[go: up one dir, main page]

JP2006337015A - Total heat exchanger and ventilation system using the same - Google Patents

Total heat exchanger and ventilation system using the same Download PDF

Info

Publication number
JP2006337015A
JP2006337015A JP2006152365A JP2006152365A JP2006337015A JP 2006337015 A JP2006337015 A JP 2006337015A JP 2006152365 A JP2006152365 A JP 2006152365A JP 2006152365 A JP2006152365 A JP 2006152365A JP 2006337015 A JP2006337015 A JP 2006337015A
Authority
JP
Japan
Prior art keywords
air
duct
heat exchange
heat exchanger
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006152365A
Other languages
Japanese (ja)
Inventor
Kyung Hwan Kim
キュン ファン キム
Keun Hyoung Choi
ケウン ヒョウン チョイ
Dong Whan Choi
ドン ワン チョイ
Ho Son Choi
ホ ソン チョイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2006337015A publication Critical patent/JP2006337015A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

【課題】全熱効率を増加させることができる全熱交換器及びこれを用いた換気システムを提供する。
【解決手段】室外空気を室内に導く給気ダクト10及び室内空気を外部に導く排気ダクト20と、前記給気ダクトの一側に設置され、前記室外空気を吸入して室内に排出する給気ファン13と、前記排気ダクトの一側に設置され、前記室内空気を吸入して室外に排出する排気ファン23と、前記室内空気と室外空気とが交差する領域に設置されて前記室外空気と室内空気が熱交換するようにする熱交換素子50aと、を備え、前記熱交換素子の形状は、前記熱交換素子を経由する室外空気の流れと室内空気の流れが互いに鋭角をなすように提供する。
【選択図】図1
A total heat exchanger capable of increasing the total heat efficiency and a ventilation system using the total heat exchanger are provided.
An air supply duct that guides outdoor air into the room, an exhaust duct that guides indoor air to the outside, and an air supply that is installed on one side of the air supply duct and sucks the outdoor air and discharges it into the room. A fan 13 is installed on one side of the exhaust duct, and is installed in a region where the indoor air and the outdoor air intersect with each other, an exhaust fan 23 that sucks and exhausts the indoor air, and the outdoor air and the indoor air. A heat exchanging element 50a for exchanging heat with air, and the shape of the heat exchanging element is provided such that the flow of outdoor air and the flow of indoor air passing through the heat exchanging element form an acute angle with each other. .
[Selection] Figure 1

Description

本発明は、全熱交換器及びこれを用いた換気システムに係り、より詳細には、構造を改善し熱交換面積を増加させることによって全熱効率を増加させることができる全熱交換器及び換気システムに関する。   The present invention relates to a total heat exchanger and a ventilation system using the total heat exchanger, and more particularly to a total heat exchanger and a ventilation system capable of increasing the total heat efficiency by improving the structure and increasing the heat exchange area. About.

一般に、密閉された室内の空気は、室内で活動する人の呼吸などによって時間が経つにつれ次第に汚染されていく。このため、室内の汚染された空気を室外の新鮮な空気に随時交換しなければならないが、この場合、通常、全熱交換器を用いた換気システムが使用される。   In general, air in a sealed room is gradually polluted over time due to the breathing of a person who is active in the room. For this reason, the contaminated air in the room must be exchanged for fresh air outside the room, but in this case, a ventilation system using a total heat exchanger is usually used.

特に、家庭、大型ビル及び工場建物などには、室内空間を換気するために様々な換気システムが使用される。かかる換気システムは、室外空気を室内に供給するための給気ファン、室内空気を室外に排出するための排気ファン、これら室内空気及び室外空気を室外に導くダクトなどを備えてなる。また、この換気システムは、外部に排出される室内空気に含まれた熱エネルギーの一部を回収するための全熱交換器が設置されることもある。   In particular, various ventilation systems are used to ventilate indoor spaces in homes, large buildings, factory buildings, and the like. Such a ventilation system includes an air supply fan for supplying outdoor air to the room, an exhaust fan for discharging the room air to the outside, a duct for guiding the room air and the outdoor air to the outside, and the like. In addition, this ventilation system may be provided with a total heat exchanger for recovering a part of the heat energy contained in the indoor air discharged to the outside.

しかしながら、上述した従来の全熱交換器は、次のような問題点があった。
第一に、建築設計に当たって天井厚が制限されるため、天井内部に設置される全熱交換器の高さが制限され、また、室内空気と室外空気を熱交換させるために全熱交換器内部に設置される熱交換素子の高さも制限され、結果として、熱交換素子の熱交換面積が小さくなり、全熱交換器の全熱効率が相対的に低くなるという問題点があった。
However, the conventional total heat exchanger described above has the following problems.
First, because the ceiling thickness is limited in building design, the height of the total heat exchanger installed inside the ceiling is limited, and the interior of the total heat exchanger is used to exchange heat between indoor air and outdoor air. As a result, the heat exchange area of the heat exchanger element becomes small, and the total heat efficiency of the total heat exchanger becomes relatively low.

第二に、熱交換素子を通過する空気の流速が高いため、熱交換素子から熱交換が有効に行われず、全熱交換器の効率が低いという問題があった。   Second, since the flow rate of air passing through the heat exchange element is high, heat exchange from the heat exchange element is not performed effectively, and the efficiency of the total heat exchanger is low.

第三に、熱交換素子を通過する室内空気と室外空気の流動方向変化が大きいため、流路抵抗が増加するという問題があった。   Third, there is a problem that the flow resistance increases because the flow direction change between the indoor air and the outdoor air passing through the heat exchange element is large.

本発明は上記の問題点を解決するためのもので、その目的は、全熱効率を増加させることができる全熱交換器及びこれを用いた換気システムを提供することにある。   The present invention is to solve the above-described problems, and an object thereof is to provide a total heat exchanger capable of increasing the total heat efficiency and a ventilation system using the total heat exchanger.

本発明の他の目的は、流路抵抗を低減できる全熱交換器及びこれを用いた換気システムを提供することにある。   Another object of the present invention is to provide a total heat exchanger capable of reducing flow path resistance and a ventilation system using the total heat exchanger.

上記目的を達成するために、本発明は、室外空気を室内に導く給気ダクト及び室内空気を外部に導く排気ダクトと、前記給気ダクトの一側に設置され、前記室外空気を吸入して室内に排出する給気ファンと、前記排気ダクトの一側に設置され、前記室内空気を吸入して室外に排出する排気ファンと、前記室内空気と室外空気とが交差する領域に設置され、前記室外空気と室内空気が熱交換するようにする熱交換素子と、を備え、前記熱交換素子の形状は、前記熱交換素子を経由する室外空気の流れと室内空気の流れが互いに鋭角をなすように提供される全熱交換器を提供する。   In order to achieve the above object, the present invention is provided on one side of an air supply duct for guiding outdoor air into the room, an exhaust duct for guiding indoor air to the outside, and the air intake duct, and sucks the outdoor air. An air supply fan for exhausting into the room, installed on one side of the exhaust duct, installed in an area where the indoor air and the outdoor air intersect, and an exhaust fan for sucking the indoor air and exhausting it outside the room, A heat exchange element that exchanges heat between outdoor air and indoor air, and the shape of the heat exchange element is such that the flow of outdoor air and the flow of indoor air passing through the heat exchange element form an acute angle with each other. Provide the total heat exchanger provided.

前記熱交換素子の断面高さは、前記熱交換素子の断面幅よりも小さく形成することができる。   The cross-sectional height of the heat exchange element may be smaller than the cross-sectional width of the heat exchange element.

また、前記熱交換素子の断面は、実質的に多角形の形状を有することができ、具体的には、実質的に菱形の形状を有することができる。   The cross section of the heat exchange element may have a substantially polygonal shape, and specifically may have a substantially rhombus shape.

前記熱交換素子は複数個が備えられ、それぞれの熱交換素子は、空気の流動方向に対して直列に配置されることが好ましい。   A plurality of the heat exchange elements are provided, and each heat exchange element is preferably arranged in series with respect to the air flow direction.

前記給気ダクトと排気ダクトの内部を流動する空気は、前記直列配置された前記熱交換素子をジグザグ形態で通過することができる。   The air flowing through the air supply duct and the exhaust duct can pass through the heat exchange elements arranged in series in a zigzag form.

