JP2007194107A - Non-aqueous electrolytic solution secondary battery - Google Patents
Non-aqueous electrolytic solution secondary battery Download PDFInfo
- Publication number
- JP2007194107A JP2007194107A JP2006012166A JP2006012166A JP2007194107A JP 2007194107 A JP2007194107 A JP 2007194107A JP 2006012166 A JP2006012166 A JP 2006012166A JP 2006012166 A JP2006012166 A JP 2006012166A JP 2007194107 A JP2007194107 A JP 2007194107A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- active material
- solvent
- negative electrode
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000008151 electrolyte solution Substances 0.000 title claims abstract description 16
- 239000007773 negative electrode material Substances 0.000 claims abstract description 22
- 239000002904 solvent Substances 0.000 claims abstract description 22
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 19
- 239000011149 active material Substances 0.000 claims abstract description 18
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 18
- 239000010703 silicon Substances 0.000 claims abstract description 17
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011593 sulfur Substances 0.000 claims abstract description 14
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000003115 supporting electrolyte Substances 0.000 claims abstract description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 6
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 30
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 21
- 239000012046 mixed solvent Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 150000002642 lithium compounds Chemical class 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 4
- SNHOZPMHMQQMNI-UHFFFAOYSA-N lithium;2h-thiophen-2-ide Chemical compound [Li+].C=1C=[C-]SC=1 SNHOZPMHMQQMNI-UHFFFAOYSA-N 0.000 claims description 3
- 229910018091 Li 2 S Inorganic materials 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 abstract description 9
- 238000000576 coating method Methods 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 11
- 239000002002 slurry Substances 0.000 description 9
- 239000007769 metal material Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- -1 or even if formed Inorganic materials 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000011856 silicon-based particle Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007581 slurry coating method Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013470 LiC1 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- IMCZVHVSYPQRDR-UHFFFAOYSA-J dicopper phosphonato phosphate trihydrate Chemical compound O.O.O.[Cu++].[Cu++].[O-]P([O-])(=O)OP([O-])([O-])=O IMCZVHVSYPQRDR-UHFFFAOYSA-J 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011817 metal compound particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウム二次電池等の非水電解液二次電池に関する。 The present invention relates to a nonaqueous electrolyte secondary battery such as a lithium secondary battery.
現在のリチウム二次電池の電解液としては、LiPF6等の支持電解質を、有機溶媒であるエチレンカーボネート(以下、ECともいう)とジエチルカーボネート(以下、DECともいう)との混合溶媒に溶解したものを用いることが一般的である。しかしこの混合溶媒は、温度特性(高温及び低温)が十分なものとは言えなかった。 As an electrolyte for current lithium secondary batteries, a supporting electrolyte such as LiPF 6 was dissolved in a mixed solvent of an organic solvent, ethylene carbonate (hereinafter also referred to as EC) and diethyl carbonate (hereinafter also referred to as DEC). It is common to use one. However, this mixed solvent cannot be said to have sufficient temperature characteristics (high temperature and low temperature).
有機溶媒としては、ECやDECの他に、プロピレンカーボネート(以下、PCともいう)が代表的なものとして知られている。PCは、ECやDECに比較して安価であり、また温度特性やサイクル特性に優れた溶媒である。しかしPCを、現在のリチウム二次電池の負極材料であるグラファイトと併用すると、グラファイトにリチウムを吸蔵させようとしても吸蔵は行われず、その代わりにPCの分解が起こってしまうことが知られている(非特許文献1参照)。従って負極材料にグラファイトを用いたリチウム二次電池では、電解液の溶媒としてPCを用いることはできない。 As the organic solvent, in addition to EC and DEC, propylene carbonate (hereinafter also referred to as PC) is known as a representative one. PC is cheaper than EC and DEC, and is a solvent excellent in temperature characteristics and cycle characteristics. However, it is known that when PC is used in combination with graphite, which is the negative electrode material of the present lithium secondary battery, even if lithium is occluded in graphite, occlusion is not performed, but instead PC is decomposed. (Refer nonpatent literature 1). Therefore, in a lithium secondary battery using graphite as the negative electrode material, PC cannot be used as a solvent for the electrolytic solution.
本発明の目的は、前述した従来技術が有する欠点を解消し得る非水電解液二次電池を提供することにある。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can eliminate the drawbacks of the prior art described above.
本発明は、負極活物質としてシリコンを含む材料を用い、且つ電解液の溶媒としてプロピレンカーボネートとジアルキルカーボネートとの混合溶媒を用いたことを特徴とする非水電解液二次電池を提供することにより前記目的を達成したものである。 The present invention provides a non-aqueous electrolyte secondary battery using a material containing silicon as a negative electrode active material and using a mixed solvent of propylene carbonate and dialkyl carbonate as a solvent of an electrolytic solution. The object has been achieved.
本発明の非水電解液二次電池は、低温での温度特性、及びサイクル特性に優れたものである。 The non-aqueous electrolyte secondary battery of the present invention is excellent in temperature characteristics at low temperatures and cycle characteristics.
