[go: up one dir, main page]

JP2006332365A - Group iii nitride based compound semiconductor light emitting element and light emitting device using the same - Google Patents

Group iii nitride based compound semiconductor light emitting element and light emitting device using the same Download PDF

Info

Publication number
JP2006332365A
JP2006332365A JP2005154382A JP2005154382A JP2006332365A JP 2006332365 A JP2006332365 A JP 2006332365A JP 2005154382 A JP2005154382 A JP 2005154382A JP 2005154382 A JP2005154382 A JP 2005154382A JP 2006332365 A JP2006332365 A JP 2006332365A
Authority
JP
Japan
Prior art keywords
light emitting
compound semiconductor
group iii
layer
iii nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005154382A
Other languages
Japanese (ja)
Other versions
JP2006332365A5 (en
Inventor
Tetsuya Taki
瀧  哲也
Koji Okuno
浩司 奥野
Shuhei Yamada
修平 山田
Kazuki Nishijima
和樹 西島
Mitsuhisa Ubukawa
満久 生川
Masataka Aoki
真登 青木
Yoshinobu Suehiro
好伸 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2005154382A priority Critical patent/JP2006332365A/en
Publication of JP2006332365A publication Critical patent/JP2006332365A/en
Publication of JP2006332365A5 publication Critical patent/JP2006332365A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a group III nitride based compound semiconductor light emitting element which can correspond to an increase of an injecting current, and can restrain a reduction of light emitting efficiency due to heat, and can materialize a light irradiation of a large amount of lights; and a light emitting device using the same. <P>SOLUTION: An MQW barrier layer 14 is formed with AlGaN, and its thickness and an amount of addition of Al are optimized, thereby restraining an occurrence of a carrier overflow with respect to an energization of a high injecting current, and enhancing the light emitting efficiency. Further, a heat loss can be suppressed by enhancement of the light emitting efficiency, and a reduction of a light emitting characteristic is hard to occur by heat generated by an LED element 1 itself, resulting in obtaining the LED element 1 indicating the stable light emitting characteristic even in consecutive energization. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、III族窒化物系化合物半導体発光素子およびそれを用いた発光装置に関し、特に、注入電流の増大に対応でき、熱による発光効率の低下を抑えて大光量の光照射を実現できるIII族窒化物系化合物半導体発光素子およびそれを用いた発光装置に関する。   The present invention relates to a group III nitride compound semiconductor light-emitting device and a light-emitting device using the same, and in particular, can cope with an increase in injection current, and can realize light irradiation with a large amount of light while suppressing a decrease in light emission efficiency due to heat. The present invention relates to a group nitride compound semiconductor light emitting device and a light emitting device using the same.

従来、III族窒化物系化合物半導体発光素子は、青系から緑系色にかけての光を放出するLED(Light-Emitting Diode:発光ダイオード)素子として知られている。また、III族窒化物系化合物半導体発光素子は、可視光より更に短波長の光(近紫外〜紫外)を放出するLED素子としても用いられる。   Conventionally, a group III nitride compound semiconductor light-emitting device is known as an LED (Light-Emitting Diode) device that emits light from blue to green. The group III nitride compound semiconductor light-emitting device is also used as an LED device that emits light having a wavelength shorter than visible light (near-ultraviolet to ultraviolet).

近年、LEDの用途拡大に伴い、より大電流型、高出力型のLED素子の需要が高まっている。このような要望に応えるものとして、LED素子を構成する井戸層およびバリア層を厚くすることによりキャリア漏れの防止、p側層からのMgの拡散防止、キャリア閉じ込め性の向上によって発光強度の向上を図ったIII族窒化物系化合物半導体発光素子がある(例えば、特許文献1参照。)。
特開2002−84000号公報〔0013〕
In recent years, with the expansion of LED applications, the demand for larger current type and higher output type LED elements is increasing. In response to such a demand, by increasing the thickness of the well layer and the barrier layer constituting the LED element, prevention of carrier leakage, prevention of diffusion of Mg from the p-side layer, and improvement of emission intensity by improving carrier confinement There is a group III nitride compound semiconductor light-emitting device as shown (for example, see Patent Document 1).
JP 2002-84000 A [0013]

しかし、従来のIII族窒化物系化合物半導体発光素子によると、LED素子を駆動する注入電流を大にしたときキャリアオーバーフローが生じて光度の向上に限界がある。また、発光に伴って生じるLED素子自身の熱で発光効率が低下し、大光量の光を安定的に放射させることができないという問題がある。   However, according to the conventional group III nitride compound semiconductor light emitting device, when the injection current for driving the LED device is increased, carrier overflow occurs and there is a limit to improvement in luminous intensity. In addition, there is a problem that the light emission efficiency is lowered by the heat of the LED element itself caused by light emission, and a large amount of light cannot be radiated stably.

従って、本発明の目的は、注入電流の増大に対応でき、熱による発光効率の低下を抑えて大光量の光照射を実現できるIII族窒化物系化合物半導体発光素子およびそれを用いた発光装置を提供することにある。   Accordingly, an object of the present invention is to provide a group III nitride compound semiconductor light-emitting element capable of coping with an increase in injection current and realizing a large amount of light irradiation while suppressing a decrease in light emission efficiency due to heat, and a light-emitting device using the same. It is to provide.

