[go: up one dir, main page]

JP2007154692A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2007154692A
JP2007154692A JP2005348057A JP2005348057A JP2007154692A JP 2007154692 A JP2007154692 A JP 2007154692A JP 2005348057 A JP2005348057 A JP 2005348057A JP 2005348057 A JP2005348057 A JP 2005348057A JP 2007154692 A JP2007154692 A JP 2007154692A
Authority
JP
Japan
Prior art keywords
exhaust
catalyst
exhaust gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005348057A
Other languages
Japanese (ja)
Inventor
Ken Inukai
憲 犬飼
Tatsuo Sato
立男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005348057A priority Critical patent/JP2007154692A/en
Publication of JP2007154692A publication Critical patent/JP2007154692A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To excellently retain exhaust emission control performance when an exhaust gas purifying catalyst is deteriorated. <P>SOLUTION: When it is diagnosed that the exhaust gas purifying catalyst is deteriorated, the valve overlap amount of an intake/exhaust valve is corrected to be increased, ignition timing is corrected to lag its phase, an EGR amount is corrected to be increased, and these correction amounts are set to be increased according to an increase in engine load, so that emissions of NOx and HC (unburnt fuel) from an engine (combustion chamber) are reduced, and also exhaust is circulated to a bypass catalyst arranged by bypassing the exhaust gas purifying catalyst diagnosed as deteriorated. Thereby, emissions discharged from the engine are purified. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気通路に排気浄化触媒を備えた内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine provided with an exhaust gas purification catalyst in an exhaust passage.

特許文献1には、通常の排気浄化触媒とは別に低温用の触媒を備え、切換バルブによって劣化の少ない低温用触媒に流路を切り換えることによって、冷機時の排気エミッションを低減するようにしたものが開示されている。
実開平1−66420号
In Patent Document 1, a low-temperature catalyst is provided separately from a normal exhaust purification catalyst, and the flow is switched to a low-temperature catalyst with little deterioration by a switching valve, thereby reducing exhaust emission during cold operation. Is disclosed.
Utility Model 1-66420

周知のように、排気浄化触媒は、劣化によって排気浄化性能が低下するため、触媒の劣化状態を診断しており、劣化していると診断されたときに、この診断結果に基づいて触媒を交換させるようにしている。
しかしながら、触媒を交換するまでの間は、排気エミッションが悪化してしまい、上記特許文献1のものでも、冷機時のみ低温用触媒を用いるものであるから、通常の排気浄化触媒が劣化したときの排気エミッションの悪化は回避できなかった。
As is well known, since exhaust purification performance of exhaust purification catalysts deteriorates due to deterioration, the deterioration state of the catalyst is diagnosed, and when it is diagnosed that the catalyst is deteriorated, the catalyst is replaced based on the diagnosis result. I try to let them.
However, until the catalyst is replaced, the exhaust emission deteriorates. Even in the above-mentioned Patent Document 1, the low temperature catalyst is used only when the engine is cold. The deterioration of exhaust emissions could not be avoided.

本発明は、このような従来の課題に着目してなされたもので、排気浄化触媒が劣化と診断されたときに、触媒を交換するまでの間の排気エミッションの悪化を防止できるようにすることを目的とする。   The present invention has been made paying attention to such a conventional problem, and it is possible to prevent deterioration of exhaust emission until the catalyst is replaced when the exhaust purification catalyst is diagnosed as being deteriorated. With the goal.

このため本発明は、排気通路に排気浄化触媒を備えた内燃機関の排気浄化装置において、
前記排気浄化触媒の劣化状態を診断し、排気浄化触媒が劣化していると診断されたときに、吸・排気弁のバルブオーバラップ量の増大補正、点火時期の遅角補正、EGR量の増大補正を行い、また、排気浄化触媒をバイパスして設けられた第2の排気浄化触媒へ流路を切り換える構成とした。
Therefore, the present invention provides an exhaust gas purification apparatus for an internal combustion engine having an exhaust gas purification catalyst in an exhaust passage.
Diagnosing the deterioration state of the exhaust purification catalyst, and when it is diagnosed that the exhaust purification catalyst is deteriorated, increase correction of the valve overlap amount of the intake and exhaust valves, correction of the retard of the ignition timing, increase of the EGR amount Correction is performed, and the flow path is switched to the second exhaust purification catalyst provided by bypassing the exhaust purification catalyst.

