JP2007131945A - High strength steel wire with excellent ductility and method for producing the same - Google Patents
High strength steel wire with excellent ductility and method for producing the same Download PDFInfo
- Publication number
- JP2007131945A JP2007131945A JP2006278781A JP2006278781A JP2007131945A JP 2007131945 A JP2007131945 A JP 2007131945A JP 2006278781 A JP2006278781 A JP 2006278781A JP 2006278781 A JP2006278781 A JP 2006278781A JP 2007131945 A JP2007131945 A JP 2007131945A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- ppm
- less
- steel wire
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Metal Extraction Processes (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
【課題】 伸線加工性に優れた線材を得て、それを素材とする鋼線を高い生産性の下に歩留り良く廉価に提供する。
【解決手段】 成分の特定された硬鋼線材を、特定の温度域に加熱することで再オーステナイト化後パテンティング処理することにより、パーライト組織の面積率が97%以上、残部がベイナイト、擬似パーライト、初析フェライトからなる非パーライト組織であり、且つ破断絞り値RAが次式(1)、(2)、(3)を満足するような、延性に優れた高炭素鋼線を得る。
RA≧a−b×パーライトブロック粒径(μm) ・・(1)
a=−0.0114×(TS(MPa))2+3.1178×TS(MPa)−151.32 ・・(2)
b=0.0073×TS(MPa)−0.3753 ・・(3)
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a wire rod excellent in wire drawing workability, and to provide a steel wire made from the wire rod with high yield and low cost under high productivity.
SOLUTION: A hard steel wire having a specified component is heated to a specific temperature range and then subjected to patenting after re-austenite, whereby the area ratio of the pearlite structure is 97% or more and the balance is bainite, pseudo pearlite. Thus, a high carbon steel wire excellent in ductility that has a non-pearlite structure made of pro-eutectoid ferrite and that satisfies the following formulas (1), (2), and (3) at the fracture drawing value RA is obtained.
RA ≧ a−b × pearlite block particle size (μm) (1)
a = −0.0114 × (TS (MPa)) 2 + 3.1178 × TS (MPa) −151.32 (2)
b = 0.0003 × TS (MPa) −0.3753 (3)
[Selection] Figure 1
Description
本発明は、鋼線材、鋼線及びそれらの製造方法に関する。より詳しくは、例えば、自動車のラジアルタイヤや、各種産業用ベルトやホースの補強材として用いられるスチールコード、更には、ソーイングワイヤなどの用途に好適な圧延線材とその製造方法、および前記の圧延線材を素材とする鋼線に関する。 The present invention relates to a steel wire, a steel wire, and a manufacturing method thereof. More specifically, for example, a steel cord used as a reinforcing material for a radial tire of an automobile, various industrial belts and hoses, a rolled wire suitable for uses such as a sawing wire, a manufacturing method thereof, and the rolled wire described above Relates to steel wires made of steel.
自動車のラジアルタイヤや、各種のベルト、ホースの補強材として用いられるスチールコード用鋼線、あるいは、ソーイングワイヤ用の鋼線は、一般に、熱間圧延後調整冷却した線径(直径)が5〜6mmの鋼線材を、1次伸線加工して直径を3〜4mmにし、次いで、パテンティング処理を行い、更に2次伸線加工して1〜2mmの直径にする。この後、最終パテンティング処理を行い、次いで、ブラスメッキを施し、更に最終湿式伸線加工を施して直径0.15〜0.40mmにする。このようにして得られた極細鋼線を、更に撚り加工で複数本撚り合わせて撚鋼線とすることでスチールコードが製造される。 In general, steel cord steel wires used as reinforcing materials for automobile radial tires, various belts and hoses, or steel wires for sawing wires have a wire diameter (diameter) of 5 to 5 adjusted and cooled after hot rolling. A 6-mm steel wire is subjected to primary wire drawing to a diameter of 3 to 4 mm, followed by a patenting treatment and further subjected to secondary wire drawing to a diameter of 1 to 2 mm. Thereafter, a final patenting process is performed, followed by brass plating, and further a final wet wire drawing to a diameter of 0.15 to 0.40 mm. A steel cord is manufactured by twisting a plurality of the ultrafine steel wires thus obtained into a twisted steel wire by twisting.
一般に、線材を鋼線に加工する際や鋼線を撚り加工する際に断線が生ずると、生産性と歩留りが大きく低下してしまう。したがって、上記技術分野に属する線材や鋼線は、伸線加工時や撚り加工時に断線しないことが強く要求される。伸線加工のうちでも最終湿式伸線加工の場合には、被処理鋼線の線径が極めて細いため、特に断線が発生しやすい。 In general, when a wire breakage occurs when a wire rod is processed into a steel wire or a steel wire is twisted, productivity and yield are greatly reduced. Therefore, wire rods and steel wires belonging to the above technical field are strongly required not to be disconnected during wire drawing or twisting. Among the wire drawing processes, in the case of the final wet wire drawing process, the wire diameter of the steel wire to be treated is extremely thin, so that disconnection is particularly likely to occur.
更に、近年、種々の目的からスチールコードなどを軽量化する動きが高まってきた。このため、前記の各種製品に対して高強度が要求されるようになり、C含有量が0.7質量%未満の炭素鋼線材などでは、所望の高強度が得られなくなっており、0.75質量%以上のC含有量の鋼線を用いることが多くなっている。しかし、C含有量を高めると伸線加工性が低下するので、断線頻度が高くなる。このため、C含有量が高くて鋼線に高い強度を確保させることができ、しかも伸線加工性にも優れた線材に対する要求が極めて大きくなっている。 Furthermore, in recent years, there has been an increasing trend to reduce the weight of steel cords and the like for various purposes. For this reason, high strength is required for the various products described above, and a carbon steel wire having a C content of less than 0.7% by mass cannot obtain a desired high strength. A steel wire having a C content of 75% by mass or more is increasingly used. However, if the C content is increased, the wire drawing workability is lowered, so that the frequency of disconnection is increased. For this reason, the request | requirement with respect to the wire which has high C content, can ensure the high intensity | strength to a steel wire, and was excellent also in wire drawing workability has become very large.
上記した近年の産業界からの要望に対して、偏析やミクロ組織を制御したり、特定の元素を含有させることで高炭素線材の伸線加工性を高める技術が提案されている。 In response to the above-mentioned demands from the industry in recent years, a technique has been proposed in which segregation and microstructure are controlled, or a specific element is contained to enhance the drawing workability of a high carbon wire.
例えば特許文献1には、特定の化学組成を有する鋼材からなり、初析セメンタイトの含有平均面積率を規定した「高強度高靱性極細鋼線用線材、高強度高靱性極細鋼線、および該極細鋼線を用いた撚り製品、並びに該極細鋼線の製造方法」が開示されている。しかし、この文献で提案された線材は、高価な元素であるNi及びCoの1種以上を必須の成分として含有するため、製造コストが嵩む。 For example, Patent Document 1 includes a “high-strength, high-toughness ultrafine steel wire, a high-strength, high-toughness ultrafine steel wire, and the ultrafine steel wire that is made of a steel material having a specific chemical composition and defines the content average area ratio of proeutectoid cementite. A twisted product using a steel wire and a method for producing the ultrafine steel wire "are disclosed. However, since the wire proposed in this document contains one or more of Ni and Co, which are expensive elements, as essential components, the manufacturing cost increases.