上記全熱交換器は、前記排気ダクトと区画され、室内空気が前記熱交換素子を通過せずに前記排気ファンの強制吸引力によって直接室外に排出されるようにする排気用バイパス流路をさらに備えることができる。   The total heat exchanger further includes an exhaust bypass passage that is partitioned from the exhaust duct and allows the indoor air to be directly discharged outside by the forced suction force of the exhaust fan without passing through the heat exchange element. Can be provided.

上記全熱交換器は、前記給気ダクトと区画され、室外空気が前記熱交換素子を通過せずに前記吸気ファンの強制吸引力によって直接室内に供給されるようにする給気用バイパス流路をさらに備えることができる。   The total heat exchanger is partitioned from the air supply duct, and the air supply bypass flow path is configured such that outdoor air is supplied directly into the room by the forced suction force of the intake fan without passing through the heat exchange element. Can further be provided.

上記全熱交換器は、前記給気ダクト上に、前記室外空気中の異物をろ過するフィルタ部をさらに備えることができる。   The total heat exchanger may further include a filter unit that filters foreign matter in the outdoor air on the air supply duct.

前記給気ファンの回転軸は、室内に排出される室外空気の排出方向と垂直に設置されることが好ましい。   It is preferable that the rotation shaft of the air supply fan is installed perpendicular to the direction in which outdoor air is discharged indoors.

上記全熱交換器は、複数個の給気ファンを有し、前記複数個の給気ファンを同時に駆動させる両軸モーターをさらに備えても良い。   The total heat exchanger may further include a biaxial motor having a plurality of air supply fans and simultaneously driving the plurality of air supply fans.

前記排気ファンの回転軸は、室外に排出される室内空気の排出方向と垂直に設置されることが好ましい。   It is preferable that the rotation shaft of the exhaust fan is installed perpendicular to the discharge direction of the indoor air discharged to the outside.

上記全熱交換器は、複数個の排気ファンを有し、前記複数個の排気ファンを同時に駆動させる両軸モーターをさらに備えても良い。   The total heat exchanger may further include a biaxial motor that includes a plurality of exhaust fans and drives the plurality of exhaust fans simultaneously.

上記全熱交換器は、前記給気ファンと排気ファンによって排出される空気をそれぞれ貯留する給気チャンバー及び排気チャンバーをさらに備えることができる。   The total heat exchanger may further include an air supply chamber and an exhaust chamber that store air discharged by the air supply fan and the exhaust fan, respectively.

本発明の他の実施形態によれば、室外空気を室内に導く給気ダクト及び室内空気を外部に導く排気ダクトと、前記給気ダクトの一側に設置された給気ファン及び前記排気ダクトの一側に設置される排気ファンと、前記室内空気と室外空気とが交差する領域に設置され、前記室外空気と室内空気が熱交換するようにする熱交換素子と、前記給気ダクトから供給される室外空気を室内に拡散する第1ディフューザを有する第1延長ダクトと、前記第1ディフューザと所定間隔で設置される第2ディフューザを有する第2延長ダクトと、を備え、前記熱交換素子の形状は、前記熱交換素子を経由する室外空気の流れと室内空気の流れが互いに鋭角をなすように提供される換気システムが提供される。   According to another embodiment of the present invention, an air supply duct that guides outdoor air into the room, an exhaust duct that guides indoor air to the outside, an air supply fan installed on one side of the air supply duct, and the exhaust duct An exhaust fan installed on one side, a heat exchange element installed in a region where the room air and the room air intersect, and heat exchange between the room air and the room air are supplied from the air supply duct. A first extension duct having a first diffuser for diffusing outdoor air in the room, and a second extension duct having a second diffuser installed at a predetermined interval from the first diffuser, and the shape of the heat exchange element Provides a ventilation system provided such that the flow of outdoor air and the flow of indoor air passing through the heat exchange element form an acute angle with each other.

前記第1延長ダクトは、前記給気ダクトと室内とを連通させる第1下部延長ダクトと、前記給気ダクトと外部とを連通させる第1上部延長ダクトと、をさらに備えることができる。   The first extension duct may further include a first lower extension duct that allows the air supply duct to communicate with the room, and a first upper extension duct that allows the air supply duct to communicate with the outside.

前記第2延長ダクトは、前記排気ダクトと室内とを連通させる第2下部延長ダクトと、前記排気ダクトと外部とを連通させる第2上部延長ダクトと、をさらに備えることができる。   The second extension duct may further include a second lower extension duct that allows the exhaust duct to communicate with the room, and a second upper extension duct that allows the exhaust duct to communicate with the outside.

本発明の換気システムは、本発明による全熱交換器を採用することによって、建物などの設計を考慮しながらも高い全熱効率を維持可能になる。   By adopting the total heat exchanger according to the present invention, the ventilation system of the present invention can maintain high total heat efficiency while considering the design of a building or the like.

以下、添付の図面を参照しつつ、本発明による全熱交換器及びこれを用いた換気システムの好適な実施例について具体的に説明する。   Hereinafter, preferred embodiments of a total heat exchanger according to the present invention and a ventilation system using the total heat exchanger will be described in detail with reference to the accompanying drawings.

図1乃至図7において、実線で表す矢印Aは、室内空気の流れを示し、点線で表す矢印Bは、室外空気の流れを示す。   1 to 7, an arrow A represented by a solid line indicates the flow of indoor air, and an arrow B represented by a dotted line indicates the flow of outdoor air.

図1は、本発明による全熱交換器の第1実施例を示す図であり、図2は、図1における熱交換素子を示す断面図である。そして、図3Aは、室内を冷房する冷房運転時の室内空気と室外空気の流路長による温度変化を概略的に示すグラフであり、図3Bは、室内を暖房する暖房運転時の室内空気と室外空気の流路長による温度変化を概略的に示すグラフである。   FIG. 1 is a view showing a first embodiment of a total heat exchanger according to the present invention, and FIG. 2 is a cross-sectional view showing a heat exchange element in FIG. FIG. 3A is a graph schematically showing changes in temperature due to the flow lengths of the indoor air and the outdoor air during the cooling operation for cooling the room, and FIG. 3B shows the indoor air during the heating operation for heating the room. It is a graph which shows roughly the temperature change by the channel length of outdoor air.

図1乃至図3Bを参照して、本発明による全熱交換器の第1実施例を説明すると、次の通りである。   A first embodiment of the total heat exchanger according to the present invention will be described with reference to FIGS. 1 to 3B.

全熱交換器1は、室外空気を室内に導く給気ダクト10、室内空気を室外に導く排気ダクト20、これら室外空気と室内空気を熱交換させる熱交換素子50aを備える。また、全熱交換器1は、室外空気を吸入して室内に排出する給気ファン13と、室内空気を吸入して室外に排出する排気ファン23とをさらに備えることができる。   The total heat exchanger 1 includes an air supply duct 10 that guides outdoor air into the room, an exhaust duct 20 that guides indoor air to the outside, and a heat exchange element 50a that exchanges heat between the outdoor air and the room air. The total heat exchanger 1 can further include an air supply fan 13 that sucks outdoor air and discharges it indoors, and an exhaust fan 23 that sucks indoor air and discharges it outdoor.

熱交換素子50aは、給気ダクト10によって導かれる室外空気の流れと排気ダクト20によって導かれる室内空気の流れとが互いに交差する領域に設置されるもので、これら両空気の温度差を用いた顕熱交換と両空気の湿度差を用いた潜熱交換を通じて室内空気と室外空気を熱交換させる。   The heat exchange element 50a is installed in a region where the flow of outdoor air guided by the air supply duct 10 and the flow of indoor air guided by the exhaust duct 20 intersect each other, and the temperature difference between these two airs is used. Heat is exchanged between indoor air and outdoor air through sensible heat exchange and latent heat exchange using the humidity difference between the two airs.