本発明は、上記の目的を達成するため、第1の導電型のIII族窒化物系化合物半導体層と、第2の導電型のIII族窒化物系化合物半導体層と、前記第1および前記第2の導電型のIII族窒化物系化合物半導体層の間に設けられ、井戸層とAlを3〜6%含むバリア層からなるMQW層とを有するIII族窒化物系化合物半導体発光素子を提供する。   In order to achieve the above object, the present invention provides a group III nitride compound semiconductor layer of a first conductivity type, a group III nitride compound semiconductor layer of a second conductivity type, the first and the first, Provided is a group III nitride compound semiconductor light-emitting device having a well layer and an MQW layer comprising a barrier layer containing 3 to 6% Al provided between two conductivity type group III nitride compound semiconductor layers .

また、本発明は、上記の目的を達成するため、第1の導電型のIII族窒化物系化合物半導体層と、第2の導電型のIII族窒化物系化合物半導体層と、前記第1および前記第2の導電型のIII族窒化物系化合物半導体層の間に設けられ、InGaNからなる井戸層とAlを3〜6%含むAlGaNバリア層からなるMQW層とを有するIII族窒化物系化合物半導体発光素子を提供する。   In order to achieve the above object, the present invention provides a group III nitride compound semiconductor layer of a first conductivity type, a group III nitride compound semiconductor layer of a second conductivity type, the first and A group III nitride compound provided between the second conductivity type group III nitride compound semiconductor layer and having a well layer made of InGaN and an MQW layer made of an AlGaN barrier layer containing 3 to 6% Al A semiconductor light emitting device is provided.

上記のIII族窒化物系化合物半導体発光素子において、MQW層は、InGaN層とn−GaN層とを交互に所定のペア数で積層して構成される歪緩和超格子層と、p−InGaN層とp−AlGaN層とを交互に所定のペア数で積層して構成されるクラッド層との間に設けられても良い。   In the group III nitride compound semiconductor light emitting device, the MQW layer includes a strain relaxation superlattice layer formed by alternately laminating an InGaN layer and an n-GaN layer in a predetermined number of pairs, and a p-InGaN layer. And a p-AlGaN layer may be provided between a clad layer formed by alternately laminating a predetermined number of pairs.

また、本発明は、上記の目的を達成するため、第1の導電型のIII族窒化物系化合物半導体層と、第2の導電型のIII族窒化物系化合物半導体層と、前記第1および前記第2の導電型のIII族窒化物系化合物半導体層の間に設けられ、InGaNからなる井戸層とAlを3〜6%含むAlGaNバリア層からなるMQW層とを有するIII族窒化物系化合物半導体発光素子と、前記III族窒化物系化合物半導体発光素子と同等の熱膨張率を有して構成される素子搭載基板と、前記III族窒化物系化合物半導体発光素子および前記素子搭載基板を同等の熱膨張率を有して構成されて前記III族窒化物系化合物半導体発光素子および前記素子搭載基板を封止する無機封止部とを有することを特徴とする発光装置を提供する。   In order to achieve the above object, the present invention provides a group III nitride compound semiconductor layer of a first conductivity type, a group III nitride compound semiconductor layer of a second conductivity type, the first and A group III nitride compound provided between the second conductivity type group III nitride compound semiconductor layer and having a well layer made of InGaN and an MQW layer made of an AlGaN barrier layer containing 3 to 6% Al A semiconductor light emitting element, an element mounting substrate configured to have a thermal expansion coefficient equivalent to that of the group III nitride compound semiconductor light emitting element, and the group III nitride compound semiconductor light emitting element and the element mounting substrate are equivalent. There is provided a light emitting device characterized by having an inorganic sealing portion configured to seal the group III nitride compound semiconductor light emitting element and the element mounting substrate.

上記の発光装置において、無機封止部は、低融点ガラスからなるものを用いることが好ましい。また、III族窒化物系化合物半導体発光素子は、素子搭載基板にフリップ実装されることが好ましい。   In the above light emitting device, the inorganic sealing portion is preferably made of low melting point glass. Further, the group III nitride compound semiconductor light-emitting device is preferably flip-mounted on the device mounting board.

本発明によれば、注入電流の増大に対応でき、熱による発光効率の低下を抑えて大光量の光照射を実現することができる。   According to the present invention, it is possible to cope with an increase in injection current, and it is possible to realize a large amount of light irradiation while suppressing a decrease in light emission efficiency due to heat.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係るIII族窒化物系化合物半導体発光素子の層構成を示す断面図である。
(First embodiment)
FIG. 1 is a cross-sectional view showing a layer structure of a group III nitride compound semiconductor light-emitting device according to the first embodiment of the present invention.

(LED素子1の構成)
このフェイスアップ型のIII族窒化物系化合物半導体発光素子1(以下、「LED素子1」という。)は、発光波長が460〜470nmの青色光を放射する青色LED素子1であり、下地基板となるサファイア基板10上に順次AlNバッファ層11と、n−GaN層12と、歪緩和超格子層13と、MQW層14と、クラッド層15と、p−GaN層16と、p−GaN層17と、コンタクト層20とを積層して構成されており、コンタクト層20上にはAuからなるパッド電極18が形成されている。また、コンタクト層20からn−GaN層12にかけてをエッチングによって除去することにより露出させたn−GaN層12にAlからなるn側電極19が設けられている。なお、同図においては各層の構成を明確にするために実寸と異なるサイズで各部を示している。
(Configuration of LED element 1)
This face-up group III nitride compound semiconductor light-emitting element 1 (hereinafter referred to as “LED element 1”) is a blue LED element 1 that emits blue light having an emission wavelength of 460 to 470 nm. On the sapphire substrate 10, an AlN buffer layer 11, an n-GaN layer 12, a strain relaxation superlattice layer 13, an MQW layer 14, a cladding layer 15, a p -GaN layer 16, and p + -GaN. The layer 17 and the contact layer 20 are laminated, and a pad electrode 18 made of Au is formed on the contact layer 20. In addition, an n-side electrode 19 made of Al is provided on the n-GaN layer 12 exposed by etching from the contact layer 20 to the n-GaN layer 12. In addition, in the same figure, in order to clarify the structure of each layer, each part is shown by the size different from an actual size.

