JP2007194630A - Solder joint layer - Google Patents
Solder joint layer Download PDFInfo
- Publication number
- JP2007194630A JP2007194630A JP2007006058A JP2007006058A JP2007194630A JP 2007194630 A JP2007194630 A JP 2007194630A JP 2007006058 A JP2007006058 A JP 2007006058A JP 2007006058 A JP2007006058 A JP 2007006058A JP 2007194630 A JP2007194630 A JP 2007194630A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- peltier element
- snau
- laser module
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 107
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 39
- 229910052737 gold Inorganic materials 0.000 claims abstract description 25
- 229910052718 tin Inorganic materials 0.000 claims abstract description 24
- 238000005304 joining Methods 0.000 claims abstract description 19
- 229910052802 copper Inorganic materials 0.000 claims abstract description 13
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 10
- 229910052745 lead Inorganic materials 0.000 claims abstract description 9
- 229910052709 silver Inorganic materials 0.000 claims abstract description 9
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 21
- 239000013078 crystal Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 83
- 229910018731 Sn—Au Inorganic materials 0.000 description 21
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- 238000007747 plating Methods 0.000 description 15
- 239000010949 copper Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000005476 soldering Methods 0.000 description 5
- 229910020816 Sn Pb Inorganic materials 0.000 description 4
- 229910020922 Sn-Pb Inorganic materials 0.000 description 4
- 229910008783 Sn—Pb Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910015363 Au—Sn Inorganic materials 0.000 description 3
- 229910020836 Sn-Ag Inorganic materials 0.000 description 3
- 229910020988 Sn—Ag Inorganic materials 0.000 description 3
- 239000006023 eutectic alloy Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 229910020830 Sn-Bi Inorganic materials 0.000 description 2
- 229910020994 Sn-Zn Inorganic materials 0.000 description 2
- 229910018728 Sn—Bi Inorganic materials 0.000 description 2
- 229910009069 Sn—Zn Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
本発明は、精密素子のはんだ接合層に関する。詳細には、電子デバイス,光デバイス,レーザモジュール,半導体装置のはんだ接合層に関する。 The present invention relates to a solder joint layer of a precision element. Specifically, the present invention relates to a solder joint layer of an electronic device, an optical device, a laser module, and a semiconductor device.
従来、Sn−Pb系の(Sn:63重量%)共晶合金は、優れたぬれ性と適当な融点を備えているため、プリント基板や搭載部材、精密素子における部材間の接合に好適なはんだとして用いられてきた。ところが、Sn−Pb共晶合金に含まれている鉛に有害性があることから、鉛を用いない(以後鉛フリーと言う)はんだへの転換がなされている。 Conventionally, Sn—Pb-based (Sn: 63 wt%) eutectic alloy has excellent wettability and an appropriate melting point, and is therefore suitable for bonding between printed circuit boards, mounting members, and members in precision elements. Has been used. However, since the lead contained in the Sn—Pb eutectic alloy is harmful, it has been converted to a solder that does not use lead (hereinafter referred to as lead-free).
そこで、Sn−Ag系の鉛フリーはんだが安定性、及び信頼性の高いことで高信頼性を必要とする電子機器に用いられるようになった。しかし、このはんだを用いると、融点が高く(221℃)、プリント基板の電極との濡れ性が共晶はんだに比べて劣るので、従来型のプロセスでは十分な接合ができない。現在、融点を下げるために、Sn−Ag系にCu、Biを少量添加したものや、Sn−Zn系、Sn−Bi系のはんだも開発されている。 Accordingly, Sn-Ag-based lead-free solder has come to be used in electronic devices that require high reliability due to its high stability and reliability. However, when this solder is used, the melting point is high (221 ° C.), and the wettability with the electrodes of the printed circuit board is inferior to that of eutectic solder. Currently, in order to lower the melting point, Sn-Ag-based solders with a small amount of Cu and Bi added, and Sn-Zn-based and Sn-Bi-based solders have also been developed.
ところで、精密素子には、長期間にわたり部材間の位置関係が変化しないような高い位置精度が要求される。ところが、はんだ材料は,素子を構成する他の部材、例えばCu−W系合金やステンレス鋼に比べてクリープ強度は低い値である。そのため、精密素子の使用中にはんだ部が変形して被接合部材が動いてしまい、部材の位置関係が経年変化するという問題があった。 By the way, the precision element is required to have high positional accuracy so that the positional relationship between members does not change over a long period of time. However, the solder material has a low creep strength as compared with other members constituting the element, for example, a Cu-W alloy or stainless steel. For this reason, there is a problem in that the soldered portion is deformed and the member to be joined moves during use of the precision element, and the positional relationship between the members changes over time.
そこで、はんだに強度を持たせるために、特開2000−190090号公報には、Sn、Cuが0.1〜2.5重量%、Bi及び/又はInが1〜15重量%、Ni、Ge、Pd、Au、Ti、Feの何れか1種以上を0.01〜2重量%含有する合金はんだについて、Pd、Au、Ti、Feと、SnやCuとの金属間化合物を生成させることにより、マトリクスの結晶粒界でのすべりを防止して、接合層の機械的強度を向上させる技術が開示されている。 Therefore, in order to give the solder strength, Japanese Patent Application Laid-Open No. 2000-190090 discloses that Sn and Cu are 0.1 to 2.5% by weight, Bi and / or In are 1 to 15% by weight, Ni and Ge. By producing an intermetallic compound of Pd, Au, Ti, Fe and Sn or Cu with respect to an alloy solder containing 0.01 to 2% by weight of any one or more of Pd, Au, Ti, and Fe A technique for preventing the slip at the crystal grain boundary of the matrix and improving the mechanical strength of the bonding layer is disclosed.