具体的に、熱交換素子50aの内部には、室内空気と室外空気が通過する第1熱交換流路(図示せず)と第2熱交換流路(図示せず)が個別に形成されている。これら第1熱交換流路と第2熱交換流路は、熱的特性に優れた熱交換膜(図示せず)によって区画されている。   Specifically, a first heat exchange channel (not shown) and a second heat exchange channel (not shown) through which room air and outdoor air pass are individually formed inside the heat exchange element 50a. Yes. The first heat exchange channel and the second heat exchange channel are partitioned by a heat exchange membrane (not shown) having excellent thermal characteristics.

したがって、温度及び湿度差を持つ室内空気と室外空気がそれぞれの熱交換流路を通過すると、これら両空気において熱交換膜によって熱交換が発生するようになる。   Therefore, when indoor air and outdoor air having a temperature and humidity difference pass through the respective heat exchange channels, heat exchange occurs between the air and the heat exchange membrane.

一方、熱交換素子50aの一側にはフィルタ(図示せず)が設置されても良い。このフィルタは、空気中の異物をろ過する役割を担うもので、全熱交換器とは別に着脱自在に取り付けられる。   On the other hand, a filter (not shown) may be installed on one side of the heat exchange element 50a. This filter plays a role of filtering foreign substances in the air, and is detachably attached separately from the total heat exchanger.

給気ダクト10の一端には、室外と連通する給気ダクト吸入口11が形成され、他端には、室内と連通する給気ダクト排出口12が形成される。また、排気ダクト20の一端には、室内と連通する排気ダクト吸入口21が形成され、他端には、室外と連通する排気ダクト排出口22が形成される。   At one end of the air supply duct 10, an air supply duct suction port 11 communicating with the outside is formed, and at the other end, an air supply duct discharge port 12 communicating with the room is formed. Further, an exhaust duct suction port 21 communicating with the room is formed at one end of the exhaust duct 20, and an exhaust duct discharge port 22 communicating with the outside is formed at the other end.

また、給気ダクト10上には、室外から室外空気を強制吸入して室内に供給する給気ファン13が備えられ、排気ダクト20上には、室内の汚染空気を強制に吸入して室外に排出する排気ファン23が備えられる。   An air supply fan 13 is provided on the air supply duct 10 to forcibly suck outdoor air from the outside and supply it indoors. On the exhaust duct 20, the indoor air is forcibly sucked to the outside. An exhaust fan 23 for discharging is provided.

給気ファン13と排気ファン23は、それぞれの給気ファンハウジングと排気ファンハウジングの内部に配置される。また、給気ファンハウジング及び排気ファンハウジングの前方側には当該ファンを駆動させるモーター(図示せず)が装着される。   The supply fan 13 and the exhaust fan 23 are disposed inside the supply fan housing and the exhaust fan housing, respectively. Further, a motor (not shown) for driving the fan is mounted on the front side of the air supply fan housing and the exhaust fan housing.

以下、上記のように構成された換気システムの作用について説明する。   Hereinafter, the operation of the ventilation system configured as described above will be described.

まず、室内空気がある程度汚染された時に、排気ファン23に電源が印加されると、室内空気が排気ダクト吸入口21から排気ダクト20に流入し、排気ダクト20を経由した室内空気は、熱交換素子50aを対角線方向に通過する。   First, when power is applied to the exhaust fan 23 when the room air is contaminated to some extent, the room air flows into the exhaust duct 20 from the exhaust duct inlet 21, and the indoor air passing through the exhaust duct 20 exchanges heat. It passes through the element 50a in the diagonal direction.

続いて、熱交換素子50aを通過した室内空気は、排気ダクト20に沿って流動し、排気ダクト排出口22から室外に排出される。これと同時に、室外空気が給気ダクト流入口11から給気ダクト10に流入した後、熱交換素子50aを対角線方向に通過する。   Subsequently, the room air that has passed through the heat exchange element 50 a flows along the exhaust duct 20 and is discharged to the outside from the exhaust duct outlet 22. At the same time, after outdoor air flows into the air supply duct 10 from the air supply duct inlet 11, it passes through the heat exchange element 50a in a diagonal direction.

続いて、熱交換素子50aを通過した室外空気は、給気ダクトに沿って流動し、給気ダクト排出口12から室内に供給される。このような過程によって熱交換素子50aを通過する室内空気と室外空気は相互に熱交換され、これにより、室内に適切な温度の室外空気が供給されるようになる。   Subsequently, the outdoor air that has passed through the heat exchange element 50a flows along the air supply duct and is supplied into the room from the air supply duct discharge port 12. Through such a process, the indoor air and the outdoor air passing through the heat exchange element 50a are mutually heat-exchanged, whereby outdoor air having an appropriate temperature is supplied into the room.

一方、室内空気は、大きく、2つの経路のうち一つを通じて外部に排気される。一番目の経路に対しては、排気ダクト吸入口21から流入する空気が、排気ダクト第1流入穴24を経て給気ダクト吸入口11からの室外空気と熱交換素子50aを通過しつつ熱交換されてから外部に排出される。また、2番目の経路に対しては、排気ダクト吸入口21から流入する室内空気は、熱交換素子50aを通過せずに排気ファン23の強制吸引力によって直接室外に排出される。   On the other hand, room air is largely exhausted to the outside through one of two paths. For the first path, the air flowing from the exhaust duct inlet 21 passes through the exhaust duct first inlet hole 24 and exchanges heat with the outdoor air from the supply duct inlet 11 through the heat exchange element 50a. And then discharged to the outside. For the second path, the indoor air flowing from the exhaust duct suction port 21 is directly discharged to the outside by the forced suction force of the exhaust fan 23 without passing through the heat exchange element 50a.

後者の場合、全熱交換器1は、室内空気を直接排気ダクト排出口22に流れるようにする排気用バイパス流路26をさらに備える。したがって、排気ダクト流入口21から流入した室内空気は、排気ダクト第2流入穴25を通ってバイパス流路26を経由して外部に排出される。また、排気ダクト流入口21には、室内空気をバイパス流路に導くためのダンパーが備えられても良い。   In the latter case, the total heat exchanger 1 further includes an exhaust bypass passage 26 that allows indoor air to flow directly to the exhaust duct outlet 22. Accordingly, the room air flowing in from the exhaust duct inlet 21 passes through the exhaust duct second inflow hole 25 and is discharged to the outside via the bypass channel 26. Further, the exhaust duct inlet 21 may be provided with a damper for guiding the indoor air to the bypass flow path.

このように構成すると、春や秋のように室内空気と室外空気との温度及び湿度差が小さい場合には、室内空気と室外空気が熱交換素子を経由しないようにすることによって熱交換素子による圧力損失を低減可能になる。その結果、ファンにかかる負荷減少によって消費電力を低減し、エネルギーの節約が図られる。   With this configuration, when the temperature and humidity difference between the indoor air and the outdoor air is small as in spring or autumn, the indoor air and the outdoor air are prevented from passing through the heat exchange element. Pressure loss can be reduced. As a result, power consumption is reduced by reducing the load on the fan, and energy can be saved.

一方、全熱交換器の全熱効率は、熱交換素子50aにおける室内空気と室外空気との熱交換効率に左右され、したがって、所定の全熱効率を得るためには、熱交換素子50aの断面積を増加させなければならない。にもかかわらず、建築設計上の制約のために熱交換素子50aの垂直方向の長さ、すなわち熱交換素子の断面高さを増加させるには制限がある。   On the other hand, the total heat efficiency of the total heat exchanger depends on the heat exchange efficiency between the indoor air and the outdoor air in the heat exchange element 50a. Therefore, in order to obtain a predetermined total heat efficiency, the cross-sectional area of the heat exchange element 50a is set. Must be increased. Nevertheless, there is a limitation in increasing the vertical length of the heat exchange element 50a, that is, the cross-sectional height of the heat exchange element, due to architectural design constraints.

このように全熱効率の向上と熱交換素子50aの断面高さの最小化は互いに相反する関係にある。そこで、本発明者は、全熱交換器の全熱効率を高める上で、熱交換素子50aの断面高さを増加させることなく熱交換素子の断面積を増加させる方法を見出し、本発明を完成するに至った。   Thus, the improvement of the total heat efficiency and the minimization of the cross-sectional height of the heat exchange element 50a are in a mutually contradictory relationship. Therefore, the present inventors have found a method for increasing the cross-sectional area of the heat exchange element without increasing the cross-sectional height of the heat exchange element 50a in order to increase the total heat efficiency of the total heat exchanger, and complete the present invention. It came to.

