘電体磁器組成物を提供することができる。
また1000℃以下の温度で焼成できるため、焼成に要
する電力費が低減されるとともに、Cu単体若しくはA
g単体、又はCu若しくはAgを主成分とする合金材料
からなる低抵抗導体と同時焼成可能であり、さらにこれ
を内部電極とした積層部品を提供できる。
According to the dielectric ceramic composition of the present invention, the relative permittivity ε r is 8 to 30, the unloaded Q value is large,
Moreover, it is possible to provide a dielectric ceramic composition having a small temperature coefficient τ f of resonance frequency within ± 60 ppm / ° C.
Further, since the firing can be performed at a temperature of 1000 ° C. or less, the power cost required for firing can be reduced and Cu alone or A
It is possible to co-fire with a low-resistance conductor made of a simple substance of g or an alloy material containing Cu or Ag as a main component, and it is possible to provide a laminated component using this as an internal electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る積層セラミック部品の1実施例で
ある。
FIG. 1 is an example of a monolithic ceramic component according to the present invention.

【図2】実施例1で得られた本発明にかかる誘電体磁器
組成物の焼結体のX線回折図である。
2 is an X-ray diffraction diagram of a sintered body of the dielectric ceramic composition according to the present invention obtained in Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 誘電体セラミック層 2 内部電極 3 外部電極 1 Dielectric ceramic layer 2 internal electrodes 3 external electrodes

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 3/12 304 H01B 3/12 304 H01G 4/12 358 H01G 4/12 358 361 361 (72)発明者 福田 晃一 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 Fターム(参考) 4G031 AA04 AA05 AA06 AA11 AA12 AA26 AA28 AA29 AA30 AA32 AA35 BA09 CA01 CA08 GA01 GA04 GA06 GA09 GA11 4G062 AA08 AA10 AA15 BB08 CC08 DA03 DA04 DA05 DA06 DB03 DB04 DC04 DC05 DD01 DE01 DE04 DE05 DE06 DF01 DF02 DF03 DF04 EA01 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM13 MM27 MM31 NN26 NN32 NN34 PP04 5E001 AC09 AE02 AE03 AF03 AH01 AH09 AJ01 AJ02 5G303 AA01 AB06 AB07 AB08 AB11 BA12 CA03 CB01 CB02 CB03 CB05 CB06 CB25 CB30 CB32 CB35 CB38 CB39 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H01B 3/12 304 H01B 3/12 304 H01G 4/12 358 H01G 4/12 358 361 361 (72) Inventor Koichi Fukuda Yamaguchi 5 1978, Koji, Ube City, Ube Pref. F-term inside Ube Research Center, Ube Industries Ltd. (reference) 4G031 AA04 AA05 AA06 AA11 AA12 AA26 AA28 AA29 AA30 AA32 AA35 BA09 CA01 CA08 GA01 GA04 GA06 GA09 GA11 4G062 AA08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A08 A 08 A 08 A 08 A 08 A 08 A 08 A 08 A 08 A 08 A 0 DA06 DB03 DB04 DC04 DC05 DD01 DE01 DE04 DE05 DE06 DF01 DF02 DF03 DF04 EA01 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM13 MM27 MM31 NN26 NN32 NN34 PP04 5E001 AC09 AE02 AE03 AF03 AH01 AH09 AJ01 AJ02 5G303 AA01 AB06 AB07 AB08 AB11 BA12 CA03 CB01 CB02 CB03 CB05 CB06 CB25 CB30 CB32 CB35 CB38 CB39