特開平7−128550号公報には、Auによる脆性化合物が接合強度を弱くするため、これを避ける方法についての技術が開示されている。
前記従来技術に関して説明する。Snは容易にAuと反応して、例えばSn4Au金属間化合物を形成する。この金属間化合物は脆いのではんだ接合層の機械的強度を劣化させる。そのため、はんだ付け時に、この金属間化合物の生成を抑制することが従来技術の課題であった。本発明では、逆にこの化合物を利用することとした。 The prior art will be described. Sn easily reacts with Au to form, for example, a Sn 4 Au intermetallic compound. Since this intermetallic compound is brittle, it degrades the mechanical strength of the solder joint layer. Therefore, it has been a problem of the prior art to suppress the formation of this intermetallic compound during soldering. In the present invention, on the contrary, this compound is used.
すなわち、Sn−Au系金属間化合物は脆いが硬いため、接合層が破壊にまで達するような高い応力に対しては存在しない方が望ましい。しかしながら、そこまでの高い応力を必要とせず、かつ、部材の位置変動がないことを必要とするような場合には、硬いSn−Au系の金属間化合物が有効に作用し、はんだの変形抵抗が向上する。 That is, since the Sn—Au intermetallic compound is brittle but hard, it is desirable that the Sn—Au-based intermetallic compound does not exist for such a high stress that the bonding layer reaches the failure. However, when a high stress up to that point is required and there is no need to change the position of the member, the hard Sn—Au intermetallic compound acts effectively, and the deformation resistance of the solder Will improve.
前記のように、精密素子には長期にわたって部材間の位置関係が変化しないような高い位置精度が要求される。ところが、はんだ材料はクリープ強度が低いため、精密素子の使用中にはんだ部が変形して被接合部材が動いてしまう。 As described above, high precision is required for precision elements so that the positional relationship between members does not change over a long period of time. However, since the solder material has a low creep strength, the solder member is deformed and the member to be joined moves during use of the precision element.
従って、本発明では、クリープ変形に対する抵抗力の大きいはんだ接合層を開発することを目的とする。一般に、はんだのクリープ曲線はクリープ初期に大きく変位を生じるので、このクリープ初期の変形量が小さいはんだ接合層を開発することも目的とする。 Accordingly, an object of the present invention is to develop a solder joint layer having a high resistance to creep deformation. In general, since the solder creep curve is greatly displaced at the initial stage of creep, an object is to develop a solder joint layer having a small deformation amount at the initial stage of creep.
前記課題を解決するために、本発明の第1の態様は、ペルチェ素子を搭載したベースと該ペルチェ素子間、及び該ペルチェ素子とレーザモジュールのパッケージ間が、Snを含有するはんだを用いて接合される際に形成される接合層であって、前記接合層はSnおよびAuの他に、Pb、Cu、Ag、Bi、Znから選択されるいずれか1種または2種以上を含有し、さらに、前記接合層中に、SnとAuを主成分として構成されるSn4Au、Sn2Au、SnAu、SnAu5、SnAu9のいずれかからなる金属間化合物を含み、接合断面中に存在する前記金属間化合物の面積分率の合計として、5%を超えて50%までの割合で分散しているはんだ接合層を介して接合されている軸ずれの生じないレーザモジュールである。 In order to solve the above-mentioned problems, a first aspect of the present invention is to join a base on which a Peltier element is mounted and the Peltier element, and between the Peltier element and a package of the laser module using a solder containing Sn. The bonding layer is formed when the bonding layer contains, in addition to Sn and Au, one or more selected from Pb, Cu, Ag, Bi, Zn, The bonding layer contains an intermetallic compound composed of Sn 4 Au, Sn 2 Au, SnAu, SnAu 5 , SnAu 9 composed mainly of Sn and Au, and exists in the bonding cross section. This is a laser module that does not cause misalignment and is joined via a solder joint layer dispersed in a proportion of more than 5% and up to 50% as the total area fraction of intermetallic compounds.
本発明の第2の態様は、ペルチェ素子を搭載したベースと該ペルチェ素子間、及び該ペルチェ素子とレーザモジュールのパッケージ間が、Snを含有するはんだを用いて接合される際に形成される接合層であって、前記接合層はSnおよびAuの他に、Pb、Cu、Ag、Bi、Znから選択されるいずれか1種または2種以上を含有し、さらに、前記接合層中に、SnとAuを主成分として構成されるSn4Au、Sn2Au、SnAu、SnAu5、SnAu9のいずれかからなる金属間化合物を含み、前記金属間化合物の結晶粒径が30μm以下の大きさで、且つ接合断面中に存在する前記金属間化合物の面積分率の合計として、5%を超えて50%までの割合で分散しているはんだ接合層を介して接合されている軸ずれの生じないレーザモジュールである According to a second aspect of the present invention, a joint formed when a base on which a Peltier element is mounted and the Peltier element and between the Peltier element and a package of the laser module are joined using solder containing Sn. The bonding layer contains, in addition to Sn and Au, one or more selected from Pb, Cu, Ag, Bi, and Zn, and further includes Sn in the bonding layer. And an intermetallic compound composed of any of Sn 4 Au, Sn 2 Au, SnAu, SnAu 5 and SnAu 9 composed mainly of Au, and the crystal grain size of the intermetallic compound is 30 μm or less. In addition, the sum of the area fractions of the intermetallic compounds present in the cross section of the joint does not cause misalignment that is joined through the solder joint layers dispersed in a proportion of more than 5% and up to 50%. Leh The module is
本発明の第3の態様は、レーザモジュールにおけるペルチェ素子を搭載したベースと該ペルチェ素子間、及び該ペルチェ素子とレーザモジュールのパッケージ間の接合方法であって、少なくとも一方の部材の表面をAuからなる層とし、少なくとも一方の前記部材にSnを含有するはんだを載置し、前記Snを含有するはんだを加熱して前記Auを前記はんだ中に溶解させて前記Snと反応させ、前記Snと前記Auを主成分として構成されるSn4Au、Sn2Au,SnAu、SnAu5,SnAu9のいずれか1種以上の金属間化合物を、合計で5%を超えて50%までの割合ではんだ接合層中に分散させる軸ずれの生じない接合方法である。 According to a third aspect of the present invention, there is provided a joining method between a base on which a Peltier element is mounted in a laser module and the Peltier element, and between a package of the Peltier element and the laser module, wherein the surface of at least one member is made of Au. And a solder containing Sn is placed on at least one of the members, the solder containing Sn is heated to dissolve the Au in the solder, and react with the Sn. Solder bonding of at least one intermetallic compound of Sn 4 Au, Sn 2 Au, SnAu, SnAu 5 , SnAu 9 composed mainly of Au in a proportion of more than 5% and up to 50% This is a joining method that does not cause misalignment in the layers.