具体的に、熱交換素子の形状は、該熱交換素子を経由する室外空気の流れと室内空気の流れとが互いに鋭角θをなすようにする。また、熱交換素子は、熱交換素子の断面高さhよりも熱交換素子の断面幅wが大きい形状を有し、本実施例では、図2に示すように、熱交換素子の形状を菱形としている。   Specifically, the shape of the heat exchange element is such that the outdoor air flow and the indoor air flow passing through the heat exchange element form an acute angle θ with each other. The heat exchange element has a shape in which the cross-sectional width w of the heat exchange element is larger than the cross-sectional height h of the heat exchange element. In this embodiment, as shown in FIG. It is said.

ここで、熱交換素子の断面形状は、いずれの形態であっても良く、例えば、曲線形態の断面形状または多角形の断面形状にしても良く、直線部と曲線部が混合された断面形状にしても良い。   Here, the cross-sectional shape of the heat exchange element may be any form. For example, the cross-sectional shape may be a curved cross-sectional shape or a polygonal cross-sectional shape. May be.

熱交換素子の断面幅が断面高さよりも大きい値を有すると、熱交換素子50aを流動する空気の流路長さが増加し、流動する空気の流速は減少する。したがって、熱交換素子50aを通過する室内空気と室外空気はより效率的に熱交換可能になる。   When the cross-sectional width of the heat exchange element has a value larger than the cross-sectional height, the flow path length of the air flowing through the heat exchange element 50a increases, and the flow velocity of the flowing air decreases. Therefore, the indoor air and the outdoor air passing through the heat exchange element 50a can exchange heat more efficiently.

なお、熱交換素子の断面幅が断面高さよりも大きい値を有すると、給気ダクトと排気ダクトを流れる空気の流動方向の変化が減少し、流路抵抗が低減するさらなる効果がある。   In addition, when the cross-sectional width of the heat exchange element has a value larger than the cross-sectional height, a change in the flow direction of the air flowing through the air supply duct and the exhaust duct is reduced, and there is an additional effect of reducing the flow path resistance.

図3A及び図3Bを参照して、本発明による熱交換素子の流路長による温度変化を説明すれると、次の通りである。   With reference to FIG. 3A and FIG. 3B, the temperature change due to the flow path length of the heat exchange element according to the present invention will be described as follows.

図3A及び図3Bのそれぞれにおいて、“X”は、熱交換素子が従来の構成を有する場合、グラフAで表すように熱交換素子の流路長によって変化する室内空気の温度と、グラフBで表すように熱交換素子の流路長によって変化する室外空気の温度との差を示し、“Y”は、熱交換素子が本発明の構成を有する場合、グラフAで表すように熱交換素子の流路長によって変化する室内空気の温度と、グラフBで表すように熱交換素子の流路長によって変化する室外空気の温度との差を示す。   In each of FIG. 3A and FIG. 3B, “X” indicates the temperature of the indoor air that varies depending on the flow path length of the heat exchange element as represented by graph A and the graph B when the heat exchange element has a conventional configuration. As shown, it shows the difference from the temperature of the outdoor air that changes depending on the flow path length of the heat exchange element, and “Y” indicates that the heat exchange element has the configuration of the present invention, The difference between the temperature of the indoor air that changes depending on the channel length and the temperature of the outdoor air that changes depending on the channel length of the heat exchange element as shown in graph B is shown.

まず、夏の室内冷房運転時(図3A参照)では、室内空気の温度は室外空気の温度よりも相対的に低く設定される。このような室内温度と室外温度との温度差は、全熱交換器の熱交換素子50aでの熱交換によって減少し、よって、相対的に温度の高い室外空気は、室外に排出される室内空気と熱交換して実際の外気の温度よりも低い状態で室内に供給されるようになる。   First, during summer indoor cooling operation (see FIG. 3A), the temperature of the room air is set relatively lower than the temperature of the outdoor air. Such a temperature difference between the indoor temperature and the outdoor temperature is reduced by heat exchange in the heat exchange element 50a of the total heat exchanger, so that the outdoor air having a relatively high temperature is discharged to the outside of the room. The heat is exchanged with the indoor air in a state lower than the actual outside air temperature.

図3Aを参照すると、従来技術による場合に比べて、本発明による熱交換素子の断面形状において熱交換がより有効に起きることが分かる。したがって、本発明による熱交換素子を使用すると、室内に供給される室外空気と室外に排出される室内空気との温度差をさらに低減することが可能になる。   Referring to FIG. 3A, it can be seen that heat exchange occurs more effectively in the cross-sectional shape of the heat exchange element according to the present invention than in the case of the prior art. Therefore, when the heat exchange element according to the present invention is used, it is possible to further reduce the temperature difference between the outdoor air supplied into the room and the indoor air discharged outside the room.

また、冬の室内暖房運転時(図3B参照)では、室内空気の温度が室外空気の温度よりも相対的に高く設定される。この場合にも、本発明による熱交換素子の断面形状を有する場合が、従来技術による熱交換素子の場合に比べて熱交換がより有効に起きることが分かる。   Further, during the indoor heating operation in winter (see FIG. 3B), the temperature of the indoor air is set relatively higher than the temperature of the outdoor air. Also in this case, it can be seen that heat exchange occurs more effectively in the case of having the cross-sectional shape of the heat exchange element according to the present invention than in the case of the heat exchange element according to the prior art.

本実施例では、全熱交換器を天井の内部に埋め込まれるものとしたが、建物の側面に設置されるものにしても良い。   In this embodiment, the total heat exchanger is embedded in the ceiling, but may be installed on the side of the building.

次に、図4及び図5を参照して、本発明による全熱交換器の第2実施例を説明する。   Next, with reference to FIG.4 and FIG.5, 2nd Example of the total heat exchanger by this invention is described.

本発明による全熱交換器の第2実施例における基本的な構成は、上記の第1実施例と同様である。ただし、熱交換素子50bが複数個からなり、それぞれの熱交換素子50bは、空気の流動方向に対して直列に配置される。   The basic configuration of the second embodiment of the total heat exchanger according to the present invention is the same as that of the first embodiment. However, a plurality of heat exchange elements 50b are provided, and each heat exchange element 50b is arranged in series with respect to the air flow direction.

上述の如く、建築設計上の天井高の制限によって熱交換素子の断面高さは一定の限界を有することになるが、本実施例のように、熱交換素子50bを空気の流動方向に対して直列に配置することによって、熱交換素子50bの断面高さを増加させることなく熱交換量を増加させることができる。   As described above, the cross-sectional height of the heat exchange element has a certain limit due to the ceiling height limitation in the architectural design. However, as in the present embodiment, the heat exchange element 50b is arranged with respect to the air flow direction. By arranging in series, the amount of heat exchange can be increased without increasing the cross-sectional height of the heat exchange element 50b.

給気ダクト10と排気ダクト20を流れる空気は、図4に示すように、直列配置された熱交換素子50bをジグザグ形態に通過し、これにより、熱交換素子の全体熱交換面積と空気の流れる移動経路の長さは増加する。   As shown in FIG. 4, the air flowing through the air supply duct 10 and the exhaust duct 20 passes through the heat exchange elements 50 b arranged in series in a zigzag form, whereby the entire heat exchange area of the heat exchange elements and the air flow. The length of the travel path increases.

また、直列配置された熱交換素子50bを通過しつつ空気の流速は次第に減少し、熱交換側面で有利となる。結果として、全体熱交換面積の増加と空気流速の減少によって全熱交換器の全熱効率が高められる効果が得られる。   Further, the air flow rate gradually decreases while passing through the heat exchange elements 50b arranged in series, which is advantageous in terms of heat exchange. As a result, the effect of increasing the total heat efficiency of the total heat exchanger by increasing the total heat exchange area and decreasing the air flow velocity is obtained.

一方、熱交換素子は、全熱交換器に着脱自在に取り付けられることが好ましい。このような着脱構造によって熱交換素子を容易に組み立てたり分離可能になる。   On the other hand, it is preferable that the heat exchange element is detachably attached to the total heat exchanger. With such a detachable structure, the heat exchange element can be easily assembled and separated.

