[go: up one dir, main page]

JP2007187420A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007187420A
JP2007187420A JP2006007578A JP2006007578A JP2007187420A JP 2007187420 A JP2007187420 A JP 2007187420A JP 2006007578 A JP2006007578 A JP 2006007578A JP 2006007578 A JP2006007578 A JP 2006007578A JP 2007187420 A JP2007187420 A JP 2007187420A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
path
paths
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006007578A
Other languages
Japanese (ja)
Other versions
JP4120680B2 (en
Inventor
Makoto Kojima
誠 小島
Takayuki Setoguchi
隆之 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006007578A priority Critical patent/JP4120680B2/en
Priority to CN2006101567452A priority patent/CN101149097B/en
Priority to KR1020087013407A priority patent/KR100973916B1/en
Priority to US12/087,100 priority patent/US20090025420A1/en
Priority to CN2007800017227A priority patent/CN101360961B/en
Priority to AU2007205443A priority patent/AU2007205443B2/en
Priority to EP07706803.9A priority patent/EP1975525A4/en
Priority to PCT/JP2007/050476 priority patent/WO2007081021A1/en
Publication of JP2007187420A publication Critical patent/JP2007187420A/en
Application granted granted Critical
Publication of JP4120680B2 publication Critical patent/JP4120680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

【課題】複数のパスを有する空気調和機用熱交換器に対応する分流器の各パス間の冷媒の偏流を逆に適切に制御し、熱交換性能を向上させた空気調和機を提供する。
【解決手段】圧縮機と、四方弁と、室外熱交換器と、絞り装置と、複数のパスを有する室内熱交換器とからなり、これらを冷媒配管により順次接続して冷媒回路を構成するとともに、複数のパスを備えた室内熱交換器と絞り装置との間に複数のパスを備えた分流器を配設してなる空気調和機において、分流器の複数のパスの各々に冷媒流量調整弁を設け、その内の所定の運転状態において処理する能力が大きく室内熱交換器の出口側冷媒温度が高くなる所定のパスに対して、より多くの冷媒を配分するようにした。パスの管内流速は速くなり、また吸込み温度との温度差が広がるため、室内熱交換器の能力は向上し、冷凍能力がアップする。
【選択図】 図2
An air conditioner having improved heat exchange performance by appropriately controlling the flow of refrigerant between the paths of a flow divider corresponding to a heat exchanger for an air conditioner having a plurality of paths.
A compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger having a plurality of paths are sequentially connected by a refrigerant pipe to form a refrigerant circuit. An air conditioner in which a flow divider having a plurality of paths is disposed between an indoor heat exchanger having a plurality of paths and a throttle device, and a refrigerant flow rate adjusting valve is provided in each of the plurality of paths of the flow divider Among them, more refrigerant is distributed to a predetermined path that has a large capacity for processing in a predetermined operation state and the outlet side refrigerant temperature of the indoor heat exchanger becomes high. Since the flow velocity in the pipe of the pass increases and the temperature difference with the suction temperature widens, the capacity of the indoor heat exchanger is improved and the refrigeration capacity is increased.
[Selection] Figure 2

Description

本願発明は、空気調和機に関し、特に同空気調和機の室内熱交換器の複数のパスに適切に冷媒を分流させる分流器を備えた空気調和機の構成に関するものである。   The present invention relates to an air conditioner, and more particularly to a configuration of an air conditioner including a flow divider that appropriately diverts a refrigerant to a plurality of paths of an indoor heat exchanger of the air conditioner.

今例えば図5には、クロスフローファン29を採用した一般的な壁掛け型の空気調和機(室内機)21の構成を示している。   Now, for example, FIG. 5 shows a configuration of a general wall-mounted air conditioner (indoor unit) 21 that employs the cross flow fan 29.

同図5中において、符号20は当該空気調和機21の本体ケーシングであり、その上面側と正面側上部には、それぞれ第1,第2の2つの空気吸込グリル23、24が形成されている一方、正面側下方のコーナ部には空気吹出口25が設けられている。   In FIG. 5, reference numeral 20 denotes a body casing of the air conditioner 21, and first and second air suction grilles 23 and 24 are formed on the upper surface side and the front side upper portion, respectively. On the other hand, an air outlet 25 is provided at a corner portion below the front side.

また、上記本体ケーシング20内には上記各空気吸込グリル23、24から上記空気吹出口25方向への送風通路27が設けられており、この送風通路27の上流領域には上記第1,第2の空気吸込グリル23、24の各面に対向した断面くの字形の室内熱交換器(ラムダ形熱交換器)26が、その下流領域にはクロスフローファン29、舌部22およびスクロール部30が順に併設されている。そして、上記舌部22とスクロール部30とによって、うず巻状のファンハウジングが形成され、それらの開口部30a,22a内には、クロスフローファン29の羽根車(ファンロータ)29aが矢印方向に回転するように設置されている。   Further, a blower passage 27 is provided in the main body casing 20 from the air suction grilles 23 and 24 toward the air outlet 25, and the first and second areas in the upstream region of the blower passage 27 are provided. A cross-sectionally-shaped indoor heat exchanger (lambda-type heat exchanger) 26 facing each surface of the air suction grilles 23, 24, and a cross flow fan 29, tongue portion 22 and scroll portion 30 in the downstream region thereof. They are attached in order. The tongue portion 22 and the scroll portion 30 form a spiral fan housing, and an impeller (fan rotor) 29a of the cross flow fan 29 is formed in the direction of the arrow in the openings 30a and 22a. It is installed to rotate.

上記舌部22は、上記第2の空気吸込グリル24側に位置して上記クロスフローファン29の羽根車(ファンロータ)29aの外径に沿って所定の高さを有して設けられている。   The tongue portion 22 is located on the second air suction grille 24 side and is provided with a predetermined height along the outer diameter of the impeller (fan rotor) 29a of the crossflow fan 29. .