以下本発明を、その好ましい実施形態に基づき説明する。本発明の非水電解液二次電池は、典型的には、負極及び正極並びに両極間に介在配置されたセパレータを備えている。負極と正極との間には非水電解液が存在している。負極は、集電体の少なくとも一面に活物質層が形成されてなる。活物質層は、負極活物質を含んでいる。本発明においては、負極活物質として、シリコン(Si)を含む材料を用いている。シリコンは、現在非水電解液二次電池の負極材料として用いられているグラファイトに比較して高容量であるという利点を有している。 Hereinafter, the present invention will be described based on preferred embodiments thereof. The nonaqueous electrolyte secondary battery of the present invention typically includes a negative electrode, a positive electrode, and a separator interposed between both electrodes. A non-aqueous electrolyte exists between the negative electrode and the positive electrode. The negative electrode has an active material layer formed on at least one surface of a current collector. The active material layer includes a negative electrode active material. In the present invention, a material containing silicon (Si) is used as the negative electrode active material. Silicon has an advantage that it has a higher capacity than graphite, which is currently used as a negative electrode material for non-aqueous electrolyte secondary batteries.
本発明で用いられる負極活物質としては、シリコン単体のみならず、シリコンと他の金属との合金、シリコンと他の金属との金属間化合物、シリコン酸化物などを用いることができる。他の金属としては、Co、Ni、Cu、Fe、V、Ti、Mn、Cr、W、Mg、Ndなどのリチウム化合物の形成能の低い金属が挙げられる。「リチウム化合物の形成能の低い」とは、リチウムと金属間化合物若しくは固溶体を形成しないか、又は形成したとしてもリチウムが微量であるか若しくは非常に不安定であることを意味する。また、他の金属としてLiを用いることもできる。更に、負極活物質として、本出願人の先の出願に係る特開2005−63767号公報に記載のものを用いることもできる。具体的には、シリコンの粒子と炭素の粒子との混合粒子;シリコンの粒子と金属の粒子との混合粒子;シリコン及び金属の化合物粒子と、金属の粒子との混合粒子などが挙げられる。 As the negative electrode active material used in the present invention, not only silicon alone but also an alloy of silicon and other metal, an intermetallic compound of silicon and other metal, silicon oxide, or the like can be used. Examples of the other metal include metals having low ability to form lithium compounds such as Co, Ni, Cu, Fe, V, Ti, Mn, Cr, W, Mg, and Nd. “Low lithium compound forming ability” means that lithium does not form an intermetallic compound or solid solution, or even if formed, lithium is in a very small amount or very unstable. Li can also be used as another metal. Furthermore, what is described in Unexamined-Japanese-Patent No. 2005-63767 based on the previous application of this applicant can also be used as a negative electrode active material. Specific examples include mixed particles of silicon particles and carbon particles; mixed particles of silicon particles and metal particles; mixed particles of silicon and metal compound particles and metal particles.
シリコンを含む材料からなる負極活物質は、例えば薄膜の形状であり得る。この場合、化学気相蒸着法、物理気相蒸着法、スパッタリング法等の各種薄膜形成手段によって、集電体の少なくとも一面に薄膜からなる活物質層が形成される。この薄膜をエッチングしてその厚み方向に延びる空隙を多数形成してもよい。エッチングには、水酸化ナトリウム水溶液等を用いた湿式エッチング法の他、ドライガスやプラズマ等を用いた乾式エッチング法が採用できる。 The negative electrode active material made of a material containing silicon can be in the form of a thin film, for example. In this case, an active material layer made of a thin film is formed on at least one surface of the current collector by various thin film forming means such as chemical vapor deposition, physical vapor deposition, and sputtering. The thin film may be etched to form a large number of voids extending in the thickness direction. In addition to the wet etching method using a sodium hydroxide aqueous solution or the like, a dry etching method using a dry gas or plasma can be employed for the etching.