一方、パテンティング線材の絞り値はオーステナイト粒径に依存し、オーステナイト粒径を微細化することによって絞り値が向上することから、Nb、Ti、B等の炭化物や窒化物をピニング粒子として用いることによってオーステナイト粒径を微細化する試みもなされている。特許文献1には、成分元素としてNb:0.01〜0.1重量%、Zr:0.05〜0.1重量%、Mo:0.02〜0.5重量%よりなる群から1種以上を含有させて極細鋼線の靱延性を一層高める技術が開示されている。特許文献2でも、NbCによるオーステナイト粒径の微細化が提案されている。しかしこれら添加元素は高価なためコスト増を招くこと、Nbは粗大な炭化物、窒化物を、Tiは粗大な酸化物を形成するため細い線径、例えば、直径0.40mm以下の線径にまで伸線すると、断線する場合があった。また、本発明者らによる検証によれば、BNのピニングにでは、絞り値に影響を及ぼすほどオーステナイト粒径を微細化することは難しい。 On the other hand, the drawing value of the patenting wire depends on the austenite particle size, and the drawing value is improved by refining the austenite particle size. Therefore, carbides and nitrides such as Nb, Ti, and B are used as pinning particles. Attempts have also been made to refine the austenite grain size. In Patent Document 1, Nb: 0.01 to 0.1% by weight, Zr: 0.05 to 0.1% by weight, and Mo: 0.02 to 0.5% by weight as component elements are included. A technique for further enhancing the toughness of ultra fine steel wire by containing the above is disclosed. Also in patent document 2, refinement | miniaturization of the austenite particle size by NbC is proposed. However, since these additive elements are expensive, cost increases, Nb forms coarse carbides and nitrides, and Ti forms coarse oxides, so that the wire diameter is small, for example, a wire diameter of 0.40 mm or less. When the wire was drawn, it was sometimes broken. Further, according to the verification by the present inventors, in BN pinning, it is difficult to make the austenite grain size fine enough to affect the aperture value.
さらに、特許文献3、特許文献4、特許文献5のように、Ti,Bにより固溶Nを固定することにより高炭素線材の伸線加工性を高める技術も提案されている。しかし、近年の報告によれば、伸線中に線材中のセメンタイトが分解し、固溶C量が高まるため、伸線前の固溶Nを固定しても伸線加工性を高めることは困難と考えられる。 Furthermore, as in Patent Document 3, Patent Document 4, and Patent Document 5, a technique for improving the wire drawing workability of a high carbon wire by fixing solute N with Ti and B has also been proposed. However, according to recent reports, the cementite in the wire is decomposed during wire drawing and the amount of solute C increases, so it is difficult to improve wire drawing workability even if solid solution N is fixed before wire drawing. it is conceivable that.
また、特許文献6、特許文献7では、固溶Bによりフェライト析出を抑制する技術も提案されているが、一方で固溶Bにより析出が促進される粗大なセメンタイト、Fe23(CB)6への配慮がなされておらず、断線の可能性が高い。 Patent Documents 6 and 7 also propose a technique for suppressing ferrite precipitation by solute B. On the other hand, to coarse cementite whose precipitation is accelerated by solute B, Fe 23 (CB) 6 . Is not considered, and there is a high possibility of disconnection.
本発明は、上記現状に鑑みなされたもので、その目的は、スチールコードやソーイングワイヤなどの用途に好適な伸線加工性などの冷間加工性に優れた線材を得るとともに、前記の線材を素材とする鋼線を高い生産性の下に歩留りよく廉価に提供することである。 The present invention has been made in view of the above situation, and its purpose is to obtain a wire material excellent in cold workability such as wire drawing workability suitable for uses such as a steel cord and a sawing wire, and to obtain the wire material described above. It is to provide steel wire as a raw material with high yield and low cost under high productivity.
上記課題を解決することのできた本発明に係る製造方法の構成は、下記(1)から(3)に示す鋼線材、(4)に示す鋼線材の製造方法、および(5)に示す高強度鋼線にある。 The structure of the manufacturing method according to the present invention that has solved the above-mentioned problems is as follows. A steel wire shown in (1) to (3) below, a method of manufacturing a steel wire shown in (4), and a high strength shown in (5) On steel wire.
(1)パテンティング後のパーライト組織の面積率が97%以上、残部がベイナイト、擬似パーライト、初析フェライトからなる非パーライト組織であり、破断絞り値RAが次式(1)、(2)、(3)、引張り強さTSが式(4)を満足することを特徴とする鋼線材。
RA≧a−b×パーライトブロック粒径(μm) ・・(1)
a=−0.0114×(TS(MPa))2+3.1178×TS(MPa)−151.32 ・・(2)
b=0.0073×TS(MPa)−0.3753 ・・(3)
TS≧1000×C(%)−10×線径(mm)+320 MPa ・・(4)
(2)質量%で、C:0.70〜1.10%、Si:0.1〜1.5%、Mn:0.1〜1.0%、Al:0.01%以下、Ti:0.01%以下、N:10〜60質量ppm、B:(0.77×N(ppm)−17.4)質量ppm、もしくは3質量ppmのいずれか高い量以上、52質量ppm以下を含有し、残部はFe及び不純物からなることを特徴とする請求項1に記載の鋼線材。
(3)更にCr:0.5%以下(0%を含まない),Ni:0.5%以下(0%を含まない),Co:0.5%以下(0%を含まない),V :0.5%以下(0%を含まない),Cu:0.2%以下(0%を含まない)、Mo:0.2%以下(0%を含まない)、W:0.2%以下(0%を含まない)、Nb:0.1%以下(0%を含まない)、よりなる群から選択される少なくとも1種以上を含有することを特徴とする請求項2に記載の鋼線材。
(4)(2)乃至(3)に記載の化学組成を有する線材を、次に示す温度Tmin〜1100℃に加熱し、500〜650℃の雰囲気中で、800〜650℃の冷速が50℃/s以上であるようなパテンティング処理を行うことを特徴とする、(1)に記載の鋼線材の製造方法。
B(ppm)−0.77×N(ppm)>0.0の場合は加熱最低温度Tminは850℃、
B(ppm)−0.77×N(ppm)≦0.0の場合は、加熱最低温度Tminは、
Tmin=1000+1450/(B(ppm)−0.77×N(ppm)―10)
(5)(1)に記載の鋼線材を冷間伸線することによって製造する、引張り強さが2800MPa以上であることを特徴とする延性に優れた高強度鋼線。
(1) The area ratio of the pearlite structure after patenting is 97% or more, the balance is a non-pearlite structure composed of bainite, pseudo pearlite, and pro-eutectoid ferrite, and the fracture drawing value RA is expressed by the following formulas (1), (2), (3) A steel wire characterized by a tensile strength TS satisfying the formula (4).
