[go: up one dir, main page]

JP2007049030A - Method of manufacturing electrochemical device - Google Patents

Method of manufacturing electrochemical device Download PDF

Info

Publication number
JP2007049030A
JP2007049030A JP2005233426A JP2005233426A JP2007049030A JP 2007049030 A JP2007049030 A JP 2007049030A JP 2005233426 A JP2005233426 A JP 2005233426A JP 2005233426 A JP2005233426 A JP 2005233426A JP 2007049030 A JP2007049030 A JP 2007049030A
Authority
JP
Japan
Prior art keywords
case
electrochemical device
electrodes
pair
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233426A
Other languages
Japanese (ja)
Inventor
Yutaka Katagiri
裕 片桐
Masahito Kurihara
雅人 栗原
Satoru Maruyama
哲 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005233426A priority Critical patent/JP2007049030A/en
Publication of JP2007049030A publication Critical patent/JP2007049030A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrochemical device which can efficiently suppress an increase in impedance (internal resistance) due to generation of a gas or an increase in thickness of a case. <P>SOLUTION: The method of manufacturing an electrochemical device 100 in which a pair of electrodes and an nonaqueous electrolyte are hermetically sealed in a case 50 is provided with a voltage applying process of applying a voltage between the pair of electrodes in a state where the pair of electrodes contact the nonaqueous electrolyte. In the voltage applying process, the voltage is applied so that a formula 0.5≤C2/C1≤0.95, where C1 is electrostatic capacity of the electrochemical device at the time of start of the voltage applying process and C2 is electrostatic capacity of the electrochemical device at the time of finish of the voltage applying process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気化学デバイスの製造方法に関するものである。   The present invention relates to a method for manufacturing an electrochemical device.

現在、一対の電極及び非水電解液をケース内に密封してなる電気化学デバイスが様々な分野において広く使用されている。このような電気化学デバイスとして、例えば、電気二重層キャパシタや、リチウムイオン二次電池等が挙げられる。   At present, electrochemical devices in which a pair of electrodes and a non-aqueous electrolyte are sealed in a case are widely used in various fields. Examples of such an electrochemical device include an electric double layer capacitor and a lithium ion secondary battery.

ところで、このような非水電解液を用いる電気化学デバイスにおいて、ケース内に水分が残存していると、水分と非水電解液との反応や、水の電気分解によりケース内でガスが発生する場合がある。   By the way, in such an electrochemical device using a non-aqueous electrolyte, if moisture remains in the case, gas is generated in the case due to a reaction between the moisture and the non-aqueous electrolyte or water electrolysis. There is a case.

また、炭素等の電極は、大きな空孔を持つ場合が多く、空孔の内部にはこの電極の製造過程で用いられた様々な溶媒等の有機化合物や、官能基が存在している。そして、電気化学デバイスを使用し、電極が高温や高電圧通電状態に置かれると、電極内の有機化合物や官能基が分解してガスが発生する。   In addition, electrodes such as carbon often have large vacancies, and organic compounds such as various solvents and functional groups used in the production process of the electrode are present inside the vacancies. When an electrochemical device is used and the electrode is placed in a high temperature or high voltage energized state, the organic compound or functional group in the electrode is decomposed to generate gas.

通常、電気化学デバイスのケースは外部からの水分等の流入を防ぐべく密閉されているため、この様にして発生したガスの逃げ道がなく、ガスの発生により、インピーダンス(内部抵抗)が上昇していくという問題や、ケースの厚みが増加するという問題点があった。   Normally, the case of an electrochemical device is sealed to prevent the inflow of moisture from the outside, so there is no escape route for the gas generated in this way, and the generation of gas increases the impedance (internal resistance). There is a problem that the thickness of the case increases.

この問題点を解決するために、例えば特開2002−141251号公報には、正極と負極とをセパレータを介して対向させて電解液と共にケース内に充填し、その後少なくとも一回充放電を行い、その後電解液の少なくとも一部を新しい電解液と交換してからケースを密封する技術が開示されている。
特開2002−141251号公報
In order to solve this problem, for example, in Japanese Patent Application Laid-Open No. 2002-141251, a positive electrode and a negative electrode are opposed to each other through a separator and filled together with an electrolytic solution, and then charged and discharged at least once, Then, a technique for sealing the case after replacing at least a part of the electrolytic solution with a new electrolytic solution is disclosed.
Japanese Patent Laid-Open No. 2002-141251

しかしながら、上述の方法では、交換する電解液が無駄となって非効率であるほか、ガス発生による不具合を十分に解決できない場合があった。   However, in the above-described method, the electrolyte to be replaced is wasted and inefficient, and problems due to gas generation may not be sufficiently solved.

本発明は、本発明は上記課題に鑑みてなされたものであり、ガスの発生によるインピーダンス(内部抵抗)の上昇や、ケースの厚みの増加を効率よく抑制できる電気化学デバイスの製造方法を提供することを目的とする。   This invention is made in view of the said subject, and provides the manufacturing method of the electrochemical device which can suppress the raise of the impedance (internal resistance) by generation | occurrence | production of gas, and the increase in the thickness of a case efficiently. For the purpose.

本発明に係る電気化学デバイスの製造方法は、ケース内に一対の電極及び非水電解液が密封された電気化学デバイスの製造方法であって、一対の電極と非水電解液とが接触している状態下で、一対の電極間に電圧を印加する電圧印加工程を備える。そして、電圧印加工程では、電圧印加工程開始時の電気化学デバイスの静電容量をC1及び電圧印加工程終了時の電気化学デバイスの静電容量をC2とした時に、0.5≦(C2/C1)≦0.95を満たすように電圧を印加する。   A method for producing an electrochemical device according to the present invention is a method for producing an electrochemical device in which a pair of electrodes and a non-aqueous electrolyte are sealed in a case, wherein the pair of electrodes and the non-aqueous electrolyte are in contact with each other. A voltage applying step of applying a voltage between the pair of electrodes under the condition of being present. In the voltage application step, when the capacitance of the electrochemical device at the start of the voltage application step is C1 and the capacitance of the electrochemical device at the end of the voltage application step is C2, 0.5 ≦ (C2 / C1 ) A voltage is applied so as to satisfy ≦ 0.95.

本発明によると、電圧印加工程において、電極に付着していた有機化合物や官能基等の不純物や、電解液に含まれている水分等の不純物が十分に分解され、ガスとして、電極や電解液の外に排出される。これにより、密封後にケース内において不純物からガスが発生することを十分に抑制できる。   According to the present invention, in the voltage application step, impurities such as organic compounds and functional groups adhering to the electrode and impurities such as moisture contained in the electrolyte are sufficiently decomposed, and as a gas, the electrode and electrolyte Is discharged outside. Thereby, it can fully suppress that gas is generated from an impurity in a case after sealing.