そして、その下部側は上記室内熱交換器26下方のドレンパンと兼用された空気流ガイド部22bに連続している。そして、この空気流ガイド部22bは、上記クロスフローファン29の羽根車(ファンロータ)29aから吹き出された空気流が効率よく上記空気吹出口25から吹き出されるように、その下流側は上記スクロール部30の下流側部分30bと共に上記空気吹出口25方向に向けて図示のようなディフューザー構造の空気吹出通路28を形成している。   And the lower part side is following the air flow guide part 22b used also as the drain pan of the said indoor heat exchanger 26 lower part. The air flow guide portion 22b is arranged on the downstream side so that the air flow blown out from the impeller (fan rotor) 29a of the cross flow fan 29 is blown out from the air blowout port 25 efficiently. An air outlet passage 28 having a diffuser structure as illustrated is formed in the direction of the air outlet 25 together with the downstream portion 30b of the portion 30.

なお、符号31は、上記スクロール部30と上記舌部22下部の空気流ガイド部22bとの間のディフューザ構造の空気吹出通路28内に設けられた風向変更板である。   Reference numeral 31 denotes a wind direction changing plate provided in the air blowing passage 28 of the diffuser structure between the scroll portion 30 and the air flow guide portion 22b below the tongue portion 22.

そして、上記舌部22の形状は、図示のように形成されており、上記室内熱交換器26を経て上記クロスフローファン29の羽根車(ファンロータ)29aから上記空気吹出口25に到る空気の流れは、鎖線矢印で示すように全体として回転方向に湾曲しながら羽根車(ファンロータ)29aの回転軸と直交方向に貫流して吹き出され、その後、上記空気吹出通路28に沿って上記空気吹出口25方向に曲げられて前面側に吹き出される。   The shape of the tongue 22 is formed as shown in the figure, and the air reaching the air outlet 25 from the impeller (fan rotor) 29a of the crossflow fan 29 via the indoor heat exchanger 26 is formed. As shown by a chain line arrow, the flow of the air flows in a direction orthogonal to the rotation axis of the impeller (fan rotor) 29a while being curved in the rotational direction as a whole, and then blown out along the air blowing passage 28. It is bent in the direction of the air outlet 25 and blown out to the front side.

このような構成の空気調和機用の室内熱交換器26の場合、例えば図示A部、B部、C部、D部に区分して、低負荷時の風速分布を分析して見ると、正面側第2の空気吸込グリル24に真正面に対応するD部の風速が最も高く、上面側第1の空気吸込グリル23に対応してはいるが、対応状態が斜目になるC部では上記D部より少し低下し、また本体ケーシング20の前面側上部の一部によって覆われ、ストレートには空気が流入しないB部では、上記C部よりも風速が低下する。さらに、上述の舌部22によって空気が遮ぎられるA部では、上記B部よりもさらに風速が低下する。   In the case of the indoor heat exchanger 26 for an air conditioner having such a configuration, for example, when divided into an A part, a B part, a C part, and a D part shown in the drawing, the wind speed distribution at low load is analyzed and viewed, The portion D corresponding to the front side of the second air suction grille 24 has the highest wind speed and corresponds to the first air suction grille 23 on the upper surface side, but in the portion C where the corresponding state is oblique, the above D In part B, which is slightly lower than the part and is covered by a part of the upper part on the front side of the main body casing 20 and air does not flow straight, the wind speed is lower than that in part C. Furthermore, in the A portion where the air is blocked by the tongue portion 22 described above, the wind speed is further lowered than in the B portion.

そして、上記のような空気調和機の複数のパスを有する室内熱交換器26では、当該室内熱交換器26本体に流入する冷媒を当該室内熱交換器26本体の各パスに分配するために、一般に図6のような複数の分流パス7a,7bを有する分流器6を設けており、同分流器6では、定格運転時に合わせて各分流パス7a,7bの冷媒の分配比を決めている。   And in the indoor heat exchanger 26 having a plurality of paths of the air conditioner as described above, in order to distribute the refrigerant flowing into the indoor heat exchanger 26 main body to each path of the indoor heat exchanger 26 main body, Generally, a flow divider 6 having a plurality of flow dividing paths 7a and 7b as shown in FIG. 6 is provided. In the flow divider 6, the distribution ratio of the refrigerant in each flow dividing path 7a and 7b is determined in accordance with the rated operation.

なお、Vは分流器6の入口側の膨張弁、6aは分流器6の冷媒流入口である。   V is an expansion valve on the inlet side of the flow divider 6, and 6 a is a refrigerant inlet of the flow divider 6.

したがって、定格運転時には室内熱交換器26の出口側各パス8A,8Bの出口側冷媒温度はほぼ等しくなる(図6中に矢線の太さで表現)。しかし、一方冷媒量が少なくなる低負荷(部分負荷)時になると、上記のように室内熱交換器26の送風通路位置に応じて異なる風速分布の影響により、例えば図7のグラフに示すように、風速が速いパス7a,8A(白地で表示)の冷媒は熱交換容量に余裕があるために出口側温度が高くなる一方、逆に風速の遅いパス7b,8B(ドット地で表示)の冷媒は、熱交換容量に余裕がなくなるために、同冷媒の出口側温度はそれよりも低くなる問題が生じる(図7のΔT参照)。   Therefore, at the rated operation, the outlet side refrigerant temperatures of the outlet side paths 8A and 8B of the indoor heat exchanger 26 are substantially equal (represented by the thickness of the arrow in FIG. 6). However, at the time of low load (partial load) when the amount of refrigerant decreases, due to the influence of the wind speed distribution that differs depending on the air passage position of the indoor heat exchanger 26 as described above, for example, as shown in the graph of FIG. The refrigerant in the paths 7a and 8A (indicated by white background) with the fast wind speed has a high heat exchange capacity, so the outlet side temperature becomes high. On the other hand, the refrigerant in the paths 7b and 8B (indicated by dot background) in which the wind speed is slow is Since there is no room for the heat exchange capacity, there arises a problem that the outlet side temperature of the refrigerant becomes lower (see ΔT in FIG. 7).