負極活物質は粒子の形状でもあり得る。この場合、粒子は、結着剤及び溶剤等と混合されてなるスラリーの状態で、集電体の少なくとも一面に塗布される。これによって該スラリーの塗膜からなる活物質層が形成される。この塗膜を焼成して粒子どうしを焼結させてもよい。焼結の方法としては、例えば特開2002−260637号公報に記載の方法を用いることができる。或いは、粒子間にリチウム化合物の形成能の低い金属が浸透していることも好ましい。粒子間に金属が浸透していることで、充放電で体積変化することに起因して微粉化した活物質の脱落を効果的に防ぐことができる。ここで言う浸透とは、リチウム化合物の形成能の低い金属材料が、粒子の表面を被覆するように粒子間の空間に存在している状態を指し、粒子間の空間が当該金属材料で埋め尽くされていることを要しない。むしろ当該金属材料は、粒子間に空間が存在するように粒子の表面を被覆していることが好ましい。当該金属材料がこのような状態で存在していることで、電解液が活物質層の深部にまで確実に到達するという利点がある。また、リチウムを吸蔵した粒子が膨張することに起因する体積の増加分が緩和されるという利点もある。 The negative electrode active material can also be in the form of particles. In this case, the particles are applied to at least one surface of the current collector in a slurry state mixed with a binder and a solvent. As a result, an active material layer made of the slurry coating is formed. The coating film may be fired to sinter the particles. As a sintering method, for example, a method described in JP-A-2002-260637 can be used. Alternatively, it is also preferable that a metal having a low lithium compound forming ability permeates between the particles. By allowing the metal to permeate between the particles, it is possible to effectively prevent the active material that has been pulverized due to volume change due to charge and discharge. The term “penetration” as used herein refers to a state in which a metal material having a low lithium compound forming ability exists in the space between particles so as to cover the surface of the particle, and the space between particles is completely filled with the metal material You don't need to be. Rather, it is preferable that the metal material covers the surface of the particles so that there is a space between the particles. The presence of the metal material in such a state has an advantage that the electrolytic solution reliably reaches the deep part of the active material layer. In addition, there is an advantage that the increase in volume caused by the expansion of the lithium-occluded particles is alleviated.
粒子間に金属を浸透させるには、スラリーの塗膜に対して電解めっきを行い、粒子間にリチウム化合物の形成能の低い金属を析出させればよい。電解めっきによって粒子間に金属を析出させるには、例えば本出願人の先の出願に係る特開2005−63929号公報に記載の方法を用いることができる。具体的には、集電体上に、活物質の粒子を含むスラリーを塗布して塗膜を形成する。スラリーは、活物質の粒子、導電性炭素材料の粒子、結着剤及び希釈溶媒などを含んでいる。結着剤としてはポリビニリデンフルオライド(PVDF)、ポリエチレン(PE)、エチレンプロピレンジエンモノマー(EPDM)などが用いられる。希釈溶媒としてはN−メチルピロリドン、シクロヘキサンなどが用いられる。スラリーの塗膜の形成後、リチウム化合物の形成能の低い金属材料を含むめっき浴中に浸漬して電解めっきを行う。電解めっきの条件としては、例えば銅を用いる場合、硫酸銅系溶液を用いるときには、銅の濃度を30〜100g/l、硫酸の濃度を50〜200g/l、塩素の濃度を30ppm以下とし、液温を30〜80℃、電流密度を1〜100A/dm2とすればよい。ピロ燐酸銅系溶液を用いる場合には、銅の濃度2〜50g/l、ピロ燐酸カリウムの濃度100〜700g/lとし、液温を30〜60℃、pHを8〜12、電流密度を1〜10A/dm2とすればよい。これらの電解条件を適宜調節することで、リチウム化合物の形成能の低い金属材料が塗膜内に浸透して、目的とする活物質層が形成される。 In order to infiltrate the metal between the particles, electrolytic plating is performed on the coating film of the slurry to deposit a metal having a low lithium compound forming ability between the particles. In order to deposit a metal between particles by electrolytic plating, for example, a method described in Japanese Patent Application Laid-Open No. 2005-63929 related to an earlier application of the present applicant can be used. Specifically, a slurry containing active material particles is applied onto a current collector to form a coating film. The slurry contains active material particles, conductive carbon material particles, a binder, a diluting solvent, and the like. As the binder, polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene diene monomer (EPDM) or the like is used. As a diluting solvent, N-methylpyrrolidone, cyclohexane or the like is used. After the formation of the slurry coating film, electrolytic plating is performed by dipping in a plating bath containing a metal material having a low lithium compound forming ability. As conditions for electrolytic plating, for example, when using copper, when using a copper sulfate solution, the concentration of copper is 30 to 100 g / l, the concentration of sulfuric acid is 50 to 200 g / l, the concentration of chlorine is 30 ppm or less, The temperature may be 30 to 80 ° C. and the current density may be 1 to 100 A / dm 2 . When using a copper pyrophosphate solution, the concentration of copper is 2 to 50 g / l, the concentration of potassium pyrophosphate is 100 to 700 g / l, the liquid temperature is 30 to 60 ° C., the pH is 8 to 12, and the current density is 1. ~10A / dm 2 and may be set. By appropriately adjusting these electrolytic conditions, a metal material having a low lithium compound-forming ability penetrates into the coating film, and a target active material layer is formed.
一方、正極は、集電体の少なくとも一面に活物質層が形成されてなる。活物質層は正極活物質を含んでいる。正極活物質としては含Li化合物が用いられる。含Li化合物としては、電気化学的にリチウムを吸蔵・放出可能な物質が用いられる。例えば、リチウムを含む層状化合物であるLiCoO2やLiNiO2などを用いることができる。或いは、リチウムを含むスピネル構造の化合物であるLiMo2O4などを用いることができる。活物質層は、これら正極活物質の粒子が、結着剤及び溶剤等と混合されてなるスラリーの状態で、集電体の少なくとも一面に塗布されて形成される。 On the other hand, the positive electrode has an active material layer formed on at least one surface of a current collector. The active material layer contains a positive electrode active material. A Li-containing compound is used as the positive electrode active material. As the Li-containing compound, a substance capable of electrochemically inserting and extracting lithium is used. For example, LiCoO 2 or LiNiO 2 which is a layered compound containing lithium can be used. Alternatively, LiMo 2 O 4 which is a compound having a spinel structure including lithium can be used. The active material layer is formed by applying the positive electrode active material particles to at least one surface of the current collector in a slurry state in which the particles are mixed with a binder and a solvent.