ここで、0.5>(C2/C1)の場合には、電解液や電極の劣化が起る。一方、(C2/C1)>0.95の場合には、十分に不純物がガス化せず、使用時におけるケース内でのガスの発生を十分に抑制できない。   Here, in the case of 0.5> (C2 / C1), the electrolyte solution and the electrode deteriorate. On the other hand, when (C2 / C1)> 0.95, the impurities are not sufficiently gasified, and the generation of gas in the case during use cannot be sufficiently suppressed.

ここで、電圧印加工程では、一対の電極及び非水電解液がケース内に予め仮密封された状態下で、一対の電極間に電圧を印加し、電圧印加工程の後、減圧下において、仮密封されたケースを開封してケース内に存在するガスをケース外に排出させ、その後、ケースを再び密封することが好ましい。   Here, in the voltage application step, a voltage is applied between the pair of electrodes in a state where the pair of electrodes and the non-aqueous electrolyte is preliminarily sealed in the case. After the voltage application step, It is preferable to open the sealed case to discharge the gas present in the case to the outside of the case, and then seal the case again.

この場合には、電圧印加工程を通常環境下で行うことができるので好ましい。   In this case, it is preferable because the voltage application step can be performed in a normal environment.

一方、電圧印加工程では、一対の電極及び非水電解液がケース内に収容され、ケースにはケースの内外を連通する開口部が形成され、かつ、減圧下において、一対の電極間に電圧を印加し、電圧印加工程の後に、ケースを密封することも好ましい。   On the other hand, in the voltage application step, the pair of electrodes and the non-aqueous electrolyte are accommodated in the case, the case is formed with an opening communicating with the inside and outside of the case, and a voltage is applied between the pair of electrodes under reduced pressure. It is also preferable to seal the case after the voltage application step.

この場合には、電圧の印加によるガスの発生と、このガスのケース内からの排気が同時に行えるので少ない工程で製造が可能である。   In this case, since the generation of the gas by the application of the voltage and the exhaust of the gas from the case can be performed at the same time, the manufacturing can be performed with fewer steps.

また、電圧印加工程における電気化学デバイスの温度は40〜90℃であることが好ましい。このような条件で、特に十分な不純物の分解が行われる。   Moreover, it is preferable that the temperature of the electrochemical device in a voltage application process is 40-90 degreeC. Under such conditions, particularly sufficient impurity decomposition is performed.

また、非水電気化学デバイスは電気二重層キャパシタであることが好ましい。また、一対の電極がそれぞれ炭素材料を含み、電解液は電解質及び有機溶媒を含むことが好ましい。   The nonaqueous electrochemical device is preferably an electric double layer capacitor. Moreover, it is preferable that a pair of electrodes each contain a carbon material, and the electrolytic solution contains an electrolyte and an organic solvent.


本発明によれば、ガスの発生に基づくインピーダンス(内部抵抗)の上昇やケースの厚みの増加を効率よく抑制できる電気化学デバイスの製造方法が提供される。

ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrochemical device which can suppress efficiently the raise of the impedance (internal resistance) based on generation | occurrence | production of gas and the increase in the thickness of a case is provided.

まず、本発明で作成する電気化学デバイスの一例としての電気二重層キャパシタについて、図1を参照して説明する。   First, an electric double layer capacitor as an example of an electrochemical device produced in the present invention will be described with reference to FIG.

電気二重層キャパシタ100は、主として、積層体20、積層体を密閉した状態で収容するケース50、及び積層体20に接続された一対のリード60,62を備えている。   The electric double layer capacitor 100 mainly includes a multilayer body 20, a case 50 that accommodates the multilayer body in a sealed state, and a pair of leads 60 and 62 connected to the multilayer body 20.

積層体20は、一対の電極10がセパレータ18を挟んで対向配置されたものである。電極10は、それぞれ、集電体12上に活物質含有層14が設けられた物である。各活物質含有層14,14がセパレータ18の両側にそれぞれ接触している。集電体12,12の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The stacked body 20 is a structure in which a pair of electrodes 10 are arranged to face each other with a separator 18 interposed therebetween. Each of the electrodes 10 is a product in which an active material-containing layer 14 is provided on a current collector 12. Each active material-containing layer 14 is in contact with both sides of the separator 18. Leads 60 and 62 are connected to the ends of the current collectors 12 and 12, respectively, and the ends of the leads 60 and 62 extend to the outside of the case 50.

集電体12は、例えば、アルミ箔等の金属箔により形成されている。   The current collector 12 is made of, for example, a metal foil such as an aluminum foil.

活物質含有層14は、例えば、活物質となる炭素材料とバインダとの混合物により形成される。炭素材料としては、アセチレンブラックや活性炭等があげられる。   The active material-containing layer 14 is formed of, for example, a mixture of a carbon material that becomes an active material and a binder. Examples of the carbon material include acetylene black and activated carbon.

バインダとしては、例えば、ポリビニリデンフルオライド(PVDF)等のフッ素樹脂等を利用できる。   As the binder, for example, a fluororesin such as polyvinylidene fluoride (PVDF) can be used.

セパレータ18は、絶縁性の多孔体で構成されている。絶縁性の多孔体としては、例えばセルロース不織布が挙げられる。   The separator 18 is made of an insulating porous body. Examples of the insulating porous material include cellulose nonwoven fabric.

そして、積層体20には電解液が含浸されている。この電解液は、主として、セパレータ18、及び、電極10内の活物質含有層14に含浸されている。   The laminate 20 is impregnated with an electrolytic solution. This electrolytic solution is mainly impregnated in the separator 18 and the active material-containing layer 14 in the electrode 10.

電解液は、電解質及び有機溶媒を含む、いわゆる、非水電解液である。   The electrolytic solution is a so-called non-aqueous electrolytic solution containing an electrolyte and an organic solvent.

電解質は特に限定されないが、例えば、アンモニウム塩、スルホニウム塩、ホスホニウム等のオニウム塩が挙げられる。特に好適な電解質としては、テトラエチルアンモニウムテトラフルオロボレイト、トリエチルモノメチルアンモニウムテトラフルオロボレートのような4級アンモニウム塩が挙げられる。   The electrolyte is not particularly limited, and examples thereof include onium salts such as ammonium salts, sulfonium salts, and phosphonium. Particularly suitable electrolytes include quaternary ammonium salts such as tetraethylammonium tetrafluoroborate and triethylmonomethylammonium tetrafluoroborate.