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式x(ZnTiO)−(1−
x)TiOで表され、xが0.5≦x<1の範囲内で
ある主成分100重量部に対して、ガラス成分を5重量
部以上150重量部以下含有することを特徴とする誘電
体磁器組成物。
1. The general formula x (Zn 2 TiO 4 )-(1-
x) A dielectric material containing 5 parts by weight or more and 150 parts by weight or less of a glass component with respect to 100 parts by weight of a main component represented by TiO 2 and x falling within a range of 0.5 ≦ x <1. Body porcelain composition.
【請求項2】 前記ガラス成分が、PbO系ガラス、Z
nO系ガラス、SiO系ガラス、およびPbO、Zn
O、Bi、BaO、B、SiO 、ZrO
、TiO、Al、CaO、SrOの群から選
択される2種以上の金属酸化物からなるガラスから選択
される少なくとも一種であることを特徴とする請求項1
記載の誘電体磁器組成物。
2. The glass component is PbO-based glass, Z
nO glass, SiOTwoGlass, PbO, Zn
O, BiTwoOThree, BaO, BTwoOThree, SiO Two, ZrO
Two, TiOTwo, AlTwoOThree, CaO, SrO
Selected from glasses consisting of two or more selected metal oxides
1. At least one of the following:
The dielectric ceramic composition described.
【請求項3】 複数の誘電体層と、該誘電体層間に形成
された内部電極と、該内部電極に電気的に接続された外
部電極とを備える積層セラミック部品において、前記誘
電体層が前記請求項1又は2に記載の誘電体磁器組成物
を焼成して得られる誘電体磁器にて構成され、前記内部
電極がCu単体若しくはAg単体、又はCu若しくはA
gを主成分とする合金材料にて形成されていることを特
徴とする積層セラミック部品。
3. A multilayer ceramic component comprising a plurality of dielectric layers, internal electrodes formed between the dielectric layers, and external electrodes electrically connected to the internal electrodes, wherein the dielectric layers are A dielectric porcelain obtained by firing the dielectric porcelain composition according to claim 1 or 2, wherein the internal electrodes are Cu simple substance or Ag simple substance, or Cu or A.
A monolithic ceramic part formed of an alloy material containing g as a main component.
JP2001355700A 2001-11-21 2001-11-21 Dielectric ceramic composition and multilayer ceramic component using the same Abandoned JP2003160377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355700A JP2003160377A (en) 2001-11-21 2001-11-21 Dielectric ceramic composition and multilayer ceramic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355700A JP2003160377A (en) 2001-11-21 2001-11-21 Dielectric ceramic composition and multilayer ceramic component using the same

Publications (1)

Publication Number Publication Date
JP2003160377A true JP2003160377A (en) 2003-06-03

Family

ID=19167364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355700A Abandoned JP2003160377A (en) 2001-11-21 2001-11-21 Dielectric ceramic composition and multilayer ceramic component using the same

Country Status (1)

Country Link
JP (1) JP2003160377A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210840A (en) * 2006-02-10 2007-08-23 Tdk Corp Manufacturing method of dielectric ceramic composition
JP2008060428A (en) * 2006-08-31 2008-03-13 Nichia Chem Ind Ltd Light emitting device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210840A (en) * 2006-02-10 2007-08-23 Tdk Corp Manufacturing method of dielectric ceramic composition
JP2008060428A (en) * 2006-08-31 2008-03-13 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP4650378B2 (en) * 2006-08-31 2011-03-16 日亜化学工業株式会社 Method for manufacturing light emitting device

Similar Documents

Publication Publication Date Title
EP1860080A1 (en) Dielectric porcelain composition and method for production thereof
JP4482939B2 (en) Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same
JP4096822B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP4052032B2 (en) Dielectric composition and multilayer ceramic component using the same
CN1307122C (en) Dielectric ceramic composition, dielectric ceramic and laminated ceramic part including the same
EP1724244B1 (en) Dielectric particle aggregate, low temperature sinterable dielectric ceramic composition using same, low temperature sintered dielectric ceramic produced by using same
EP1645551B9 (en) Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
JP2003119076A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JP2003160377A (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP4281549B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP4052031B2 (en) Dielectric composition and multilayer ceramic component using the same
JP2003160376A (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP2003160375A (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP2003221274A (en) Dielectric ceramic composition and multilayer ceramic component using the same
EP1315231A2 (en) Dielectric ceramic composition and laminated ceramic parts using the same
JP2003221273A (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP4114503B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP2005001944A (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP4235896B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JPH0855518A (en) Dielectric porcelain composition
JPH0855519A (en) Dielectric porcelain composition
JP3858395B2 (en) Dielectric porcelain composition
JPH0971462A (en) Dielectric porcelain composition
JP3257152B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070326