また、全熱交換器100は、排気用バイパス流路26を備える。したがって、春や秋のように室内と室外の温度湿度差が小さい場合、室内空気は、熱交換素子50bを通過せずに前記排気用バイパス流路26を経て外部に排出される。これにより、熱交換素子50bによる圧力損失が発生しないため、排気ファンにかかる負荷が減少し、消費電力が低減する。   Further, the total heat exchanger 100 includes an exhaust bypass passage 26. Therefore, when the temperature / humidity difference between the room and the room is small as in spring or autumn, the room air is discharged to the outside through the exhaust bypass passage 26 without passing through the heat exchange element 50b. As a result, pressure loss due to the heat exchange element 50b does not occur, so the load on the exhaust fan is reduced and power consumption is reduced.

また、全熱交換器100は、図示してはいないが、外部空気が室内に直接流入するようにする給気用バイパス流路を備えても良い。この場合、給気用バイパス流路の一端には、室外空気の流れを制御するダンパーが取り付けられる。したがって、室外空気が熱交換されない時には、該室外空気は給気ダクトに形成された流入穴を通過し給気用バイパス流路を経由して室内に直接流入する。   Moreover, although not shown in figure, the total heat exchanger 100 may be provided with an air supply bypass passage that allows external air to flow directly into the room. In this case, a damper that controls the flow of outdoor air is attached to one end of the supply air bypass flow path. Therefore, when the outdoor air is not subjected to heat exchange, the outdoor air passes through an inflow hole formed in the air supply duct and directly flows into the room via the air supply bypass flow path.

また、全熱交換器100は、給気ダクトに流れる空気の流路上に、室外空気中の異物をろ過するフィルタ部(図示せず)を備えても良い。このフィルタ部を通過しつつ室外空気中の異物がろ過され清浄な空気が室内に供給される。   Further, the total heat exchanger 100 may include a filter unit (not shown) for filtering foreign matter in the outdoor air on the flow path of the air flowing through the air supply duct. Foreign matters in the outdoor air are filtered while passing through the filter unit, and clean air is supplied into the room.

ここで、フィルタ部は、ホコリなどの異物を捕集するために繊維マット状に構成された集塵フィルタを備えてなる。さらに、フィルタ部は、空気中の細菌を除去する坑菌フィルタ、フィルタを通過した微細ホコリ及び揮発性有機化合物を除去する光触媒コレクタ、臭いを除去する脱臭フィルタ、陰イオン発生部などを備えて構成されるか、これらの組合によって構成されることができる。   Here, the filter unit includes a dust collection filter configured in a fiber mat shape to collect foreign matters such as dust. In addition, the filter unit includes an antibacterial filter that removes bacteria in the air, a photocatalyst collector that removes fine dust and volatile organic compounds that have passed through the filter, a deodorizing filter that removes odors, an anion generator, and the like. Can be constituted by these unions.

次に、図6を参照して、本発明による全熱交換器の第3実施例について説明する。   Next, a third embodiment of the total heat exchanger according to the present invention will be described with reference to FIG.

本実施例では、給気用ファン−モーターアセンブリー130と排気用ファン−モーターアセンブリー230がそれぞれ備えられ、給気用ファン−モーターアセンブリー130と排気用ファン−モーターアセンブリー230はそれぞれ、回転軸が室外空気の排出方向及び室内空気の排出方向に対して垂直に設置された複数個の給気ファン131と排気ファン231を備える。   In this embodiment, an air supply fan-motor assembly 130 and an exhaust fan-motor assembly 230 are provided, and the air supply fan-motor assembly 130 and the exhaust fan-motor assembly 230 are respectively rotated. A plurality of supply fans 131 and exhaust fans 231 whose shafts are installed perpendicular to the outdoor air discharge direction and the indoor air discharge direction are provided.

これら複数個の給気ファン131と排気ファン231は、一つの両軸モーター132,232によってそれぞれ駆動される。複数個の給気ファン131と排気ファン231は、一つの両軸モーターによって駆動されることによって風量を増大させることができる。本実施例では、給気ファン131と排気ファン231がそれぞれ二つから構成されている。   The plurality of air supply fans 131 and exhaust fans 231 are respectively driven by a single biaxial motor 132,232. The plurality of air supply fans 131 and exhaust fans 231 can be increased in air volume by being driven by a single biaxial motor. In this embodiment, the air supply fan 131 and the exhaust fan 231 are each composed of two.

また、給気ファン131側と排気ファン231側には、ファンによって排出された空気を貯留する給気チャンバー17と排気チャンバー27がそれぞれ備えられる。これら給気チャンバーと排気チャンバーは、給気及び排気される空気を臨時貯留することによって、給気ダクトと排気ダクトの内部に流れる空気の流動を均一にする機能を担う。   In addition, an air supply chamber 17 and an exhaust chamber 27 that store air discharged by the fans are provided on the air supply fan 131 side and the exhaust fan 231 side, respectively. The air supply chamber and the exhaust chamber have a function of making the flow of air flowing inside the air supply duct and the exhaust duct uniform by temporarily storing air supplied and exhausted.

上記の第1及び第2実施例では、給気ファンと排気ファンの回転軸を室外空気の排出方向及び室内空気排出方向と同じ方向に延設したが、本実施例では、給気ファン131と排気ファン231の回転軸を、室外空気の排出方向及び室内空気の排出方向に対してそれぞれ垂直に設置した。   In the first and second embodiments described above, the rotation shafts of the air supply fan and the exhaust fan are extended in the same direction as the outdoor air discharge direction and the indoor air discharge direction. The rotating shaft of the exhaust fan 231 was installed perpendicular to the outdoor air discharge direction and the indoor air discharge direction.

図7を参照して、本発明による換気システムの一実施例について説明する。   With reference to FIG. 7, an embodiment of a ventilation system according to the present invention will be described.

本実施例での換気システムは、上述した全熱交換器のうちいずれかと同一の構成を有する全熱交換器1000、第1延長ダクト500、そして第2延長ダクト600を備えて構成される。全熱交換器1000は、第1延長ダクト500及び第2延長ダクト600が接する地点に設置される。   The ventilation system in the present embodiment includes a total heat exchanger 1000, a first extension duct 500, and a second extension duct 600 that have the same configuration as any one of the total heat exchangers described above. The total heat exchanger 1000 is installed at a point where the first extension duct 500 and the second extension duct 600 are in contact with each other.

第1延長ダクト500は、全熱交換器1000の給気ダクトと室内とを連通させる第1下部延長ダクト520、給気ダクトと室外とを連通させる第1上部延長ダクト530、及び室内に供給される室外空気を拡散させる第1ディフューザ510を備える。   The first extension duct 500 is supplied to a first lower extension duct 520 that connects the air supply duct of the total heat exchanger 1000 and the room, a first upper extension duct 530 that connects the air supply duct and the outside, and the room. A first diffuser 510 that diffuses outdoor air.

具体的に、第1下部延長ダクト520の一側は、全熱交換器の給気ダクトと連結され、他側は、一部が室内空間に露出される第1ディフューザ510と連結される。もちろん、第1ディフューザ510は室内空間に完全に露出されても良い。   Specifically, one side of the first lower extension duct 520 is connected to the air supply duct of the total heat exchanger, and the other side is connected to the first diffuser 510 that is partially exposed to the indoor space. Of course, the first diffuser 510 may be completely exposed to the indoor space.

第2延長ダクト600は、全熱交換器1000の排気ダクトと室内とを連通させる第2下部延長ダクト620、排気ダクトと室外とを連通させる第2上部延長ダクト630、及び室内空気を吸入するための第2ディフューザ610を備える。   The second extension duct 600 sucks room air, a second lower extension duct 620 that connects the exhaust duct of the total heat exchanger 1000 and the room, a second upper extension duct 630 that connects the exhaust duct and the outside, and indoor air. The second diffuser 610 is provided.

具体的に、第2下部延長ダクトの一側は、全熱交換器の排気ダクトと連結され、他側は、一部が室内空間に露出される第2ディフューザ610と連結される。もちろん、第2ディフューザ610は室内空間に完全に露出されても良い。   Specifically, one side of the second lower extension duct is connected to the exhaust duct of the total heat exchanger, and the other side is connected to the second diffuser 610 that is partially exposed to the indoor space. Of course, the second diffuser 610 may be completely exposed to the indoor space.