そこで、このような問題を解決する方法の一つとして、従来例では、例えば図8に示すように、少なくとも低負荷時において出口側温度が低下するパス7b,8Bに冷媒流量調整弁V1を設けて相対的に流量を調節することにより、例えば図9のグラフ(風速の遅い方をドット地で表示)に示すように、各パス7a,8Aと7b,8Bの出口側温度(乾き度)を合わせる方法を採用している(例えば特許文献1参照)。 Therefore, as one method for solving such a problem, in the conventional example, as shown in FIG. 8, for example, the refrigerant flow rate adjustment valve V 1 is provided in the paths 7b and 8B where the outlet side temperature decreases at least at the time of low load. By providing and relatively adjusting the flow rate, for example, as shown in the graph of FIG. 9 (in which the slower wind speed is indicated by a dot area), the outlet side temperatures (dryness) of the paths 7a, 8A and 7b, 8B are shown. Is used (see, for example, Patent Document 1).

特開平5−118682号公報(明細書第1〜第3頁、図1−2)Japanese Patent Laid-Open No. 5-118682 (Specifications, first to third pages, FIG. 1-2)

しかし、このような構成では、特に乾き度(図中にシャドウ度合を高くして濃く表示)が高いような場合、上記低負荷時における能力はそれほど向上しない。   However, with such a configuration, particularly when the dryness (indicated by darkness with a high shadow degree in the drawing) is high, the capability at the time of low load is not improved so much.

本願発明は、複数のパスを有する空気調和機用熱交換器に対応する分流器の各パス間の冷媒の偏流を逆に適切に制御し、熱交換性能を向上させた空気調和機を提供することを目的とするものである。   The present invention provides an air conditioner with improved heat exchange performance by appropriately controlling the reverse flow of refrigerant between each path of a flow divider corresponding to a heat exchanger for an air conditioner having a plurality of paths. It is for the purpose.

本願発明は、上記の目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the above object, the present invention is configured with the following problem solving means.

(1) 第1の課題解決手段
この発明の第1の課題解決手段は、圧縮機と、四方弁と、室外熱交換器と、絞り装置と、複数のパスを有する室内熱交換器とからなり、これらを冷媒配管により順次接続して冷媒回路を構成するとともに、上記複数のパスを備えた室内熱交換器と絞り装置との間に上記複数のパスを備えた分流器を配設してなる空気調和機において、上記分流器の複数のパスの各々に冷媒流量調整弁を設け、その内の所定の運転状態において処理する能力が大きく上記室内熱交換器の出口側冷媒温度が高くなる所定のパスに対して、より多くの冷媒を配分するようにしたことを特徴としている。
(1) First problem solving means The first problem solving means of the present invention comprises a compressor, a four-way valve, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger having a plurality of paths. These are sequentially connected by refrigerant piping to form a refrigerant circuit, and a flow divider having the plurality of paths is disposed between the indoor heat exchanger having the plurality of paths and the expansion device. In the air conditioner, a refrigerant flow rate adjustment valve is provided in each of the plurality of paths of the flow divider, and the ability to process in a predetermined operation state is large, and the outlet side refrigerant temperature of the indoor heat exchanger is high. It is characterized in that more refrigerant is distributed to the path.

このように、所定の運転状態において、処理する能力に余裕のあるパスに対して、積極的に冷媒をより多く配分するようにすると、当該パスの管内流速は速くなり、また吸込み温度との温度差が広がるため、室内熱交換器の能力は有効に向上し、冷凍能力がアップする。   In this way, if a larger amount of refrigerant is positively distributed to a path with sufficient capacity for processing in a predetermined operating state, the flow velocity in the pipe of the path increases, and the temperature with respect to the suction temperature. Since the difference widens, the capacity of the indoor heat exchanger is effectively improved and the refrigeration capacity is increased.

(2) 第2の課題解決手段
この発明の第2の課題解決手段は、上記第1の課題解決手段の構成において、所定の運転状態が低負荷時であり、該低負荷時には、処理する能力が小さく室内熱交換器の出口側冷媒温度が低くなる所定のパスの冷媒流量調整弁を絞り、処理する能力が大きく上記室内熱交換器の出口側冷媒温度が高くなるパスに多くの冷媒を流すようにしたことを特徴としている。
(2) Second Problem Solving Means According to a second problem solving means of the present invention, in the configuration of the first problem solving means, the predetermined operation state is at a low load, and the processing capability is at the low load. The refrigerant flow rate adjustment valve of a predetermined path where the outlet side refrigerant temperature of the indoor heat exchanger is low is throttled, and a large amount of refrigerant flows through the path where the processing capacity is large and the outlet side refrigerant temperature of the indoor heat exchanger is high It is characterized by doing so.

このように、全体の冷媒流量が少なくなる低負荷時においては、処理する能力が小さく室内熱交換器の出口側冷媒温度が低くなる所定のパスの冷媒流量調整弁を絞り、他方処理する能力に余裕のある風速の速いパスに冷媒をより多く配分するようにすると、当該パスの管内流速は速くなり、また吸込み温度との温度差が広がるため、有効に熱交換器の能力が向上し、冷凍能力がアップする。   In this way, at low loads where the overall refrigerant flow rate is low, the ability to process is small, and the refrigerant flow rate adjustment valve in a predetermined path where the outlet side refrigerant temperature of the indoor heat exchanger is low is throttled, and the other is capable of processing. If more refrigerant is distributed to a path with sufficient wind speed, the flow velocity in the pipe in the path increases, and the temperature difference from the suction temperature increases, effectively improving the capacity of the heat exchanger and reducing the refrigeration. Ability improves.

(3) 第3の課題解決手段
この発明の第3の課題解決手段は、上記第1の課題解決手段の構成において、所定のパスが風速の遅いパスであり、低負荷時には該風速の遅いパスの冷媒流量調整弁を絞り、熱交換能力に余裕のある風速の速い部分を流れるパスにより多くの冷媒を流すようにしたことを特徴としている。
(3) Third Problem Solving Means According to a third problem solving means of the present invention, in the configuration of the first problem solving means, the predetermined path is a path with a slow wind speed, and when the load is low, the path with the slow wind speed is provided. The refrigerant flow rate adjusting valve is throttled so that a larger amount of refrigerant flows through a path that flows through a portion with a high wind speed that has a sufficient heat exchange capacity.