歪緩和超格子層13は、InGaN層130と、n−GaN層131とを交互に10ペア積層させることによって形成されている。   The strain relaxation superlattice layer 13 is formed by laminating 10 pairs of InGaN layers 130 and n-GaN layers 131 alternately.

MQW層14は、InGaN層140と、AlGaNバリア層141とを交互に6ペア積層させることによって形成されている。   The MQW layer 14 is formed by laminating six pairs of InGaN layers 140 and AlGaN barrier layers 141 alternately.

クラッド層15は、p−InGaN層150と、p−AlGaN層151とを交互に5.5ペア積層させることによって形成されている。   The clad layer 15 is formed by alternately stacking 5.5 pairs of p-InGaN layers 150 and p-AlGaN layers 151.

コンタクト層20は、GaN系半導体化合物と略同等の熱膨張率(α=7×10−6/℃)と光透過性を有するITO(Indium Tin Oxide)によって形成されており、パッド電極18から通電される電流を拡散させてp−GaN層17に供給する。なお、LED素子1がフリップ実装される場合には、ITOに代えて光反射性を有するロジウム(Rh)を用いることもできる。 The contact layer 20 is made of ITO (Indium Tin Oxide) having a thermal expansion coefficient (α = 7 × 10 −6 / ° C.) and light transmittance substantially the same as that of the GaN-based semiconductor compound. Current is diffused and supplied to the p + -GaN layer 17. When the LED element 1 is flip-mounted, rhodium (Rh) having light reflectivity can be used instead of ITO.

以下に、本実施の形態のLED素子の製造方法について説明する。   Below, the manufacturing method of the LED element of this Embodiment is demonstrated.

まず、MOCVD(Metal Organic Chemical Vapor Deposition)装置の反応装置内へ水素ガス(H)を流通させながらウエハー状のサファイア基板10を1130℃まで昇温して表面(a面)をクリーニングする。その後、その基板温度においてトリメチルアルミニウム(TMA)およびアンモニア(NH)を導入して厚さ20〜40nmのAlNバッファ層11をMOCVD法で成長させる。次に、基板温度を1130℃に維持した状態でトリメチルガリウム(TMG)、窒素ガス(N)、H、NH、およびシランガス(SiH)を導入してn−GaN層12を成長させる。 First, the temperature of the wafer-like sapphire substrate 10 is raised to 1130 ° C. while flowing hydrogen gas (H 2 ) into a reaction apparatus of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus to clean the surface (a surface). After that, trimethylaluminum (TMA) and ammonia (NH 3 ) are introduced at the substrate temperature, and an AlN buffer layer 11 having a thickness of 20 to 40 nm is grown by MOCVD. Next, with the substrate temperature maintained at 1130 ° C., trimethylgallium (TMG), nitrogen gas (N 2 ), H 2 , NH 3 , and silane gas (SiH 4 ) are introduced to grow the n-GaN layer 12. .

次に、n−GaN層12上に歪緩和超格子層13を形成する。歪緩和超格子層13は、まず、反応装置内温度を800℃としてトリメチルインジウム(TMI)、TMG、N、H、NH、およびSiHを導入し、厚さ20〜50ÅのInGa1−xN層(0.06≦x≦0.14)130を形成する。次に、温度を850℃に昇温してTMG、N、H、NH、およびSiHを導入し、厚さ30〜60Åのn−GaN層131を形成する。この工程を繰り返してInGaN層130およびn−GaN層131を10ペア積層する。 Next, the strain relaxation superlattice layer 13 is formed on the n-GaN layer 12. The strain relaxation superlattice layer 13 is first introduced with trixindium (TMI), TMG, N 2 , H 2 , NH 3 , and SiH 4 at a reactor internal temperature of 800 ° C., and In x having a thickness of 20 to 50 mm. A Ga 1-x N layer (0.06 ≦ x ≦ 0.14) 130 is formed. Next, the temperature is raised to 850 ° C., TMG, N 2 , H 2 , NH 3 , and SiH 4 are introduced to form an n-GaN layer 131 having a thickness of 30 to 60 mm. By repeating this process, 10 pairs of InGaN layers 130 and n-GaN layers 131 are stacked.