第2延長ダクト600は、全熱交換器1000の排気ダクトと室内とを連通させ、全熱交換器と外部とを連通させる役割を担う。そして、第2延長ダクト600の先端には、室内空気を吸入する第2ディフューザ610が設置される。   The second extension duct 600 serves to communicate the exhaust duct of the total heat exchanger 1000 and the room, and to communicate the total heat exchanger and the outside. A second diffuser 610 that sucks room air is installed at the tip of the second extension duct 600.

以上では具体的な実施例に挙げて本発明を説明してきたが、これら具体例に限定されず、本発明の趣旨や範ちゅうを逸脱しない限度内で種々の特定形態に具体化できるという事実は、当該技術分野における通常の知識を持つ者にとっては自明である。したがって、本発明の範囲は、上の説明に限定されるものではなく、添付した特許請求の範囲及びその同等物によって定められるべきである。   Although the present invention has been described above with reference to specific examples, the present invention is not limited to these specific examples, and the fact that the present invention can be embodied in various specific forms without departing from the spirit and scope of the present invention. It is obvious to those with ordinary knowledge in the technical field. Accordingly, the scope of the invention should not be limited to the above description, but should be defined by the appended claims and their equivalents.

本発明の第1実施例による全熱交換器の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the total heat exchanger by 1st Example of this invention. 図1の熱交換素子と熱交換素子を通過する空気の流動を示す横断面図である。It is a cross-sectional view which shows the flow of the air which passes a heat exchange element and a heat exchange element of FIG. 室内冷房運転時の流路長による温度変化を示すグラフである。It is a graph which shows the temperature change by the flow path length at the time of indoor air_conditionaing | cooling operation. 室内暖房運転時の流路長による温度変化を示すグラフである。It is a graph which shows the temperature change by the flow path length at the time of indoor heating operation. 本発明の第2実施例による全熱交換器の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the total heat exchanger by 2nd Example of this invention. 図4の熱交換素子と熱交換素子を通過する空気の流動を示す横断面図である。It is a cross-sectional view which shows the flow of the air which passes the heat exchange element and heat exchange element of FIG. 本発明の第3実施例による全熱交換器の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the total heat exchanger by 3rd Example of this invention. 本発明による全熱交換器を有する換気システムを示す概略図である。1 is a schematic diagram showing a ventilation system having a total heat exchanger according to the present invention.

符号の説明Explanation of symbols

10 給気ダクト
13 給気ファン
20 排気ダクト
23 排気ファン
50a 熱交換素子
DESCRIPTION OF SYMBOLS 10 Air supply duct 13 Air supply fan 20 Exhaust duct 23 Exhaust fan 50a Heat exchange element

Claims (17)

室外空気を室内に導く給気ダクト及び室内空気を外部に導く排気ダクトと、
前記給気ダクトの一側に設置され、前記室外空気を吸入して室内に排出する給気ファンと、
前記排気ダクトの一側に設置され、前記室内空気を吸入して室外に排出する排気ファンと、
前記室内空気と室外空気とが交差する領域に設置され、前記室外空気と室内空気が熱交換するようにする熱交換素子と、を備え、
前記熱交換素子の形状は、前記熱交換素子を経由する室外空気の流れと室内空気の流れが互いに鋭角をなすように提供されることを特徴とする全熱交換器。
An air supply duct for guiding outdoor air into the room and an exhaust duct for guiding indoor air to the outside;
An air supply fan installed on one side of the air supply duct, for sucking the outdoor air and discharging it into the room;
An exhaust fan installed on one side of the exhaust duct for sucking the indoor air and discharging it to the outside;
A heat exchange element that is installed in a region where the indoor air and the outdoor air intersect, and allows the outdoor air and the indoor air to exchange heat;
The total heat exchanger is characterized in that the shape of the heat exchange element is provided such that the flow of outdoor air and the flow of indoor air passing through the heat exchange element form an acute angle with each other.
前記熱交換素子の断面高さは、前記熱交換素子の断面幅よりも小さいことを特徴とする請求項1に記載の全熱交換器。   The total heat exchanger according to claim 1, wherein a cross-sectional height of the heat exchange element is smaller than a cross-sectional width of the heat exchange element. 前記熱交換素子の断面は、実質的に多角形であることを特徴とする請求項1に記載の全熱交換器。   The total heat exchanger according to claim 1, wherein a cross section of the heat exchange element is substantially polygonal. 前記熱交換素子の断面は、実質的に菱形であることを特徴とする請求項3に記載の全熱交換器。   The total heat exchanger according to claim 3, wherein a cross section of the heat exchange element is substantially rhombus. 前記熱交換素子は複数個が備えられ、それぞれの熱交換素子は、空気の流動方向に対して直列に配置されることを特徴とする請求項1に記載の全熱交換器。   The total heat exchanger according to claim 1, wherein a plurality of the heat exchange elements are provided, and each heat exchange element is arranged in series with respect to a flow direction of air. 前記給気ダクトと排気ダクトの内部を流動する空気は、前記直列配置された前記熱交換素子をジグザグ形態で通過することを特徴とする請求項5に記載の全熱交換器。   6. The total heat exchanger according to claim 5, wherein the air flowing inside the air supply duct and the exhaust duct passes through the heat exchange elements arranged in series in a zigzag manner. 前記排気ダクトと区画され、室内空気が前記熱交換素子を通過せずに前記排気ファンの強制吸引力によって直接室外に排出されるようにする排気用バイパス流路をさらに備えることを特徴とする請求項1に記載の全熱交換器。   The exhaust duct further includes an exhaust bypass passage that is partitioned from the exhaust duct and allows the indoor air to be directly discharged to the outside by a forced suction force of the exhaust fan without passing through the heat exchange element. Item 2. The total heat exchanger according to Item 1. 前記給気ダクトと区画され、室外空気が前記熱交換素子を通過せずに前記吸気ファンの強制吸引力によって直接室内に供給されるようにする給気用バイパス流路をさらに備えることを特徴とする請求項1に記載の全熱交換器。   The air supply duct further includes an air supply bypass channel that is partitioned from the air supply duct and that allows outdoor air to be directly supplied into the room by the forced suction force of the intake fan without passing through the heat exchange element. The total heat exchanger according to claim 1. 前記給気ダクト上に、前記室外空気中の異物をろ過するフィルタ部をさらに備えることを特徴とする請求項1に記載の全熱交換器。   The total heat exchanger according to claim 1, further comprising a filter unit that filters foreign matter in the outdoor air on the air supply duct. 前記給気ファンの回転軸は、室内に排出される室外空気の排出方向と垂直であることを特徴とする請求項1に記載の全熱交換器。   The total heat exchanger according to claim 1, wherein a rotation axis of the air supply fan is perpendicular to a discharge direction of the outdoor air discharged into the room. 前記給気ファンは複数個が備えられ、前記複数個の給気ファンを同時に駆動させる両軸モーターをさらに備えることを特徴とする請求項10に記載の全熱交換器。   11. The total heat exchanger according to claim 10, wherein a plurality of the air supply fans are provided, and further includes a double-axis motor that drives the plurality of air supply fans simultaneously. 前記排気ファンの回転軸は、室外に排出される室内空気の排出方向と垂直に設置されることを特徴とする請求項1に記載の全熱交換器。   2. The total heat exchanger according to claim 1, wherein a rotation shaft of the exhaust fan is installed perpendicular to a discharge direction of indoor air discharged outside the room. 前記排気ファンは複数個が備えられ、前記複数個の排気ファンを同時に駆動させる両軸モーターをさらに備えることを特徴とする請求項12に記載の全熱交換器。   The total heat exchanger according to claim 12, wherein a plurality of the exhaust fans are provided, and further a double-axis motor that drives the plurality of exhaust fans simultaneously. 前記給気ファンと排気ファンによって排出される空気をそれぞれ貯留する給気チャンバー及び排気チャンバーをさらに備えることを特徴とする請求項1に記載の全熱交換器。   The total heat exchanger according to claim 1, further comprising an air supply chamber and an exhaust chamber that respectively store air discharged by the air supply fan and the exhaust fan. 室外空気を室内に導く給気ダクト及び室内空気を外部に導く排気ダクトと、
前記給気ダクトの一側に設置された給気ファン及び前記排気ダクトの一側に設置される排気ファンと、
前記室内空気と室外空気とが交差する領域に設置され、前記室外空気と室内空気が熱交換するようにする熱交換素子と、
前記給気ダクトから供給される室外空気を室内に拡散する第1ディフューザを有する第1延長ダクトと、
前記第1ディフューザと所定間隔で設置される第2ディフューザを有する第2延長ダクトと、を備え、
前記熱交換素子の形状は、前記熱交換素子を経由する室外空気の流れと室内空気の流れが互いに鋭角をなすように提供されることを特徴とする換気システム。
An air supply duct for guiding outdoor air into the room and an exhaust duct for guiding indoor air to the outside;
An air supply fan installed on one side of the air supply duct and an exhaust fan installed on one side of the exhaust duct;
A heat exchange element that is installed in a region where the indoor air and the outdoor air intersect, and allows the outdoor air and the indoor air to exchange heat;
A first extension duct having a first diffuser for diffusing outdoor air supplied from the air supply duct into the room;
A second extension duct having a second diffuser installed at a predetermined interval with the first diffuser,
The ventilation system according to claim 1, wherein a shape of the heat exchange element is provided such that an outdoor air flow and an indoor air flow passing through the heat exchange element form an acute angle.
前記第1延長ダクトは、前記給気ダクトと室内とを連通させる下部延長ダクトと、前記給気ダクトと外部とを連通させる上部延長ダクトと、をさらに備えることを特徴とする請求項15に記載の換気システム。   The first extension duct further comprises a lower extension duct that allows the air supply duct to communicate with the room, and an upper extension duct that allows the air supply duct to communicate with the outside. Ventilation system. 前記第2延長ダクトは、前記排気ダクトと室内とを連通させる下部延長ダクトと、前記排気ダクトと外部とを連通させる上部延長ダクトと、をさらに備えることを特徴とする請求項15に記載の換気システム。   The ventilation according to claim 15, wherein the second extension duct further includes a lower extension duct that allows the exhaust duct to communicate with a room, and an upper extension duct that allows the exhaust duct to communicate with the outside. system.
JP2006152365A 2005-05-31 2006-05-31 Total heat exchanger and ventilation system using the same Pending JP2006337015A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050046326A KR100628058B1 (en) 2005-05-31 2005-05-31 Total heat exchanger and ventilation system using the same