このようにすれば、排気浄化触媒の劣化時に、バルブオーバラップ量を増大させることによって、排気の吹き返しによってエンジン(燃焼室)から排出されるHC(未燃燃料)を低減できると共に、内部EGR量の増大によって燃焼温度が低下し、NOxを低減できる。
また、排気浄化触媒の劣化時に、点火時期を遅角補正することによって、燃焼温度が低下してエンジン(燃焼室)から排出されるNOxを低減できると共に、後燃え促進効果によってHCを低減できる。
In this way, by increasing the valve overlap amount when the exhaust purification catalyst is deteriorated, HC (unburned fuel) discharged from the engine (combustion chamber) due to exhaust blow-back can be reduced and the internal EGR amount can be reduced. The combustion temperature decreases due to the increase in NOx, and NOx can be reduced.
Further, when the exhaust purification catalyst is deteriorated, the ignition timing is retarded to reduce NOx discharged from the engine (combustion chamber) due to a decrease in the combustion temperature, and HC can be reduced due to the afterburning promoting effect.

また、排気浄化触媒の劣化時に、EGR量を増大補正することによって、燃焼温度が低下してエンジン(燃焼室)から排出されるNOxを低減できる。
また、排気浄化触媒の劣化時に、第2の排気浄化触媒へ流路を切り換えることによって、劣化していない第2の排気浄化触媒を用いてHC、NOx等の排気エミッションを低減できる。
Further, when the exhaust purification catalyst is deteriorated, the NOx discharged from the engine (combustion chamber) due to the decrease in the combustion temperature can be reduced by increasing the EGR amount.
Further, by switching the flow path to the second exhaust purification catalyst when the exhaust purification catalyst is deteriorated, exhaust emissions such as HC and NOx can be reduced by using the second exhaust purification catalyst that has not deteriorated.

以下に本発明の実施の形態を図に基づいて説明する。
図1は実施の形態における車両用エンジンのシステム構成図である。
この図1に示すエンジン1には、エアクリーナ2,吸気ダクト3,電制式スロットルチャンバ4,吸気コレクタ5,吸気マニホールド6、吸気弁7を介して空気が吸引される。
また、燃焼室8内に直接燃料を噴射する燃料噴射弁9が気筒毎に設けられており、筒内に吸引された空気と前記燃料噴射弁9から噴射された燃料とが混合して燃焼混合気が形成される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system configuration diagram of a vehicle engine in the embodiment.
Air is sucked into the engine 1 shown in FIG. 1 through an air cleaner 2, an intake duct 3, an electrically controlled throttle chamber 4, an intake collector 5, an intake manifold 6, and an intake valve 7.
Further, a fuel injection valve 9 for directly injecting fuel into the combustion chamber 8 is provided for each cylinder, and the air sucked into the cylinder and the fuel injected from the fuel injection valve 9 are mixed for combustion mixing. Qi is formed.

燃焼室8内に形成された混合気は、点火プラグ10による火花点火で着火燃焼する。
エンジン1からの燃焼排気は、排気弁11、排気マニホールド12,排気ダクト13,上流側と下流側とで一対の排気浄化触媒14A,Bを介して排出される。
ここで、前記排気浄化触媒14A,Bは、酸化・還元反応によってHC,CO,NOxを浄化する三元触媒の他、該三元触媒の機能を備えつつ、排気空燃比がリーンであるときに排気中のNOxをトラップし、排気空燃比が理論空燃比又はリッチであるときに、トラップしていたNOxを脱離して還元浄化する機能を有するNOxトラップ触媒などであってもよい。また、上下流に分割されず、1個の触媒であってもよいことは勿論である。
The air-fuel mixture formed in the combustion chamber 8 is ignited and burned by spark ignition by the spark plug 10.
Combustion exhaust from the engine 1 is discharged via an exhaust valve 11, an exhaust manifold 12, an exhaust duct 13, and a pair of exhaust purification catalysts 14A, B on the upstream side and the downstream side.
Here, the exhaust purification catalysts 14A and 14B have not only a three-way catalyst that purifies HC, CO, and NOx by oxidation / reduction reactions, but also the function of the three-way catalyst, and the exhaust air-fuel ratio is lean. A NOx trap catalyst or the like having a function of trapping NOx in exhaust gas and desorbing and purifying NOx trapped when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio or rich may be used. Of course, the catalyst may be one catalyst without being divided into upstream and downstream.

前記排気浄化触媒14A,Bの下流側の排気ダクト11の一部を並列にバイパスさせ、該バイパス通路15に排気浄化触媒14A,Bと同様の排気浄化機能を有するバイパス触媒16を介装する。
また、排気ダクト11におけるバイパス通路15の上流側分岐点に、バイパス通路15と、これに並列する主通路とを選択的に開通させる流路切換弁17を設ける。
A part of the exhaust duct 11 on the downstream side of the exhaust purification catalysts 14A, B is bypassed in parallel, and a bypass catalyst 16 having an exhaust purification function similar to that of the exhaust purification catalysts 14A, B is interposed in the bypass passage 15.
In addition, a flow path switching valve 17 that selectively opens the bypass passage 15 and the main passage parallel to the bypass passage 15 is provided at the upstream branch point of the bypass passage 15 in the exhaust duct 11.