本発明の第4の態様は、レーザモジュールにおけるペルチェ素子を搭載したベースと該ペルチェ素子間、及び該ペルチェ素子とレーザモジュールのパッケージ間の接合方法であって、少なくとも一方の部材の表面をAuからなる層とし、少なくとも一方の前記部材にSnを含有するはんだを載置し、前記Snを含有するはんだを加熱して前記Auを前記はんだ中に溶解させて前記Snと反応させ、前記Snと前記Auを主成分として構成される結晶粒径が30μm以下のSn4Au、Sn2Au,SnAu、SnAu5,SnAu9のいずれか1種以上の金属間化合物を、合計で5%を超えて50%までの割合ではんだ接合層中に分散させる軸ずれの生じない接合方法である。 According to a fourth aspect of the present invention, there is provided a joining method between a base on which a Peltier element is mounted in a laser module and the Peltier element, and between a package of the Peltier element and the laser module, wherein the surface of at least one member is made of Au. And a solder containing Sn is placed on at least one of the members, the solder containing Sn is heated to dissolve the Au in the solder, and react with the Sn. One or more intermetallic compounds of Sn 4 Au, Sn 2 Au, SnAu, SnAu 5 , SnAu 9 and having a crystal grain size of 30 μm or less composed of Au as a main component exceeds 50% in total. It is a joining method that does not cause misalignment and is dispersed in the solder joint layer at a ratio of up to%.
本発明の第5の態様は、請求項3又は請求項4に記載の軸ずれの生じない接合方法において、少なくとも一方の部材の表面のAuからなる層の厚さが1.0〜5.0μmとし、少なくとも一方のはんだを載置する前記部材の厚さを30〜60μmに形成することを特徴とするレーザモジュールにおけるペルチェ素子を搭載したベースと該ペルチェ素子間、及び該ペルチェ素子とレーザモジュールのパッケージ間の接合方法である。 According to a fifth aspect of the present invention, in the bonding method according to claim 3 or 4, wherein the thickness of the layer made of Au on the surface of at least one member is 1.0 to 5.0 μm. The thickness of the member on which at least one of the solder is placed is formed to be 30 to 60 μm, and between the base on which the Peltier element is mounted in the laser module and the Peltier element, and between the Peltier element and the laser module, This is a bonding method between packages.
本実施の接合層とすることにより、クリープ変形が小さい接合層とすることができ,精密素子の接合において被接合部材の位置変化を極めて小さく抑えることが可能である。また,はんだ部の変動によって軸ずれを生じやすいレーザモジュールにおいても、軸ずれしない高信頼性な接合層とすることができた。 By using the bonding layer of the present embodiment, a bonding layer with small creep deformation can be obtained, and the position change of the member to be bonded can be suppressed to a very small level in the bonding of precision elements. In addition, even in a laser module that is likely to be off-axis due to fluctuations in the solder part, a highly reliable bonding layer that does not off-axis can be obtained.
本発明の実施の形態を以下に説明する。本発明のはんだ接合層は、Snを含有するはんだを用いて部材を接合する際に形成される接合層であって、前記接合層はSnおよびAuの他に、Pb,Cu、Ag、Bi、Znから選択されるいずれか1種又は2種以上を含有し、さらに、前記接合層にはSnとAuを主成分として構成される金属間化合物が接合断面の面積分率として5〜50%の割合で分散して高い変形強度を備えている。 Embodiments of the present invention will be described below. The solder joint layer of the present invention is a joint layer formed when a member is joined using Sn-containing solder, and the joint layer includes Pb, Cu, Ag, Bi, in addition to Sn and Au. It contains any one or more selected from Zn, and the bonding layer is composed of an intermetallic compound composed mainly of Sn and Au as an area fraction of the bonded cross section of 5 to 50%. Dispersed in proportion and has high deformation strength.