次に、歪緩和超格子層13上にMQW層14を形成する。MQW層14は、まず、反応装置内温度を770℃としてTMG、TMI、N、H、およびNHを導入し、厚さ20〜40ÅのInGaN層140を形成する。次に、温度を880℃としてTMA、TMG、N、H、およびNHを導入し、厚さ20〜80ÅのAl0.5Ga0.95Nバリア層141を形成する。この工程を繰り返してInGaN層140およびAlGaNバリア層141を6ペア積層する。 Next, the MQW layer 14 is formed on the strain relaxation superlattice layer 13. The MQW layer 14 is first formed with an in-reactor temperature of 770 ° C., TMG, TMI, N 2 , H 2 , and NH 3 are introduced to form an InGaN layer 140 with a thickness of 20 to 40 mm. Next, TMA, TMG, N 2 , H 2 , and NH 3 are introduced at a temperature of 880 ° C., and an Al 0.5 Ga 0.95 N barrier layer 141 having a thickness of 20 to 80 mm is formed. By repeating this process, six pairs of InGaN layers 140 and AlGaN barrier layers 141 are laminated.

次に、MQW層14上に超格子状のクラッド層15を形成する。クラッド層15は、まず、TMI、TMG、N、H、NH、およびシクロペンタジニエルマグネシウム(CpMg)を導入し、厚さ20〜80Åのp−InGa1−xN層(0.05≦x≦0.12)150を形成する。次に、TMA、TMG、N、H、NH、およびCpMgを導入し、厚さ20〜40Åのp−AlGa1−xN層(0.25≦x≦0.40)151を形成する。この工程を繰り返してp−InGaN層150およびp−AlGaN層151を5.5ペア積層する。 Next, a superlattice clad layer 15 is formed on the MQW layer 14. The cladding layer 15 is first introduced with TMI, TMG, N 2 , H 2 , NH 3 , and cyclopentadinier magnesium (Cp 2 Mg), and p-In x Ga 1-x N having a thickness of 20 to 80 mm. A layer (0.05 ≦ x ≦ 0.12) 150 is formed. Next, TMA, TMG, N 2 , H 2 , NH 3 , and Cp 2 Mg were introduced, and a p-Al x Ga 1-x N layer (0.25 ≦ x ≦ 0.40) having a thickness of 20 to 40 mm. ) 151 is formed. By repeating this process, 5.5 pairs of p-InGaN layer 150 and p-AlGaN layer 151 are laminated.

次に、クラッド層15上にp−GaN層16を形成する。p−GaN層16は、反応装置内温度を1000℃としてTMG、N、H、NH、およびCpMgを導入し、厚さ800Åのp−GaN層16を形成する。 Next, the p -GaN layer 16 is formed on the cladding layer 15. The p -GaN layer 16 is formed by introducing TMG, N 2 , H 2 , NH 3 , and Cp 2 Mg at a reactor internal temperature of 1000 ° C. to form a p -GaN layer 16 having a thickness of 800 mm.

次に、p−GaN層16上にp−GaN層17を形成する。p−GaN層17は、反応装置内温度を1000℃としてTMG、N、H、NH、およびCpMgを導入し、厚さ300Åのp−GaN層17を形成する。 Next, the p + -GaN layer 17 is formed on the p -GaN layer 16. The p + -GaN layer 17 is formed by introducing TMG, N 2 , H 2 , NH 3 , and Cp 2 Mg at a reactor internal temperature of 1000 ° C. to form a p + -GaN layer 17 having a thickness of 300 mm.

このようにして形成されたGaN系半導体層の表面にITOからなるコンタクト層20を形成し、コンタクト層20からn−GaN層12にかけてをウエットエッチングによって除去することによりn−GaN層12を露出させる。次に、露出したn−GaN層12上にAlからなるn側電極19を形成する。次に、コンタクト層20の表面にAuからなるパッド電極18を形成する。次に、ダイシングソーで所定のサイズのLED素子1にカットする。なお、ウエハーのカットはダイシングソーによるものに限定されず、スクライブ等の他の切断方法で行っても良い。   A contact layer 20 made of ITO is formed on the surface of the GaN-based semiconductor layer thus formed, and the n-GaN layer 12 is exposed by removing the contact layer 20 to the n-GaN layer 12 by wet etching. . Next, an n-side electrode 19 made of Al is formed on the exposed n-GaN layer 12. Next, a pad electrode 18 made of Au is formed on the surface of the contact layer 20. Next, it cuts into the LED element 1 of a predetermined size with a dicing saw. The wafer is not limited to being cut by a dicing saw, but may be cut by other cutting methods such as scribing.

図2は、図1に示すAlGaNバリア層を有するLED素子1の通電特性を示し、(a)はAlGaNバリア層の厚さを変化させたときの電流値の変化を示す特性図、(b)は、電流の変化に対する光度の変化を示す特性図である。   2 shows current-carrying characteristics of the LED element 1 having the AlGaN barrier layer shown in FIG. 1, (a) is a characteristic diagram showing changes in the current value when the thickness of the AlGaN barrier layer is changed, and (b). These are characteristic diagrams showing changes in luminous intensity with respect to changes in current.

このLED素子1では、図2(a)に示すように、AlGaNバリア層141の厚さを50ÅとしたときのIvが145μWと優れた特性を示し、電流を増加させた場合についても図2(b)に示すGaNバリアで見られる光度飽和を生じることなく大光量が得られることを確認している。   In this LED element 1, as shown in FIG. 2A, the Iv is 145 μW when the thickness of the AlGaN barrier layer 141 is 50 mm, and the case where the current is increased is also shown in FIG. It has been confirmed that a large amount of light can be obtained without causing the light intensity saturation seen in the GaN barrier shown in b).