また、排気マニホールド12と吸気コレクタ5とを連通させるEGR通路(排気還流通路)18が設けられ、該EGR通路18に介装されたEGR制御弁19を開くと、圧力差によって排気の一部が吸気コレクタ5に還流されるようになっている。
前記電制式スロットルチャンバ4,燃料噴射弁8,点火プラグ9,流路切換弁17,EGR制御弁19は、エンジンコントロールユニット(以下、ECUという)20によって制御される。
Further, an EGR passage (exhaust gas recirculation passage) 18 is provided for communicating the exhaust manifold 12 and the intake collector 5, and when the EGR control valve 19 interposed in the EGR passage 18 is opened, a part of the exhaust is caused by the pressure difference. The air is returned to the intake collector 5.
The electrically controlled throttle chamber 4, the fuel injection valve 8, the spark plug 9, the flow path switching valve 17, and the EGR control valve 19 are controlled by an engine control unit (hereinafter referred to as ECU) 20.

ECU20はマイクロコンピュータを含んで構成され、各種センサからの検出信号を、予め記憶されたプログラムに従って演算処理することで、前記電制式スロットルチャンバ4,燃料噴射弁8,点火プラグ9,EGR制御弁19に対して制御信号を出力する。
前記各種センサとしては、吸気ダクト3に介装されてエンジン1の吸入空気量を検出するエアフローメータ21、クランク軸の回転に同期した検出信号を出力するクランク角センサ22、前記一対の排気浄化触媒14A,Bの上流側及び下流側に設けられ排気中の酸素濃度に応じた空燃比信号をそれぞれ出力する空燃比センサ23a,23bが設けられている。
The ECU 20 is configured to include a microcomputer, and performs arithmetic processing on detection signals from various sensors in accordance with a program stored in advance, so that the electric control type throttle chamber 4, the fuel injection valve 8, the spark plug 9, and the EGR control valve 19 are processed. A control signal is output.
The various sensors include an air flow meter 21 that is interposed in the intake duct 3 and detects the intake air amount of the engine 1, a crank angle sensor 22 that outputs a detection signal synchronized with the rotation of the crankshaft, and the pair of exhaust purification catalysts. Air-fuel ratio sensors 23a and 23b are provided on the upstream side and downstream side of 14A and 14B and output air-fuel ratio signals corresponding to the oxygen concentration in the exhaust gas, respectively.

そして、上記2つの空燃比センサ23a,23bによって検出される触媒上流側と下流側の空燃比のリッチ・リーン反転周期の比など周知の劣化診断方式に基づいて排気浄化触媒14A,Bの劣化診断を行い、劣化していると診断されたときに、排気エミッションの悪化を防止する各種処理を実行する。
次に前記ECU20による触媒劣化診断時の処理の詳細を、図2のフローチャートに従って説明する。
Then, the deterioration diagnosis of the exhaust purification catalysts 14A and 14B is performed based on a known deterioration diagnosis method such as the ratio of the rich / lean reversal cycle of the air / fuel ratio upstream and downstream of the catalyst detected by the two air / fuel ratio sensors 23a and 23b. When the deterioration is diagnosed, various processes for preventing the exhaust emission from deteriorating are executed.
Next, details of the process at the time of catalyst deterioration diagnosis by the ECU 20 will be described with reference to the flowchart of FIG.

図2のフローチャートにおいて、まず、ステップS1では、前記排気浄化触媒14A,Bの劣化診断により、触媒が劣化しているか否かを判定する。
具体的には、下流側の空燃比センサ23bによって検出される空燃比のリッチ・リーン反転周期tbに対する上流側の空燃比センサ23aによって検出される空燃比のリッチ・リーン反転周期taの比(ta/tb)が所定のしきい値以上になったときに、触媒の酸素ストレージ量が減少して劣化していると診断し、触媒診断NGフラグをONとする。この触媒診断NGフラグの値によって、触媒が劣化しているか否かを判定する。なお、触媒診断NGフラグがONされたときは、同時に、警告灯が点灯され、これによって、サービス工場等で触媒の交換が行われる。本発明は、この触媒交換までの間も排気エミッションを低減しようとするものである。
In the flowchart of FIG. 2, first, in step S1, it is determined whether or not the catalyst has deteriorated by the deterioration diagnosis of the exhaust purification catalysts 14A and 14B.
Specifically, the ratio of the air-fuel ratio rich / lean inversion period ta detected by the upstream air-fuel ratio sensor 23a to the air-fuel ratio rich / lean inversion period tb detected by the downstream air-fuel ratio sensor 23b (ta When / tb) becomes equal to or greater than a predetermined threshold value, it is diagnosed that the amount of oxygen storage in the catalyst has decreased and deteriorated, and the catalyst diagnosis NG flag is turned ON. It is determined whether or not the catalyst has deteriorated based on the value of the catalyst diagnosis NG flag. When the catalyst diagnosis NG flag is turned ON, a warning lamp is turned on at the same time, whereby the catalyst is replaced at a service factory or the like. The present invention intends to reduce exhaust emission until the catalyst replacement.