Publications (1)

Publication Number Publication Date
JP2006337015A true JP2006337015A (en) 2006-12-14

Family

ID=37434080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152365A Pending JP2006337015A (en) 2005-05-31 2006-05-31 Total heat exchanger and ventilation system using the same

Country Status (5)

Country Link
US (1) US20060270335A1 (en)
JP (1) JP2006337015A (en)
KR (1) KR100628058B1 (en)
CN (1) CN1873335A (en)
FR (1) FR2886380A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285584A (en) * 2006-04-14 2007-11-01 Daikin Ind Ltd Ventilation equipment
WO2009128150A1 (en) 2008-04-16 2009-10-22 三菱電機株式会社 Heat exchanging ventilating apparatus
WO2010021115A1 (en) * 2008-08-18 2010-02-25 パナソニック株式会社 Heat exchange device and heat generating element containing device using same
KR101003258B1 (en) * 2010-08-18 2010-12-21 현대건설주식회사 Total heat exchange ventilator for both air cooling
KR101149815B1 (en) 2012-01-19 2012-05-24 은성화학(주) Ventilating unit having total heat exchanger
KR200462780Y1 (en) 2010-08-05 2012-10-02 에이스냉동공조 주식회사 By-Pass Type Ventilation Unit
DE102011112857A1 (en) * 2011-09-12 2013-03-14 Gea Air Treatment Gmbh heat exchangers
WO2014002137A1 (en) * 2012-06-27 2014-01-03 三菱電機株式会社 Railway-vehicle total-heat-exchange ventilation system
KR102193841B1 (en) * 2020-05-22 2020-12-22 임수경 Ceiling type air circulator
KR102193840B1 (en) * 2020-05-22 2020-12-22 임수경 Ceiling type air circulator
KR102250975B1 (en) * 2020-07-02 2021-05-12 서번산업엔지니어링 주식회사 Air circulator with bypass function of heat exchanger and indoor air flow switching
KR102322362B1 (en) * 2021-03-18 2021-11-04 임국빈 Air circulator having dual fan motor
KR102532434B1 (en) * 2022-05-24 2023-05-16 에어솔 주식회사 Ventilator