負極において、活物質層を支持する集電体は、リチウム化合物の形成能の低い金属材料から一般に構成される。そのような金属材料としては、例えば銅、ニッケル、鉄、コバルト又はこれらの合金などが挙げられる。一方、正極において、活物質層を支持する集電体としては、一般にアルミニウム箔が用いられる。 In the negative electrode, the current collector that supports the active material layer is generally composed of a metal material having a low ability to form a lithium compound. Examples of such a metal material include copper, nickel, iron, cobalt, and alloys thereof. On the other hand, in the positive electrode, an aluminum foil is generally used as a current collector that supports the active material layer.
正極と負極とを隔てるセパレータの種類には特に制限はなく、従来この種の材料として用いられているものと同様のものを用いることができる。例えば合成樹脂製不織布、ポリエチレンやポリプロピレンの多孔質フイルム等が好ましく用いられる。 There is no restriction | limiting in particular in the kind of separator which separates a positive electrode and a negative electrode, The thing similar to what was conventionally used as this kind of material can be used. For example, a synthetic resin nonwoven fabric, a polyethylene or polypropylene porous film, or the like is preferably used.
しかして本発明においては、非水電解液の溶媒として、PCとジアルキルカーボネート(以下、DACともいう)との混合溶媒を用いている。前記の背景技術の項で述べた通り、従来の非水電解液二次電池においては非水電解液の溶媒としてECとDECの混合溶媒が用いられていた。しかしこの混合溶媒は、高温及び低温での温度特性や、レート特性が良好でないという欠点があった。また、この混合溶媒を、負極活物質としてシリコンを含む材料を用いた二次電池に適用すると、サイクル寿命が劣化するという問題があることが本発明者らの検討の結果判明した。この理由は次の通りであると考えられる。負極活物質としてシリコンを含む材料を用い、また正極活物質として例えばLiCoO2を用い、充放電の電圧を4.2−2.7Vとすると、放電末期におけるSiの分極が大きくなり、それに起因して溶媒の分解が起こりやすくなる。その結果、電位シフト及び負極の膨張が引き起こされる。この理由によって電池のサイクル寿命が劣化する。 Accordingly, in the present invention, a mixed solvent of PC and dialkyl carbonate (hereinafter also referred to as DAC) is used as a solvent for the nonaqueous electrolytic solution. As described in the background section above, in a conventional non-aqueous electrolyte secondary battery, a mixed solvent of EC and DEC is used as a solvent for the non-aqueous electrolyte. However, this mixed solvent has a drawback that the temperature characteristics at high and low temperatures and the rate characteristics are not good. In addition, as a result of examinations by the present inventors, it has been found that when this mixed solvent is applied to a secondary battery using a material containing silicon as a negative electrode active material, there is a problem that the cycle life is deteriorated. The reason is considered as follows. If a material containing silicon is used as the negative electrode active material, and LiCoO 2 is used as the positive electrode active material, and the charge / discharge voltage is 4.2-2.7 V, the polarization of Si at the end of discharge increases, resulting in this. Therefore, decomposition of the solvent is likely to occur. As a result, potential shift and negative electrode expansion are caused. For this reason, the cycle life of the battery deteriorates.
ECとDECの混合溶媒が有する前記の欠点に対し、本発明においては非水電解液の溶媒としてPCとDACの混合溶媒を用いることで、該欠点を解消することが可能となった。本発明においては、非水電解液の溶媒としてPCを用いてもその分解のおそれはない。しかも、PCとDACの混合溶媒を用いることで、温度特性やサイクル特性を高めることができる。詳細には、PCを用いることで電池のサイクル特性が向上し、DACを用いることで電池の温度特性(低温での温度特性)が向上する。 In contrast to the above-mentioned drawbacks of the mixed solvent of EC and DEC, in the present invention, it is possible to eliminate the drawbacks by using a mixed solvent of PC and DAC as the solvent of the non-aqueous electrolyte. In the present invention, there is no risk of decomposition even if PC is used as the solvent of the non-aqueous electrolyte. Moreover, temperature characteristics and cycle characteristics can be improved by using a mixed solvent of PC and DAC. Specifically, the battery cycle characteristics are improved by using a PC, and the battery temperature characteristics (temperature characteristics at a low temperature) are improved by using a DAC.