本実施の形態では、Snを含有するはんだ合金は、SnにPb、Cu、Ag、Bi、Znから選択されるいずれか1種又は2種以上を含有している合金であれば良い。Pb、Cu、Ag、Bi、Znから選択する元素、および添加割合は以下のように選ぶことができる。例えば、Sn−Bi系合金、Sn−Zn系合金、Sn−Pb系合金、Sn−Ag系合金、Sn−Ag−Cu系合金、Sn−Ag−Cu−Bi系合金、その他の上記元素を組合わせた合金を適宜選択すれば良い。 In the present embodiment, the solder alloy containing Sn may be any alloy containing one or more selected from Sn, Pb, Cu, Ag, Bi, and Zn. The element selected from Pb, Cu, Ag, Bi, and Zn, and the addition ratio can be selected as follows. For example, Sn—Bi alloy, Sn—Zn alloy, Sn—Pb alloy, Sn—Ag alloy, Sn—Ag—Cu alloy, Sn—Ag—Cu—Bi alloy, and other elements described above A combined alloy may be selected as appropriate.
本発明で言う接合層とは、接合時に溶融した領域であって、溶融しない領域は含まない。例えば、Auめっきがはんだ層に溶け込み、Auの下地のNiめっき層や被接合部材のCu板が溶けていない場合、接合層は、Auを含んだはんだ層全域であり、Niめっき層やCu板は接合層に入らない。 The joining layer as used in the field of this invention is the area | region fuse | melted at the time of joining, Comprising: The area | region which does not melt | dissolve is not included. For example, when the Au plating melts into the solder layer and the Ni plating layer under the Au and the Cu plate of the member to be joined are not melted, the bonding layer is the entire solder layer containing Au, and the Ni plating layer or the Cu plate Does not enter the bonding layer.
すなわち、被接合部材同士を前記のSnを含有するはんだを用いて接合した際にできる接合部のことで、接合層はSnの他にAuを必須とし、Pb,Cu、Ag、Bi、Znから選択されるいずれか1種又は2種以上を含有するものである。 That is, it is a joint portion formed when the members to be joined are joined using the solder containing Sn, and the joining layer requires Au in addition to Sn, and is made of Pb, Cu, Ag, Bi, Zn. It contains any one or more selected.
本実施の形態では、接合層にAuを含有させる方法例を以下に示す。第1は、接合前にAuを含まないはんだを用い、接合時にはんだを溶融する際にAuを含有させる方法である。例をあげると以下のようである。 In the present embodiment, an example of a method for containing Au in the bonding layer is described below. The first is a method in which a solder that does not contain Au is used before joining, and Au is contained when the solder is melted during joining. An example is as follows.
被接合部にAuめっきを施してから、はんだ付けする。この際に、Auめっきの厚みは、接合される部材の全めっき厚さとして0.05〜8.0μm、はんだ接合層の厚さは10〜100μmの範囲とすることが望ましい。より望ましくは、Auめっきの厚みは、接合される部材の全めっき厚さとして1.0〜5.0μm、はんだ接合層の厚さは30〜60μmの範囲とすることが望ましい。 Soldering is performed after Au plating is applied to the bonded portion. At this time, the thickness of the Au plating is desirably 0.05 to 8.0 μm as the total plating thickness of the members to be joined, and the thickness of the solder joint layer is desirably 10 to 100 μm. More desirably, the Au plating thickness is 1.0 to 5.0 μm as the total plating thickness of the members to be joined, and the solder joining layer thickness is preferably 30 to 60 μm.
被接合部にスパッタリング等によりAu蒸着処理を施してから、はんだ付けする。この際にも、Au蒸着層の厚みは、接合される部材の全蒸着層厚さとして0.05〜8.0μm、はんだ接合層の厚さは10〜100μmの範囲とすることが望ましい。より望ましくは、Au蒸着層の厚みは、接合される部材の全蒸着層厚さとして1.0〜5.0μm、はんだ接合層の厚さは30〜60μmの範囲とすることが望ましい。 Soldering is performed after Au deposition processing is performed on the bonded portion by sputtering or the like. Also in this case, it is desirable that the thickness of the Au vapor deposition layer is 0.05 to 8.0 μm as the total vapor deposition layer thickness of the members to be joined, and the thickness of the solder joint layer is 10 to 100 μm. More preferably, the thickness of the Au vapor deposition layer is 1.0 to 5.0 μm as the total vapor deposition layer thickness of the members to be joined, and the thickness of the solder joint layer is desirably 30 to 60 μm.
さらに、Au粉末を振りかけたはんだを用いたり、はんだにAu箔、Au板、Au線を載せて用いることもできる。 Furthermore, a solder sprinkled with Au powder can be used, or an Au foil, an Au plate, or an Au wire can be placed on the solder.
第2に、接合前のはんだ箔、はんだペースト、はんだ線等にあらかじめAuを含有させる方法である。Auは3〜30重量%程度含有させることが望ましい。あらかじめ、Auを含有させた上記はんだ合金の用い方は、通常のはんだ付け作業に準じて行えば良い。 Second, it is a method in which Au is previously contained in solder foil, solder paste, solder wire or the like before joining. It is desirable to contain about 3 to 30% by weight of Au. The solder alloy containing Au in advance may be used in accordance with a normal soldering operation.
第3に、上記第1および第2を合わせて用いる方法である。 Third, the first and second methods are used together.
本実施の形態では、接合時のはんだを溶融する際にAuを含有させることが望ましい。そのため、はんだ合金の加熱方法としては、以下のような例があげられる。まず、被接合部材同士それぞれに、はんだを加熱し固着させてはんだ層を形成する。次に、被接合部材同士のはんだ層の位置を合わせ、再加熱して部材同士を接合する。 In the present embodiment, it is desirable to contain Au when melting the solder at the time of joining. Therefore, examples of the method for heating the solder alloy include the following. First, a solder layer is formed by heating and fixing solder to each of the members to be joined. Next, the positions of the solder layers of the members to be joined are aligned and reheated to join the members together.