(第1の実施の形態の効果)
上記した第1の実施の形態によると、MQW層14のバリア層をAlGaNで形成し、その厚さとAlの添加量を最適化することで高注入電流の通電に対するキャリアオーバーフローの発生を抑えることが可能となり、発光効率を向上させることができる。また、発光効率の向上によって熱損失を抑えることができ、LED素子1自身が発する熱によって発光特性の低下が生じにくく、連続通電でも安定した発光特性を示すLED素子1が得られる。
(Effects of the first embodiment)
According to the first embodiment described above, the barrier layer of the MQW layer 14 is formed of AlGaN, and by optimizing the thickness and the amount of Al added, it is possible to suppress the occurrence of carrier overflow with respect to energization with a high injection current. It becomes possible, and luminous efficiency can be improved. Further, the heat loss can be suppressed by improving the light emission efficiency, and the LED element 1 that exhibits stable light emission characteristics even with continuous energization can be obtained.

第1の実施の形態では、バリア層をAl5%添加のAlGaNとしたが、膜厚を50ÅとしたときのAlの添加量を変化させて電流特性を調べたところ、図3に示すようにAlの添加量が3〜6%の範囲でIvが130μW以上の良好な特性を有しており、特に5%の添加量とすることでIvが145μWと最も良好な特性を示すことがわかる。   In the first embodiment, the barrier layer is made of AlGaN with an Al content of 5%. However, the current characteristics were examined by changing the amount of Al added when the film thickness was 50 mm. As shown in FIG. It can be seen that the Iv is 130 μW or more in the range of 3 to 6%, and that the Iv is 145 μW and the most favorable characteristic is obtained when the addition amount is 5%.

(第2の実施の形態)
図4は、第2の実施の形態に係る発光装置を示す断面図である。
(Second Embodiment)
FIG. 4 is a cross-sectional view showing the light emitting device according to the second embodiment.

この発光装置21は、第1の実施の形態で説明したLED素子1を光源とするものであり、LED素子1を搭載するAl基板22と、LED素子1およびAl基板22を封止する低融点ガラスからなるガラス封止部26とを有する。 The light emitting device 21 uses the LED element 1 described in the first embodiment as a light source, and includes an Al 2 O 3 substrate 22 on which the LED element 1 is mounted, and the LED element 1 and the Al 2 O 3 substrate 22. And a glass sealing portion 26 made of low-melting glass for sealing.

LED素子1は、図1に示すLED素子1を、LED素子1と同等の熱膨張率(α=7×10−6/℃)を有するAl基板22にフリップ実装しており、LED素子1のパッド電極18およびn側電極19はAuスタッドパンプ27を介してAl基板22に銅箔によって形成される回路パターン23に電気的に接続される。この回路パターン23は、Al基板22に形成されたビアホール220に設けられるビアパターン25を介して素子搭載面と反対側の底面に設けられる回路パターン24と接続されている。 The LED element 1 is mounted by flip mounting the LED element 1 shown in FIG. 1 on an Al 2 O 3 substrate 22 having a thermal expansion coefficient (α = 7 × 10 −6 / ° C.) equivalent to that of the LED element 1. The pad electrode 18 and the n-side electrode 19 of the element 1 are electrically connected to a circuit pattern 23 formed of copper foil on the Al 2 O 3 substrate 22 through an Au stud pump 27. This circuit pattern 23 is connected to a circuit pattern 24 provided on the bottom surface opposite to the element mounting surface via a via pattern 25 provided in a via hole 220 formed in the Al 2 O 3 substrate 22.

ガラス封止部26は、LED素子1およびAl基板22と同等の熱膨張率を有し、350℃でホットプレス加工の可能な低融点ガラス(屈折率n=1.8)によって形成されており、光取出し面となる側面260および上面261を有している。なお、ガラス封止部26の表面にYAG(Yttrium Aluminum Garnet)等の黄色蛍光体層を薄く設けることにより、青色と黄色の混合に基づいて白色光を生じる白色発光装置21とすることができる。 The glass sealing portion 26 has a thermal expansion coefficient equivalent to that of the LED element 1 and the Al 2 O 3 substrate 22 and is formed of low melting point glass (refractive index n = 1.8) that can be hot-pressed at 350 ° C. And has a side surface 260 and an upper surface 261 to be a light extraction surface. In addition, by providing a thin yellow phosphor layer such as YAG (Yttrium Aluminum Garnet) on the surface of the glass sealing portion 26, the white light emitting device 21 that generates white light based on a mixture of blue and yellow can be obtained.

(発光装置21の動作)
発光装置21の回路パターン24を図示しない外部の電源部に接続して電圧を印加することにより、LED素子1のMQW層で発光する。発光に基づいて生じる青色光は、主としてLED素子1のサファイア基板10側からガラス封止部26に入射する。ガラス封止部26の屈折率はサファイア基板10の屈折率(n=1.7)より大であるので、青色光はサファイア基板10との界面反射を生じることなくガラス封止部26に入射し、側面260および上面261から外部放射される。
(Operation of the light emitting device 21)
By connecting the circuit pattern 24 of the light emitting device 21 to an external power supply unit (not shown) and applying a voltage, the MQW layer of the LED element 1 emits light. Blue light generated based on the light emission is incident on the glass sealing portion 26 mainly from the sapphire substrate 10 side of the LED element 1. Since the refractive index of the glass sealing portion 26 is larger than the refractive index (n = 1.7) of the sapphire substrate 10, blue light is incident on the glass sealing portion 26 without causing interface reflection with the sapphire substrate 10. , And is emitted from the side surface 260 and the upper surface 261.