有機溶媒は特に限定されないが、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等や、これらの混合物が挙げられる。   The organic solvent is not particularly limited, and examples thereof include propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and a mixture thereof.

電解液中の電解質濃度は特に限定されないが、0.5〜3mol/Lの範囲内であることが好ましい。   The electrolyte concentration in the electrolytic solution is not particularly limited, but is preferably in the range of 0.5 to 3 mol / L.

なお、このような電解液は、ゲル状であっても良い。例えば、有機溶媒、電解質、可塑剤、及び、高分子マトリクスを混合したゲル状の電解液は、流動せず、自立性を有する膜状の非水電解液となる。   Such an electrolytic solution may be in a gel form. For example, a gel electrolyte solution in which an organic solvent, an electrolyte, a plasticizer, and a polymer matrix are mixed does not flow but becomes a self-supporting film-like non-aqueous electrolyte solution.

ケース50は、その内部に積層体20及び電解液を密封する。ケース50は、電解液の外部への漏出や、外部からの電気二重層キャパシタ100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図1に示すように、金属箔52を合成樹脂膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、合成樹脂膜54としてはポリプロピレン等の膜を利用できる。   The case 50 seals the laminate 20 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electric double layer capacitor 100 from the outside. For example, as the case 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a synthetic resin film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the synthetic resin film 54.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

続いて、本実施形態に係る電気化学デバイスの製造方法について説明する。   Then, the manufacturing method of the electrochemical device which concerns on this embodiment is demonstrated.

まず、炭素材料等の活物質、及び、PVdF等のバインダをN−メチルピロリドン等の溶媒に溶かして塗布液を得る。そして、金属箔等からなる集電体12上にこの塗布液を塗布し、塗膜を乾燥させて活物質含有層14を形成する。そして、活物質含有層14を有する集電体12を所定の大きさに切断して電極10を得る。その後、この電極10の端部にリード60,62を溶接する。これにより、図1中のリード60、62を有する電極10,10が完成する。また、電解液及びセパレータ18を用意する。ここで、これらの電極10、セパレータ18、電解液は、十分に高温及び減圧下で乾燥させ、不純物をなるべく除去しておく。   First, an active material such as a carbon material and a binder such as PVdF are dissolved in a solvent such as N-methylpyrrolidone to obtain a coating solution. And this coating liquid is apply | coated on the electrical power collector 12 which consists of metal foil etc., a coating film is dried, and the active material content layer 14 is formed. Then, the current collector 12 having the active material-containing layer 14 is cut into a predetermined size to obtain the electrode 10. Thereafter, the leads 60 and 62 are welded to the ends of the electrode 10. Thereby, the electrodes 10 and 10 having the leads 60 and 62 in FIG. 1 are completed. Moreover, the electrolyte solution and the separator 18 are prepared. Here, the electrode 10, the separator 18, and the electrolyte are sufficiently dried at a high temperature and under reduced pressure to remove impurities as much as possible.

続いて、図2に示すように、金属箔の両面に樹脂をコーティングしたシート51Bを用意し、図3に示すように、真中で2つ下りにし、一辺50aを熱又は超音波により融着して閉じ、開口した2つの辺50b、50cを有するケース50を作成する。   Subsequently, as shown in FIG. 2, a sheet 51B is prepared by coating the resin on both sides of the metal foil, and as shown in FIG. 3, two sheets are lowered in the middle, and one side 50a is fused by heat or ultrasonic waves. A case 50 having two sides 50b and 50c that are closed and opened is created.

続いて、不活性雰囲気の減圧容器90内で、図3に示すように、セパレータ18を一対の電極10,10で挟み、中央部を熱圧着して一体化し、リード60、62のついた積層体20を得る。   Subsequently, as shown in FIG. 3, the separator 18 is sandwiched between a pair of electrodes 10 and 10 in a vacuum container 90 in an inert atmosphere, and the central part is integrated by thermocompression bonding. A body 20 is obtained.

続いて、積層体20を開口した辺50cからケース50内に挿入する。このとき、リード60、62がケース50の開口した辺50cから外部に突き出るようにする。その後、ケース50の開口した辺50cを熱又は超音波により融着して、図4のように、辺50cを閉じる。その後、開口した辺50bからケース50内に電解液を所定量供給して、積層体20に電解液を含浸させる。   Subsequently, the stacked body 20 is inserted into the case 50 from the opened side 50c. At this time, the leads 60 and 62 are projected from the open side 50 c of the case 50 to the outside. After that, the side 50c opened in the case 50 is fused by heat or ultrasonic waves, and the side 50c is closed as shown in FIG. Thereafter, a predetermined amount of electrolytic solution is supplied into the case 50 from the opened side 50b, and the laminate 20 is impregnated with the electrolytic solution.

その後、図5に示すように、開口した辺50bを熱又は超音波により融着して閉じ、積層体20及び電解液をケース50内に仮密封する。   Thereafter, as shown in FIG. 5, the opened side 50 b is fused and closed by heat or ultrasonic waves, and the laminate 20 and the electrolytic solution are temporarily sealed in the case 50.

続いて、仮密封された電気2重層キャパシタ100に対して、エージング工程を行う。このエージング工程では、図6に示すように、電圧印加装置200を使用する。電圧印加装置200は、少なくとも、電極10,10間に所定の直流電圧を印加することができる直流電源201と、電極10、10間の静電容量を測定可能な静電容量測定器203と、を有する。   Subsequently, an aging process is performed on the temporarily sealed electric double layer capacitor 100. In this aging process, a voltage application device 200 is used as shown in FIG. The voltage application device 200 includes at least a DC power source 201 that can apply a predetermined DC voltage between the electrodes 10 and 10, a capacitance measuring device 203 that can measure the capacitance between the electrodes 10 and 10, Have

まず、電圧印加装置200をリード60,62に接続し、静電容量測定器203によりエージング前に一対の電極10,10間の静電容量を測定してC1とする。その後、所定の環境温度下で、直流電源201から所定の直流電圧を電極10、10間に印加する。そして、所定時間電圧を印加する毎に、一対の電極10,10間の静電容量を静電容量測定器203で測定してC2を得る。そして、0.5≦(C2/C1)≦0.95を満たすまで、このような電圧印加を続ける。なお、環境温度、すなわち、電気2重層キャパシタの温度は、40〜90℃とすることが好ましい。   First, the voltage applying device 200 is connected to the leads 60 and 62, and the capacitance between the pair of electrodes 10 and 10 is measured by the capacitance measuring device 203 before aging to obtain C1. Thereafter, a predetermined DC voltage is applied between the electrodes 10 and 10 from the DC power source 201 under a predetermined environmental temperature. Each time a voltage is applied for a predetermined time, the capacitance between the pair of electrodes 10 and 10 is measured by the capacitance measuring device 203 to obtain C2. The voltage application is continued until 0.5 ≦ (C2 / C1) ≦ 0.95 is satisfied. The environmental temperature, that is, the temperature of the electric double layer capacitor is preferably 40 to 90 ° C.