RA ≧ a−b × pearlite block particle size (μm) (1)
a = −0.0114 × (TS (MPa)) 2 + 3.1178 × TS (MPa) −151.32 (2)
b = 0.0003 × TS (MPa) −0.3753 (3)
TS ≧ 1000 × C (%) − 10 × wire diameter (mm) +320 MPa (4)
(2) By mass%, C: 0.70 to 1.10%, Si: 0.1 to 1.5%, Mn: 0.1 to 1.0%, Al: 0.01% or less, Ti: 0.01% or less, N: 10 to 60 ppm by mass, B: (0.77 × N (ppm) -17.4) ppm by mass, or 3 ppm by mass, whichever is higher, 52 ppm by mass or less And the remainder consists of Fe and an impurity, The steel wire rod of Claim 1 characterized by the above-mentioned.
(3) Cr: 0.5% or less (not including 0%), Ni: 0.5% or less (not including 0%), Co: 0.5% or less (not including 0%), V : 0.5% or less (not including 0%), Cu: 0.2% or less (not including 0%), Mo: 0.2% or less (not including 0%), W: 0.2% The steel according to claim 2, comprising at least one selected from the group consisting of the following (not including 0%), Nb: not more than 0.1% (not including 0%). wire.
(4) A wire having the chemical composition described in (2) to (3) is heated to a temperature Tmin to 1100 ° C. shown below, and a cooling rate of 800 to 650 ° C. is 50 in an atmosphere of 500 to 650 ° C. The method for producing a steel wire according to (1), wherein the patenting process is performed at a temperature of at least ° C / s.
In the case of B (ppm) −0.77 × N (ppm)> 0.0, the minimum heating temperature Tmin is 850 ° C.
In the case of B (ppm) −0.77 × N (ppm) ≦ 0.0, the minimum heating temperature Tmin is
Tmin = 1000 + 1450 / (B (ppm) −0.77 × N (ppm) −10)
(5) A high-strength steel wire with excellent ductility, which is produced by cold-drawing the steel wire rod according to (1) and has a tensile strength of 2800 MPa or more.
本発明者らは、線材の化学組成と機械的性質が伸線加工性に及ぼす影響について調査・研究を重ね、その結果、下記の知見を得た。
(a)引張強さを高めるためには、C、Si、Mn、Crなどの合金元素の含有量を増やせばよいが、これら合金元素の含有量の増加は伸線加工性の低下、つまり、伸線加工時の限界加工度の低下を招くため、断線する頻度が増加する。
(b)伸線加工性は、伸線加工前、つまり熱処理後の引張り強さと破断絞り値とから推定できる。特に、最終熱処理後の伸線加工性は最終熱処理後の引張り強さ及び絞り値とよい相関を示し、絞り値が引張り強さに応じたある一定値以上の場合に極めて良好な伸線加工性が得られる。
(c)BはNと化合物を形成し、固溶B量はトータルのB量、N量およびパーライト変態前の加熱温度によって決定される。固溶Bはオーステナイト粒界に偏析し、パテンティング処理に際するオーステナイト温度からの冷却中に、オーステナイト粒界から発生するベイナイト、フェライト、擬似パーライト等の、ミクロ組織が粗く低強度な組織、特にベイナイトの発生を抑制する。これら非パーライト組織の内、伸線性に最も悪影響を及ぼす組織はベイナイトである。非パーライト組織の内、ベイナイトが占める割合は、60%以上である。固溶Bが少ないと上記効果は小さく、過剰であるとパーライト変態に先立ち、粗大なFe23(CB)6が析出し、伸線加工性が低下する。
The present inventors have repeatedly investigated and studied the influence of the chemical composition and mechanical properties of the wire on the wire drawing workability, and as a result, have obtained the following knowledge.
(A) In order to increase the tensile strength, the content of alloy elements such as C, Si, Mn, and Cr may be increased. However, an increase in the content of these alloy elements decreases the wire drawing workability, that is, Since the limit working degree at the time of wire drawing is reduced, the frequency of disconnection increases.
(B) The wire drawing workability can be estimated from the tensile strength before the wire drawing, that is, after the heat treatment, and the fracture drawing value. In particular, the wire drawing workability after the final heat treatment shows a good correlation with the tensile strength and drawing value after the final heat treatment, and extremely good wire drawing workability when the drawing value is a certain value or more according to the tensile strength. Is obtained.
(C) B forms a compound with N, and the solid solution B amount is determined by the total B amount, N amount and the heating temperature before pearlite transformation. Solid solution B segregates at the austenite grain boundaries, and during cooling from the austenite temperature during the patenting process, bainite, ferrite, pseudo pearlite, etc. generated from the austenite grain boundaries, the microstructure is coarse and low strength, especially Suppresses the occurrence of bainite. Of these non-pearlite structures, bainite is the structure that most adversely affects the drawability. The proportion of bainite in the non-pearlite structure is 60% or more. When the amount of solute B is small, the above effect is small. When the amount is excessive, coarse Fe 23 (CB) 6 is precipitated prior to pearlite transformation, and the wire drawing workability is lowered.
本発明は、上記の知見に基づいて完成されたものである。 The present invention has been completed based on the above findings.
以下、本発明の各要件について詳しく説明する。 Hereinafter, each requirement of the present invention will be described in detail.
線材の組織および機械的性質:
パテンティング線材の絞り値は、オーステナイト粒径にほぼ比例するパーライトブロック粒径を10μm以下に微細化すれば改善されること、TiN、AlNやNbC等の析出物がオーステナイト粒の微細化に寄与することが知られている。しかしスチールコード用線材においては、TiやAlの添加は断線の原因となる粗大な酸化物を形成するため困難である。Nbについても粗大なNbCの生成が懸念するため、その利用は困難である。これらの析出物を利用することなくパーライトブロック粒を微細化するには、オーステナイト加熱温度を低下させること、加熱時間短縮する必要がある。しかし、このような方法によってオーステナイト粒径を安定して微細にコントロールすることは極めて難しく、実操業においては困難であった。これに対し、本発明では、パテンティング後の線材中の、フェライト、擬似パーライト、ベイナイトからなる非パーライト組織を3%以下に抑制することで、ブロック粒径の大幅な微細化を必要とすることなく線材の絞り値を高めたことに特徴がある。
Wire structure and mechanical properties:
The drawing value of the patenting wire can be improved by reducing the pearlite block particle size approximately proportional to the austenite particle size to 10 μm or less, and precipitates such as TiN, AlN and NbC contribute to the refinement of the austenite particles. It is known. However, in a steel cord wire, addition of Ti or Al is difficult because a coarse oxide that causes disconnection is formed. Since Nb is also concerned about the generation of coarse NbC, its use is difficult. In order to refine the pearlite block grains without using these precipitates, it is necessary to lower the austenite heating temperature and shorten the heating time. However, it is extremely difficult to stably and finely control the austenite grain size by such a method, and it is difficult in actual operation. On the other hand, in the present invention, the non-pearlite structure consisting of ferrite, pseudo pearlite, and bainite in the wire after patenting is suppressed to 3% or less, so that the block particle size needs to be greatly refined. It is characterized by a higher aperture value of the wire.