(第2の実施の形態の効果)
上記した第2の実施の形態によると、第1の実施の形態で説明したLED素子1の好ましい効果に基づく大光量の発光装置21が得られる。また、LED素子1をガラス封止することによってエポキシ、シリコーン等の樹脂材料封止に比べてLED素子1の封止性が良好で信頼性に優れるので、LED素子1から放射される青色光に対して無機材料からなるガラス封止部26の劣化が生ぜず、長期にわたって光学特性の安定した発光装置21とできる。なお、シリコーンについては耐熱性においてエポキシ樹脂より優れることから、発熱量の大なるLED素子1を封止する場合に用いることでエポキシ樹脂に比べて封止性と耐熱性を向上させることができる。
(Effect of the second embodiment)
According to the second embodiment described above, the light-emitting device 21 with a large amount of light based on the preferable effect of the LED element 1 described in the first embodiment can be obtained. Further, since the LED element 1 is sealed with glass, the sealing property of the LED element 1 is better and more reliable than sealing with a resin material such as epoxy and silicone, so that the blue light emitted from the LED element 1 can be reduced. On the other hand, the glass sealing portion 26 made of an inorganic material does not deteriorate, and the light emitting device 21 having stable optical characteristics can be obtained over a long period of time. Since silicone is superior to epoxy resin in heat resistance, sealing property and heat resistance can be improved as compared with epoxy resin by using LED element 1 having a large calorific value.

また、LED素子1から放射される青色光に対して無機材料からなるガラス封止部26の劣化が生じないので、長期にわたって発光特性の安定した大光量の発光装置21が得られる。また、LED素子1を含めた発光装置21全体の耐熱性が良好である。さらにガラスは樹脂材料に対し熱膨張率が小であるので、封止材料の熱膨張収縮による要因等での断線は理論上生じないものとできる。このため、通電電流を大にした際に生じる発熱にも耐えうる構成とできることから、長時間の連続点灯でも発光効率の低下が生じず、大電流通電としても断線しない安定した大光量の放射性が得られる。   Moreover, since the deterioration of the glass sealing portion 26 made of an inorganic material does not occur with respect to the blue light emitted from the LED element 1, the light emitting device 21 having a large amount of light with stable light emission characteristics over a long period of time can be obtained. Further, the heat resistance of the entire light emitting device 21 including the LED element 1 is good. Further, since glass has a smaller coefficient of thermal expansion than that of the resin material, disconnection due to factors such as thermal expansion and contraction of the sealing material can theoretically not occur. For this reason, it can be configured to withstand the heat generated when the energization current is increased. can get.

本発明の第1の実施の形態に係るIII族窒化物系化合物半導体発光素子の層構成を示す断面図である。It is sectional drawing which shows the layer structure of the group III nitride compound semiconductor light-emitting device based on the 1st Embodiment of this invention. 図1に示すAlGaNバリア層を有するLED素子の通電特性を示し、(a)はAlGaNバリア層の厚さを変化させたときの電流値の変化を示す特性図、(b)は、電流の変化に対する光度の変化を示す特性図である。1 shows current-carrying characteristics of an LED element having an AlGaN barrier layer shown in FIG. 1, (a) is a characteristic diagram showing a change in current value when the thickness of the AlGaN barrier layer is changed, and (b) is a change in current. It is a characteristic view which shows the change of the luminous intensity with respect to. 膜厚一定(50Å)でAlの添加量を変化させたときの電流特性図である。It is a current characteristic figure when changing the addition amount of Al with a fixed film thickness (50 kg). 第2の実施の形態にかかる発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device concerning 2nd Embodiment.

符号の説明Explanation of symbols

1…LED素子、10…サファイア基板、11…AlNバッファ層、12…n−GaN層、13…歪緩和超格子層、14…MQW層、15…クラッド層、16…p−GaN層、17層…p−GaN層、18…パッド電極、19…n側電極、20…コンタクト層、21…発光装置、22…Al基板、23…回路パターン、24…回路パターン、25…ビアパターン、26…ガラス封止部、27…スタッドパンプ、130…InGaN層、131…n−GaN層、140…InGaN層、140…InGaN層、141…AlGaNバリア層、150…p−InGaN層、151p−AlGaN層、220…ビアホール、260…側面、261…上面、 1 ... LED element, 10 ... sapphire substrate, 11 ... AlN buffer layer, 12 ... n-GaN layer, 13 ... strain relaxing superlattice layer, 14 ... MQW layer, 15 ... clad layer, 16 ... p - -GaN layer, 17 layer ... p + -GaN layer, 18 ... pad electrode, 19 ... n-side electrode, 20 ... contact layer, 21 ... light-emitting device, 22 ... Al 2 O 3 substrate, 23 ... circuit pattern, 24 ... circuit pattern, 25 ... via Pattern, 26 ... Glass sealing part, 27 ... Stud pump, 130 ... InGaN layer, 131 ... n-GaN layer, 140 ... InGaN layer, 140 ... InGaN layer, 141 ... AlGaN barrier layer, 150 ... p-InGaN layer, 151p -AlGaN layer, 220 ... via hole, 260 ... side surface, 261 ... upper surface,

Claims (6)