ここで、通電量は、セル中の水分を電気分解するのに必要な量を超えることが好ましい。エージング前のケース50中の水分量が電解液の重量基準で5000ppm以下であれば、上述の条件を満たすように通電すれば、通常通電量はケース内の水分の分解に必要な通電量を十分に上回る。   Here, it is preferable that the amount of energization exceeds the amount necessary for electrolyzing moisture in the cell. If the amount of water in the case 50 before aging is 5000 ppm or less based on the weight of the electrolytic solution, if the current is supplied so as to satisfy the above-mentioned conditions, the normal amount of current is sufficient for the amount of current necessary for the decomposition of the water in the case. It exceeds.

なお、通電電圧は特に限定されないが、1.23〜4.00Vとすることが好ましい。   The energization voltage is not particularly limited, but is preferably 1.23 to 4.00V.

このエージング工程により、電極10や電解液からガスが発生する。具体的には、例えば、電解液中の水分の分解、電極10の表面、特に、活物質含有層(例えば、炭素等の活物質)に付着している不純物や官能基の分解がおこり、ガスが発生する。このガスは、仮密封されたケース50内に留まることとなる。なお、このエージング工程は、減圧雰囲気下で行う必要は無い。   By this aging process, gas is generated from the electrode 10 and the electrolytic solution. Specifically, for example, decomposition of moisture in the electrolytic solution, decomposition of impurities and functional groups attached to the surface of the electrode 10, particularly an active material-containing layer (for example, an active material such as carbon) occurs, and gas Will occur. This gas stays in the temporarily sealed case 50. This aging process does not need to be performed in a reduced pressure atmosphere.

なお、エージング条件が0.5>(C2/C1)である場合にはエージング過多であり、電解液や電極の劣化が発生する。一方、エージング条件が(C2/C1)>0.95である場合にはエージング不足であり、電解液や電極からの水分等の不純物の除去が不十分であるために、使用に伴いケース内でガスが発生し、インピーダンスの増大が著しくなり、また、セルの膨れの抑制が十分でなくなる。   When the aging condition is 0.5> (C2 / C1), the aging is excessive and the electrolyte and the electrode are deteriorated. On the other hand, when the aging condition is (C2 / C1)> 0.95, the aging is insufficient, and the removal of impurities such as moisture from the electrolyte and the electrode is insufficient. Gas is generated, the impedance increases remarkably, and the swelling of the cell is not sufficiently suppressed.

エージング後、図7に示すように、電気2重層キャパシタ100を不活性雰囲気の減圧容器90内に移動し、減圧下で、ケース50の端部に穿孔を行い、開口50hを形成する。なお、穿孔による開口50hでなく、ケースの一部裂いて切り込みを入れても良く、要は密封されたケースを開封してケースの内外を連通させればよい。   After the aging, as shown in FIG. 7, the electric double layer capacitor 100 is moved into the decompression vessel 90 in an inert atmosphere, and the end of the case 50 is perforated under reduced pressure to form an opening 50h. It should be noted that instead of the opening 50h formed by drilling, the case may be partially cut and cut, and in short, the sealed case may be opened and the inside and outside of the case communicated.

そうすると、この開口50hから、エージング工程で発生したガスがケース50の外に排出される。   Then, the gas generated in the aging process is discharged out of the case 50 through the opening 50h.

その後、図8に示すように、ケース50における開口50hの周り50wを熱又は超音波により融着し、ケース50内に、積層体20及び電解液を再び密封する。これにより、電気2重層キャパシタ100が完成する。   Thereafter, as shown in FIG. 8, 50 w around the opening 50 h in the case 50 is fused by heat or ultrasonic waves, and the laminate 20 and the electrolytic solution are again sealed in the case 50. Thereby, the electric double layer capacitor 100 is completed.

このように、本実施形態では、ケース50内で電極10と電解液とを最終的に密封する前に、静電容量の変化が0.5≦(C2/C1)≦0.95となる条件で電極10,10間に電圧を印加するので、ケース50内の不純物が十分にガス化し、この不純物をガスとしてケース50の外部に排出させることができる。したがって、最終密閉後におけるケース50内の不純物の量が十分に低減される。これにより、電気2重層キャパシタ100を使用しても、ガスの発生に基づくインピーダンス(内部抵抗)の上昇やケースの厚みの増加が十分に抑制される。また、製造過程で特に電解液を無駄にすることも無い。   Thus, in the present embodiment, before the electrode 10 and the electrolytic solution are finally sealed in the case 50, the condition that the change in capacitance is 0.5 ≦ (C2 / C1) ≦ 0.95. Since a voltage is applied between the electrodes 10 and 10, the impurities in the case 50 are sufficiently gasified, and the impurities can be discharged out of the case 50 as a gas. Therefore, the amount of impurities in the case 50 after the final sealing is sufficiently reduced. Thereby, even if the electric double layer capacitor 100 is used, an increase in impedance (internal resistance) and an increase in the thickness of the case due to the generation of gas are sufficiently suppressed. In addition, the electrolytic solution is not particularly wasted during the manufacturing process.

また、本実施形態では、仮密封された状態でエージングを行うので、エージングを減圧容器90内で行う必要が無く、エージング操作がしやすい。   Further, in the present embodiment, since aging is performed in a temporarily sealed state, aging is not necessary in the decompression vessel 90, and aging operation is easy.

なお、本発明は、上記実施形態に限定されず、様々な変形態様が可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation aspect is possible.