触媒が劣化していないと診断されたときは、このフローを終了するが、劣化していると診断されたときは、ステップS2へ進む。
ステップS2では、機関の負荷T(燃料噴射量、吸入空気量、スロットル開度などの負荷を代表する値で検出)Tが、低負荷判別用のしきい値a未満の低負荷域にあるかを判定する。
When it is diagnosed that the catalyst is not deteriorated, this flow is terminated. When it is diagnosed that the catalyst is deteriorated, the process proceeds to step S2.
In step S2, whether the engine load T (detected by values representative of loads such as fuel injection amount, intake air amount, throttle opening, etc.) T is in a low load region below a threshold a for determining low load. Determine.

ステップS2で、低負荷域にあると判定されたときは、ステップS3へ進み、次式のように、吸・排気弁のバルブオーバラップ量O/Lを、触媒が劣化していない状態で設定される設定量O/Lnormalに対して、低負荷に対応して設定される所定量O/Lαだけ増大補正する。
O/L=O/Lnormal+O/Lα
次いでステップS4では、次式のように、点火時期ADV(基準クランク角位置からの進角量として設定)を、同じく触媒が劣化していない状態で設定される設定量ADVnormalに対して、低負荷に対応して設定される所定量RETαだけ遅角補正する。
When it is determined in step S2 that the load is in the low load range, the process proceeds to step S3, and the valve overlap amount O / L of the intake / exhaust valve is set in a state where the catalyst is not deteriorated as in the following equation. The set amount O / Lnormal is corrected to be increased by a predetermined amount O / Lα set corresponding to the low load.
O / L = O / Lnormal + O / Lα
Next, in step S4, the ignition timing ADV (set as the advance amount from the reference crank angle position) is set at a low load with respect to the set amount ADVnormal that is also set in a state where the catalyst is not deteriorated, as in the following equation. Is retarded by a predetermined amount RETα set corresponding to

ADV=ADVnormal−RETα
次いで、ステップS5では、次式のように、吸気系への排気還流量EGRを、同じく触媒が劣化していない状態で設定される設定量EGRnormalに対して、低負荷に対応して設定される所定量EGRαだけ増大補正する。
EGR=EGRnormal+EGRα
次いで、ステップS13では、前記流路切換弁17によって、バイパス通路15を開として、排気をバイパス触媒16に流通させる。
ADV = ADVnormal-RETα
Next, in step S5, the exhaust gas recirculation amount EGR to the intake system is set corresponding to the low load with respect to the set amount EGRnormal that is also set in a state where the catalyst is not deteriorated, as in the following equation. Increase correction is performed by a predetermined amount EGRα.
EGR = EGRnormal + EGRα
Next, in step S <b> 13, the flow path switching valve 17 opens the bypass passage 15 and causes the exhaust to flow through the bypass catalyst 16.

また、ステップS2で負荷Tがa未満でないと判定された場合は、ステップS6へ進んで、負荷Tが中負荷判別用のしきい値b(>a)以下であるか、つまりa≦T≦bの中負荷域であるかを判定する。
ステップS6で、中負荷域にあると判定されたときは、ステップS7へ進み、次式のように、前記設定量O/Lnormalに対して、中負荷に対応して設定される所定量O/Lβ(>O/Lα)だけ増大補正する。
On the other hand, if it is determined in step S2 that the load T is not less than a, the process proceeds to step S6, and whether the load T is equal to or less than the threshold b (> a) for determining the medium load, that is, a ≦ T ≦ It is determined whether it is in the middle load range of b.
When it is determined in step S6 that the vehicle is in the medium load region, the process proceeds to step S7, and the predetermined amount O / Lnormally set corresponding to the medium load with respect to the set amount O / Lnormal as shown in the following equation. Increase correction by Lβ (> O / Lα).

O/L=O/Lnormal+O/Lβ
次いでステップS8では、次式のように、点火時期ADVを、前記設定量ADVnormalに対して、中負荷に対応して設定される所定量RETβ(>RETα)だけ遅角補正する。
ADV=ADVnormal−RETβ
次いで、ステップS9では、次式のように、排気還流量EGRを、前記設定量EGRnormalに対して、中負荷に対応して設定される所定量EGRβだけ増大補正する。
O / L = O / Lnormal + O / Lβ
Next, in step S8, the ignition timing ADV is retarded by a predetermined amount RETβ (> RETα) set corresponding to the medium load with respect to the set amount ADVnormal as shown in the following equation.
ADV = ADVnormal-RETβ
Next, in step S9, the exhaust gas recirculation amount EGR is corrected to increase by a predetermined amount EGRβ set corresponding to the medium load with respect to the set amount EGRnormal, as in the following equation.