発明者らの検討によれば、従来用いられてきた線材用鋼の破断絞り値RAはTSならびにパーライトブロック粒径と相関があり、次の関係にあることが判明した。
RA<a−b×パーライトブロック粒径(μm)
a=−0.0114×(TS(MPa))2+3.1178×TS(MPa)−151.32 ・・(2)
b=0.0073×TS(MPa)−0.3753 ・・(3)
According to the study by the inventors, it has been found that the fracture drawing value RA of the steel for wire used so far has a correlation with TS and the particle size of the pearlite block and has the following relationship.
RA <a−b × pearlite block particle size (μm)
a = −0.0114 × (TS (MPa)) 2 + 3.1178 × TS (MPa) −151.32 (2)
b = 0.0003 × TS (MPa) −0.3753 (3)
また、引張試験の際に亀裂の発生起点となるのは旧γ粒界に発生した初析フェライトまたはベイナイトあるいは擬似パーライトといった、規則的なラメラ組織を呈しない非パーライト組織であることを明らかにし、この非パーライト組織率を3%以下に抑制できれば破断絞り値を飛躍的に改善できること、非パーライト組織の低減にはB添加と、パテンティング処理前の加熱温度を添加B量に応じて調整すること、具体的には次式に示す加熱下限温度Tmin〜1100℃に加熱し、500〜650℃の雰囲気中で、800〜650℃の冷速が50℃/s以上であるようなパテンティング処理を行うことが有効であることを見出した。
B(ppm)−0.77×N(ppm)>0.0の場合は加熱最低温度Tminは850℃、
B(ppm)−0.77×N(ppm)≦0.0の場合は、加熱最低温度Tminは、
Tmin=1000+1450/(B(ppm)−0.77×N(ppm)―10)
これにより、式(1)で示される以上の絞り値を有する高強度線材を得ることができる。
In addition, it is clarified that the crack initiation point in the tensile test is a non-pearlite structure that does not exhibit a regular lamellar structure, such as pro-eutectoid ferrite, bainite or pseudo-pearlite generated at the former γ grain boundary, If this non-pearlite structure ratio can be suppressed to 3% or less, the fracture drawing value can be drastically improved. To reduce the non-pearlite structure, B addition and the heating temperature before patenting treatment should be adjusted according to the amount of added B. Specifically, the heating is performed at the heating lower limit temperature Tmin to 1100 ° C. represented by the following formula, and the patenting process is performed in an atmosphere of 500 to 650 ° C., where the cooling rate of 800 to 650 ° C. is 50 ° C./s or more. I found it effective to do.
In the case of B (ppm) −0.77 × N (ppm)> 0.0, the minimum heating temperature Tmin is 850 ° C.
In the case of B (ppm) −0.77 × N (ppm) ≦ 0.0, the minimum heating temperature Tmin is
Tmin = 1000 + 1450 / (B (ppm) −0.77 × N (ppm) −10)
Thereby, the high intensity | strength wire which has an aperture value more than shown by Formula (1) can be obtained.
成分組成:
C:Cは、線材の強度を高めるのに有効な元素であり、その含有量が0.70%未満の場合には高い強度を安定して最終製品に付与させることが困難であると同時に、オーステナイト粒界に初析フェライトの析出が促進され、均一なパーライト組織を得ることが困難となる。一方、Cの含有量が多すぎるとオーステナイト粒界にネット状の初析セメンタイトが生成して伸線加工時に断線が発生しやすくなるだけでなく、最終伸線後における極細線材の靱性・延性を著しく劣化させる。したがって、Cの含有量を0.70〜1.10質量%とした。
Ingredient composition:
C: C is an element effective for increasing the strength of the wire, and when its content is less than 0.70%, it is difficult to stably impart high strength to the final product, The precipitation of proeutectoid ferrite is promoted at the austenite grain boundaries, making it difficult to obtain a uniform pearlite structure. On the other hand, if the content of C is too large, not only is the net-form pro-eutectoid cementite generated at the austenite grain boundaries and breakage is likely to occur during wire drawing, but the toughness and ductility of the ultrafine wire after the final wire drawing is increased. Deteriorate significantly. Therefore, the content of C is set to 0.70 to 1.10% by mass.
Si:Siは強度を高めるのに有効な元素である。更に脱酸剤として有用な元素であり、Alを含有しない鋼線材を対象とする際にも必要な元素である。0.1質量%未満では脱酸作用が過少である。−方、Si量が多すぎると過共析鋼においても初析フェライトの析出を促進するとともに、伸線加工での限界加工度が低下する。更にメカニカルデスケーリング(以下、MDと略記する。)による伸線工程が困難になる。したがって、Siの含有量を0.1〜1.5質量%とした。 Si: Si is an effective element for increasing the strength. Furthermore, it is an element useful as a deoxidizer, and is also an element necessary when targeting a steel wire containing no Al. If it is less than 0.1% by mass, the deoxidation action is too small. On the other hand, if the amount of Si is too large, precipitation of pro-eutectoid ferrite is promoted even in hypereutectoid steel, and the limit workability in wire drawing decreases. Furthermore, the wire drawing process by mechanical descaling (hereinafter abbreviated as MD) becomes difficult. Therefore, the content of Si is set to 0.1 to 1.5% by mass.
Mn:MnもSiと同様、脱酸剤として有用な元素である。また、焼き入れ性を向上させ、線材の強度を高めるのにも有効である。更にMnは、鋼中のSをMnSとして固定して熱間脆性を防止する作用を有する。その含有量が0.1質量%未満では前記の効果が得難い。一方、Mnは偏析しやすい元素であり、1.0質量%を超えると特に線材の中心部に偏析し、その偏析部にはマルテンサイトやベイナイトが生成するので、伸線加工性が低下する。したがって、Mnの含有量を0.1〜1.0質量%とした。 Mn: Similar to Si, Mn is an element useful as a deoxidizer. It is also effective in improving the hardenability and increasing the strength of the wire. Further, Mn has an action of preventing hot brittleness by fixing S in steel as MnS. If the content is less than 0.1% by mass, it is difficult to obtain the above effect. On the other hand, Mn is an element that easily segregates, and when it exceeds 1.0 mass%, segregation occurs particularly in the center of the wire, and martensite and bainite are generated in the segregated portion, so that the wire drawing workability decreases. Therefore, the Mn content is set to 0.1 to 1.0% by mass.
Al:0.01%以下:Alの含有量は、硬質非変形のアルミナ系非金属介在物が生成して鋼線の延性劣化と伸線性劣化を招かないように0%を含む0.01%以下と規定した。 Al: 0.01% or less: The content of Al is 0.01% including 0% so that hard non-deformation alumina-based nonmetallic inclusions are generated and the steel wire is not ductile and drawn. It was defined as follows.