例えば、上記実施形態では、仮密封された電気2重層キャパシタに対してエージングを行っているが、これに限られず、図9に示すように、ケース50内に積層体20及び電解液が収容され、かつケース50が密封されていない、すなわち、開口した辺50bが残っておりケース内外が連通している状態で、電圧印加装置200を使用してエージングを行っても良い。この場合には、エージング工程を不活性雰囲気の減圧容器90内で行うと、エージング工程と同時に、開口した辺50bからガスの排出がなされるので、工程数の削減が可能である。   For example, in the above embodiment, aging is performed on the temporarily sealed electric double layer capacitor, but the present invention is not limited to this, and as shown in FIG. 9, the laminate 20 and the electrolytic solution are accommodated in the case 50. Further, aging may be performed using the voltage applying device 200 in a state where the case 50 is not sealed, that is, the open side 50b remains and the inside and outside of the case are in communication. In this case, if the aging process is performed in the decompression vessel 90 in an inert atmosphere, gas is discharged from the opened side 50b simultaneously with the aging process, so that the number of processes can be reduced.

また、上記実施形態では、ケース50内でエージングを行っているが、ケース外で一対の電極と電解液とを接触させた状態でエージングを行い、その後エージング終了後の一対の電極及び電解液をケース50内に収容し、ケース50を密封しても良い。   In the above embodiment, aging is performed in the case 50, but aging is performed in a state where the pair of electrodes and the electrolytic solution are in contact with each other outside the case, and then the pair of electrodes and electrolytic solution after the aging is completed. It may be accommodated in the case 50 and the case 50 may be sealed.

また、電気二重層キャパシタ100は、上述の形態に限定されず、例えば、積層体20が多数積層されたもの等でもよい。   Moreover, the electric double layer capacitor 100 is not limited to the above-mentioned form, For example, what laminated many laminated bodies 20 etc. may be sufficient.

また、上記実施形態においては、電気二重層キャパシタの製造方法について説明したが、本発明は電気二重層キャパシタの製造に限定されるものではなく、例えば、シュードキャパシタ、レドックスキャパシタ等の他の電気化学キャパシタの製造に適用可能である。   In the above embodiment, the method for manufacturing the electric double layer capacitor has been described. However, the present invention is not limited to the manufacturing of the electric double layer capacitor. For example, other electrochemical methods such as a pseudo capacitor and a redox capacitor can be used. It can be applied to the manufacture of capacitors.

さらに、上記実施形態の説明においては、本発明を電気化学キャパシタ(特に電気二重層キャパシタ)の製造に適用した場合に好適な構成について説明したが、本発明はこれに限定されるものではなく、リチウムイオン二次電池等をはじめとする各種二次電池の製造にも適用可能である。この場合には、第一電極(正極)12の活物質含有層には、リチウムイオン二次電池等の二次電池の正極に使用可能な電極活物質が含有される。また、第二電極(負極)13の活物質含有層には、リチウムイオン二次電池等の二次電池の負極に使用可能な電極活物質が含有される。この場合、第一電極の集電体には、耐食性の点からアルミニウム、チタン等を用いることが好ましく、第二電極の集電体には、リチウムと合金を形成しない観点から、銅、ニッケル等を用いることが好ましい。   Furthermore, in the description of the above embodiment, the configuration suitable for the case where the present invention is applied to the production of an electrochemical capacitor (particularly, an electric double layer capacitor) has been described, but the present invention is not limited to this, The present invention can also be applied to the production of various secondary batteries such as lithium ion secondary batteries. In this case, the active material-containing layer of the first electrode (positive electrode) 12 contains an electrode active material that can be used for the positive electrode of a secondary battery such as a lithium ion secondary battery. The active material-containing layer of the second electrode (negative electrode) 13 contains an electrode active material that can be used for the negative electrode of a secondary battery such as a lithium ion secondary battery. In this case, it is preferable to use aluminum, titanium, or the like for the current collector of the first electrode from the viewpoint of corrosion resistance. From the viewpoint of not forming an alloy with lithium, the current collector of the second electrode is made of copper, nickel, etc. Is preferably used.

(実施例A1〜A25)
(電極の作製)
活物質として比面積50m2 /g、1nm以下の細孔径を有する細孔の細孔容積が0.33cm/gのアセチレンブラックを、バインダとしてPVDFを用い、活物質:バインダ=70:30(重量比)となるようにこれらを混合し、得られた混合物にN-メチルピロリドンを加えて混練することにより、塗布液を調整した。
(Examples A1 to A25)
(Production of electrodes)
Acetylene black having a pore area of a specific area of 50 m 2 / g and a pore diameter of 1 nm or less as the active material and having a pore volume of 0.33 cm 3 / g and PVDF as the binder, the active material: binder = 70: 30 ( These were mixed so that the weight ratio), and N-methylpyrrolidone was added to the obtained mixture and kneaded to prepare a coating solution.

この塗布液をドクターブレード法でエッチングアルミ箔の片面上に塗布した後、圧延し、空気中においてこのアルミ箔を150℃で30分間、引き続き真空下において175℃で12時間加熱することにより塗膜を乾燥させた。次いで、このアルミ箔を、塗膜形成領域を中心とするタブ部を持った長方形状に打ち抜き、電気二重層キャパシタ用の一対の電極を得た。   This coating solution is applied on one side of an etched aluminum foil by the doctor blade method, then rolled, and this aluminum foil is heated in air at 150 ° C. for 30 minutes, and subsequently heated at 175 ° C. for 12 hours under vacuum. Was dried. Next, this aluminum foil was punched into a rectangular shape having a tab portion centered on the coating film formation region, and a pair of electrodes for an electric double layer capacitor was obtained.

(セルの作製)
セルの作製は露点−40℃以下の低水分環境で行った。一対の電極2枚を、セルロース製セパレータを介して対向させ、熱圧着し、積層体を得た。この積層体のタブ部に超音波溶接でアルミ製のリードを溶着した。リードを付けた積層体を、4方のうち2方が開口とされた袋状アルミラミネートフィルムに入れ、一方の開口部からリードを取り出し、リード部を挟んで開口部を熱圧着した。電解液としては、プロピレンカーボネートにテトラエチルアンモニウムテトラフルオロボレートを1.0Mの濃度で溶解してなる電解液を用いた。そして、この電解液を、積層体が入ったアルミラミネート外装袋の最後に残った開口部から滴下し、残った開口部を真空状態で熱圧着し、図1の如き形態の電気二重層キャパシタを多数得た。
(Production of cell)
The cell was produced in a low moisture environment with a dew point of −40 ° C. or lower. Two pairs of electrodes were opposed to each other through a cellulose separator and thermocompression bonded to obtain a laminate. Aluminum leads were welded to the tab portion of the laminate by ultrasonic welding. The laminate with the leads was put into a bag-like aluminum laminate film having two of the four openings, the lead was taken out from one opening, and the opening was thermocompression bonded with the lead sandwiched therebetween. As the electrolytic solution, an electrolytic solution obtained by dissolving tetraethylammonium tetrafluoroborate in propylene carbonate at a concentration of 1.0 M was used. Then, this electrolytic solution is dropped from the last remaining opening of the aluminum laminate outer bag containing the laminate, and the remaining opening is thermocompression bonded in a vacuum state to form an electric double layer capacitor having a form as shown in FIG. I got a lot.