EGR=EGRnormal+EGRβ
次いで、ステップS13へ進んで、排気をバイパス触媒16に流通させる。
また、ステップS6で負荷Tが前記しきい値bを超える高負荷域であると判定されたときは、ステップS10,11,12へ進んで、順次下式のようにバルブオーバラップ量O/L、点火時期ADV、排気還流量EGRを補正した後、ステップS13へ進んで、排気をバイパス触媒16に流通させる。
EGR = EGRnormal + EGRβ
Next, the process proceeds to step S <b> 13, and the exhaust gas is circulated through the bypass catalyst 16.
If it is determined in step S6 that the load T is in a high load range exceeding the threshold value b, the process proceeds to steps S10, 11, and 12, and the valve overlap amount O / L is sequentially calculated as in the following equation. After correcting the ignition timing ADV and the exhaust gas recirculation amount EGR, the routine proceeds to step S13, where the exhaust gas is circulated to the bypass catalyst 16.

O/L=O/Lnormal+O/Lγ ただし、O/Lγ>O/Lβ
ADV=ADVnormal−RETγ ただし、RETγ>RETβ
EGR=EGRnormal+EGRγ ただし、EGRγ>EGRβ
このようにすれば、排気浄化触媒14A,Bが劣化していると診断されたときは、バルブオーバラップ量O/L、点火時期ADV、EGR量が補正されることにより、エンジン1からの排気エミッションを良好に維持できる。
O / L = O / Lnormal + O / Lγ where O / Lγ> O / Lβ
ADV = ADVnormal−RETγ where RETγ> RETβ
EGR = EGRnormal + EGRγ where EGRγ> EGRβ
In this way, when it is diagnosed that the exhaust purification catalysts 14A and 14B are deteriorated, the exhaust from the engine 1 is corrected by correcting the valve overlap amount O / L, the ignition timing ADV, and the EGR amount. Emissions can be maintained well.

具体的には、バルブオーバラップ量O/Lを増大させることによって、排気の吹き返し効果を高め、これによりエンジン(燃焼室)からのHCの排出を抑制して、HC排出量を低減できる。また、同じく排気の吹き戻し量の増大によって、吸気中の内部EGR量の割合が増大するので燃焼温度が低下し、NOxも低減できる。
また、点火時期を遅角補正することによって、圧縮上死点での最高圧力より遅角側に離れた時期に点火燃焼が行われるので、燃焼温度が低下してエンジン(燃焼室)から排出されるNOxを低減できると共に、後燃え促進効果によってHCを低減できる。
Specifically, by increasing the valve overlap amount O / L, it is possible to enhance the exhaust blow-back effect, thereby suppressing HC emission from the engine (combustion chamber) and reducing the HC emission amount. Similarly, the ratio of the internal EGR amount in the intake air increases due to the increase in the exhaust blow-back amount, so that the combustion temperature decreases and NOx can also be reduced.
In addition, by correcting the ignition timing to retard, ignition combustion is performed at a timing away from the maximum pressure at the compression top dead center, so that the combustion temperature is lowered and discharged from the engine (combustion chamber). NOx can be reduced, and HC can be reduced by the afterburning promoting effect.

また、不活性なEGRガスの量を増大補正することによって、燃焼温度が低下してエンジン(燃焼室)から排出されるNOxを低減できる。
これら3つの補正によって、エンジンからの排気エミッションをできるだけ改善した上で、常時使用される排気浄化触媒14A,Bの劣化時のみ使用される新品もしくは略新品状態の劣化していないバイパス触媒16(第2の排気浄化触媒)を用いることにより、最終的にバイパス触媒16から排出する排気エミッションを十分良好に維持できる。
Further, by increasing and correcting the amount of inert EGR gas, it is possible to reduce NOx discharged from the engine (combustion chamber) when the combustion temperature decreases.
By these three corrections, the exhaust emission from the engine is improved as much as possible, and the new or substantially unused new state of the bypass catalyst 16 (first) is used only when the exhaust purification catalysts 14A and 14B are always used. 2), the exhaust emission finally discharged from the bypass catalyst 16 can be maintained sufficiently satisfactorily.

ここで、バイパス触媒16は、使用頻度が極めて低く、かつ、上記各種補正を行ってエンジンからの排気エミッションを低減した上で用いられるので、必要最小限度の浄化機能を有する小容量のものを用いればよい。
また、エンジンからの排気エミッションは、負荷が大きくなるほど悪化するので、本実施の形態のように負荷の増大に応じて各補正量を大きくすることで、排気浄化に必要かつ十分な補正量に設定することができる。
Here, the bypass catalyst 16 is used with a very low use frequency, and is used after reducing the exhaust emission from the engine by performing the above-mentioned various corrections. That's fine.
In addition, since the exhaust emission from the engine gets worse as the load increases, increasing each correction amount according to the increase in load as in this embodiment sets the correction amount necessary and sufficient for exhaust purification. can do.