Ti:0.01%以下:Tiの含有量は、硬質非変形の酸化物が生成して鋼線の延性劣化と伸線性劣化を招かないように0%を含む0.01%以下と規定した。 Ti: 0.01% or less: The content of Ti is defined as 0.01% or less including 0% so that a hard non-deformable oxide is generated and ductility deterioration and wire drawing deterioration of the steel wire are not caused. .
N:10〜60ppm:Nは、鋼中でBと窒化物を生成し、加熱時におけるオーステナイト粒度の粗大化を防止する作用があり、その効果は10ppm以上含有させることによって有効に発揮される。しかし、含有量が多くなり過ぎると、窒化物量が増大し過ぎて、オーステナイト中の固溶B量を低下させる。さらに固溶Nが伸線中の時効を促進する恐れが生じてくるので、上限を60ppmとした。 N: 10 to 60 ppm: N produces B and nitride in steel and has an effect of preventing coarsening of the austenite grain size during heating, and the effect is effectively exhibited by containing 10 ppm or more. However, if the content becomes too large, the amount of nitride increases too much, and the amount of dissolved B in austenite is reduced. Furthermore, since there is a possibility that solute N promotes aging during wire drawing, the upper limit was set to 60 ppm.
B:3または(0.77×N(ppm)−17.4)〜50ppm:Bは固溶状態でオーステナイト中に存在する場合、粒界に濃化してフェライト、擬似パーライト、ベイナイト等の非パーライト析出の生成を抑制する。一方、Bを添加しすぎるとオーステナイト中において粗大なFe3(CB)6炭化物の析出を促進し、伸線性に悪影響を及ぼす。したがってBの含有量の下限値を3または(0.77×N(ppm)−17.4)のいずれか大きい値、上限値を50質量ppmとした。 B: 3 or (0.77 × N (ppm) -17.4) to 50 ppm: When B is present in austenite in a solid solution state, it concentrates at the grain boundary and is non-perlite such as ferrite, pseudo-pearlite, and bainite. Suppresses the formation of precipitation. On the other hand, when B is added too much, precipitation of coarse Fe 3 (CB) 6 carbide is promoted in austenite, which adversely affects the drawability. Therefore, the lower limit value of the B content is set to 3 or (0.77 × N (ppm) −17.4), whichever is larger, and the upper limit value is set to 50 mass ppm.
なお、不純物であるPとSは特に規定しないが、従来の極細鋼線と同様に延性を確保する観点から、各々0.02%以下とすることが望ましい。 The impurities P and S are not particularly defined, but are each preferably 0.02% or less from the viewpoint of ensuring ductility as in the case of conventional ultra fine steel wires.
本発明に用いられる鋼線材は上記元素を基本成分とするものであるが、更に強度、靭性、延性等の機械的特性の向上を目的として、以下の様な選択的許容添加元素を1種または2種以上、積極的に含有してもよい。
Cr:0.5%以下,Ni:0.5%以下,Co:0.5%以下,V :0.5%以下,Cu:0.2%以下、Mo:0.2%以下、W:0.2%以下、Nb:0.1%以下(いずれも0%を含まない) 。以下、各元素について説明する。
The steel wire used in the present invention has the above-mentioned elements as basic components, but for the purpose of further improving mechanical properties such as strength, toughness, ductility, etc. Two or more kinds may be positively contained.
Cr: 0.5% or less, Ni: 0.5% or less, Co: 0.5% or less, V: 0.5% or less, Cu: 0.2% or less, Mo: 0.2% or less, W: 0.2% or less, Nb: 0.1% or less (all do not include 0%). Hereinafter, each element will be described.
Cr:0.5%以下 Crはパーライトのラメラ間隔を微細化し、線材の強度や伸線加工性等を向上させるのに有効な元素である。この様な作用を有効に発揮させるには0.1%以上の添加が好ましい。 一方、Cr量が多過ぎると変態終了時間が長くなり、熱間圧延線材中にマルテンサイトやベイナイトなどの過冷組織が生じる恐れがあるほか、メカニカルでスケーリング性も悪くなるので、その上限を0.5%とした。 Cr: 0.5% or less Cr is an element effective for reducing the lamella spacing of pearlite and improving the strength of the wire and the wire drawing workability. Addition of 0.1% or more is preferable for effectively exhibiting such an action. On the other hand, if the amount of Cr is too large, the end time of transformation becomes long, and there is a possibility that a supercooled structure such as martensite or bainite is generated in the hot rolled wire rod. 0.5%.
Ni:0.5%以下 Niは線材の強度上昇にはあまり寄与しないが、伸線材の靭性を高める元素である。この様な、作用を有効に発揮させるには0.1%以上の添加が好ましい。 一方、Niを過剰に添加すると変態終了時間が長くなるので、上限値を0.5%とした。 Ni: 0.5% or less Ni does not contribute much to the strength increase of the wire, but is an element that increases the toughness of the wire. Addition of 0.1% or more is preferable for effectively exhibiting such action. On the other hand, if Ni is added excessively, the transformation end time becomes longer, so the upper limit was made 0.5%.
Co:1%以下 Coは、圧延材における初析セメンタイトの析出を抑制するのに有効な元素である。この様な作用を有効に発揮させるには0.1%以上の添加が好ましい。一方、Coを過剰に添加してもその効果は飽和して経済的に無駄であるので、その上限値を0.5%とした。 Co: 1% or less Co is an element effective for suppressing precipitation of pro-eutectoid cementite in the rolled material. Addition of 0.1% or more is preferable for effectively exhibiting such an action. On the other hand, even if Co is added excessively, the effect is saturated and economically useless, so the upper limit was set to 0.5%.
V:0.5%以下 Vはフェライト中に微細な炭窒化物を形成することにより、加熱時のオーステナイト粒の粗大化を防止し、延性を向上させるとともに、圧延後の強度上昇にも寄与する。この様な作用を有効に発揮させるには0.05%以上の添加が好ましい。しかし、過剰に添加し過ぎると、炭窒化物の形成量が多くなり過ぎると共に、炭窒化物の粒子径も大きくなるため上限を0.5%とした。 V: 0.5% or less V forms fine carbonitrides in ferrite, thereby preventing coarsening of austenite grains during heating, improving ductility and contributing to an increase in strength after rolling. . Addition of 0.05% or more is preferable for effectively exhibiting such an action. However, if the amount is excessively added, the amount of carbonitride formed becomes excessive and the particle size of the carbonitride increases, so the upper limit was made 0.5%.
Cu:0.2%以下 Cuは、極細鋼線の耐食性を高める効果がある。この様な作用を有効に発揮させるには0.1%以上の添加が好ましい。しかし過剰に添加すると、Sと反応して粒界中にCuSを偏析するため、線材製造過程で鋼塊や線材などに疵を発生させる。この様な悪影響を防止するために、その上限を0.2%とした。 Cu: 0.2% or less Cu has an effect of increasing the corrosion resistance of the ultrafine steel wire. Addition of 0.1% or more is preferable for effectively exhibiting such an action. However, if added excessively, it reacts with S and segregates CuS in the grain boundaries, so that flaws are generated in the steel ingot, wire, etc. during the wire manufacturing process. In order to prevent such adverse effects, the upper limit was made 0.2%.