(ケース内に含まれる水分量の分析)
1つの電気二重層キャパシタを選び、電気二重層キャパシタ内に含まれる水分をカールフィッシャー法により測定したところ、電解液重量当たり換算で500 ppmであった。
(Analysis of the amount of water contained in the case)
When one electric double layer capacitor was selected and the moisture contained in the electric double layer capacitor was measured by the Karl Fischer method, it was 500 ppm in terms of electrolyte weight.

(ケース内に含まれるN-メチルピロリドン量の分析)
1つの電気二重層キャパシタを選び、残留溶剤であるN-メチルピロリドンの量をGC -Massで測定したところ、電解液重量当たり換算で150ppmであった。
(Analysis of the amount of N-methylpyrrolidone contained in the case)
One electric double layer capacitor was selected, and the amount of N-methylpyrrolidone as a residual solvent was measured by GC-Mass. As a result, it was 150 ppm in terms of electrolyte weight.

(エージング)
エージング前後のインピーダンスの変化(C2/C1)が、0.5≦(C2/C1)≦0.95を満たすような様々な条件で、電気2重層キャパシタに対してエージングを行った。具体的には、実施例A1〜A25では、図10に示すような、環境温度、電圧及び時間の組合せで各電気二重層キャパシタに対して電圧を印加した。エージング後に、真空装置内でケースの一部に穿孔し、ケース内のガスを排気した後、穿孔部を熱融着によりシールした。このようにして、各エージング条件に応じた実施例A1〜A25の電気二重層キャパシタを得た。
(aging)
The electric double layer capacitor was aged under various conditions such that the impedance change (C2 / C1) before and after aging satisfied 0.5 ≦ (C2 / C1) ≦ 0.95. Specifically, in Examples A1 to A25, a voltage was applied to each electric double layer capacitor with a combination of environmental temperature, voltage, and time as shown in FIG. After aging, a part of the case was perforated in the vacuum device, and the gas in the case was exhausted, and then the perforated part was sealed by heat sealing. Thus, the electric double layer capacitor of Examples A1 to A25 corresponding to each aging condition was obtained.

(高温通電試験)
実施例A1〜A25の電気二重層キャパシタに対して、それぞれ、70℃、3.0Vで、500時間の連続通電を行い、これを高温通電試験とした。そして、この高温通電試験前後のインピーダンス変化、及び、ケースの膨れ具合を測定した。
(High temperature energization test)
The electric double layer capacitors of Examples A1 to A25 were subjected to continuous energization for 500 hours at 70 ° C. and 3.0 V, respectively, and this was used as a high temperature energization test. Then, the impedance change before and after the high-temperature energization test and the swelling of the case were measured.

(比較例A1〜A30)
比較例A1〜A30では、エージングの条件をそれぞれ図1のようにした以外は、実施例A1と同様にして、高温通電試験後のインピーダンス変化及び、ケースの膨れを測定した。本比較例でA1〜A30では、エージング前後のインピーダンスの変化(C2/C1)が、0.5≦(C2/C1)≦0.95を満たさない。
(Comparative Examples A1 to A30)
In Comparative Examples A1 to A30, the change in impedance after the high-temperature energization test and the swelling of the case were measured in the same manner as in Example A1, except that the aging conditions were as shown in FIG. In A1 to A30 in this comparative example, the change in impedance before and after aging (C2 / C1) does not satisfy 0.5 ≦ (C2 / C1) ≦ 0.95.

各実施例A1〜A25及び比較例比較例A1〜A30の結果について図10及び図11に示す。   The results of Examples A1 to A25 and Comparative Examples Comparative Examples A1 to A30 are shown in FIGS.

種々の温度、電圧、時間を組み合わせてみたが、エージング前後の静電容量比が0.5≦(C2/C1)≦0.95を満たす場合には、高温通電試験後のインピーダンス変化が130%未満となり、また、ケースの膨れも問題とならなかった。一方、上記条件を満たさない場合には、高温通電試験後のインピーダンスが大きく上昇すると共に、ケースの膨れが見られた。   A combination of various temperatures, voltages, and times. When the capacitance ratio before and after aging satisfies 0.5 ≦ (C2 / C1) ≦ 0.95, the impedance change after the high-temperature energization test is 130%. The swelling of the case was not a problem. On the other hand, when the above conditions were not satisfied, the impedance after the high-temperature energization test increased significantly and the case was swollen.

(実施例B1〜B8)
実施例B1〜B8では、活物質として、比表面積2000m/g、1nm以下の細孔径を有する細孔の細孔容積が0.81cm/gの活性炭を用い、さらに、導電助剤として1nm以下の細孔径を有する細孔の細孔容積が0.03cm/gのアセチレンブラックを用い、活物質:導電助剤:バインダ(PVDF)=70:5:25(重量比)となるように混合し、N−メチルピロリドンを加えて塗布液を作成すること、及び、ケース内に電解液を100μL供給すること、及び、エージングの条件を図12のようにすること以外は実施例A1と同様にした。本実施例B1〜B8では、エージング前後のインピーダンスの変化(C2/C1)が、0.5≦(C2/C1)≦0.95を満たす。
(Examples B1 to B8)
In Examples B1 to B8, activated carbon having a specific surface area of 2000 m 2 / g and a pore diameter of 1 nm or less and a pore volume of 0.81 cm 3 / g was used as the active material, and further 1 nm as the conductive auxiliary agent. Using acetylene black having a pore volume of 0.03 cm 3 / g having the following pore diameter, the active material: conducting aid: binder (PVDF) = 70: 5: 25 (weight ratio) Mixing and adding N-methylpyrrolidone to prepare a coating solution, supplying 100 μL of electrolyte in the case, and aging conditions as shown in FIG. 12 are the same as in Example A1 I made it. In Examples B1 to B8, the change in impedance before and after aging (C2 / C1) satisfies 0.5 ≦ (C2 / C1) ≦ 0.95.