まず、被接合部材の片方に、はんだを加熱して固着させてはんだ層を形成する。次に、もう一方の被接合部材の所定の位置にはんだ層を合わせ、再加熱して部材同士を接合する。被接合部材の間にはんだを配置し、加熱して部材同士を接合する。なお、接合条件としては、はんだの溶融温度を合金の共晶温度に10〜60℃高い温度とし、はんだの溶融時間を10秒から5分間に選択することが望ましい。 First, a solder layer is formed by heating and fixing solder to one of the members to be joined. Next, the solder layer is aligned with a predetermined position of the other member to be joined, and reheated to join the members together. Solder is placed between the members to be joined and heated to join the members together. As the joining conditions, it is desirable that the melting temperature of the solder is 10 to 60 ° C. higher than the eutectic temperature of the alloy and the melting time of the solder is selected from 10 seconds to 5 minutes.
ところで、Sn中へのAuの拡散については、拡散速度が速いために金属間化合物を作りやすい。Sn−Auを含有する金属間化合物には、例えば、Sn4Au、Sn2Au、SnAu、SnAu5、SnAu9などある。接合層にはSn−Auを含有する金属間化合物が分散している。金属間化合物が分散した状態とは、接合層にAuが含まれ,このAuがSnとの金属間化合物の形で存在し,その化合物がはんだ接合層全域に分散した状態となっていることである。 By the way, with respect to the diffusion of Au into Sn, it is easy to make an intermetallic compound because of the high diffusion rate. Examples of the intermetallic compound containing Sn—Au include Sn 4 Au, Sn 2 Au, SnAu, SnAu 5 , and SnAu 9 . An intermetallic compound containing Sn—Au is dispersed in the bonding layer. The state in which the intermetallic compound is dispersed is that the bonding layer contains Au, the Au exists in the form of an intermetallic compound with Sn, and the compound is dispersed throughout the solder bonding layer. is there.
なお、AuがSnとSn−Au金属間化合物を形成するメカニズムは、Auが例えばめっき層の場合、はんだを加熱して溶融する際に、Auが溶融したはんだ中に拡散し、すなわち、はんだに溶解し、Snと反応して金属間化合物を形成するものと思われる。したがって、Auは、接合部材表面にめっき層で形成されたものであっても、はんだにあらかじめ合金成分として添加されたものであっても用いることが可能である。 In addition, when Au forms a Sn-Au intermetallic compound with Au, for example, when Au is a plating layer, when the solder is heated and melted, Au diffuses into the melted solder, that is, in the solder. It appears to dissolve and react with Sn to form an intermetallic compound. Therefore, Au can be used even if it is formed of a plating layer on the surface of the joining member, or is previously added to the solder as an alloy component.
このように、Sn4Au金属間化合物のような変形抵抗の高い金属間化合物をはんだ接合層に分散させることにより、はんだの高温における変形抵抗を向上させることができる。 In this way, by dispersing an intermetallic compound having a high deformation resistance such as Sn 4 Au intermetallic compound in the solder joint layer, the deformation resistance of the solder at a high temperature can be improved.
本発明の実施形態では、接合層にはSn−Auを含有する金属間化合物が接合断面の面積分率にして5〜50%の割合で分散していることが望ましい。ここで、接合断面とは2個以上の部材(被接合体)が接合された接合層を含む断面であって、接合体と接合層の複数の界面はほぼ平行な関係であるものとし、その界面に垂直な面を接合断面と定義する。 In the embodiment of the present invention, it is desirable that the intermetallic compound containing Sn—Au is dispersed in the bonding layer at a ratio of 5 to 50% in terms of the area fraction of the bonded cross section. Here, the bonded cross section is a cross section including a bonding layer in which two or more members (bonded bodies) are bonded, and a plurality of interfaces between the bonded body and the bonding layer are in a substantially parallel relationship. A plane perpendicular to the interface is defined as a bonding cross section.
本願発明では、面積分率とは接合断面における接合層の中に占めるSn−Au化合物相の面積の比率を言う。面積分率は、以下のようにして求めることができる。例えば、SEMにおけるEDX,あるいはEPMAにより接合層を含む接合断面内の構成元素を測定し、Sn−Au化合物相の組織を特定する。図1には、本実施の形態例における接合層断面の反射電子像を示した。写真の黒実線長さが10μmの長さに該当する。次に、接合層のSEM写真、もしくは反射電子像写真において、Sn−Au化合物相と他の部分をニ値化により分離し、接合層の中に占めるSn−Au化合物相の面積分率を算出する。図2には、図1で示したSn−Au層領域を白色で表わし、他の領域を黒色にニ値化した像を示した。 In the present invention, the area fraction refers to the ratio of the area of the Sn—Au compound phase in the bonding layer in the bonding cross section. The area fraction can be obtained as follows. For example, constituent elements in the bonding cross section including the bonding layer are measured by EDX or EPMA in SEM, and the structure of the Sn—Au compound phase is specified. FIG. 1 shows a backscattered electron image of the cross section of the bonding layer in this embodiment. The black solid line length of the photograph corresponds to a length of 10 μm. Next, in the SEM photograph or backscattered electron image photograph of the bonding layer, the Sn—Au compound phase and other portions are separated by binarization, and the area fraction of the Sn—Au compound phase in the bonding layer is calculated. To do. FIG. 2 shows an image in which the Sn—Au layer region shown in FIG. 1 is expressed in white and the other regions are binarized in black.