ただし、触媒の劣化はドライバに報知されて触媒は交換されるのであるから、この間はエンジンに悪影響を与えない範囲で補正量を大きめ設定して、多少の運転性低下はあってもできるだけ排気浄化性能を優先するようにしてもよい。
図3は、上記実施の形態における各種状態量の変化の様子を、本発明に係る補正を行わない比較例と共に示す。
However, since the driver is notified of catalyst deterioration and the catalyst is replaced, a large correction amount is set within this range so as not to adversely affect the engine, and even if there is a slight decrease in operability, exhaust purification is possible. You may make it give priority to performance.
FIG. 3 shows how various state quantities change in the above embodiment, together with a comparative example in which correction according to the present invention is not performed.

図4は、第2の排気浄化触媒として、冷機時に用いられる低温用触媒を流用する実施の形態の車両用エンジンのシステム構成図である。
本実施形態では、上流側の排気浄化触媒14Aと並列に接続されたバイパス通路31に、低温用触媒32が介装され、排気ダクト11におけるバイパス通路31の上流側分岐点に、バイパス通路31と、これに並列する主通路とを選択的に開通させる流路切換弁33が設けられている。
FIG. 4 is a system configuration diagram of a vehicle engine according to an embodiment in which a low-temperature catalyst used when cold is used as the second exhaust purification catalyst.
In the present embodiment, a low-temperature catalyst 32 is interposed in a bypass passage 31 connected in parallel with the upstream side exhaust purification catalyst 14 </ b> A, and the bypass passage 31 and the bypass passage 31 at the upstream branch point of the bypass passage 31 in the exhaust duct 11. A flow path switching valve 33 for selectively opening a main passage in parallel with the main passage is provided.

上記低温用触媒32は、低温でも活性化されて良好な排気浄化機能を得られるような触媒物質が用いられ、あるいは電気ヒータ等を内蔵し、温度上昇させて触媒を活性化した状態で使用されるように構成されており、図示しない水温センサによって検出される水温が所定値以下の冷機時に、前記流路切換弁33がバイパス通路31を開くように制御され、排気を低温用触媒32に導いて冷機時の排気エミッションを良好に維持するようになっている。   The low-temperature catalyst 32 is made of a catalyst material that can be activated even at low temperatures to obtain a good exhaust purification function, or is used in a state in which the catalyst is activated by increasing the temperature by incorporating an electric heater or the like. The flow path switching valve 33 is controlled to open the bypass passage 31 when the water temperature detected by a water temperature sensor (not shown) is below a predetermined value, and the exhaust gas is led to the low temperature catalyst 32. As a result, exhaust emissions during cold operation are well maintained.

そして、第1の実施の形態同様にして排気浄化触媒14A,Bの劣化診断を行い、触媒が劣化していると診断されたときに、バルブオーバラップ量O/Lの増大補正、点火時期ADVの遅角補正、EGR量の増大補正を行うと共に、上記流路切換弁33をバイパス通路31を開くように制御して排気を低温用触媒32に通し、該低温用触媒32によって浄化を行うようにする。   Then, a deterioration diagnosis of the exhaust purification catalysts 14A and 14B is performed in the same manner as in the first embodiment, and when it is determined that the catalyst is deteriorated, an increase correction of the valve overlap amount O / L, an ignition timing ADV And the EGR amount increase correction, and the flow path switching valve 33 is controlled to open the bypass passage 31 so that the exhaust gas is passed through the low temperature catalyst 32 and purified by the low temperature catalyst 32. To.

低温用触媒32は、冷機時のみ使用されるので排気浄化触媒14A,Bに比較して劣化度合いが低いので、劣化した排気浄化触媒14A,Bを交換するまでの間、良好な排気浄化性能を維持することができ、予め低温用に設けられた触媒を使用するので、低コストで済む。
以上示した実施の形態は、バルブオーバラップ量O/Lの増大補正、点火時期ADVの遅角補正、EGR量の増大補正と、第2の排気浄化触媒への流路の切り換えを全て行うものであったが、これらのうち、いずれかを省略し、少なくとも1つを行うだけでも、通常の排気浄化触媒の劣化時に排気浄化性能を改善することができる。
Since the low temperature catalyst 32 is used only when it is cold, the degree of deterioration is lower than that of the exhaust purification catalysts 14A and 14B. Therefore, good exhaust purification performance is obtained until the deteriorated exhaust purification catalysts 14A and 14B are replaced. Since a catalyst previously provided for low temperatures can be used, the cost can be reduced.
In the embodiment described above, the valve overlap amount O / L increase correction, the ignition timing ADV retardation correction, the EGR amount increase correction, and the switching of the flow path to the second exhaust purification catalyst are all performed. However, even if one of these is omitted and only one is performed, the exhaust purification performance can be improved when the normal exhaust purification catalyst is deteriorated.