第1の導電型のIII族窒化物系化合物半導体層と、
第2の導電型のIII族窒化物系化合物半導体層と、
前記第1および前記第2の導電型のIII族窒化物系化合物半導体層の間に設けられ、井戸層とAlを3〜6%含むバリア層からなるMQW層とを有することを特徴とするIII族窒化物系化合物半導体発光素子。
A group III nitride compound semiconductor layer of a first conductivity type;
A group III nitride compound semiconductor layer of a second conductivity type;
III, comprising a well layer and an MQW layer comprising a barrier layer containing 3 to 6% Al, provided between the first and second conductivity type group III nitride compound semiconductor layers. Group nitride compound semiconductor light emitting device.
第1の導電型のIII族窒化物系化合物半導体層と、
第2の導電型のIII族窒化物系化合物半導体層と、
前記第1および前記第2の導電型のIII族窒化物系化合物半導体層の間に設けられ、InGaNからなる井戸層とAlを3〜6%含むAlGaNバリア層からなるMQW層とを有することを特徴とするIII族窒化物系化合物半導体発光素子。
A group III nitride compound semiconductor layer of a first conductivity type;
A group III nitride compound semiconductor layer of a second conductivity type;
A well layer made of InGaN and an MQW layer made of an AlGaN barrier layer containing 3 to 6% Al, provided between the group III nitride compound semiconductor layers of the first and second conductivity types; A group III nitride compound semiconductor light emitting device characterized in that:
前記MQW層は、InGaN層とn−GaN層とを交互に所定のペア数で積層して構成される歪緩和超格子層と、p−InGaN層とp−AlGaN層とを交互に所定のペア数で積層して構成されるクラッド層との間に設けられる請求項1に記載のIII族窒化物系化合物半導体発光素子。   The MQW layer includes a strain relaxation superlattice layer formed by alternately stacking InGaN layers and n-GaN layers in a predetermined number of pairs, and a predetermined pair of p-InGaN layers and p-AlGaN layers alternately. The group III nitride compound semiconductor light-emitting device according to claim 1, wherein the light-emitting device is provided between a clad layer constituted by a number of layers. 第1の導電型のIII族窒化物系化合物半導体層と、第2の導電型のIII族窒化物系化合物半導体層と、前記第1および前記第2の導電型のIII族窒化物系化合物半導体層の間に設けられ、InGaNからなる井戸層とAlを3〜6%含むAlGaNバリア層からなるMQW層とを有するIII族窒化物系化合物半導体発光素子と、
前記III族窒化物系化合物半導体発光素子と同等の熱膨張率を有して構成される素子搭載基板と、
前記III族窒化物系化合物半導体発光素子および前記素子搭載基板を同等の熱膨張率を有して構成されて前記III族窒化物系化合物半導体発光素子および前記素子搭載基板を封止する無機封止部とを有することを特徴とする発光装置。
Group III nitride compound semiconductor layer of first conductivity type, Group III nitride compound semiconductor layer of second conductivity type, Group III nitride compound semiconductor of first and second conductivity types A III-nitride compound semiconductor light emitting device having a well layer made of InGaN and an MQW layer made of an AlGaN barrier layer containing 3 to 6% Al provided between the layers;
An element mounting substrate configured to have a thermal expansion coefficient equivalent to that of the group III nitride compound semiconductor light emitting element;
Inorganic sealing for sealing the group III nitride compound semiconductor light emitting device and the device mounting substrate, wherein the group III nitride compound semiconductor light emitting device and the device mounting substrate have the same coefficient of thermal expansion And a light emitting device.
前記無機封止部は、低融点ガラスからなる請求項4に記載の発光装置。   The light emitting device according to claim 4, wherein the inorganic sealing portion is made of low-melting glass. 前記III族窒化物系化合物半導体発光素子は、前記素子搭載基板にフリップ実装される構成の請求項4に記載の発光装置。   5. The light emitting device according to claim 4, wherein the group III nitride compound semiconductor light emitting element is flip-mounted on the element mounting substrate.
JP2005154382A 2005-05-26 2005-05-26 Group iii nitride based compound semiconductor light emitting element and light emitting device using the same Withdrawn JP2006332365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154382A JP2006332365A (en) 2005-05-26 2005-05-26 Group iii nitride based compound semiconductor light emitting element and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154382A JP2006332365A (en) 2005-05-26 2005-05-26 Group iii nitride based compound semiconductor light emitting element and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2006332365A true JP2006332365A (en) 2006-12-07
JP2006332365A5 JP2006332365A5 (en) 2007-11-15

Family

ID=37553733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154382A Withdrawn JP2006332365A (en) 2005-05-26 2005-05-26 Group iii nitride based compound semiconductor light emitting element and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP2006332365A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123803A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Light emitting diode device
JP2010129654A (en) * 2008-11-26 2010-06-10 Kyocera Corp Light emitting device
JP2012169383A (en) * 2011-02-11 2012-09-06 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and method of manufacturing the same
JP2012216751A (en) * 2011-03-30 2012-11-08 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element
CN102842658A (en) * 2011-06-23 2012-12-26 丰田合成株式会社 Method for producing group III nitride semiconductor light-emitting device
JP2013115105A (en) * 2011-11-25 2013-06-10 Sharp Corp Nitride semiconductor light-emitting element and nitride semiconductor light-emitting element manufacturing method
JP2015511407A (en) * 2012-02-24 2015-04-16 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Gallium nitride light emitting diode