面積分率を算出するために用いるSEMあるいは反射電子像写真については、接合界面に垂直な向きを写真縦軸とし、接合界面に平行な向きを写真横軸と決める。かつ、写真縦の全長は接合層の厚みすべてが入るようにし、接合時に溶融しなかっためっき層、被接合材は写真に入れないものとする。写真横軸の長さは縦軸の長さの2倍とする。また、接合時の溶融層と非溶融層の界面が平坦ではない、または、二つの被接合材が平行ではない場合については、それに応じた領域を写真とする。 For the SEM or backscattered electron image photograph used to calculate the area fraction, the direction perpendicular to the bonding interface is taken as the vertical axis of the photograph, and the direction parallel to the bonding interface is taken as the horizontal axis of the photograph. In addition, the entire length of the photograph is such that the entire thickness of the joining layer is included, and the plated layer and the material to be joined that were not melted during joining are not included in the photograph. The length of the photo horizontal axis is twice the length of the vertical axis. In addition, when the interface between the molten layer and the non-molten layer at the time of bonding is not flat or the two materials to be bonded are not parallel, a region corresponding to the interface is taken as a photograph.
以上の操作を同一断面の別な部位から、あるいは、同一試料の別断面の部位から合計5回以上実施し、その平均値をその試料の断面におけるSn−Au化合物相の面積分率と定義する。 The above operation is performed five times or more in total from another part of the same cross section or from another cross section of the same sample, and the average value is defined as the area fraction of the Sn—Au compound phase in the cross section of the sample. .
ここで、面積分率を5〜50%とする理由は以下のようである。5%未満では効果がなく、50%を超えると、クリープ抵抗は高まるが脆化し、少量のひずみで破壊してしまうからである。5〜50%の範囲では初期クリープが小さくなり、クリープ抵抗が大きく、位置ずれに対する信頼性が高くなる。 Here, the reason why the area fraction is 5 to 50% is as follows. If it is less than 5%, there is no effect, and if it exceeds 50%, the creep resistance increases, but it becomes brittle and breaks with a small amount of strain. In the range of 5 to 50%, the initial creep is small, the creep resistance is large, and the reliability with respect to displacement is high.
本実施の形態では、接合層の金属間化合物の結晶粒径は30μm以下の大きさであることが望ましい。結晶粒径の大きさは、上記の接合断面の観察時に求めることができる。ここで、結晶粒径を30μm以下とする理由は、30μmを超えると結晶粒界を亀裂が伝播しやすくなるためである。 In the present embodiment, the crystal grain size of the intermetallic compound in the bonding layer is desirably 30 μm or less. The size of the crystal grain size can be obtained at the time of observing the above-mentioned junction cross section. Here, the reason for setting the crystal grain size to 30 μm or less is that cracks are likely to propagate through the crystal grain boundary if it exceeds 30 μm.
本発明の第2の実施形態を以下に示す。本発明では、二個以上の部材を接合する際に、少なくとも一個以上の部材の表面をAuからなる層とし、一個以上の前記部材表面にはんだを載置し、前記はんだを加熱して前記Auをはんだ中に溶解させて得た接合層を備える接合部材である。 A second embodiment of the present invention will be described below. In the present invention, when two or more members are joined, the surface of at least one member is made of Au, solder is placed on the surface of one or more members, the solder is heated, and the Au It is a joining member provided with the joining layer obtained by melt | dissolving in solder.
本実施の形態では、少なくとも一個以上の部材の最表面層をAu層からなる表面とする。本実施の形態では、接合層中にAuが含まれるようにするには、第1の実施形態で説明した方法を用いれば良い。 In the present embodiment, the outermost surface layer of at least one member is a surface made of an Au layer. In the present embodiment, the method described in the first embodiment may be used so that the bonding layer contains Au.
このように、表面にめっき層を形成し、部材間にSnを含有するはんだ合金を載置し、前記はんだ合金を加熱溶融して部材表面のAuを溶融はんだ中に溶解させることによりSn−Auを含有する金属間化合物が分散した接合層を備える接合品が得られる。例えば、電子デバイス,光デバイス,レーザモジュール,半導体装置に本実施の形態の接合層を備える接合品を得ることができる。 In this way, a plated layer is formed on the surface, a solder alloy containing Sn is placed between the members, the solder alloy is heated and melted, and Au on the surface of the member is dissolved in the molten solder. Thus, a bonded product including a bonding layer in which an intermetallic compound containing is dispersed is obtained. For example, a bonded product including the bonding layer of this embodiment can be obtained in an electronic device, an optical device, a laser module, or a semiconductor device.
はんだとしてSn−Pb(Sn:63重量%)共晶合金を用いた。試験方法としては、図3で示したようなリング−ピン剪断試験用の銅製試験片を用意し一方には、試験片の接合面にNiめっきを施し、その上にAuめっきをした。もう一方は、めっき処理しないものとした。この2種の試料を用い、上記はんだを用いてリング部のはんだ接合層を形成した。図3中のリング−ピン試験片31は、リング部33とピン部35からなり、リング部33の中央にピン部とのはんだ接合層37を形成したものである。リング部の厚みは3mm、外形は15mmであり、ピン部の直径は4mmで、長さが20mmである。 Sn—Pb (Sn: 63 wt%) eutectic alloy was used as the solder. As a test method, a copper test piece for a ring-pin shear test as shown in FIG. 3 was prepared, and Ni plating was applied to the joint surface of the test piece, and Au was plated thereon. The other was not plated. Using these two types of samples, the solder joint layer of the ring portion was formed using the solder. A ring-pin test piece 31 in FIG. 3 includes a ring portion 33 and a pin portion 35, and a solder joint layer 37 with the pin portion is formed at the center of the ring portion 33. The thickness of the ring part is 3 mm, the outer shape is 15 mm, the diameter of the pin part is 4 mm, and the length is 20 mm.