なお、ケース内に含まれる水分量は、電解液重量当たり換算で2000ppmであった。また、ケース内に含まれるN-メチルピロリドン量は、電解液重量当たり換算で5000 ppmであった。   The amount of water contained in the case was 2000 ppm in terms of electrolyte weight. The amount of N-methylpyrrolidone contained in the case was 5000 ppm in terms of electrolyte weight.

(比較例B1〜B8)
比較例B1〜B8では、エージングの条件をそれぞれ図12のようにした以外は、実施例B1と同様にした。本比較例B1〜B8では、エージング前後のインピーダンスの変化(C2/C1)が、0.5≦(C2/C1)≦0.95を満たさない。これらの結果を図12に示す。活物質を活性炭に代えた場合でも、実施例1と同様の傾向を示した。
(Comparative Examples B1 to B8)
Comparative Examples B1 to B8 were the same as Example B1 except that the aging conditions were as shown in FIG. In Comparative Examples B1 to B8, the change in impedance (C2 / C1) before and after aging does not satisfy 0.5 ≦ (C2 / C1) ≦ 0.95. These results are shown in FIG. Even when the active material was replaced with activated carbon, the same tendency as in Example 1 was exhibited.

図1は、電気2重層キャパシタの概略断面図である。FIG. 1 is a schematic cross-sectional view of an electric double layer capacitor. 図2は、電気2重層キャパシタの製造方法を示す概略斜視図である。FIG. 2 is a schematic perspective view showing a method for manufacturing the electric double layer capacitor. 図3は、電気2重層キャパシタの製造方法を示す図2に続く概略斜視図である。FIG. 3 is a schematic perspective view subsequent to FIG. 2 showing the method for manufacturing the electric double layer capacitor. 図4は、電気2重層キャパシタの製造方法を示す図3に続く概略斜視図である。FIG. 4 is a schematic perspective view subsequent to FIG. 3 showing the method of manufacturing the electric double layer capacitor. 図5は、電気2重層キャパシタの製造方法を示す図4に続く概略斜視図である。FIG. 5 is a schematic perspective view subsequent to FIG. 4 showing the method of manufacturing the electric double layer capacitor. 図6は、電気2重層キャパシタの製造方法を示す図5に続く概略斜視図である。FIG. 6 is a schematic perspective view subsequent to FIG. 5 showing the method of manufacturing the electric double layer capacitor. 図7は、電気2重層キャパシタの製造方法を示す図6に続く概略斜視図である。FIG. 7 is a schematic perspective view subsequent to FIG. 6 showing the method of manufacturing the electric double layer capacitor. 図8は、電気2重層キャパシタの製造方法を示す図7に続く概略斜視図である。FIG. 8 is a schematic perspective view subsequent to FIG. 7 showing the method of manufacturing the electric double layer capacitor. 図9は、電気2重層キャパシタの製造方法を示す図8に続く概略斜視図である。FIG. 9 is a schematic perspective view subsequent to FIG. 8 showing the method of manufacturing the electric double layer capacitor. 図10は、実施例A1〜A25についての製造条件及び高温試験後のインピーダンス変化及び高温通電試験後のセルの膨れを示す表である。FIG. 10 is a table showing manufacturing conditions, changes in impedance after the high-temperature test, and cell swelling after the high-temperature energization test for Examples A1 to A25. 図11は、比較例A1〜A30についての製造条件及び高温試験後のインピーダンス変化及び高温通電試験後のセルの膨れを示す表である。FIG. 11 is a table showing manufacturing conditions, comparative impedance changes after the high temperature test, and cell swelling after the high temperature energization test for Comparative Examples A1 to A30. 図12は、実施例B1〜B8及び比較例B1〜B8についての製造条件及び高温試験後のインピーダンス変化及び高温通電試験後のセルの膨れを示す表である。FIG. 12 is a table showing manufacturing conditions, impedance changes after the high-temperature test, and cell swelling after the high-temperature energization test for Examples B1 to B8 and Comparative Examples B1 to B8.

符号の説明Explanation of symbols

50…ケース、10…電極、100…電気2重層キャパシタ(電気化学デバイス)。   50: Case, 10: Electrode, 100: Electric double layer capacitor (electrochemical device).

Claims (6)

ケース内に一対の電極及び非水電解液が密封された電気化学デバイスの製造方法であって、
前記一対の電極と前記非水電解液とが接触している状態下で、前記一対の電極間に電圧を印加する電圧印加工程を備え、
前記電圧印加工程では、前記電圧印加工程開始時の前記電気化学デバイスの静電容量をC1及び前記電圧印加工程終了時の前記電気化学デバイスの静電容量をC2とした時に、0.5≦(C2/C1)≦0.95を満たすように電圧を印加する電気化学デバイスの製造方法。
A method for producing an electrochemical device in which a pair of electrodes and a non-aqueous electrolyte are sealed in a case,
A voltage application step of applying a voltage between the pair of electrodes in a state where the pair of electrodes and the non-aqueous electrolyte are in contact with each other;
In the voltage application step, when the capacitance of the electrochemical device at the start of the voltage application step is C1 and the capacitance of the electrochemical device at the end of the voltage application step is C2, 0.5 ≦ ( C2 / C1) A method for producing an electrochemical device in which a voltage is applied so as to satisfy 0.95.
前記電圧印加工程では、前記一対の電極及び前記非水電解液が前記ケース内に予め仮密封された状態下で、前記一対の電極間に電圧を印加し、
前記電圧印加工程の後、減圧下において、前記仮密封されたケースを開封して前記ケース内に存在するガスを前記ケース外に排出させ、
その後、前記ケースを再び密封する請求項1に記載の電気化学デバイスの製造方法。
In the voltage application step, a voltage is applied between the pair of electrodes in a state where the pair of electrodes and the non-aqueous electrolyte are temporarily sealed in the case in advance.
After the voltage application step, under reduced pressure, the temporarily sealed case is opened and the gas present in the case is discharged out of the case,
The method for manufacturing an electrochemical device according to claim 1, wherein the case is then sealed again.
前記電圧印加工程では、前記一対の電極及び前記非水電解液が前記ケース内に収容され、前記ケースには前記ケースの内外を連通する開口部が形成され、かつ、減圧下において、前記一対の電極間に電圧を印加し、
前記電圧印加工程の後に、前記ケースを密封する請求項1に記載の電気化学デバイスの製造方法。
In the voltage application step, the pair of electrodes and the non-aqueous electrolyte are accommodated in the case, the case is formed with an opening that communicates the inside and outside of the case, and the pair of the pair is under reduced pressure. Apply a voltage between the electrodes,
The method for producing an electrochemical device according to claim 1, wherein the case is sealed after the voltage application step.
前記電圧印加工程における前記電気化学デバイスの温度は40〜90℃である請求項1〜3のいずれかに記載の電気化学デバイスの製造方法。   The method for producing an electrochemical device according to any one of claims 1 to 3, wherein the temperature of the electrochemical device in the voltage application step is 40 to 90 ° C. 前記電気化学デバイスは、電気二重層キャパシタである請求項1〜4のいずれかに記載の電気化学デバイスの製造方法。   The method for manufacturing an electrochemical device according to claim 1, wherein the electrochemical device is an electric double layer capacitor. 前記一対の電極はそれぞれ炭素材料を含み、前記電解液は電解質及び有機溶媒を含む請求項5に記載の電気化学デバイスの製造方法。   The method of manufacturing an electrochemical device according to claim 5, wherein each of the pair of electrodes includes a carbon material, and the electrolytic solution includes an electrolyte and an organic solvent.
JP2005233426A 2005-08-11 2005-08-11 Method of manufacturing electrochemical device Pending JP2007049030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233426A JP2007049030A (en) 2005-08-11 2005-08-11 Method of manufacturing electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233426A JP2007049030A (en) 2005-08-11 2005-08-11 Method of manufacturing electrochemical device