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747802B1 (en) * 2005-11-14 2007-08-08 엘지전자 주식회사 Ventilation and control method
WO2009091310A2 (en) * 2008-01-14 2009-07-23 Per Eriksson A ventilating arrangement and a heat exchanging assembly
US9057553B1 (en) * 2008-03-14 2015-06-16 MJC, Inc. Dual pass air conditioning unit
JP2009264642A (en) * 2008-04-24 2009-11-12 Panasonic Corp Heat exchanger air path forming plate
KR101542372B1 (en) * 2008-05-01 2015-08-06 엘지전자 주식회사 Ventilation system
JP2010007871A (en) * 2008-06-24 2010-01-14 Daikin Ind Ltd Ventilation device
SE533955C2 (en) * 2008-12-23 2011-03-15 Cellomatic Ab A ventilation device
KR20130117894A (en) * 2009-04-27 2013-10-28 미쓰비시덴키 가부시키가이샤 Heat exchanging ventilator
KR20110034090A (en) * 2009-09-28 2011-04-05 주식회사 옴니벤트 Air conditioning system for each zone and room (room) using damper and diffuser integrated electric diffuser
CN102135313A (en) * 2010-01-22 2011-07-27 乐金电子(天津)电器有限公司 Total heat exchanger
CN102243031A (en) * 2010-05-14 2011-11-16 乐金电子(天津)电器有限公司 Total heat exchanger
CN101886886A (en) * 2010-06-13 2010-11-17 深圳市中兴新地通信器材有限公司 Intelligent heat exchange system of high-efficiency automatic steering air channel
KR101090974B1 (en) * 2010-08-04 2011-12-08 (주)대우건설 Electric Damper for Bypass
US10184684B2 (en) * 2010-08-26 2019-01-22 Richard S Kurelowech Heat recovery and demand ventilation system
EP2657621B1 (en) * 2010-12-20 2015-12-09 Daikin Industries, Ltd. Ventilation device
EP2551607B1 (en) * 2011-07-28 2018-10-17 LG Electronics Inc. Ventilation apparatus
CN102305448A (en) * 2011-09-23 2012-01-04 广东朗能电器有限公司 Total heat exchanger
US9074789B2 (en) * 2013-03-04 2015-07-07 John P. Hanus Method and apparatus to provide ventilation for a building
CN103307696B (en) * 2013-05-22 2015-06-24 苏州安岢栎热能科技有限公司 Energy-saving windowsill embedded air ventilator
KR101522934B1 (en) * 2014-08-18 2015-05-28 주식회사 이지하임 Total heat exchange apparatus
CN104501325A (en) * 2014-10-16 2015-04-08 宁波欧格电子有限公司 Whole house air purification system
KR101615168B1 (en) * 2015-07-07 2016-04-25 한국에너지기술연구원 Dehumidification system
CN105091178A (en) * 2015-08-31 2015-11-25 江苏知民通风设备有限公司 Fresh air ventilator with bypass channel
CN105115040B (en) * 2015-09-16 2017-11-21 浙江科力鑫环境设备科技有限公司 Self-loopa fresh air ventilator and its control method
DE102015012848A1 (en) * 2015-10-06 2017-04-06 Eisenmann Se Device for controlling the temperature of objects and method for controlling a device for controlling the temperature of objects
US20170130983A1 (en) * 2015-11-11 2017-05-11 Venmar Ventilation Inc. Outside air distribution system
CN105352105B (en) * 2015-11-30 2018-05-11 珠海格力电器股份有限公司 Bypass structure, ventilation equipment and ventilation method
IT201600084955A1 (en) * 2016-08-12 2018-02-12 Toone S A S Di Zanatta Marco & C GROUP OF ANALYSIS AND CONTROL OF THE VENTILATION OF AN INTERNAL ENVIRONMENT OR FIRST ENVIRONMENT.
CN106403136A (en) * 2016-10-20 2017-02-15 天津市第五季环境科技有限公司 Ceiling fresh air machine with bypass air return and air mixing functions
US11187429B2 (en) * 2017-08-31 2021-11-30 Steven Winter Associates, Inc. Integrated heat and energy recovery ventilator system
US10711484B2 (en) * 2018-01-02 2020-07-14 Charles Robert Justus Air handling unit and method of assembling the same
CN111750479A (en) * 2019-03-28 2020-10-09 苏州三星电子有限公司 A heat exchanger and fresh air system
US11460202B2 (en) 2019-04-30 2022-10-04 Gary Gerard Powers Roof mounted ventilation assembly
KR102424071B1 (en) 2020-09-04 2022-07-22 한양대학교 산학협력단 Ventilation system and controlling method thereof
CN112556060B (en) * 2020-12-14 2021-12-03 珠海格力电器股份有限公司 New fan
JP7227516B2 (en) * 2021-06-29 2023-02-22 ダイキン工業株式会社 ventilator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556105A (en) * 1983-10-24 1985-12-03 Boner Alan H Parallel heat exchanger with interlocking plate arrangement
JPH06313602A (en) * 1993-04-28 1994-11-08 Matsushita Seiko Co Ltd Heat exchange type ventilating fan
JPH0960856A (en) * 1995-08-25 1997-03-04 Daikin Ind Ltd Smoke exhaust device
JPH0989338A (en) * 1995-07-19 1997-04-04 Matsushita Seiko Co Ltd Heat exchange type ventilator
JP2000146250A (en) * 1998-10-30 2000-05-26 Daikin Ind Ltd Ventilation equipment
US20020164944A1 (en) * 1994-01-31 2002-11-07 Haglid Klas C. Ventilator system and method
JP2003014273A (en) * 2001-06-29 2003-01-15 Sanyo Electric Co Ltd Air conditioning ventilator
JP2004003858A (en) * 2003-07-25 2004-01-08 Mitsubishi Electric Corp Ventilating device
US20040115039A1 (en) * 2002-12-16 2004-06-17 Visteon Global Technologies, Inc. Dual fan blower with axial expansion
US20040250561A1 (en) * 2003-06-11 2004-12-16 Lg Electronics, Inc. Air conditioning system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3068627B2 (en) * 1989-11-14 2000-07-24 松下精工株式会社 Heat exchange ventilator
JPH0579658A (en) * 1991-07-24 1993-03-30 Mitsubishi Electric Corp Air conditioner
JP3242527B2 (en) * 1994-05-13 2001-12-25 株式会社東洋製作所 Air conditioner
KR200238212Y1 (en) * 2001-03-12 2001-10-06 주식회사 엑타 Air-conditioning system for a multistory building
KR100590329B1 (en) * 2004-05-14 2006-06-19 엘지전자 주식회사 Ventilation
KR100617078B1 (en) * 2005-02-07 2006-08-30 엘지전자 주식회사 Compact-type ventilation system
KR100617081B1 (en) * 2005-02-15 2006-08-30 엘지전자 주식회사 Air cleaning and ventilation system
KR100617085B1 (en) * 2005-02-22 2006-08-30 엘지전자 주식회사 Ultra Thin Ventilator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556105A (en) * 1983-10-24 1985-12-03 Boner Alan H Parallel heat exchanger with interlocking plate arrangement
JPH06313602A (en) * 1993-04-28 1994-11-08 Matsushita Seiko Co Ltd Heat exchange type ventilating fan
US20020164944A1 (en) * 1994-01-31 2002-11-07 Haglid Klas C. Ventilator system and method
JPH0989338A (en) * 1995-07-19 1997-04-04 Matsushita Seiko Co Ltd Heat exchange type ventilator
JPH0960856A (en) * 1995-08-25 1997-03-04 Daikin Ind Ltd Smoke exhaust device
JP2000146250A (en) * 1998-10-30 2000-05-26 Daikin Ind Ltd Ventilation equipment
JP2003014273A (en) * 2001-06-29 2003-01-15 Sanyo Electric Co Ltd Air conditioning ventilator
US20040115039A1 (en) * 2002-12-16 2004-06-17 Visteon Global Technologies, Inc. Dual fan blower with axial expansion
US20040250561A1 (en) * 2003-06-11 2004-12-16 Lg Electronics, Inc. Air conditioning system
JP2004003858A (en) * 2003-07-25 2004-01-08 Mitsubishi Electric Corp Ventilating device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285584A (en) * 2006-04-14 2007-11-01 Daikin Ind Ltd Ventilation equipment
WO2009128150A1 (en) 2008-04-16 2009-10-22 三菱電機株式会社 Heat exchanging ventilating apparatus
JP5220102B2 (en) * 2008-04-16 2013-06-26 三菱電機株式会社 Heat exchange ventilator
WO2010021115A1 (en) * 2008-08-18 2010-02-25 パナソニック株式会社 Heat exchange device and heat generating element containing device using same
KR200462780Y1 (en) 2010-08-05 2012-10-02 에이스냉동공조 주식회사 By-Pass Type Ventilation Unit
KR101003258B1 (en) * 2010-08-18 2010-12-21 현대건설주식회사 Total heat exchange ventilator for both air cooling
DE102011112857A1 (en) * 2011-09-12 2013-03-14 Gea Air Treatment Gmbh heat exchangers
KR101149815B1 (en) 2012-01-19 2012-05-24 은성화학(주) Ventilating unit having total heat exchanger
WO2014002137A1 (en) * 2012-06-27 2014-01-03 三菱電機株式会社 Railway-vehicle total-heat-exchange ventilation system
JPWO2014002137A1 (en) * 2012-06-27 2016-05-26 三菱電機株式会社 Total heat exchange ventilation system for railway vehicles
KR102193841B1 (en) * 2020-05-22 2020-12-22 임수경 Ceiling type air circulator
KR102193840B1 (en) * 2020-05-22 2020-12-22 임수경 Ceiling type air circulator
KR102250975B1 (en) * 2020-07-02 2021-05-12 서번산업엔지니어링 주식회사 Air circulator with bypass function of heat exchanger and indoor air flow switching
KR102322362B1 (en) * 2021-03-18 2021-11-04 임국빈 Air circulator having dual fan motor
KR102532434B1 (en) * 2022-05-24 2023-05-16 에어솔 주식회사 Ventilator

Also Published As

Publication number Publication date
FR2886380A1 (en) 2006-12-01
KR100628058B1 (en) 2006-09-27
CN1873335A (en) 2006-12-06
US20060270335A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP2006337015A (en) Total heat exchanger and ventilation system using the same
KR100617079B1 (en) Air cleaning and ventilation system
KR101841954B1 (en) Ventilating system having a multi-function heat exchanger and method thereof
KR100628078B1 (en) Ventilation system
KR100838870B1 (en) Ventilation
KR100686024B1 (en) Air cleaning combined ventilation system and operating method using the same
CN100417869C (en) Ventilating system
KR20170103133A (en) Ventilator
KR100577207B1 (en) Built-in type ventilation system
KR100617082B1 (en) Ultra Thin Ventilator
KR102052348B1 (en) Vantilation
KR20050111161A (en) Ventilation systems
KR20060024742A (en) Heat exchanger with clean mode
EP1621824B1 (en) Ventilating system
KR100617081B1 (en) Air cleaning and ventilation system
KR100747802B1 (en) Ventilation and control method
KR100628042B1 (en) Ventilation system
KR100640799B1 (en) Combined Air Cleaner
JP2020148386A (en) Pressure heat exchange ventilation type building
JP3979218B2 (en) Building ventilator
KR100628059B1 (en) Total heat exchanger and ventilation system using the same
JP3023361B1 (en) Heat exchange type ventilation system
KR20050078005A (en) Ventilation systems
KR20060019889A (en) Variable heat exchange ventilator
KR102712293B1 (en) Ventilator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220