第1の実施の形態における車両用エンジンのシステム構成図。The system block diagram of the vehicle engine in 1st Embodiment. 同上実施の形態における触媒劣化診断時の処理の詳細を示すフローチャート。The flowchart which shows the detail of the process at the time of the catalyst deterioration diagnosis in embodiment same as the above. 同上実施の形態における触媒が劣化と診断されたときの各種状態量の変化の様子を、本発明に係る補正を行わない比較例と共に示すタイムチャート。The time chart which shows the mode of the change of the various state quantities when the catalyst in embodiment same as the above is diagnosed with the comparative example which does not perform correction | amendment which concerns on this invention. 第2の実施の形態における車両用エンジンのシステム構成図。The system block diagram of the vehicle engine in 2nd Embodiment.

符号の説明Explanation of symbols

1…エンジン
7…吸気弁
10…点火プラグ
11…排気弁
13…排気ダクト
14A,B…排気浄化触媒
15…バイパス通路
16…バイパス触媒
17…流路切換弁
18…EGR通路
19…EGR制御弁
20…エンジンコントロールユニット(ECU)
21…エアフロメータ
22…クランク角センサ
23a…空燃比センサ(触媒上流側)
23b…空燃比センサ(触媒下流側)
31…バイパス通路
32…低温用触媒
33…流路切換弁
DESCRIPTION OF SYMBOLS 1 ... Engine 7 ... Intake valve 10 ... Spark plug 11 ... Exhaust valve 13 ... Exhaust duct 14A, B ... Exhaust purification catalyst 15 ... Bypass passage 16 ... Bypass catalyst 17 ... Flow path switching valve 18 ... EGR passage 19 ... EGR control valve 20 ... Engine control unit (ECU)
21 ... Air flow meter 22 ... Crank angle sensor 23a ... Air-fuel ratio sensor (upstream side of catalyst)
23b ... Air-fuel ratio sensor (catalyst downstream side)
31 ... Bypass passage 32 ... Low temperature catalyst 33 ... Flow path switching valve

Claims (8)

排気通路に排気浄化触媒を備えた内燃機関の排気浄化装置において、
前記排気浄化触媒の劣化状態を診断する触媒劣化診断手段と、
前記触媒劣化診断手段により、排気浄化触媒が劣化していると診断されたときに、吸・排気弁のバルブオーバラップ量を増大補正するバルブオーバラップ量補正手段と、
を含んで構成したことを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine provided with an exhaust gas purification catalyst in an exhaust passage,
Catalyst deterioration diagnosis means for diagnosing the deterioration state of the exhaust purification catalyst;
A valve overlap amount correcting means for correcting an increase in the valve overlap amount of the intake / exhaust valve when the catalyst deterioration diagnosis means diagnoses that the exhaust purification catalyst is deteriorated;
An exhaust emission control device for an internal combustion engine, comprising:
機関の負荷を検出する負荷検出手段を備え、機関の負荷が大きいときは小さいときより前記バルブオーバラップ量補正手段によるバルブオーバラップ量の増大補正量を大きくすることを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The load detecting means for detecting the load of the engine is provided, and when the engine load is large, the increase correction amount of the valve overlap amount by the valve overlap amount correcting means is made larger than when the load is small. An exhaust gas purification apparatus for an internal combustion engine as described. 排気通路に排気浄化触媒を備えた内燃機関の排気浄化装置において、
前記排気浄化触媒の劣化状態を診断する触媒劣化診断手段と、
前記触媒劣化診断手段により、排気浄化触媒が劣化していると診断されたときに、点火時期を遅角補正する点火時期遅角補正手段と、を含んで構成したことを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine provided with an exhaust gas purification catalyst in an exhaust passage,
Catalyst deterioration diagnosis means for diagnosing the deterioration state of the exhaust purification catalyst;
An internal combustion engine comprising: an ignition timing retarding correction unit that retards an ignition timing when the catalyst degradation diagnosis unit diagnoses that the exhaust purification catalyst is degraded. Exhaust purification device.
機関の負荷を検出する負荷検出手段を備え、機関の負荷が大きいときは小さいときより前記点火時期遅角補正手段による点火時期の遅角補正量を大きくすることを特徴とする請求項3に記載の内燃機関の排気浄化装置。   The load detection means for detecting the engine load is provided, and when the engine load is large, the ignition timing retardation correction amount by the ignition timing retardation correction means is made larger than when the engine load is small. Exhaust gas purification device for internal combustion engine. 排気通路に排気浄化触媒を備えた内燃機関の排気浄化装置において、
前記排気浄化触媒の劣化状態を診断する触媒劣化診断手段と、
前記触媒劣化診断手段により、排気浄化触媒が劣化していると診断されたときに、排気の吸気系への還流量(EGR量)を増大補正するEGR量補正手段と、を含んで構成したことを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine provided with an exhaust gas purification catalyst in an exhaust passage,
Catalyst deterioration diagnosis means for diagnosing the deterioration state of the exhaust purification catalyst;
And an EGR amount correcting unit that increases and corrects the recirculation amount (EGR amount) of the exhaust gas to the intake system when the catalyst deterioration diagnosis unit diagnoses that the exhaust purification catalyst has deteriorated. An exhaust gas purification apparatus for an internal combustion engine characterized by the above.
機関の負荷を検出する負荷検出手段を備え、機関の負荷が大きいときは小さいときより前記EGR量補正手段によるEGR増大補正量を大きくすることを特徴とする請求項5に記載の内燃機関の排気浄化装置。   6. The exhaust of the internal combustion engine according to claim 5, further comprising load detection means for detecting engine load, wherein the EGR increase correction amount by the EGR amount correction means is larger when the engine load is large than when the engine load is small. Purification equipment. 排気通路に第1の排気浄化触媒と、該第1の排気浄化触媒をバイパスして第2の排気浄化触媒と、を備えた内燃機関の排気浄化装置において、
前記第1の排気浄化触媒の劣化状態を診断する触媒劣化診断手段と、
前記触媒劣化診断手段により、第1の排気浄化触媒が劣化していると診断されたときに、前記第2の排気浄化触媒へ排気を導くように流路を切り換える流路切換手段と、
を含んで構成したことを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine, comprising: a first exhaust gas purification catalyst in an exhaust passage; and a second exhaust gas purification catalyst that bypasses the first exhaust gas purification catalyst;
Catalyst deterioration diagnosis means for diagnosing the deterioration state of the first exhaust purification catalyst;
Flow path switching means for switching the flow path so as to guide the exhaust to the second exhaust purification catalyst when the catalyst deterioration diagnosis means diagnoses that the first exhaust purification catalyst is deteriorated;
An exhaust emission control device for an internal combustion engine, comprising:
前記第2の排気浄化触媒は、冷機時に使用される低温用触媒であることを特徴とする請求項7に記載の内燃機関の排気浄化装置。   8. The exhaust gas purification apparatus for an internal combustion engine according to claim 7, wherein the second exhaust gas purification catalyst is a low temperature catalyst used when the engine is cold.
JP2005348057A 2005-12-01 2005-12-01 Exhaust emission control device for internal combustion engine Withdrawn JP2007154692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348057A JP2007154692A (en) 2005-12-01 2005-12-01 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348057A JP2007154692A (en) 2005-12-01 2005-12-01 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007154692A true JP2007154692A (en) 2007-06-21