接合層については接合断面を観察した。その結果、めっきをしないものの接合層にはSn相とPbリッチ相が認められた。めっき処理したものは、Sn相とPbリッチ相に加えて結晶粒径が20μmのSn−Au金属間化合物相が分散していた。また、めっき処理したもののSn−Au金属化合物相の面積分率を求めた。その結果、面積分率の値は15%であった。 For the bonding layer, the bonding cross section was observed. As a result, an Sn phase and a Pb rich phase were observed in the bonding layer although not plated. In the plated product, the Sn—Au intermetallic compound phase having a crystal grain size of 20 μm was dispersed in addition to the Sn phase and the Pb rich phase. Moreover, the area fraction of the Sn-Au metal compound phase of what was plated was determined. As a result, the area fraction value was 15%.
上記のめっきをしたものと、めっきをしないものについて、クリープ試験を行った。クリープ試験方法の概略図41を図4に示した。リビングーピン試験片43のピンは図4の上方向に、ピンは図4の下方向に荷重を掛けて試験した。試験温度は室温と100℃の2種類とした。室温(25℃)で剪断応力を7.5MPaとした試験結果を図5に、100℃で剪断応力を1.7MPaとした試験結果を図6に示した。 Creep tests were performed on the above plated and non-plated. A schematic diagram 41 of the creep test method is shown in FIG. The living pin test piece 43 was tested by applying a load in the upward direction of FIG. 4 and the pin in the downward direction of FIG. Two kinds of test temperatures, room temperature and 100 ° C., were used. FIG. 5 shows the test results obtained when the shear stress was 7.5 MPa at room temperature (25 ° C.), and FIG. 6 shows the test results obtained when the shear stress was 1.7 MPa at 100 ° C.
各図の横軸は、時間(破断までの時間で規格化)を示す。縦軸は、剪断ひずみを示す。これから、めっきしたものは、めっきしないものに比べて、初期クリープが極めて小さく、剪断ひずみが少ないことがわかる。 The horizontal axis of each figure shows time (standardized by the time to break). The vertical axis represents the shear strain. From this, it can be seen that the plated one has extremely small initial creep and less shear strain than the one not plated.
なお、図8として示した表1にSn−Au相の分布状態とクリープ変形抵抗について評価した結果を示した。すなわち、Sn−Au相が接合層全域にわたって均一に分散している場合には、Auめっきは界面に残存しておらず、このような場合には変形抵抗が極めて高い傾向にあった。反対に、Sn−Au相が被接合体と接合層の界面に偏って分布している場合には、Auめっきが界面に残像しており、このような場合には、早期に破断した。 Table 1 shown as FIG. 8 shows the results of evaluating the Sn—Au phase distribution state and creep deformation resistance. That is, when the Sn—Au phase is uniformly dispersed over the entire bonding layer, the Au plating does not remain at the interface, and in such a case, the deformation resistance tends to be extremely high. On the other hand, when the Sn—Au phase is unevenly distributed on the interface between the object to be bonded and the bonding layer, the Au plating remains on the interface, and in such a case, it broke early.
次に、本発明を適用してレーザ波長が1.48μmのレーザモジュールを試作した。レーザモジュールの模式図を図7に示した。レーザモジュール71の、はんだの使用箇所は、ベース79とペルチェ素子81間の接合箇所85、およびペルチェ素子81とパッケージ83間の接合箇所87であり、両者ともに同じ種類のはんだを用いた。用いたはんだは、図9としての表2に示した。 Next, a laser module having a laser wavelength of 1.48 μm was prototyped by applying the present invention. A schematic diagram of the laser module is shown in FIG. The soldering locations of the laser module 71 are the joining location 85 between the base 79 and the Peltier element 81 and the joining location 87 between the Peltier element 81 and the package 83, both of which use the same type of solder. The solder used is shown in Table 2 as FIG.
金属接合部のAu−Sn金属間化合物量を変化させるために、レーザモジュールのベース、ペルチェ、パッケージ表面のAuめっき厚さを調整して、Au−Sn化合物の量を変えた。はんだを加熱して溶融させる工程で、Auめっき部は全て溶融はんだ内に溶け込んでいた。 In order to change the amount of Au—Sn intermetallic compound in the metal junction, the amount of Au—Sn compound was changed by adjusting the Au plating thickness of the base, Peltier, and package surface of the laser module. In the process of heating and melting the solder, all of the Au plating part was dissolved in the molten solder.
また、表1に示すように実施例及び比較例の合計11種類のモジュールを11個ずつ試作し、各1個については、接合層の断面組織を観察して、金属間化合物量を確認した。接合層断面におけるAu−Sn化合物の面積分率(%)を示した。 In addition, as shown in Table 1, 11 modules of a total of 11 types of examples and comparative examples were prototyped, and for each one, the cross-sectional structure of the bonding layer was observed to confirm the amount of intermetallic compound. The area fraction (%) of the Au—Sn compound in the cross section of the bonding layer is shown.
試作したモジュールの残り10個については、85℃に1000時間保持する高温放置試験を実施した。試験後、レーザの出力を調べた。出力が試験前と比べて80%以下にまで低下した試料は不良とし、80%を超えるものを良品とした。その結果も表2に合わせて示した。 The remaining 10 prototyped modules were subjected to a high temperature storage test that was held at 85 ° C. for 1000 hours. After the test, the laser output was examined. Samples whose output was reduced to 80% or less compared with those before the test were judged as defective, and those exceeding 80% were judged as good products. The results are also shown in Table 2.