Mo:Moは、極細鋼線の耐食性を高める効果がある。この様な作用を有効に発揮させるには0.1%以上の添加が好ましい。一方、Moを過剰に添加すると変態終了時間が長くなるので、上限値を0.2%とした。 Mo: Mo has the effect of increasing the corrosion resistance of the ultrafine steel wire. Addition of 0.1% or more is preferable for effectively exhibiting such an action. On the other hand, if Mo is added excessively, the transformation end time becomes long, so the upper limit was made 0.2%.
W:Wは、極細鋼線の耐食性を高める効果がある。この様な作用を有効に発揮させるには0.1%以上の添加が好ましい。一方、Wを過剰に添加すると変態終了時間が長くなるので、上限値を0.2%とした。 W: W has the effect of increasing the corrosion resistance of the ultrafine steel wire. Addition of 0.1% or more is preferable for effectively exhibiting such an action. On the other hand, if W is added excessively, the transformation end time becomes longer, so the upper limit was made 0.2%.
Nb:Nbは、極細鋼線の耐食性を高める効果がある。この様な作用を有効に発揮させるには0.05%以上の添加が好ましい。一方、Wを過剰に添加すると変態終了時間が長くなるので、上限値を0.1%とした。 Nb: Nb has the effect of increasing the corrosion resistance of the ultrafine steel wire. Addition of 0.05% or more is preferable for effectively exhibiting such an action. On the other hand, if W is added excessively, the transformation end time becomes long, so the upper limit was made 0.1%.
伸線条件:
請求項1に記載の鋼線材に冷間伸線を施すことにより、引張り強さが2800MPa以上であることを特徴とする延性に優れた高強度鋼線を得ることができる。冷間伸線の真ひずみは3以上、望ましくは3.5以上である。
Drawing conditions:
By subjecting the steel wire according to claim 1 to cold drawing, a high-strength steel wire excellent in ductility characterized by a tensile strength of 2800 MPa or more can be obtained. The true strain of cold drawing is 3 or more, preferably 3.5 or more.
次に実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。 EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, but may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. Of course, any of these is also included in the technical scope of the present invention.
表1に示す化学成分の硬鋼線材を使用し、パテンティングと伸線により線径を1.2〜1.6mmに調整した後、鉛炉(以下LPと称する)もしくは流動床(以下FBPと称する)によりパテンティング処理を施した。 After using a hard steel wire having the chemical composition shown in Table 1 and adjusting the wire diameter to 1.2 to 1.6 mm by patenting and wire drawing, a lead furnace (hereinafter referred to as LP) or fluidized bed (hereinafter referred to as FBP) The patenting process was performed.
非パーライト体積率の測定のため、圧延線材のL断面を樹脂埋め込み後、アルミナ研磨し、飽和ピクラールにて腐食し、SEM観察を実施した。SEMの観察領域は表層、1/4D、1/2D(Dは線径)部とし、各領域にて、倍率3000にて50×40μmの面積の写真を任意に10枚撮影し、セメンタイトが粒状に分散した擬似パーライト部、板状セメンタイトが周囲より3倍以上の粗いラメラ間隔で分散しているベイナイト部、オーステナイトに沿って析出した初析フェライト部の面積率を、画像解析により測定した値を、非パーライト体積率とした。 In order to measure the non-pearlite volume fraction, the L cross section of the rolled wire rod was embedded with resin, then polished with alumina, corroded with saturated picral, and SEM observation was performed. The SEM observation area is the surface layer, 1 / 4D, 1 / 2D (D is the wire diameter), and in each area, 10 photographs of an area of 50 × 40 μm are arbitrarily taken at a magnification of 3000, and the cementite is granular. The values obtained by image analysis of the area ratio of the pseudo-pearlite part dispersed in the slab, the bainite part in which the plate-like cementite is dispersed at a coarse lamellar spacing of 3 times or more from the surroundings, and the pro-eutectoid ferrite part precipitated along the austenite. The non-pearlite volume fraction was used.
パテンティング線材のパーライトブロック粒径は、線材のL断面を、樹脂に埋め込み後切断研磨し、EBSP解析により方位差9°の界面で囲まれた領域を一つのブロック粒として解析し、その平均体積から求めた平均粒径とした。 The pearlite block particle diameter of the patenting wire is calculated by embedding the L cross-section of the wire into a resin and then cutting and polishing it, and analyzing the area surrounded by the interface with a misorientation of 9 ° by EBSP analysis as one block particle. The average particle size determined from
上記パテンティング線材のスケールを酸洗にて除去した後、ボンデ処理によりリン酸亜鉛皮膜を付与し、アプローチ各10度のダイスを使用して、1パス当たりの減面率16〜20%の連続伸線を行い、直径0.18〜0.30mmの高強度伸線材を得た。 After removing the scale of the patenting wire rod by pickling, a zinc phosphate coating is applied by a bondage treatment, and a continuous area reduction of 16 to 20% per pass using a die of 10 degrees each approach. Drawing was performed to obtain a high-strength wire drawing material having a diameter of 0.18 to 0.30 mm.
表1は評価材の化学組成、表2は試験条件、ブロック粒径および機械的性質を示す。 Table 1 shows the chemical composition of the evaluation material, and Table 2 shows the test conditions, block particle size and mechanical properties.
表1、2において、1〜15、A〜Dは本発明鋼、16から28は比較鋼である。式(1)で示される絞り値の最小値はRAminとして示す。 In Tables 1 and 2, 1 to 15 and A to D are steels of the present invention, and 16 to 28 are comparative steels. The minimum value of the aperture value represented by Equation (1) is indicated as RAmin.
16および22はパテンティング前の加熱温度が低いため、パテンティング処理前にBの窒化物および炭化物が析出し、固溶B量を確保できなかったため、絞り値が低かった例である。17および23〜27はB量が低いあるいは無添加のため、絞り値が低かった例である。18はB量が過剰であり、多量のB炭化物および初析セメンタイトがオーステナイト粒界に析出してしまい、絞り値が低かった例である。19はSi量が過剰で、初析フェライト析出を抑制できなかった例である。20はC量が過剰で、初析セメンタイト析出を抑制できなかった例である。21はMn量が過剰で、ミクロマルテンサイトの生成を抑制できなかった例である。28はパテンティング処理時の冷速が小さく、所定の引張り強さを満足できなかった例である。 Nos. 16 and 22 are examples in which the drawing value was low because the heating temperature before patenting was low, and B nitrides and carbides were precipitated before the patenting treatment, and the amount of solute B could not be secured. Nos. 17 and 23 to 27 are examples in which the aperture value is low because the amount of B is low or no addition. No. 18 is an example in which the amount of B is excessive, and a large amount of B carbide and pro-eutectoid cementite are precipitated at the austenite grain boundaries, resulting in a low drawing value. 19 is an example in which the amount of Si was excessive and precipitation of pro-eutectoid ferrite could not be suppressed. No. 20 is an example in which the amount of C was excessive and the precipitation of proeutectoid cementite could not be suppressed. No. 21 is an example in which the amount of Mn is excessive and the formation of micromartensite could not be suppressed. No. 28 is an example in which the cooling rate at the time of the patenting process was small and the predetermined tensile strength could not be satisfied.