Family

ID=38239399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348057A Withdrawn JP2007154692A (en) 2005-12-01 2005-12-01 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007154692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108711A (en) * 2007-10-26 2009-05-21 Toyota Motor Corp Exhaust gas purification device and internal combustion engine
JP2014074385A (en) * 2012-10-05 2014-04-24 Nippon Soken Inc Control device of internal combustion engine
CN113266450A (en) * 2020-02-14 2021-08-17 株式会社斯巴鲁 Exhaust gas purification device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108711A (en) * 2007-10-26 2009-05-21 Toyota Motor Corp Exhaust gas purification device and internal combustion engine
JP2014074385A (en) * 2012-10-05 2014-04-24 Nippon Soken Inc Control device of internal combustion engine
CN113266450A (en) * 2020-02-14 2021-08-17 株式会社斯巴鲁 Exhaust gas purification device
JP2021127727A (en) * 2020-02-14 2021-09-02 株式会社Subaru Exhaust gas purification device
JP7360339B2 (en) 2020-02-14 2023-10-12 株式会社Subaru Exhaust gas purification device

Similar Documents

Publication Publication Date Title
US7367310B2 (en) Controller for compression ignition engine
JP3683681B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JPH07259539A (en) Exhaust gas purification device for internal combustion engine
US8443656B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection device for multi-cylinder internal combustion engine and abnormality detection method therefor
CN108386261B (en) Catalyst degradation determination device
CN103502612A (en) Exhaust gas purification control device for internal combustion engine
US9109524B2 (en) Controller for internal combustion engine
JP2013119832A (en) Internal combustion engine control device
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP2004076668A (en) Control device for internal combustion engine
WO2012049916A1 (en) Exhaust gas recirculation control device for internal combustion engine
KR102644418B1 (en) System and method of controlling oxygen purge of three-way catalyst
JP2007154692A (en) Exhaust emission control device for internal combustion engine
US6675574B2 (en) Control unit for internal combustion engine
JP5690182B2 (en) Control device for internal combustion engine
JP2012117463A (en) Device for detecting abnormal variation of air-fuel ratio between cylinders
JP4023327B2 (en) Abnormality diagnosis device for intake system sensor
JP4126942B2 (en) Internal combustion engine control device
JP2006037767A (en) Control device for internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2004036575A (en) Control device for internal combustion engine
JP4345853B2 (en) Abnormality diagnosis device for intake system sensor
JP2002122018A (en) Catalyst temperature estimation device
JPH08291739A (en) Air-fuel ratio control device
JP2004232477A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090901