本発明者らの検討の結果、PCとDACとは広い容積比の範囲で混合可能であることが判明した。具体的には、混合溶媒におけるPCとDACとの容積比(前者:後者)は好ましくは5:95〜95:5であり、更に好ましくは20:80〜70:30である。PCの容積比が95%超になると、非水電解液二次電池において一般的に使用されるセパレーターとの濡れ性が低くなる傾向にあり、電解質の流通が円滑にならないことがある。一方、DACの容積比が95%超になると、混合溶媒全体としての極性が低下し、電解質の溶解が困難になる場合がある。 As a result of the study by the present inventors, it was found that PC and DAC can be mixed within a wide range of volume ratios. Specifically, the volume ratio (the former: latter) of PC and DAC in the mixed solvent is preferably 5:95 to 95: 5, and more preferably 20:80 to 70:30. When the volume ratio of PC exceeds 95%, the wettability with a separator generally used in a nonaqueous electrolyte secondary battery tends to be low, and the electrolyte may not flow smoothly. On the other hand, when the volume ratio of the DAC exceeds 95%, the polarity of the mixed solvent as a whole decreases, and it may be difficult to dissolve the electrolyte.
DACとしては、例えばジエチルカーボネートやジメチルカーボネートを用いることができる。或いは、これら両者を併用することもできる。特にジエチルカーボネートは凝固点が低く、氷点下での電池使用が可能となることから好ましい。 For example, diethyl carbonate or dimethyl carbonate can be used as the DAC. Or these two can also be used together. In particular, diethyl carbonate is preferable because it has a low freezing point and can be used under a freezing point.
本発明は、非水電解液の溶媒としてPCとDACの混合溶媒を用いることが特徴の一つであるが、このことはPC及びDAC以外の溶媒を用いることを妨げるものではない。即ち、本発明において用いられる溶媒には、必要に応じてPC及びDAC以外の溶媒を用いることができる。尤も、本発明の効果を最大限発揮させるためには、非水電解液の溶媒として、PC及びDACのみを用い、且つ他の非水溶媒は用いないことが最も好ましい。 The present invention is characterized in that a mixed solvent of PC and DAC is used as a solvent for the non-aqueous electrolyte, but this does not preclude the use of a solvent other than PC and DAC. That is, as the solvent used in the present invention, a solvent other than PC and DAC can be used as necessary. However, in order to maximize the effects of the present invention, it is most preferable that only PC and DAC are used as the solvent of the non-aqueous electrolyte and no other non-aqueous solvent is used.
本発明の二次電池における非水電解液の支持電解質としては、この種の物質として従来用いられているものと同様のものを特に制限なく用いることができる。例えばLiC1O4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiSCN、LiC1、LiBr、LiI、LiCF3SO3、LiC4F9SO3等が挙げられる。これらの支持電解質は単独で、又は2種以上を組み合わせて用いることができる。 As the supporting electrolyte of the nonaqueous electrolytic solution in the secondary battery of the present invention, the same one as conventionally used as this kind of substance can be used without particular limitation. For example LiC1O 4, LiA1Cl 4, LiPF 6 , LiAsF 6, LiSbF 6, LiSCN, LiC1, LiBr, LiI, etc. LiCF 3 SO 3, LiC 4 F 9 SO 3 and the like. These supporting electrolytes can be used alone or in combination of two or more.
更に、前記の各種支持電解質を、シリコンを含む材料からなる負極活物質の表面に、硫黄を含有する被膜の形成が可能な硫黄含有リチウム塩(以下、被膜形成性リチウム塩ともいう)と併用することが好ましい。被膜形成性リチウム塩を併用することで、SEIと(solid electrolyte interface)呼ばれる被膜が負極活物質の表面に形成される。本発明者らの検討結果、被膜形成性リチウム塩を併用することで形成されるSEIは、リチウムイオン伝導性を有し且つ電解液の分解を抑制する性質を有することが判明した。電解液の分解防止は電池のサイクル特性の向上につながる。従って本発明において、通常の支持電解質を被膜形成性リチウム塩と併用すると、PC/DACの混合溶媒を用いることとの相乗作用によって、電池のサイクル特性を一層向上させることが可能になる。 Further, the various supporting electrolytes described above are used in combination with a sulfur-containing lithium salt (hereinafter also referred to as a film-forming lithium salt) capable of forming a film containing sulfur on the surface of a negative electrode active material made of a material containing silicon. It is preferable. By using the film-forming lithium salt in combination, a film called SEI (solid electrolyte interface) is formed on the surface of the negative electrode active material. As a result of the study by the present inventors, it has been found that SEI formed by using a film-forming lithium salt in combination has lithium ion conductivity and a property of suppressing decomposition of the electrolytic solution. Preventing the decomposition of the electrolytic solution leads to improvement of the cycle characteristics of the battery. Therefore, in the present invention, when a normal supporting electrolyte is used in combination with a film-forming lithium salt, the cycle characteristics of the battery can be further improved by a synergistic effect with the use of a mixed solvent of PC / DAC.