このように、全体の冷媒流量が少なくなる低負荷時において、処理する能力に余裕のない風速の遅いパスの冷媒流量調整弁を絞り、他方熱交換能力に余裕のある風速の速い部分を流れるパスに冷媒をより多く配分するようにすると、当該パスの管内流速は速くなり、また吸込み温度との温度差が広がるため、有効に熱交換器の能力が向上し、冷凍能力がアップする。   In this way, at low load when the overall refrigerant flow rate is low, the refrigerant flow rate adjustment valve in the slow wind speed path that has no capacity to handle is throttled, while the path that flows through the fast wind speed section that has sufficient heat exchange capacity If more refrigerant is distributed to the pipe, the flow velocity in the pipe of the path increases, and the temperature difference from the suction temperature widens, so that the capacity of the heat exchanger is effectively improved and the refrigeration capacity is increased.

(4) 第4の課題解決手段
この発明の第4の課題解決手段は、上記第1の課題解決手段の構成において、所定の運転状態が定格負荷時であり、該定格負荷時には、各パスの冷媒流量調整弁を全開として、熱交換器の能力をフルに発揮させるようにしたことを特徴としている。
(4) Fourth Problem Solving Means According to a fourth problem solving means of the present invention, in the configuration of the first problem solving means, the predetermined operation state is at the rated load, and at the rated load, The refrigerant flow rate adjusting valve is fully opened, and the heat exchanger capacity is fully exhibited.

このように、定格運転状態においては、各パスの冷媒流量調整弁を全開として、熱交換器の能力をフルに発揮させる。   In this way, in the rated operation state, the refrigerant flow rate adjustment valve of each path is fully opened, and the heat exchanger capacity is fully exhibited.

以上の結果、本願発明によると、単に室内熱交換器の各パスの出口側温度を等しくするだけの従来の構成に比べて、空気調和機用熱交換器の熱交換能力をより有効に向上させることができる。   As a result of the above, according to the present invention, the heat exchange capacity of the air conditioner heat exchanger is more effectively improved as compared with the conventional configuration in which the outlet side temperatures of the respective paths of the indoor heat exchanger are simply made equal. be able to.

(最良の実施の形態1)
図1〜図2は、本願発明の最良の実施の形態1に係る空気調和機の冷凍回路およびその分流器部分の構成を、また図3は、その作用効果を示している。この実施の形態の構成では、説明を簡単にするために、図5の熱交換器26部分の風速域を低風速部A,Bと高風速部C,Dの2つの領域に大別し、それに対応して分流器6部分のパス数が2つの場合について例示している。
(Best Embodiment 1)
1 to 2 show the configuration of the refrigeration circuit of the air conditioner and its shunt portion according to the best embodiment 1 of the present invention, and FIG. 3 shows the function and effect thereof. In the configuration of this embodiment, in order to simplify the description, the wind speed region of the heat exchanger 26 portion of FIG. 5 is roughly divided into two regions, a low wind speed portion A, B and a high wind speed portion C, D. Correspondingly, the case where the number of paths of the shunt 6 is two is illustrated.

先ず図1において、1は室外機、2は圧縮機、3は四方弁、4は室外熱交換器、5は絞り装置、6は分流器、6aは分流器6への冷媒流入口、7aは分流器6の第1の分流パス、7bは同分流器6の第2の分流パス、26は室内熱交換器、8Aは室内熱交換器26の出口側第1のパス、8Bは同室内熱交換器26の出口側第2のパス、10は室内機、Vは膨張弁であり、これらを第1の冷媒配管9A、第2の冷媒配管9Bにより接続して、図示のような可逆的な冷媒循環回路を構成している。   First, in FIG. 1, 1 is an outdoor unit, 2 is a compressor, 3 is a four-way valve, 4 is an outdoor heat exchanger, 5 is a throttling device, 6 is a flow divider, 6a is a refrigerant inlet to the flow divider 6, 7a is The first shunt path of the shunt 6, 7 b is the second shunt path of the shunt 6, 26 is the indoor heat exchanger, 8 A is the first path on the outlet side of the indoor heat exchanger 26, and 8 B is the same room heat. The second path on the outlet side of the exchanger 26 is an indoor unit, V is an expansion valve, and these are connected by a first refrigerant pipe 9A and a second refrigerant pipe 9B so as to be reversible as shown in the figure. A refrigerant circulation circuit is configured.

そして、上記室内熱交換器26と絞り装置5との間に上記膨張弁Vおよび分流器6を配設している。分流器6の第1,第2の分流パス7a,7bには、それぞれ電気的に開度調整可能な電磁弁よりなる第1,第2の冷媒流量調整弁V1,V2を設け、所定の運転状態において、処理する能力が大きく熱交換器8の出口側の冷媒温度が高くなる所定のパス7a又は7bの何れか一方に冷媒をより多く配分するようにしている。この冷媒配分量の制御は、例えばマイコンを備えた所定の制御ユニットにより、上記第1,第2の冷媒流量調整弁V1,V2の開度を個別に制御することによってなされる。 The expansion valve V and the flow divider 6 are disposed between the indoor heat exchanger 26 and the expansion device 5. The first and second diversion paths 7a and 7b of the flow divider 6 are respectively provided with first and second refrigerant flow rate adjustment valves V 1 and V 2 made of electromagnetic valves whose opening degree can be adjusted electrically. In this operating state, a larger amount of refrigerant is distributed to either one of the predetermined paths 7a or 7b where the processing capacity is large and the refrigerant temperature on the outlet side of the heat exchanger 8 is high. The refrigerant distribution amount is controlled by individually controlling the opening degrees of the first and second refrigerant flow rate adjusting valves V 1 and V 2 by, for example, a predetermined control unit including a microcomputer.