Publications (1)

Publication Number Publication Date
JP2007049030A true JP2007049030A (en) 2007-02-22

Family

ID=37851595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233426A Pending JP2007049030A (en) 2005-08-11 2005-08-11 Method of manufacturing electrochemical device

Country Status (1)

Country Link
JP (1) JP2007049030A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069792A (en) * 2010-09-24 2012-04-05 Nissin Electric Co Ltd Method of manufacturing electric double layer capacitor
JP2016164948A (en) * 2015-03-06 2016-09-08 住友電気工業株式会社 Capacitor positive electrode, capacitor manufacturing method, and capacitor
US10714271B2 (en) 2011-07-08 2020-07-14 Fastcap Systems Corporation High temperature energy storage device
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041199A (en) * 1996-07-25 1998-02-13 Asahi Glass Co Ltd Manufacture of large-capacity electric double layer capacitor
JP2000200739A (en) * 1999-01-06 2000-07-18 Ngk Insulators Ltd Electric double layer capacitor and manufacture thereof
JP2002141251A (en) * 2000-11-01 2002-05-17 Power System:Kk Manufacturing method for electric double-layer capacitor
JP2002246277A (en) * 2001-02-20 2002-08-30 Kyocera Corp Electric double layer capacitor and method of manufacturing the same
JP2003124076A (en) * 2001-10-09 2003-04-25 Nissan Diesel Motor Co Ltd Electric double layer capacitor and its manufacturing method
JP2004335702A (en) * 2003-05-07 2004-11-25 Nec Tokin Corp Electric double layer capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041199A (en) * 1996-07-25 1998-02-13 Asahi Glass Co Ltd Manufacture of large-capacity electric double layer capacitor
JP2000200739A (en) * 1999-01-06 2000-07-18 Ngk Insulators Ltd Electric double layer capacitor and manufacture thereof
JP2002141251A (en) * 2000-11-01 2002-05-17 Power System:Kk Manufacturing method for electric double-layer capacitor
JP2002246277A (en) * 2001-02-20 2002-08-30 Kyocera Corp Electric double layer capacitor and method of manufacturing the same
JP2003124076A (en) * 2001-10-09 2003-04-25 Nissan Diesel Motor Co Ltd Electric double layer capacitor and its manufacturing method
JP2004335702A (en) * 2003-05-07 2004-11-25 Nec Tokin Corp Electric double layer capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069792A (en) * 2010-09-24 2012-04-05 Nissin Electric Co Ltd Method of manufacturing electric double layer capacitor
US10714271B2 (en) 2011-07-08 2020-07-14 Fastcap Systems Corporation High temperature energy storage device
JP2020115581A (en) * 2011-07-08 2020-07-30 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation High temperature energy storage device
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US11482384B2 (en) 2011-07-08 2022-10-25 Fastcap Systems Corporation High temperature energy storage device
US11776765B2 (en) 2011-07-08 2023-10-03 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US11901123B2 (en) 2011-07-08 2024-02-13 Fastcap Systems Corporation High temperature energy storage device
US12165806B2 (en) 2011-07-08 2024-12-10 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
JP2016164948A (en) * 2015-03-06 2016-09-08 住友電気工業株式会社 Capacitor positive electrode, capacitor manufacturing method, and capacitor

Similar Documents

Publication Publication Date Title
TWI611443B (en) Current collector for electrode, positive electrode for non-aqueous electrolytic secondary battery, negative electrode for non-aqueous electrolytic secondary battery, non-aqueous electrolytic secondary battery, electrode for non-aqueous electrolytic elec
JP4581888B2 (en) Electrode element manufacturing method and electrochemical element manufacturing method
JP4453049B2 (en) Manufacturing method of secondary battery
JP6644658B2 (en) Lithium ion battery
JP4640013B2 (en) Electrode element manufacturing method and electrochemical element manufacturing method
KR101138502B1 (en) Method of manufacturing lithium ion capacitor
CN105190811A (en) Composite electrode for lithium-ion capacitor
CN105580194A (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
CN105340120A (en) lithium battery
JP2008177263A (en) Active carbon electrode and its manufacturing method, electric double-layer capacitor, and hybrid capacitor
JP4204231B2 (en) Lithium secondary battery
CN112951612B (en) Aqueous sodium-ion battery capacitor hybrid device with bismuth oxide cathode and preparation method thereof
JP2011187343A (en) Method for manufacturing electrode for battery
JP2006332446A (en) Electric double layer capacitor
JP4623840B2 (en) Manufacturing method of electric double layer capacitor
JP2007049030A (en) Method of manufacturing electrochemical device
JP2007049029A (en) Method of manufacturing electrochemical device
JP2008282838A (en) Hybrid electric double layer capacitor
JP2006086148A (en) Electric double layer capacitor and its manufacturing method
JP4529683B2 (en) Electrochemical devices
KR101936044B1 (en) Supercapacitor electrode for high temperature, manufactureing method of the electrode, and Supercapacitor for high temperature using the electrode
JP4760203B2 (en) Electric double layer capacitor
JP2007087680A (en) Electrode-polymer electrolyte membrane composite for electronic parts and method for producing the same
JP2011216510A (en) Electrode for capacitor and capacitor
CN104662627B (en) Capacitor electrode and use its capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927