なお、実施例中の開発鋼A、B、C、Dを用いて、φ0.2mmのスルールコード用鋼線を試作したところ、TSが各々4053MPa、4197MPa、4394MPa、4550MPaでデラミネーションの発生しない鋼線を作製できた。一方、比較鋼の23を用いて同様の試作を行ったところ、TSは4316MPaで、デラミネーションが発生した。 In addition, when the steel wire for srule cord of φ0.2 mm was prototyped using the developed steels A, B, C, and D in the examples, delamination did not occur when TS was 4053 MPa, 4197 MPa, 4394 MPa, and 4550 MPa, respectively. Steel wire could be made. On the other hand, when a similar prototype was made using comparative steel 23, TS was 4316 MPa and delamination occurred.
図1に本発明鋼と比較鋼の非パーライト面積率と絞り値の関係を示す。非パーライト面積率が3%以下である本発明鋼は、絞り値が高い傾向にあることが分かる。しかし、既述の通り絞り値は引張り強さにも影響されるため、オーバーラップするデータも存在する。 FIG. 1 shows the relationship between the non-pearlite area ratio and the drawing value of the steel of the present invention and the comparative steel. It can be seen that the steel of the present invention having a non-pearlite area ratio of 3% or less tends to have a high aperture value. However, since the aperture value is also affected by the tensile strength as described above, there is data that overlaps.
図2に本発明鋼と比較鋼のブロック粒径と絞り値の関係を示す。本発明鋼は絞り値が高い傾向にあることが分かる。しかし、既述の通り絞り値は引張り強さにも影響されるため、オーバーラップするデータも存在する。 FIG. 2 shows the relationship between the block particle size and the drawing value of the steel of the present invention and the comparative steel. It can be seen that the steel of the present invention tends to have a high aperture value. However, since the aperture value is also affected by the tensile strength as described above, there is data that overlaps.
図3は式(1)で示される絞り値の下限値RAminと、実際の絞り値の関係を示す。開発鋼の絞り値はRAminより高いことが分かる。 FIG. 3 shows the relationship between the lower limit value RAmin of the aperture value represented by Expression (1) and the actual aperture value. It can be seen that the aperture value of the developed steel is higher than RAmin.
図1〜3において、◆は本発明鋼、□は比較鋼を示す。 1-3, ◆ indicates the steel of the present invention, and □ indicates the comparative steel.
Claims (5)
RA≧a−b×パーライトブロック粒径(μm) ・・(1)
a=−0.0114×(TS(MPa))2+3.1178×TS(MPa)−151.32 ・・(2)
b=0.0073×TS(MPa)−0.3753 ・・(3)
TS≧1000×C(%)−10×線径(mm)+320 MPa ・・(4) The area ratio of the pearlite structure after patenting is 97% or more, the balance is a non-pearlite structure composed of bainite, pseudo pearlite, and pro-eutectoid ferrite, and the fracture drawing value RA is expressed by the following formulas (1), (2), (3) A steel wire characterized by a tensile strength TS satisfying the formula (4).
RA ≧ a−b × pearlite block particle size (μm) (1)
a = −0.0114 × (TS (MPa)) 2 + 3.1178 × TS (MPa) −151.32 (2)
b = 0.0003 × TS (MPa) −0.3753 (3)
TS ≧ 1000 × C (%) − 10 × wire diameter (mm) +320 MPa (4)
B(ppm)−0.77×N(ppm)>0.0の場合は加熱最低温度Tminは850℃、
B(ppm)−0.77×N(ppm)≦0.0の場合は、加熱最低温度Tminは、
Tmin=1000+1450/(B(ppm)−0.77×N(ppm)―10) The wire having the chemical composition according to claim 2 or 3 is heated to a temperature Tmin to 1100 ° C shown below, and a cooling rate of 800 to 650 ° C is 50 ° C / s or more in an atmosphere of 500 to 650 ° C. The method for producing a steel wire according to claim 1, wherein a patenting process is performed.
In the case of B (ppm) −0.77 × N (ppm)> 0.0, the minimum heating temperature Tmin is 850 ° C.
In the case of B (ppm) −0.77 × N (ppm) ≦ 0.0, the minimum heating temperature Tmin is
Tmin = 1000 + 1450 / (B (ppm) −0.77 × N (ppm) −10)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006278781A JP2007131945A (en) | 2005-10-12 | 2006-10-12 | High strength steel wire with excellent ductility and method for producing the same |
ES07742332T ES2734903T3 (en) | 2006-10-12 | 2007-04-18 | High strength steel wire excellent in ductility and manufacturing process |
EP07742332.5A EP2083094B1 (en) | 2006-10-12 | 2007-04-18 | High-strength steel wire excelling in ductility and process for producing the same |
PCT/JP2007/058897 WO2008044356A1 (en) | 2006-10-12 | 2007-04-18 | High-strength steel wire excelling in ductility and process for producing the same |
CN2007800006754A CN101331244B (en) | 2006-10-12 | 2007-04-18 | High strength steel wire with excellent ductility and manufacturing method of the same |
US11/922,524 US8168011B2 (en) | 2006-10-12 | 2007-04-18 | High-strength steel wire excellent in ductility and method of manufacturing the same |
BRPI0702884-9A BRPI0702884B1 (en) | 2006-10-12 | 2007-04-18 | STEEL FIOMACHINE AND ITS PRODUCTION METHOD |
JP2007541549A JP5233281B2 (en) | 2006-10-12 | 2007-04-18 | High strength steel wire with excellent ductility and method for producing the same |
KR1020077030676A KR100940379B1 (en) | 2006-10-12 | 2007-04-18 | High strength steel wire with excellent ductility and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005297698 | 2005-10-12 | ||
JP2006278781A JP2007131945A (en) | 2005-10-12 | 2006-10-12 | High strength steel wire with excellent ductility and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007131945A true JP2007131945A (en) | 2007-05-31 |
Family
ID=38153836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006278781A Pending JP2007131945A (en) | 2005-10-12 | 2006-10-12 | High strength steel wire with excellent ductility and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007131945A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009119359A1 (en) * | 2008-03-25 | 2009-10-01 | 新日本製鐵株式会社 | Wire rod and high-strength steel wire excellent in ductility, and processes for production of both |
JP2012117129A (en) * | 2010-12-02 | 2012-06-21 | Sumitomo Electric Ind Ltd | Hard drawn wire, spring, and method of manufacturing hard drawn wire |
TWI404581B (en) * | 2009-06-25 | 2013-08-11 | Chuan Jen Hsu | Manufacturing method of metal wire |
WO2013133070A1 (en) * | 2012-03-07 | 2013-09-12 | 株式会社神戸製鋼所 | Steel wire rod with excellent spring workability for high-strength spring, process for manufacturing same, and high-strength spring |
WO2014037164A1 (en) * | 2012-09-07 | 2014-03-13 | Compagnie Generale Des Etablissements Michelin | High-drawability steel wire with a proportion by mass of carbon of a value which is greater than or equal to 0.6 % and less than or equal to 0.74 % |