この場合、上記所定の運転状態は、例えば分流器6の冷媒流入口6aへの冷媒流量が少なくなる低負荷時であり、例えば図2に示すように、同低負荷時において第2の分流パス7b側の風速が遅く、第1の分流パス7a側の風速が速いとすると、同低負荷時には、例えば熱交換能力に余裕のない風速の遅い第2の分流パス7bの方の冷媒流量調整弁V2の弁開度を絞る一方、熱交能力に余裕のある他方側の風速の速い第1の分流パス7aの方により多くの冷媒を流すように制御している。 In this case, the predetermined operating state is, for example, at low load when the refrigerant flow rate to the refrigerant inlet 6a of the flow divider 6 is small. For example, as shown in FIG. If the wind speed on the 7b side is slow and the wind speed on the first shunt path 7a is fast, at the same low load, for example, the refrigerant flow rate adjusting valve on the second shunt path 7b with a slow wind speed with no margin for heat exchange capacity, for example. While the valve opening degree of V 2 is reduced, control is performed so that more refrigerant flows through the first diversion path 7a on the other side having a sufficient heat exchange capability and having a fast wind speed.

このように全体の冷媒流量が少なくなる低負荷時において、処理する能力に余裕のない風速の遅い第2の分流パス7bの冷媒流量調整弁V2を絞り、逆に処理する能力に余裕のある風速の速い第1の分流パス7aの方に冷媒をより多く配分するようにすると、同風速の速い第1の分流パス7aの管内流速は速くなり、また図3のグラフ(第1の分流パス7a側を白地、第2の分流パス7b側をドット地で表示)に示すように吸込み温度との温度差ΔTが広がるため、室内熱交換器26の能力は向上し、冷凍能力がアップする。 In this way, at the time of a low load where the entire refrigerant flow rate is reduced, the refrigerant flow rate adjustment valve V2 of the second shunt path 7b having a slow wind speed without a sufficient processing capability is throttled, and there is a margin in the processing capability. If a larger amount of refrigerant is distributed toward the first diversion path 7a having a higher wind speed, the pipe flow velocity of the first diversion path 7a having the same wind speed is increased, and the graph of FIG. Since the temperature difference ΔT with respect to the suction temperature is widened as shown by white background on the 7a side and dot ground on the second diversion path 7b side), the capacity of the indoor heat exchanger 26 is improved and the refrigeration capacity is increased.

一方、定格負荷時には、上記第1,第2の冷媒流量調整弁V1,V2を全開として、上記室内熱交換器26の熱交換能力をフルに発揮させる。 On the other hand, at the rated load, the first and second refrigerant flow rate adjusting valves V 1 and V 2 are fully opened, and the heat exchange capability of the indoor heat exchanger 26 is fully exhibited.

以上の結果、本実施の形態によると、単に室内熱交換器26の各パス8A,8Bの出口側温度を等しくするだけの従来の構成に比べて、空気調和機用室内熱交換器26の熱交換能力をより有効に向上させることができる。   As a result of the above, according to the present embodiment, the heat of the indoor heat exchanger 26 for the air conditioner can be compared with the conventional configuration in which the outlet side temperatures of the paths 8A and 8B of the indoor heat exchanger 26 are simply made equal. The exchange capacity can be improved more effectively.

(最良の実施の形態2)
次に図4は、本願発明の最良の実施の形態2に係る空気調和機の分流器および室内熱交換器部分の構成を示している。
(Best Mode 2)
Next, FIG. 4 shows the configuration of the shunt and the indoor heat exchanger portion of the air conditioner according to the second preferred embodiment of the present invention.

上述の最良の実施の形態1の構成では、説明を分り易くするために、例えば図6の室内熱交換器26の風速分布域を低風速部A,Bと高風速部C,Dの2つの風速域に大別して第1,第2の2つの分流パス7a,7bに分流させる場合について説明したが、この最良の実施の形態2の構成では、同図6の熱交換器26の風速域を、例えば低風速域A部,B部、C部と高風速部D部の4つの風速域に細かく分け、それぞれの部分に対応して第1,第2,第3,第4の分流パス7a〜7dを設け、それらの各々に上述の場合と同様の第1〜第4の冷媒流量調整弁V21〜V24を設けたことを特徴とするものである。 In the configuration of the first embodiment described above, for the sake of easy understanding, for example, the wind speed distribution area of the indoor heat exchanger 26 in FIG. 6 is divided into two wind speed sections A and B and high wind speed sections C and D. Although the description has been given of the case where the flow is divided roughly into the first and second diversion paths 7a and 7b, the wind speed range of the heat exchanger 26 in FIG. For example, the wind speed regions A, B, C, and the high wind speed portion D are subdivided into four wind speed regions, and the first, second, third, and fourth shunt paths 7a corresponding to the respective portions. ˜7d are provided, and the first to fourth refrigerant flow rate adjustment valves V 21 to V 24 similar to those described above are provided for each of them.

このように、第1〜第4の分流パス7a〜7dを有する場合においても、少なくとも全体の冷媒流量が少なくなる低負荷時においては、処理する能力に余裕のない風速の遅い第1〜第3の分流パス7a〜7cの第1〜第3の冷媒流量調整弁V21〜V23を絞り、処理する能力に余裕のある風速の速い第4の分流パス7dの方に冷媒をより多く配分するようにすると、当該第4の分流パス7dの管内流速は速くなり、また吸込み温度との温度差が広がるため、室内熱交換器26の能力は向上し、冷凍能力がアップする。 Thus, even in the case of having the first to fourth diversion paths 7a to 7d, at least at the time of low load where the entire refrigerant flow rate is reduced, the first to third slow wind speeds with no margin for processing ability. to allocate more coolant towards the aperture first to third refrigerant flow rate control valve V 21 ~V 23 of the shunt path 7 a to 7 c, processing fast wind speed with spare capacity to the fourth shunt path 7d By doing so, the flow velocity in the pipe of the fourth diversion path 7d is increased and the temperature difference from the suction temperature is widened, so that the capacity of the indoor heat exchanger 26 is improved and the refrigeration capacity is increased.

他方、定格負荷時には、上記第1〜第4の分流パス7a〜7dの各冷媒流量調整弁V21〜V24をそれぞれ全開として、室内熱交換器26の能力をフルに発揮させる。 On the other hand, at the rated load, the refrigerant flow rate adjustment valves V 21 to V 24 of the first to fourth diversion paths 7 a to 7 d are fully opened, so that the capacity of the indoor heat exchanger 26 is fully exhibited.