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260725A (en) * 1996-03-18 1997-10-03 Fujitsu Ltd Semiconductor light emitting device
JPH10242512A (en) * 1997-02-24 1998-09-11 Toshiba Corp Semiconductor light emitting device
JP2000232259A (en) * 1998-12-09 2000-08-22 Sanyo Electric Co Ltd Light emitting device and manufacture thereof
JP2000286509A (en) * 1998-11-17 2000-10-13 Nichia Chem Ind Ltd Nitride semiconductor element
JP2001168385A (en) * 1999-12-06 2001-06-22 Toyoda Gosei Co Ltd Group III nitride compound semiconductor device and group III nitride compound semiconductor light emitting device
JP2002084000A (en) * 2000-07-03 2002-03-22 Toyoda Gosei Co Ltd Group III nitride compound semiconductor light emitting device
WO2004082036A1 (en) * 2003-03-10 2004-09-23 Toyoda Gosei Co., Ltd. Solid element device and method for manufacture thereof
JP2005033197A (en) * 2003-06-20 2005-02-03 Nichia Chem Ind Ltd Nitride semiconductor device
JP2005507155A (en) * 2001-05-30 2005-03-10 クリー インコーポレイテッド III-nitride light-emitting diode structure with quantum well and superlattice

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260725A (en) * 1996-03-18 1997-10-03 Fujitsu Ltd Semiconductor light emitting device
JPH10242512A (en) * 1997-02-24 1998-09-11 Toshiba Corp Semiconductor light emitting device
JP2000286509A (en) * 1998-11-17 2000-10-13 Nichia Chem Ind Ltd Nitride semiconductor element
JP2000232259A (en) * 1998-12-09 2000-08-22 Sanyo Electric Co Ltd Light emitting device and manufacture thereof
JP2001168385A (en) * 1999-12-06 2001-06-22 Toyoda Gosei Co Ltd Group III nitride compound semiconductor device and group III nitride compound semiconductor light emitting device
JP2002084000A (en) * 2000-07-03 2002-03-22 Toyoda Gosei Co Ltd Group III nitride compound semiconductor light emitting device
JP2005507155A (en) * 2001-05-30 2005-03-10 クリー インコーポレイテッド III-nitride light-emitting diode structure with quantum well and superlattice
WO2004082036A1 (en) * 2003-03-10 2004-09-23 Toyoda Gosei Co., Ltd. Solid element device and method for manufacture thereof
JP2005033197A (en) * 2003-06-20 2005-02-03 Nichia Chem Ind Ltd Nitride semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123803A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Light emitting diode device
JP2010129654A (en) * 2008-11-26 2010-06-10 Kyocera Corp Light emitting device
JP2012169383A (en) * 2011-02-11 2012-09-06 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and method of manufacturing the same
JP2012216751A (en) * 2011-03-30 2012-11-08 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element
CN102842658A (en) * 2011-06-23 2012-12-26 丰田合成株式会社 Method for producing group III nitride semiconductor light-emitting device
US8878232B2 (en) 2011-06-23 2014-11-04 Toyoda Gosei Co., Ltd. Method for producing group III nitride semiconductor light-emitting device
JP2013115105A (en) * 2011-11-25 2013-06-10 Sharp Corp Nitride semiconductor light-emitting element and nitride semiconductor light-emitting element manufacturing method
US9099586B2 (en) 2011-11-25 2015-08-04 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting element and method for producing nitride semiconductor light-emitting element
JP2015511407A (en) * 2012-02-24 2015-04-16 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Gallium nitride light emitting diode
US9853182B2 (en) 2012-02-24 2017-12-26 Seoul Viosys Co., Ltd. Gallium nitride-based light emitting diode
KR101843513B1 (en) * 2012-02-24 2018-03-29 서울바이오시스 주식회사 Gallium nitride-based light emitting diode

Similar Documents

Publication Publication Date Title
JP5032171B2 (en) Semiconductor light emitting device, method for manufacturing the same, and light emitting device
JP5638514B2 (en) Light emitting device and manufacturing method thereof
KR101327106B1 (en) Semiconductor light emitting device
JP5016808B2 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
KR100835116B1 (en) Nitride semiconductor light emitting device
TWI455359B (en) Ultraviolet semiconductor light-emitting element
JP5189734B2 (en) Nitride semiconductor light emitting device
JP2007173465A (en) Manufacturing method of nitride semiconductor light emitting device
KR20090032207A (en) Gallium nitride based light emitting diode device
JP2009130097A (en) Group iii nitride semiconductor light emitting device and method of manufacturing the same
WO2012073993A1 (en) Light-emitting diode, light-emitting diode lamp, and illumination device
KR20110072424A (en) Light emitting device, light emitting device package and manufacturing method
JP2007200932A (en) Manufacturing method of nitride semiconductor element
CN102428580A (en) Light emitting diode, light emitting diode lamp, and lighting device
JP2004006662A (en) Gallium nitride compound semiconductor device
JP5554739B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP5586372B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
JP2013122950A (en) Group iii nitride semiconductor light-emitting element
JP2006332365A (en) Group iii nitride based compound semiconductor light emitting element and light emitting device using the same
JP2009289983A (en) Nitride semiconductor light-emitting diode
JP2009123836A (en) Nitride semiconductor light-emitting element
US11888091B2 (en) Semiconductor light emitting device and light emitting device package
KR20050063493A (en) A wafer-bonded semiconductor led and a method for making thereof
KR101700792B1 (en) Light emitting device
WO2011090016A1 (en) Light-emitting diode, light-emitting diode lamp and lighting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120130