CN103643131A (en) * | 2013-11-20 | 2014-03-19 | 江苏天舜金属材料集团有限公司 | Steel wire for insulation and anticorrosion steel wire mesh, and application method thereof |
WO2014157129A1 (en) * | 2013-03-28 | 2014-10-02 | 株式会社神戸製鋼所 | High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire |
JP2017066435A (en) * | 2015-09-28 | 2017-04-06 | 株式会社神戸製鋼所 | Method of producing high strength steel wire |
EP3144404A4 (en) * | 2014-04-24 | 2018-01-17 | Nippon Steel & Sumitomo Metal Corporation | Filament for high strength steel cord |
US9884356B2 (en) | 2012-09-07 | 2018-02-06 | Compagnie Generale Des Establissements Michelin | Wire drawing method |
CN113088818A (en) * | 2021-03-31 | 2021-07-09 | 江苏省沙钢钢铁研究院有限公司 | Ultra-high strength steel cord, wire rod for ultra-high strength steel cord and production method thereof |
-
2006
- 2006-10-12 JP JP2006278781A patent/JP2007131945A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009119359A1 (en) * | 2008-03-25 | 2009-10-01 | 新日本製鐵株式会社 | Wire rod and high-strength steel wire excellent in ductility, and processes for production of both |
JP5114684B2 (en) * | 2008-03-25 | 2013-01-09 | 新日鐵住金株式会社 | Wire material excellent in ductility, high-strength steel wire, and production method thereof |
US9689053B2 (en) | 2008-03-25 | 2017-06-27 | Nippon Steel & Sumitomo Metal Corporation | Steel rod and high strength steel wire having superior ductility and methods of production of same |
US9212410B2 (en) | 2008-03-25 | 2015-12-15 | Nippon Steel & Sumitomo Metal Corporation | Steel rod and high strength steel wire having superior ductility and methods of production of same |
TWI404581B (en) * | 2009-06-25 | 2013-08-11 | Chuan Jen Hsu | Manufacturing method of metal wire |
JP2012117129A (en) * | 2010-12-02 | 2012-06-21 | Sumitomo Electric Ind Ltd | Hard drawn wire, spring, and method of manufacturing hard drawn wire |
CN104145037A (en) * | 2012-03-07 | 2014-11-12 | 株式会社神户制钢所 | Steel wire rod with excellent spring workability for high-strength spring, process for manufacturing same, and high-strength spring |
JP2013185203A (en) * | 2012-03-07 | 2013-09-19 | Kobe Steel Ltd | Steel wire rod with excellent spring workability for high-strength spring, method for manufacturing the same, and high-strength spring |
WO2013133070A1 (en) * | 2012-03-07 | 2013-09-12 | 株式会社神戸製鋼所 | Steel wire rod with excellent spring workability for high-strength spring, process for manufacturing same, and high-strength spring |
CN104145037B (en) * | 2012-03-07 | 2016-12-14 | 株式会社神户制钢所 | The steel wire for high-strength spring material of spring excellent in workability and manufacture method thereof and high-strength spring |
JP2015537111A (en) * | 2012-09-07 | 2015-12-24 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Highly pullable steel wire having a carbon mass percentage value of 0.6% or more and 0.74% or less |
WO2014037164A1 (en) * | 2012-09-07 | 2014-03-13 | Compagnie Generale Des Etablissements Michelin | High-drawability steel wire with a proportion by mass of carbon of a value which is greater than or equal to 0.6 % and less than or equal to 0.74 % |
FR2995250A1 (en) * | 2012-09-07 | 2014-03-14 | Michelin & Cie | HIGH TREFILITY STEEL WIRE INCLUDING A MASS CARBON RATE INCLUDED BETWEEN 0.6% AND 0.74% TERMINALS INCLUDED |
US9884356B2 (en) | 2012-09-07 | 2018-02-06 | Compagnie Generale Des Establissements Michelin | Wire drawing method |
WO2014157129A1 (en) * | 2013-03-28 | 2014-10-02 | 株式会社神戸製鋼所 | High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire |
US9540718B2 (en) | 2013-03-28 | 2017-01-10 | Kobe Steel, Ltd. | High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire |
CN103643131B (en) * | 2013-11-20 | 2015-09-09 | 江苏天舜金属材料集团有限公司 | A kind of insulating corrosion woven wire steel wire and application method thereof |
CN103643131A (en) * | 2013-11-20 | 2014-03-19 | 江苏天舜金属材料集团有限公司 | Steel wire for insulation and anticorrosion steel wire mesh, and application method thereof |
EP3144404A4 (en) * | 2014-04-24 | 2018-01-17 | Nippon Steel & Sumitomo Metal Corporation | Filament for high strength steel cord |
US10156001B2 (en) | 2014-04-24 | 2018-12-18 | Nippon Steel & Sumitomo Metal Corporation | Filament for high strength steel cord |
JP2017066435A (en) * | 2015-09-28 | 2017-04-06 | 株式会社神戸製鋼所 | Method of producing high strength steel wire |
CN113088818A (en) * | 2021-03-31 | 2021-07-09 | 江苏省沙钢钢铁研究院有限公司 | Ultra-high strength steel cord, wire rod for ultra-high strength steel cord and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5233281B2 (en) | High strength steel wire with excellent ductility and method for producing the same | |
JP5162875B2 (en) | High strength wire rod excellent in wire drawing characteristics and method for producing the same | |
JP5114684B2 (en) | Wire material excellent in ductility, high-strength steel wire, and production method thereof | |
CN105324503B (en) | Carbon steel wire rod with high and its manufacture method | |
JP4310359B2 (en) | Steel wire for hard springs with excellent fatigue characteristics and wire drawability | |
JP5092749B2 (en) | High ductility high carbon steel wire | |
CN106661694B (en) | Wire drawing steel wire | |
JP2007131945A (en) | High strength steel wire with excellent ductility and method for producing the same | |
CN101208445A (en) | High-strength wire rod with excellent drawing performance and manufacturing method thereof | |
KR101913048B1 (en) | High carbon steel wire having excellent drawability | |
CN101208446A (en) | High-strength wire rod with excellent drawing performance and manufacturing method thereof | |
JP2005206853A (en) | High carbon steel wire rod having excellent wire drawability, and production method therefor | |
JP4374356B2 (en) | High-strength wire rod excellent in wire drawing characteristics, manufacturing method thereof, and high-strength steel wire excellent in wire drawing properties | |
JP5304323B2 (en) | Wire material for high-strength steel wire, high-strength steel wire, and production method thereof | |
JP5201000B2 (en) | Wire material for high-strength steel wire, high-strength steel wire, and production method thereof | |
JPH11302743A (en) | Manufacturing method of high strength steel wire |