本願発明の最良の実施の形態1に係る空気調和機の冷凍回路図である。1 is a refrigeration circuit diagram of an air conditioner according to Embodiment 1 of the present invention. 同空気調和機の室内機の複数のパスを備えた熱交換器と該熱交換器各パスに対応した分流器の構成と作用を示す図である。It is a figure which shows the structure and effect | action of a heat exchanger provided with the several path | pass of the indoor unit of the air conditioner, and the shunt corresponding to each path | pass of this heat exchanger. 同空気調和機の図2の分流器による室内熱交換器の定格時と低負荷時の出口温度を対比して示す図である。It is a figure which compares and shows the outlet temperature at the time of the rating of the indoor heat exchanger by the shunt of FIG. 2 of the same air conditioner, and low load. 本願発明の最良の実施の形態2に係る空気調和機の室内機の複数のパスを備えた熱交換器と該熱交換器各パスに対応した分流器の構成を示す図である。It is a figure which shows the structure of the heat exchanger provided with the several path | pass of the indoor unit of the air conditioner which concerns on the best Embodiment 2 of this invention, and the shunt corresponding to each path | pass of this heat exchanger. 従来一般の空気調和機の室内機の構成を示す図である。It is a figure which shows the structure of the indoor unit of the conventional general air conditioner. 同従来一般の空気調和機の室内機の複数のパスを備えた熱交換器と該熱交換器に対応した分流器の構成と作用を示す図である。It is a figure which shows the structure and effect | action of a heat exchanger provided with the several path | pass of the indoor unit of the conventional general air conditioner, and the shunt corresponding to this heat exchanger. 同従来一般の空気調和機の図6の分流器による室内熱交換器の定格時と低負荷時の出口温度を対比して示す図である。It is a figure which compares and shows the outlet temperature at the time of the rating of the indoor heat exchanger by the shunt of FIG. 6 of the conventional general air conditioner, and the time of low load. 出口温度対策を施した従来例に係る空気調和機の室内機の複数のパスを備えた熱交換器と該熱交換器に対応した分流器の構成と作用を示す図である。It is a figure which shows the structure and effect | action of a heat exchanger provided with the several path | pass of the indoor unit of the air conditioner which concerns on the prior art example which took the exit temperature countermeasure, and a shunt corresponding to this heat exchanger. 同従来例に係る空気調和機の図8の分流器による室内熱交換器の定格時と低負荷時の出口温度を対比して示す図である。It is a figure which compares and shows the outlet temperature at the time of the rating of the indoor heat exchanger by the shunt of FIG. 8 of the air conditioner which concerns on the prior art example, and low load.

符号の説明Explanation of symbols

1は室外機、2は圧縮機、3は四方弁、4は室外熱交換器、5は絞り装置、6は分流器、6aは分流器6への冷媒流入口、7aは分流器6の第1の分流パス、7bは同分流器6の第2の分流パス、8Aは熱交換器26の出口側第1のパス、8Bは同熱交換器26の出口側第2のパス、10は室内機、26は室内熱交換器、Vは膨張弁、V1は第1の冷媒流量調整弁、V2は第2の流量調整弁である。 1 is an outdoor unit, 2 is a compressor, 3 is a four-way valve, 4 is an outdoor heat exchanger, 5 is a throttling device, 6 is a flow divider, 6a is a refrigerant inlet to the flow divider 6, and 7a is the first of the flow divider 6. 1B is a second diversion path of the flow divider 6, 8A is a first path on the outlet side of the heat exchanger 26, 8B is a second path on the outlet side of the heat exchanger 26, and 10 is a room. , 26 is an indoor heat exchanger, V is an expansion valve, V 1 is a first refrigerant flow control valve, and V 2 is a second flow control valve.

Claims (4)

圧縮機と、四方弁と、室外熱交換器と、絞り装置と、複数のパスを有する室内熱交換器とからなり、これらを冷媒配管により順次接続して冷媒回路を構成するとともに、上記複数のパスを備えた室内熱交換器と絞り装置との間に上記複数のパスを備えた分流器を配設してなる空気調和機において、上記分流器の複数のパスの各々に冷媒流量調整弁を設け、その内の所定の運転状態において処理する能力が大きく上記室内熱交換器の出口側冷媒温度が高くなる所定のパスに対して、より多くの冷媒を配分するようにしたことを特徴とする空気調和機。   It consists of a compressor, a four-way valve, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger having a plurality of paths, which are sequentially connected by a refrigerant pipe to constitute a refrigerant circuit, and An air conditioner comprising a flow divider having a plurality of paths disposed between an indoor heat exchanger having a path and a throttle device, wherein a refrigerant flow rate adjusting valve is provided in each of the plurality of paths of the flow divider. It is characterized in that a larger amount of refrigerant is distributed to a predetermined path in which the capacity of processing in a predetermined operation state is large and the outlet side refrigerant temperature of the indoor heat exchanger is high. Air conditioner. 所定の運転状態が低負荷時であり、該低負荷時には、処理する能力が小さく室内熱交換器の出口側冷媒温度が低くなる所定のパスの冷媒流量調整弁を絞り、処理する能力が大きく上記室内熱交換器の出口側冷媒温度が高くなるパスに多くの冷媒を流すようにしたことを特徴とする請求項1記載の空気調和機。   The predetermined operating state is when the load is low, and when the load is low, the ability to process is small and the refrigerant flow rate adjustment valve in a predetermined path where the outlet side refrigerant temperature of the indoor heat exchanger is low is throttled and the ability to process is large. The air conditioner according to claim 1, wherein a large amount of refrigerant flows through a path in which the outlet side refrigerant temperature of the indoor heat exchanger increases. 所定のパスが風速の遅いパスであり、低負荷時には該風速の遅いパスの冷媒流量調整弁を絞り、熱交換能力に余裕のある風速の速い部分を流れるパスにより多くの冷媒を流すようにしたことを特徴とする請求項1記載の空気調和機。   The predetermined path is a path with a slow wind speed, and when the load is low, the refrigerant flow rate adjustment valve of the path with the slow wind speed is throttled so that more refrigerant flows through the path that flows through the fast wind speed portion with sufficient heat exchange capacity. The air conditioner according to claim 1. 所定の運転状態が定格負荷時であり、該定格負荷時には、各パスの冷媒流量調整弁を全開として、熱交換器の能力をフルに発揮させるようにしたことを特徴とする請求項1記載の空気調和機。
The predetermined operation state is at a rated load, and at the rated load, the refrigerant flow rate regulating valve of each path is fully opened to fully exhibit the capacity of the heat exchanger. Air conditioner.
JP2006007578A 2006-01-16 2006-01-16 Air conditioner Expired - Fee Related JP4120680B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006007578A JP4120680B2 (en) 2006-01-16 2006-01-16 Air conditioner
CN2006101567452A CN101149097B (en) 2006-01-16 2006-12-28 Chain tensioner
US12/087,100 US20090025420A1 (en) 2006-01-16 2007-01-16 Air Conditioner
CN2007800017227A CN101360961B (en) 2006-01-16 2007-01-16 Air conditioner
KR1020087013407A KR100973916B1 (en) 2006-01-16 2007-01-16 Air conditioner
AU2007205443A AU2007205443B2 (en) 2006-01-16 2007-01-16 Air conditioner
EP07706803.9A EP1975525A4 (en) 2006-01-16 2007-01-16 AIR CONDITIONER
PCT/JP2007/050476 WO2007081021A1 (en) 2006-01-16 2007-01-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007578A JP4120680B2 (en) 2006-01-16 2006-01-16 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007187420A true JP2007187420A (en) 2007-07-26
JP4120680B2 JP4120680B2 (en) 2008-07-16