被膜形成性リチウム塩としては、例えば、負極活物質に含まれているシリコンと反応可能な硫黄を含有するリチウム塩や、それ自身で反応が可能な、硫黄を含有するリチウム塩を用いることができる。被膜形成性リチウム塩は、電池の充放電の間に、負極活物質に含まれているシリコンと反応することによって、或いはそれ自身で反応して、負極活物質の表面にSEIを形成する。そのようなリチウム塩の例としては、LiS2や、以下の化学式で表される2−チエニルリチウム(C4H3SLi)が挙げられる。 As the film-forming lithium salt, for example, a lithium salt containing sulfur that can react with silicon contained in the negative electrode active material, or a lithium salt containing sulfur that can react by itself can be used. . The film-forming lithium salt forms SEI on the surface of the negative electrode active material by reacting with silicon contained in the negative electrode active material or by itself during charge / discharge of the battery. Examples of such a lithium salt include LiS 2 and 2-thienyl lithium (C 4 H 3 SLi) represented by the following chemical formula.
例えばLi2Sは、以下の反応式(1)によって負極活物質の表面にLi4SiS4からなるSEIを形成する。
Si+2S2-+2Li2S−4e-→Li4SiS4 (1)
For example, Li 2 S forms SEI made of Li 4 SiS 4 on the surface of the negative electrode active material according to the following reaction formula (1).
Si + 2S 2- + 2Li 2 S-4e − → Li 4 SiS 4 (1)
前記の被膜形成性リチウム塩のうち、LiS2は水分を吸収しやすいので、水分を嫌う非水電解液二次電池においてはその取り扱いに十分に留意すべきである。また、2−チエニルリチウムは、それを直接非水溶媒に溶解してもよく、或いはテトラヒドロフラン(THF)等に一旦溶解した上で非水溶媒に添加してもよい。 Of the above-described film-forming lithium salts, LiS 2 is easy to absorb moisture, and therefore, in a non-aqueous electrolyte secondary battery that dislikes moisture, attention should be paid to its handling. Further, 2-thienyl lithium may be directly dissolved in a non-aqueous solvent, or may be once dissolved in tetrahydrofuran (THF) and then added to the non-aqueous solvent.
通常の支持電解質(即ち、硫黄を含有しないリチウム塩、及び硫黄を含有するが、シリコンを含む材料からなる負極活物質の表面に、硫黄を含有する被膜の形成が可能でないリチウム塩)と併用される被膜形成性リチウム塩の電解液における濃度は、0.01〜0.5mol/l、特に0.05〜0.2mol/lであることが、低温特性とサイクル寿命とのバランスの点から好ましい。 It is used in combination with a normal supporting electrolyte (that is, a lithium salt that does not contain sulfur and a lithium salt that contains sulfur but cannot form a film containing sulfur on the surface of a negative electrode active material made of silicon). The concentration of the film-forming lithium salt in the electrolytic solution is preferably 0.01 to 0.5 mol / l, particularly 0.05 to 0.2 mol / l from the viewpoint of the balance between the low temperature characteristics and the cycle life. .
本発明の二次電池の形態は、コイン型や円筒型、角型であり得る。例えば本発明の二次電池は、負極と正極との間にセパレータを介在させ、これら三者を巻回させて巻回体を形成し、該巻回体を電池容器内に収容してなるジェリーロールタイプの電池(円筒型電池や角型電池)とすることができる。 The form of the secondary battery of the present invention may be a coin type, a cylindrical type, or a square type. For example, in the secondary battery of the present invention, a separator is interposed between a negative electrode and a positive electrode, these three members are wound to form a wound body, and the wound body is accommodated in a battery container. A roll type battery (cylindrical battery or square battery) can be used.
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されるものではない。特に断らない限り「%」及び「部」はそれぞれ「重量%」及び「重量部」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” and “part” mean “% by weight” and “part by weight”, respectively.
〔実施例1〕
(1)負極の製造
厚さ18μmの電解銅箔からなる集電体を室温で30秒間酸洗浄した。処理後、15秒間純水洗浄した。集電体上にSiの粒子を含むスラリーを膜厚15μmになるように塗布し塗膜を形成した。粒子の平均粒径(D50)は2μmであった。スラリーの組成は、粒子:スチレンブタジエンラバー(結着剤)=100:1.7(重量比)であった。
[Example 1]
(1) Production of Negative Electrode A current collector made of an electrolytic copper foil having a thickness of 18 μm was acid washed at room temperature for 30 seconds. After the treatment, it was washed with pure water for 15 seconds. A slurry containing Si particles was applied on the current collector to a thickness of 15 μm to form a coating film. The average particle diameter (D 50 ) of the particles was 2 μm. The composition of the slurry was particle: styrene butadiene rubber (binder) = 100: 1.7 (weight ratio).