31 リング−ピン剪断試験片
33 リング部
35 ピン部
37 はんだ接合層
41 クリープ試験方法概略図
43 リング−ピン剪断試験片
71 レーザモジュール
73 光ファイバ
75 レンズ
77 レーザ
79 ベース
81 ペルチェ素子
83 パッケージ
85 はんだ接合層
87 はんだ接合層
31 Ring-pin shear test piece 33 Ring part 35 Pin part 37 Solder joint layer 41 Schematic diagram of creep test method 43 Ring-pin shear test piece 71 Laser module 73 Optical fiber 75 Lens 77 Laser 79 Base 81 Peltier element 83 Package 85 Solder joint Layer 87 Solder joint layer
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007006058A JP2007194630A (en) | 2007-01-15 | 2007-01-15 | Solder joint layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007006058A JP2007194630A (en) | 2007-01-15 | 2007-01-15 | Solder joint layer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002089141A Division JP4369643B2 (en) | 2002-03-27 | 2002-03-27 | Solder joint layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007194630A true JP2007194630A (en) | 2007-08-02 |
Family
ID=38450025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007006058A Pending JP2007194630A (en) | 2007-01-15 | 2007-01-15 | Solder joint layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007194630A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012156484A (en) | 2011-01-04 | 2012-08-16 | Napura:Kk | Light-emitting device |
US9704793B2 (en) | 2011-01-04 | 2017-07-11 | Napra Co., Ltd. | Substrate for electronic device and electronic device |
JP2020141093A (en) * | 2019-03-01 | 2020-09-03 | アイシン精機株式会社 | Joining material, joining method of thermoelectric element and metal electrode, and thermoelectric conversion module |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0366492A (en) * | 1989-08-07 | 1991-03-22 | Hitachi Ltd | Solder connected electronic circuit device and solder connecting method and solder for gold plated connecting terminal |
JPH06204615A (en) * | 1992-12-04 | 1994-07-22 | Nec Corp | Optical semiconductor device |
JPH07128550A (en) * | 1993-11-05 | 1995-05-19 | Furukawa Electric Co Ltd:The | Optical module package |
JP2002001576A (en) * | 2000-04-13 | 2002-01-08 | Agere Systems Guardian Corp | Article including solder having creep resistance and decreasing in stress |
-
2007
- 2007-01-15 JP JP2007006058A patent/JP2007194630A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0366492A (en) * | 1989-08-07 | 1991-03-22 | Hitachi Ltd | Solder connected electronic circuit device and solder connecting method and solder for gold plated connecting terminal |
JPH06204615A (en) * | 1992-12-04 | 1994-07-22 | Nec Corp | Optical semiconductor device |
JPH07128550A (en) * | 1993-11-05 | 1995-05-19 | Furukawa Electric Co Ltd:The | Optical module package |
JP2002001576A (en) * | 2000-04-13 | 2002-01-08 | Agere Systems Guardian Corp | Article including solder having creep resistance and decreasing in stress |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012156484A (en) | 2011-01-04 | 2012-08-16 | Napura:Kk | Light-emitting device |
US9704793B2 (en) | 2011-01-04 | 2017-07-11 | Napra Co., Ltd. | Substrate for electronic device and electronic device |
JP2020141093A (en) * | 2019-03-01 | 2020-09-03 | アイシン精機株式会社 | Joining material, joining method of thermoelectric element and metal electrode, and thermoelectric conversion module |
JP7363055B2 (en) | 2019-03-01 | 2023-10-18 | 株式会社アイシン | Bonding material, bonding method between thermoelectric element and metal electrode, and thermoelectric conversion module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101528515B1 (en) | Bonding method, bonding structure, electronic device, manufacturing method for electronic device, and electronic component | |
JP5280520B2 (en) | Solder material and electronic component assembly | |
EP2987876B1 (en) | Lead-free solder alloy | |
TWI505899B (en) | A bonding method, a bonding structure, and a method for manufacturing the same | |
JP5943065B2 (en) | Bonding method, electronic device manufacturing method, and electronic component | |
US9357657B2 (en) | Lead-free solder alloy for printed circuit board assemblies for high-temperature environments | |
WO2013132942A1 (en) | Bonding method, bond structure, and manufacturing method for same | |
US8673762B2 (en) | Solder, soldering method, and semiconductor device | |
US20240021565A1 (en) | Solder material and method for die attachment | |
US20040241039A1 (en) | High temperature lead-free solder compositions | |
US4465223A (en) | Process for brazing | |
US6742248B2 (en) | Method of forming a soldered electrical connection | |
JP2007194630A (en) | Solder joint layer | |
JP4011214B2 (en) | Semiconductor device and joining method using solder | |
JP3446517B2 (en) | Pb-free solder material and electronic equipment using the same | |
JP4369643B2 (en) | Solder joint layer | |
JP2008080392A (en) | Joining body and joining method | |
CA1175297A (en) | Process for brazing | |
CN105592636B (en) | Electronic device and its manufacturing method | |
JP2004289113A (en) | Metal electrode and bonding method using same | |
JP6543890B2 (en) | High temperature solder alloy | |
US20070059548A1 (en) | Grid array package using tin/silver columns | |
JP6447155B2 (en) | Electronic device and method of manufacturing electronic device | |
JP2017216308A (en) | Solder joint and method for manufacturing the same | |
JP2019063865A (en) | Solder alloy, solder junction material, and electronic circuit substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20081023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100818 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100908 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101004 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101004 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110125 |