Family

ID=38256422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007578A Expired - Fee Related JP4120680B2 (en) 2006-01-16 2006-01-16 Air conditioner

Country Status (7)

Country Link
US (1) US20090025420A1 (en)
EP (1) EP1975525A4 (en)
JP (1) JP4120680B2 (en)
KR (1) KR100973916B1 (en)
CN (2) CN101149097B (en)
AU (1) AU2007205443B2 (en)
WO (1) WO2007081021A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099255A1 (en) * 2010-02-15 2011-08-18 ダイキン工業株式会社 Air conditioner
JP2012127220A (en) * 2010-12-14 2012-07-05 Nissan Motor Co Ltd Exhaust heat exchange device
CN102829584A (en) * 2012-09-04 2012-12-19 海信科龙电器股份有限公司 Refrigerating system for air conditioner
WO2015063853A1 (en) * 2013-10-29 2015-05-07 株式会社日立製作所 Refrigeration cycle and air conditioner
WO2019082372A1 (en) * 2017-10-27 2019-05-02 三菱電機株式会社 Refrigeration cycle device
JPWO2018193518A1 (en) * 2017-04-18 2019-11-21 三菱電機株式会社 Air conditioner
WO2022188396A1 (en) * 2021-03-11 2022-09-15 青岛海尔空调器有限总公司 Air conditioner diverter, and control method and control device therefor

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894471B1 (en) * 2007-08-06 2009-04-22 엘지전자 주식회사 Clothes dryer
KR100925734B1 (en) * 2007-08-06 2009-11-11 엘지전자 주식회사 Clothes dryer
US20110113803A1 (en) * 2009-05-14 2011-05-19 Halla Climate Control Corp. Multi-evaporation system
WO2011072679A1 (en) * 2009-12-18 2011-06-23 Danfoss A/S A vapour compression system with split evaporator
US9003827B2 (en) 2009-12-18 2015-04-14 Danfoss A/S Expansion unit for a vapour compression system
KR101240188B1 (en) * 2010-09-06 2013-03-07 한라공조주식회사 Air conditioner for vehicle
US20130186129A1 (en) * 2012-01-25 2013-07-25 Lg Electronics Inc. Refrigerator
JP5858824B2 (en) * 2012-03-01 2016-02-10 三菱電機株式会社 Multi-type air conditioner
KR102025738B1 (en) * 2012-07-06 2019-09-27 삼성전자주식회사 Refrigerator and heat exchanger for the same
KR101425043B1 (en) * 2012-07-26 2014-08-01 엘지전자 주식회사 Outdoor heat exchanger
KR101384148B1 (en) * 2012-07-26 2014-04-10 엘지전자 주식회사 Air conditioner and method for controling of air conditioner
WO2015029160A1 (en) * 2013-08-28 2015-03-05 三菱電機株式会社 Air conditioner
SI2878912T1 (en) * 2013-11-28 2016-11-30 Alfa Laval Corporate Ab System and method for dynamic control of a heat exchanger
US10139143B2 (en) 2013-12-17 2018-11-27 Lennox Industries Inc. Air conditioner with multiple expansion devices
JP6297072B2 (en) * 2014-02-10 2018-03-20 三菱電機株式会社 Heat pump type water heater
KR20160016436A (en) * 2014-08-05 2016-02-15 삼성전자주식회사 Air conditioner
CN106016682B (en) * 2016-06-02 2019-01-15 青岛海尔空调器有限总公司 Air conditioner supplying natural wind heat-exchanger rig and its control method, air conditioner supplying natural wind
CN110462309B (en) * 2017-03-27 2022-03-01 大金工业株式会社 Heat exchanger and refrigerating apparatus
CN110462324B (en) * 2017-03-27 2021-07-20 大金工业株式会社 Heat Exchangers and Freezers
JP6882679B2 (en) * 2017-07-07 2021-06-02 株式会社椿本チエイン Tensioner
CN113531959A (en) * 2021-06-29 2021-10-22 青岛海尔空调器有限总公司 Split flow structure and split flow method of heat exchanger
CN114838458B (en) * 2022-03-16 2024-02-20 青岛海尔空调器有限总公司 Control method, control system, electronic equipment and medium for preventing air conditioner from freezing
CN114838457B (en) * 2022-03-16 2024-02-20 青岛海尔空调器有限总公司 Control methods, control systems, electronic equipment and media to prevent air conditioners from freezing
CN114812014A (en) * 2022-04-29 2022-07-29 青岛海信日立空调系统有限公司 Heat exchanger and air conditioner