塗膜が形成された集電体を、以下の浴組成を有するピロリン酸銅浴に浸漬させ、電解めっきにより塗膜中の粒子間に銅を析出させて活物質層を形成した。この電解めっきによって塗膜の厚み方向全域にわたって銅が析出した。このようにして負極を製造した。電解の条件は以下の通りとした。陽極にはDSEを用いた。電源は直流電源を用いた。
・ピロリン酸銅三水和物:105g/l
・ピロリン酸カリウム:450g/l
・硝酸カリウム:30g/l
・浴温度:50℃
・電流密度:3A/dm2
・pH:アンモニア水とポリリン酸を添加してpH8.2になるように調整した。
The current collector on which the coating film was formed was immersed in a copper pyrophosphate bath having the following bath composition, and copper was deposited between the particles in the coating film by electrolytic plating to form an active material layer. Copper was deposited over the entire thickness direction of the coating film by this electrolytic plating. In this way, a negative electrode was produced. The electrolysis conditions were as follows. DSE was used for the anode. A DC power source was used as the power source.
Copper pyrophosphate trihydrate: 105 g / l
-Potassium pyrophosphate: 450 g / l
・ Potassium nitrate: 30 g / l
・ Bath temperature: 50 ° C
・ Current density: 3 A / dm 2
-PH: Ammonia water and polyphosphoric acid were added to adjust to pH 8.2.
(2)正極の製造
正極活物質として平均粒径20μmのLiCoO2の粉末を用いた。この粉末90部と、導電剤としてのアセチレンブラック5部を、結着剤としてのポリフッ化ビニリデン5部を含む5%のN−メチルピロリドン溶液に混合してスラリーを得た。このスラリーを、集電体であるアルミニウム箔の上に塗布し、乾燥した後圧延して正極を製造した。
(2) Manufacture of positive electrode LiCoO 2 powder having an average particle diameter of 20 μm was used as the positive electrode active material. 90 parts of this powder and 5 parts of acetylene black as a conductive agent were mixed with a 5% N-methylpyrrolidone solution containing 5 parts of polyvinylidene fluoride as a binder to obtain a slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to produce a positive electrode.
(3)二次電池の製造
得られた負極及び正極を、ポリエチレン多孔質フィルムからなるセパレータを介して対向させ、電池ケース内に収容した。電解液としては、PC及びDECを表1に示す容積比で混合した混合溶媒に、表1に示す支持電解質を同表に示す濃度で溶解したものを用いた。
(3) Manufacture of secondary battery The obtained negative electrode and positive electrode were opposed to each other through a separator made of a polyethylene porous film and housed in a battery case. As the electrolytic solution, a solution obtained by dissolving the supporting electrolyte shown in Table 1 at a concentration shown in the same table in a mixed solvent in which PC and DEC were mixed at a volume ratio shown in Table 1 was used.
(4)評価
得られた二次電池について、低温特性及び100サイクル容量維持率を以下の方法で測定した。その結果を表1に示す。
(4) Evaluation About the obtained secondary battery, the low temperature characteristic and the 100 cycle capacity maintenance rate were measured with the following method. The results are shown in Table 1.
〔低温特性〕
5サイクルの初期活性後、以下の比を算出して低温特性として数値化した。
{(−10℃での0.5Cレートでの放電容量)/(25℃での0.5Cレートでの放電容量)}×100
(Low temperature characteristics)
After 5 cycles of initial activity, the following ratios were calculated and quantified as low temperature characteristics.
{(Discharge capacity at 0.5 C rate at −10 ° C.) / (Discharge capacity at 0.5 C rate at 25 ° C.)} × 100
〔100サイクル容量維持率〕
100サイクル後の放電容量を測定し、その値を最大負極放電容量で除し、100を乗じて算出した。
[100 cycle capacity maintenance rate]
The discharge capacity after 100 cycles was measured, and the value was divided by the maximum negative electrode discharge capacity and multiplied by 100.
〔実施例2ないし8及び比較例1〕
電解液における溶媒及び支持電解質の種類として表1に示すものを用いた以外は実施例1と同様にして二次電池を得た。得られた二次電池について実施例1と同様の評価を行った。この結果を表1に示す。
[Examples 2 to 8 and Comparative Example 1]
A secondary battery was obtained in the same manner as in Example 1 except that the solvents shown in Table 1 were used as the solvent and the supporting electrolyte in the electrolytic solution. Evaluation similar to Example 1 was performed about the obtained secondary battery. The results are shown in Table 1.
表1に示す結果から明らかなように、PCとDECの混合溶媒を用いた各実施例の二次電池は、ECとDECの混合溶媒を用いた比較例の二次電池に比べて低温特性及びサイクル特性が向上することが判る。また、実施例1と実施例5ないし8との対比から明らかなように、支持電解質として被膜形成性リチウム塩を用いることで、サイクル特性が一層向上することが判る。 As is clear from the results shown in Table 1, the secondary battery of each example using a mixed solvent of PC and DEC had a lower temperature characteristic and a lower battery than the secondary battery of the comparative example using a mixed solvent of EC and DEC. It can be seen that the cycle characteristics are improved. Further, as is clear from the comparison between Example 1 and Examples 5 to 8, it is understood that the cycle characteristics are further improved by using a film-forming lithium salt as the supporting electrolyte.
なお表には示していないが、分析の結果、実施例5ないし8における負極の活物質の表面には、硫黄を含有する被膜が形成されていたことが確認された。具体的には、上記の評価を行った後の電池を解体し、負極を取り出して洗浄した後、XPSを用いて活物質の表面の分析を行うことで、硫黄の存在を確認した。
Although not shown in the table, as a result of analysis, it was confirmed that a film containing sulfur was formed on the surface of the negative electrode active material in Examples 5 to 8. Specifically, the battery after the above evaluation was disassembled, the negative electrode was taken out and washed, and then the presence of sulfur was confirmed by analyzing the surface of the active material using XPS.
Claims (6)
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the material containing silicon is made of particles, and a metal having a low ability to form a lithium compound penetrates between the particles.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006012166A JP2007194107A (en) | 2006-01-20 | 2006-01-20 | Non-aqueous electrolytic solution secondary battery |
PCT/JP2007/050383 WO2007083583A1 (en) | 2006-01-20 | 2007-01-15 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006012166A JP2007194107A (en) | 2006-01-20 | 2006-01-20 | Non-aqueous electrolytic solution secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007194107A true JP2007194107A (en) | 2007-08-02 |
Family
ID=38287536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006012166A Withdrawn JP2007194107A (en) | 2006-01-20 | 2006-01-20 | Non-aqueous electrolytic solution secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007194107A (en) |
WO (1) | WO2007083583A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220037699A1 (en) * | 2020-07-28 | 2022-02-03 | Apple Inc. | Propylene Carbonate-Based Electrolyte For Lithium Ion Batteries With Silicon-Based Anodes |
CN114975901B (en) * | 2021-04-30 | 2024-08-23 | 广汽埃安新能源汽车有限公司 | Negative electrode material and preparation method thereof, lithium ion battery negative electrode, lithium ion battery and preparation method thereof, and lithium ion battery pack |
US12362393B2 (en) * | 2022-06-28 | 2025-07-15 | Apple Inc. | Electrolyte for lithium-ion batteries with silicon-based anodes |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004047416A (en) * | 2002-05-23 | 2004-02-12 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
JP3643108B2 (en) * | 2003-07-23 | 2005-04-27 | 三井金属鉱業株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP4610213B2 (en) * | 2003-06-19 | 2011-01-12 | 三洋電機株式会社 | Lithium secondary battery and manufacturing method thereof |
JP2005063731A (en) * | 2003-08-08 | 2005-03-10 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery and its manufacturing method |
JP4535722B2 (en) * | 2003-12-24 | 2010-09-01 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
-
2006
- 2006-01-20 JP JP2006012166A patent/JP2007194107A/en not_active Withdrawn
-
2007
- 2007-01-15 WO PCT/JP2007/050383 patent/WO2007083583A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2007083583A1 (en) | 2007-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101501920B (en) | Non-aqueous electrolyte secondary battery | |
CN106663805B (en) | Positive electrode active material for nonaqueous electrolyte secondary battery | |
CN106030873B (en) | Positive electrode active material for nonaqueous electrolyte secondary battery | |
US10586981B2 (en) | Positive electrode for a battery and battery including positive electrode active material | |
JP5455975B2 (en) | Positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP2008277156A (en) | Negative electrode for nonaqueous electrolyte secondary battery | |
JP2017120765A (en) | Nonaqueous electrolyte secondary battery | |
JP6876955B2 (en) | Positive electrode active material and battery | |
WO2013038672A1 (en) | Nonaqueous electrolyte secondary cell | |
JPWO2018092359A1 (en) | Positive electrode active material for battery and battery | |
CN112005409A (en) | Positive electrode active material and battery provided with same | |
JP5694191B2 (en) | Positive electrode for non-aqueous electrolyte secondary battery | |
JP6735479B2 (en) | Lithium primary battery | |
JP2019053930A (en) | Water-based lithium ion secondary battery | |
JP2015198020A (en) | Surface treatment copper foil for negative electrode, negative electrode and lithium ion secondary battery using the same | |
JP2008047306A (en) | Nonaqueous electrolyte secondary battery | |
JP2007207443A (en) | Nonaqueous electrolyte secondary battery | |
JP2007194107A (en) | Non-aqueous electrolytic solution secondary battery | |
JP2007273224A (en) | Nonaqueous electrolyte secondary battery | |
JP2003303592A (en) | Nonaqueous electrolyte secondary battery | |
WO2020012739A1 (en) | Positive electrode active material and cell comprising same | |
JP2009272243A (en) | Nonaqueous electrolyte secondary battery | |
WO2009084329A1 (en) | Positive electrode for nonaqueous electrolyte secondary battery | |
JP2000030692A (en) | Non-aqueous electrolyte secondary battery | |
JP4954902B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081128 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20100929 |