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771610A (en) * 1986-06-06 1988-09-20 Mitsubishi Denki Kabushiki Kaisha Multiroom air conditioner
JPS6334459A (en) * 1986-07-29 1988-02-15 株式会社東芝 Air conditioner
JPH0275860A (en) * 1988-09-09 1990-03-15 Nissin Kogyo Kk Method and device for preventing abnormal overheating of compressed refrigerant gas in a refrigeration compressor
JPH03282150A (en) * 1990-03-30 1991-12-12 Toshiba Corp Air conditioner and its controlling system
DE4015028A1 (en) * 1990-05-10 1992-01-16 Skf Gmbh PRE-ADJUSTABLE CLAMPING DEVICE
JPH04208363A (en) * 1990-11-30 1992-07-30 Matsushita Seiko Co Ltd Heat exchanger distributor
JPH05118682A (en) * 1991-10-25 1993-05-14 Sharp Corp Air-conditioning machine
JPH05280829A (en) * 1992-03-31 1993-10-29 Matsushita Seiko Co Ltd Air conditioner
US5266067A (en) * 1992-09-25 1993-11-30 Federal-Mogul Corporation Self-releasing tensioner
JP3060770B2 (en) * 1993-02-26 2000-07-10 ダイキン工業株式会社 Refrigeration equipment
IN192214B (en) * 1996-07-19 2004-03-20 Fujitsu General Ltd
EP0930474B1 (en) * 1997-06-03 2005-10-19 Daikin Industries, Ltd. Refrigerating plant
JP2000179968A (en) * 1998-12-18 2000-06-30 Fujitsu General Ltd Refrigerating cycle for air conditioner
JP2001227845A (en) * 2000-02-18 2001-08-24 Fujitsu General Ltd Air conditioner
US6189329B1 (en) * 2000-04-04 2001-02-20 Venturedyne Limited Cascade refrigeration system
US6343482B1 (en) * 2000-10-31 2002-02-05 Takeshi Endo Heat pump type conditioner and exterior unit
US6502413B2 (en) * 2001-04-02 2003-01-07 Carrier Corporation Combined expansion valve and fixed restriction system for refrigeration cycle
KR100437804B1 (en) * 2002-06-12 2004-06-30 엘지전자 주식회사 Multi-type air conditioner for cooling/heating the same time and method for controlling the same
WO2004040208A1 (en) * 2002-10-30 2004-05-13 Mitsubishi Denki Kabushiki Kaisha Air conditioner
KR100463548B1 (en) * 2003-01-13 2004-12-29 엘지전자 주식회사 Air conditioner
JP2005273923A (en) * 2004-03-23 2005-10-06 Hitachi Home & Life Solutions Inc Air conditioner
JP2005315309A (en) * 2004-04-28 2005-11-10 Hitachi Home & Life Solutions Inc Refrigerant flow control valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099255A1 (en) * 2010-02-15 2011-08-18 ダイキン工業株式会社 Air conditioner
JP2011163740A (en) * 2010-02-15 2011-08-25 Daikin Industries Ltd Air conditioner
JP2012127220A (en) * 2010-12-14 2012-07-05 Nissan Motor Co Ltd Exhaust heat exchange device
CN102829584A (en) * 2012-09-04 2012-12-19 海信科龙电器股份有限公司 Refrigerating system for air conditioner
WO2015063853A1 (en) * 2013-10-29 2015-05-07 株式会社日立製作所 Refrigeration cycle and air conditioner
JPWO2018193518A1 (en) * 2017-04-18 2019-11-21 三菱電機株式会社 Air conditioner
WO2019082372A1 (en) * 2017-10-27 2019-05-02 三菱電機株式会社 Refrigeration cycle device
JPWO2019082372A1 (en) * 2017-10-27 2020-11-19 三菱電機株式会社 Refrigeration cycle equipment
US11486617B2 (en) 2017-10-27 2022-11-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2022188396A1 (en) * 2021-03-11 2022-09-15 青岛海尔空调器有限总公司 Air conditioner diverter, and control method and control device therefor

Also Published As

Publication number Publication date
AU2007205443A1 (en) 2007-07-19
AU2007205443B2 (en) 2010-05-27
KR20080071588A (en) 2008-08-04
CN101360961B (en) 2012-05-23
CN101149097A (en) 2008-03-26
CN101149097B (en) 2011-11-16
KR100973916B1 (en) 2010-08-03
JP4120680B2 (en) 2008-07-16
US20090025420A1 (en) 2009-01-29
EP1975525A4 (en) 2014-07-23
EP1975525A1 (en) 2008-10-01
WO2007081021A1 (en) 2007-07-19
CN101360961A (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4120680B2 (en) Air conditioner
JP2007240059A (en) Refrigerant diverter for heat exchanger for refrigeration equipment
EP3081875B1 (en) Indoor unit and air conditioning device
JP5611694B2 (en) Air conditioner
JP2008196811A (en) Air conditioner
JP2003083624A (en) Air conditioner
CN109668288B (en) Air conditioner indoor unit capable of preventing return air and air conditioner
KR100826028B1 (en) Air conditioner
KR101988034B1 (en) Air conditioner
JP6253513B2 (en) Air conditioner indoor unit
EP1975522A1 (en) Air conditioner
JP5195135B2 (en) Air conditioner
JP5506821B2 (en) Air conditioner
JP5104230B2 (en) Air conditioner
JP2018115809A (en) Air conditioner
KR100874227B1 (en) Air Conditioning Euro Guide Device
JP2001272053A (en) Air conditioner
KR101344461B1 (en) Air-conditioning system
JP3375247B2 (en) Air conditioner
JP2007333354A (en) Air conditioner
JP2006046833A (en) Distribution air supply device
JPH04359798A (en) Air conditioner
KR20240169486A (en) Air conditioner
JP2005321109A (en) Air conditioner indoor unit
JPH09303853A (en) Air conditioner indoor unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees