[go: up one dir, main page]

JP2006310265A - Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same - Google Patents

Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP2006310265A
JP2006310265A JP2006017852A JP2006017852A JP2006310265A JP 2006310265 A JP2006310265 A JP 2006310265A JP 2006017852 A JP2006017852 A JP 2006017852A JP 2006017852 A JP2006017852 A JP 2006017852A JP 2006310265 A JP2006310265 A JP 2006310265A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
graphite
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017852A
Other languages
Japanese (ja)
Inventor
Shinichi Komaba
慎一 駒場
Naoaki Kumagai
直昭 熊谷
Motomi Watanabe
基美 渡辺
Kenji Okahara
賢二 岡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006017852A priority Critical patent/JP2006310265A/en
Publication of JP2006310265A publication Critical patent/JP2006310265A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a high performance non-aqueous electrolytic liquid secondary battery by improving electrochemical characteristics of a negative electrode material. <P>SOLUTION: The negative electrode material for non-aqueous electrolytic liquid secondary battery contains a negative electrode active material capable of storage and release of lithium, halides of alkali metal and/or halides of alkali earth metal. The non-aqueous electrolytic liquid secondary battery comprises a positive electrode and a negative electrode capable of storage and release of lithium ion, and a non-aqueous electrolytic liquid, and the negative electrode contains this negative electrode material for non-aqueous electrolytic secondary battery. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解液二次電池用負極材料と、この負極材料を用いて構成された負極を備える非水電解液二次電池に関する。   The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery including a negative electrode configured using the negative electrode material.

近年、電子機器の小型化に伴い二次電池の高容量化が望まれている。そのためニッケル・カドミウム電池、ニッケル・水素電池等の水系電解液二次電池に比べ、よりエネルギー密度の高い、リチウム二次電池に代表される非水電解液二次電池が注目されている。   In recent years, with the miniaturization of electronic devices, it is desired to increase the capacity of secondary batteries. Therefore, a non-aqueous electrolyte secondary battery typified by a lithium secondary battery having higher energy density is attracting attention as compared with an aqueous electrolyte secondary battery such as a nickel / cadmium battery or a nickel / hydrogen battery.

非水電解液二次電池の負極活物質としては、古くはリチウム金属を用いることが試みられたが、リチウム金属を用いた場合には、充放電を繰り返すうちにデンドライト状のリチウムが析出してセパレータを貫通し、正極にまで達し、短絡して発火事故を起こす可能性があることが判明した。そのため、現在では、充放電過程において、リチウムイオンを層間に出入りさせ、リチウム金属の析出を防止できる炭素材料を負極活物質として使用することが一般的である。   In the past, it was attempted to use lithium metal as the negative electrode active material of the non-aqueous electrolyte secondary battery. However, when lithium metal was used, dendritic lithium precipitated during repeated charging and discharging. It has been found that there is a possibility of causing a fire accident by penetrating the separator, reaching the positive electrode, and short-circuiting. Therefore, at present, it is common to use, as a negative electrode active material, a carbon material that allows lithium ions to enter and exit between layers and prevent lithium metal precipitation during the charge / discharge process.

この炭素材料としては、例えば引用文献1には、黒鉛を使用することが記載されているが、特に黒鉛化度の高い黒鉛を使用すると、黒鉛のリチウム吸蔵の理論容量である372mAh/gに近い容量が得られ、好ましいことが知られている。   As this carbon material, for example, Patent Document 1 describes that graphite is used. However, when graphite having a high graphitization degree is used, it is close to 372 mAh / g, which is the theoretical capacity of lithium storage of graphite. It is known that capacity is obtained and preferred.

リチウム二次電池の負極活物質に黒鉛を用いた際、その理想的な充放電反応式は、
充電(Liイオンの黒鉛への挿入)
C(黒鉛)+xLi+xe → C・Li (式1)
放電(Liイオンの黒鉛からの脱離)
C・Lix → C(黒鉛)+xLi+xe (式2)
で表される可逆反応である。
When graphite is used as the negative electrode active material of a lithium secondary battery, its ideal charge / discharge reaction formula is
Charging (Li ion insertion into graphite)
C (graphite) + xLi + + xe → C · Li x (Formula 1)
Discharge (desorption of Li ions from graphite)
C · Lix → C (graphite) + xLi + + xe (Formula 2)
It is a reversible reaction represented by.

しかしながら、リチウム二次電池では、負極がリチウム金属に近い卑な電位に近づくため、充電時に負極活物質の表面で電解液溶媒の還元分解反応(不可逆反応)が起き、本来の二次電池の充電反応である、式1が十分起こらない場合がある。この場合、電池の充電容量に対する放電容量の比率(効率)が低下してしまう。   However, in a lithium secondary battery, the negative electrode approaches a base potential close to that of lithium metal, so that a reductive decomposition reaction (irreversible reaction) of the electrolyte solvent occurs on the surface of the negative electrode active material during charging, and the original secondary battery is charged. The reaction, Formula 1, may not occur sufficiently. In this case, the ratio (efficiency) of the discharge capacity to the charge capacity of the battery is reduced.

また、充電時に溶媒がリチウムイオンに配位したまま活物質中に挿入される「コインターカレーション現象」が起きる場合もあり、この場合には、大きな溶媒和イオンが挿入されることで活物質が破壊され、不可逆な反応となり、充放電効率が低下するばかりか、サイクル時の劣化も大きくなる。   In addition, there may be a “cointercalation phenomenon” in which the solvent is inserted into the active material while being coordinated to lithium ions during charging. In this case, the active material is inserted by inserting a large solvated ion. It is destroyed and becomes an irreversible reaction, not only the charge / discharge efficiency is lowered, but also the deterioration during the cycle is increased.

このような不可逆反応の大小は、二次電池に用いる負極活物質の性状や電解液の種類等により大きく左右される。   The magnitude of such an irreversible reaction greatly depends on the properties of the negative electrode active material used in the secondary battery, the type of the electrolytic solution, and the like.

例えば、黒鉛を負極活物質として用いた場合において、電解液の溶媒としてリチウム一次電池の電解液の溶媒として用いられているプロピレンカーボネートを用いると、式1の充電反応がほとんど起こらず、放電反応もほとんどできない。一方、電解液の溶媒としてエチレンカーボネートを用いた場合は、リチウムイオンの挿入すなわち(式1)の充電反応が起き、そのため(式2)の放電反応も起きる。   For example, in the case where graphite is used as the negative electrode active material, if the propylene carbonate used as the electrolyte solution of the lithium primary battery is used as the electrolyte solution, the charge reaction of Formula 1 hardly occurs and the discharge reaction also occurs. I can hardly do it. On the other hand, when ethylene carbonate is used as the solvent of the electrolytic solution, the insertion of lithium ions, that is, the charging reaction of (Formula 1) occurs, and therefore the discharge reaction of (Formula 2) also occurs.

その理由としては、プロピレンカーボネートを使用した場合は、充電時に黒鉛表面で溶媒の分解と同時にリチウムイオンと溶媒がコインターカレーションするため、黒鉛層が破壊され、そこを起点に溶媒の分解が連続的に起こるためリチウムイオンの挿入反応が起こりにくくなると考えられ、一方、エチレンカーボネートを使用した場合では、充電初期に黒鉛表面で分解反応が起きるものの、その際、イオン伝導性の皮膜が形成される反応が、コインターカレーション反応よりも優先し、その後は皮膜を介してリチウムイオンの挿入脱離が起こる事ができるようになるためと考えられている。   The reason for this is that when propylene carbonate is used, lithium ions and the solvent co-intercalate simultaneously with the decomposition of the solvent on the graphite surface during charging, so the graphite layer is destroyed and the decomposition of the solvent continues from there. In the case of using ethylene carbonate, the decomposition reaction occurs on the graphite surface at the initial stage of charging, but at this time, an ion-conductive film is formed. However, it is considered that it takes precedence over the co-intercalation reaction, and after that, insertion and desorption of lithium ions can occur through the film.

ただし、エチレンカーボネートを用いた場合でも、黒鉛の性状により初期の溶媒の分解反応(皮膜形成反応)の大小は左右される。一般的に比表面積の高い黒鉛は溶媒の分解に関与する表面が大きいため、初期の分解反応が大きくなり、初期の充放電効率が低下する。   However, even when ethylene carbonate is used, the magnitude of the initial solvent decomposition reaction (film formation reaction) depends on the properties of graphite. In general, graphite having a high specific surface area has a large surface that is involved in the decomposition of the solvent, so that the initial decomposition reaction becomes large, and the initial charge / discharge efficiency decreases.

また、電池のサイクル試験や高温保存時などには、皮膜が溶解などにより破壊され、電解液の再分解反応が起きるため、劣化が起きることがある。   In addition, when the battery is subjected to a cycle test or storage at a high temperature, the coating is destroyed by dissolution or the like, and a re-decomposition reaction of the electrolytic solution occurs, so that deterioration may occur.

このような問題を解決する手段として、負極活物質の比表面積を小さくする方法があるが、この場合には、活物質の充放電反応性が低下し、電池の出力が低下するという問題がある。また、電解液中にビニレンカーボネート等の熱安定性の高い皮膜を形成する添加剤を加える方法も開発されているが、通常、添加剤を加えることで電解液の製造コストが高くなったり、安定な皮膜の生成のために抵抗が上昇し、電池の出力が低下するという問題点がある。   As a means for solving such a problem, there is a method of reducing the specific surface area of the negative electrode active material, but in this case, there is a problem that the charge / discharge reactivity of the active material is lowered and the output of the battery is lowered. . In addition, a method of adding an additive that forms a highly heat-stable film such as vinylene carbonate has been developed in the electrolytic solution. However, the addition of the additive usually increases the manufacturing cost of the electrolytic solution. There is a problem that the resistance increases due to the formation of a thick film and the output of the battery decreases.

一方、非水電解液二次電池に用いる正極の正極活物質としては、通常、リチウム遷移金属複合酸化物が用いられる。このリチウム遷移金属複合酸化物としては、LiCoOやLiNiOやLiMnO等の層状構造を有するLiMeO(Meは主として遷移金属から選ばれる1種以上の元素)や、LiMn等のスピネル構造を基本骨格とする化合物が挙げられる。これらの中でもマンガン元素を主成分とするリチウムマンガン系複合酸化物は、マンガンがコバルトやニッケルに比較して埋蔵量が多いため安価である事や、電池の誤作動による過充電時の安全性が高いというメリットを有しているため、将来の自動車用電池のような大型の非水電解液二次電池用正極活物質の候補として注目されている。 On the other hand, as the positive electrode active material of the positive electrode used for the nonaqueous electrolyte secondary battery, a lithium transition metal composite oxide is usually used. Examples of the lithium transition metal composite oxide include LiMeO 2 having a layered structure such as LiCoO 2 , LiNiO 2, and LiMnO 2 (Me is one or more elements selected from transition metals), and spinel such as LiMn 2 O 4. Examples thereof include compounds having a structure as a basic skeleton. Among these, lithium manganese complex oxides containing manganese as the main component are cheaper because manganese has a larger reserve than cobalt and nickel, and is safer when overcharged due to battery malfunction. Since it has the merit of being high, it attracts attention as a candidate for a positive electrode active material for a large non-aqueous electrolyte secondary battery such as a battery for an automobile in the future.

しかしながら、正極にリチウムマンガン系複合酸化物、特にスピネル型のLiMnを用いた電池では、高温環境化において劣化が大きいという問題点がある。 However, a battery using a lithium manganese composite oxide, particularly a spinel type LiMn 2 O 4 , as the positive electrode has a problem that the deterioration is large in a high temperature environment.

これはリチウムマンガン系複合酸化物が高温環境下で溶解し、溶解したマンガンイオンが種々の悪影響を及ぼすためと考えられている。特に、負極に析出したマンガン化合物は不可逆的なリチウムを増加させ、本来二次電池に必要な可逆的なリチウムを減らし、サイクルの劣化が大きくなると考えられている(例えば、非特許文献1)。   This is thought to be because the lithium manganese composite oxide dissolves in a high temperature environment and the dissolved manganese ions have various adverse effects. In particular, it is considered that the manganese compound deposited on the negative electrode increases irreversible lithium, reduces reversible lithium originally required for the secondary battery, and increases cycle deterioration (for example, Non-Patent Document 1).

このような問題を解決する方法としては、正極の安定性を高めるために、Mn以外の元素を少量添加したり、イオン伝導性の固体電解質を被覆したりする検討もなされているが、製造コストがかかる場合もあり、また電池に使用した際、マンガンの溶解を完全には抑え切れないのが現状である。   As a method for solving such a problem, in order to increase the stability of the positive electrode, addition of a small amount of an element other than Mn or coating with an ion conductive solid electrolyte has been studied. In some cases, the dissolution of manganese cannot be completely suppressed when used in a battery.

そのため、負極側でのマンガンイオンの反応を抑える検討もなされており、例えば特許文献2には、リチウムマンガン複合酸化物を正極材料に用いる非水電解質二次電池において、負極にナトリウム、カリウム、カルシウム、ストロンチウム等を含有させることで、負極上に劣化を促進するマンガン化合物を生成させないようにすることが提案されているが、十分に満足し得るものではなかった。
特開昭57−208079号公報 特開2001−6661号公報 Electrochemistry, 69,784 (2001)
For this reason, studies have been made to suppress the reaction of manganese ions on the negative electrode side. For example, Patent Document 2 discloses a nonaqueous electrolyte secondary battery using a lithium manganese composite oxide as a positive electrode material. It has been proposed to prevent the formation of a manganese compound that promotes deterioration on the negative electrode by containing strontium or the like, but it has not been fully satisfactory.
JP-A-57-208079 Japanese Patent Laid-Open No. 2001-6661 Electrochemistry, 69,784 (2001)

近年の環境問題から、特に自動車用の非水電解液二次電池の開発が重要となってきているが、その実用化のためには、電池の低コスト化と共に高出力化が重要である。そのためには安価で、高い比表面積を有する活物質を有効に機能させることが重要となる。特に、負極には高比表面積を有する安価な黒鉛等の炭素材料を用い、また正極にはリチウムマンガン系複合酸化物を用いて性能のよい電池を作ることが必要となる。そのためには負極の皮膜の制御が重要であるが、前述のように従来の技術ではこれらを解決するには不十分であった。   Development of non-aqueous electrolyte secondary batteries for automobiles has become important due to environmental problems in recent years, but for practical use, it is important to reduce the cost of the battery and increase its output. For that purpose, it is important to make an active material which is inexpensive and has a high specific surface area function effectively. In particular, it is necessary to make a battery with good performance using an inexpensive carbon material such as graphite having a high specific surface area for the negative electrode and a lithium manganese based composite oxide for the positive electrode. For this purpose, control of the negative electrode film is important, but as described above, the conventional technique is insufficient to solve these problems.

本発明は上記従来の実状に鑑みてなされたものであって、負極材料の電気化学的特性を改善することにより、高性能の非水電解液二次電池を実現する技術を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and an object thereof is to provide a technique for realizing a high-performance nonaqueous electrolyte secondary battery by improving the electrochemical characteristics of the negative electrode material. And

本発明者等は、かかる課題を解決するために、非水電解液二次電池の負極材料に、アルカリ金属のハロゲン化物、および/またはアルカリ土類金属のハロゲン化物(以下「アルカリ(土類)金属ハロゲン化物」と称す場合がある。)を含有させることにより、負極材料の電気化学的性能の改善が可能となり、ひいてはそれを用いた電池の性能を改善することが出来ることを見出した。
本発明は、このような知見に基いて達成されたものであり、以下を要旨とする。
In order to solve such a problem, the present inventors have used an alkali metal halide and / or an alkaline earth metal halide (hereinafter referred to as “alkali (earth)) as a negative electrode material for a non-aqueous electrolyte secondary battery. It has been found that the electrochemical performance of the negative electrode material can be improved by adding the “metal halide” in some cases, and consequently the performance of the battery using the same can be improved.
The present invention has been achieved based on such knowledge, and the gist thereof is as follows.

(1) リチウムの吸蔵・放出が可能な負極活物質と、アルカリ金属のハロゲン化物および/またはアルカリ土類金属のハロゲン化物とを含有することを特徴とする非水電解液二次電池用負極材料。 (1) A negative electrode material for a non-aqueous electrolyte secondary battery, comprising a negative electrode active material capable of occluding and releasing lithium and an alkali metal halide and / or an alkaline earth metal halide .

(2) 負極活物質が、黒鉛および/または黒鉛より結晶性の劣る炭素材料を主成分とするものであることを特徴とする(1)に記載の非水電解液二次電池用負極材料。 (2) The negative electrode material for a non-aqueous electrolyte secondary battery according to (1), wherein the negative electrode active material is mainly composed of graphite and / or a carbon material that is less crystalline than graphite.

(3) 黒鉛および/または黒鉛より結晶性の劣る炭素材料の比表面積が、2m/g以上、20m/g以下であることを特徴とする(1)または(2)記載の非水電解液二次電池用負極材料。 (3) The non-aqueous electrolysis according to (1) or (2), wherein the specific surface area of graphite and / or a carbon material having lower crystallinity than graphite is 2 m 2 / g or more and 20 m 2 / g or less. Negative electrode material for liquid secondary batteries.

(4) アルカリ金属のハロゲン化物がハロゲン化ナトリウムであることを特徴とする(1)〜(3)に記載の非水電解液二次電池用負極材料。 (4) The negative electrode material for a non-aqueous electrolyte secondary battery according to any one of (1) to (3), wherein the alkali metal halide is sodium halide.

(5) アルカリ金属のハロゲン化物および/またはアルカリ土類金属のハロゲン化物を含む水溶液と、リチウムの吸蔵・放出が可能である活物質とを混合した後、水分を除去、乾燥することにより得られることを特徴とする(1)〜(4)に記載の非水電解液二次電池用負極材料。 (5) It is obtained by mixing an aqueous solution containing an alkali metal halide and / or an alkaline earth metal halide with an active material capable of occluding and releasing lithium, and then removing moisture and drying. The negative electrode material for a non-aqueous electrolyte secondary battery according to any one of (1) to (4).

(6) アルカリ金属のハロゲン化物および/またはアルカリ土類金属のハロゲン化物の含有量が、アルカリ金属および/またはアルカリ土類金属換算の含有量で100ppm以上10000ppm以下であることを特徴とする(1)〜(5)に記載の非水電解液二次電池用負極材料。 (6) The content of alkali metal halide and / or alkaline earth metal halide is 100 ppm or more and 10,000 ppm or less in terms of alkali metal and / or alkaline earth metal equivalent (1) The negative electrode material for a nonaqueous electrolyte secondary battery according to any one of) to (5).

(7) リチウムイオンを吸蔵・放出可能な正極および負極、非水電解液を備える非水電解液二次電池であって、該負極が、(1)〜(6)に記載の非水電解液二次電池用負極材料を含有することを特徴とする非水電解液二次電池。 (7) A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte, wherein the negative electrode is the non-aqueous electrolyte described in (1) to (6) A nonaqueous electrolyte secondary battery comprising a negative electrode material for a secondary battery.

(8) 正極に含まれる正極活物質がリチウム遷移金属複合酸化物であることを特徴とする(7)に記載の非水電解液二次電池。 (8) The nonaqueous electrolyte secondary battery according to (7), wherein the positive electrode active material contained in the positive electrode is a lithium transition metal composite oxide.

(9) リチウム遷移金属複合酸化物がマンガンを含有することを特徴とする(8)に記載の非水電解液二次電池。 (9) The nonaqueous electrolyte secondary battery according to (8), wherein the lithium transition metal composite oxide contains manganese.

本発明の非水電解液二次電池用負極材料は、アルカリ(土類)金属ハロゲン化物を配合することにより負極活物質の電気化学的特性が改善され、この結果、このような負極材料を用いた本発明の非水電解液二次電池は、電池性能に優れたものとなる。   The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention improves the electrochemical characteristics of the negative electrode active material by blending an alkali (earth) metal halide. As a result, such a negative electrode material is used. The non-aqueous electrolyte secondary battery of the present invention is excellent in battery performance.

このように、負極材料にアルカリ(土類)金属ハロゲン化物を含有させることによる本発明の効果は、負極材料中にアルカリ(土類)金属ハロゲン化物を含有させることにより、電池の充電時に負極活物質の表面で電解液が必要以上に分解されたり、溶媒和したリチウムイオンが活物質の表面から取りこまれて活物質自体が破壊されることを防ぐことによるものと推測される。また、安定化に有効な皮膜を作るため、リチウムイオンの出し入れに余分な抵抗が立たず、出力の向上にもつながることによるものと考えられる。   As described above, the effect of the present invention by containing the alkali (earth) metal halide in the negative electrode material is that the negative electrode active material is charged during charging of the battery by containing the alkali (earth) metal halide in the negative electrode material. This is presumably due to the fact that the electrolytic solution is decomposed more than necessary on the surface of the material, or solvated lithium ions are taken in from the surface of the active material to destroy the active material itself. Moreover, in order to make a film effective for stabilization, it is considered that extra resistance does not stand in and out of lithium ions, leading to an improvement in output.

その原理の詳細はいまだ明らかではないが、例えばナトリウムイオンを電解液中に添加した際に、充電時に生成する黒鉛負極表面の皮膜が改質され、電気化学特性の向上が見られるという報告がある(Electrochem. Commun., 5, 962 (2003))。
また、前記特許文献2には、リチウムマンガン複合酸化物を正極材料に用いる非水電解質二次電池において、負極にナトリウム、カリウム、カルシウム、ストロンチウム等を含有させることで、負極上に劣化を促進するマンガン化合物を生成させないようにして、改善を図るとしている。
Although the details of the principle are not yet clear, for example, when sodium ions are added to the electrolyte, there is a report that the film on the surface of the graphite negative electrode formed during charging is modified and the electrochemical properties are improved. (Electrochem. Commun., 5 , 962 (2003)).
Moreover, in the said patent document 2, deterioration is accelerated | stimulated on a negative electrode by making a negative electrode contain sodium, potassium, calcium, strontium, etc. in the nonaqueous electrolyte secondary battery which uses lithium manganese complex oxide for a positive electrode material. It is trying to improve by not producing manganese compounds.

この様に、アルカリ金属やアルカリ土類金属のイオンが、電池の充電時に負極活物質の表面に生成する皮膜の安定化に何らかの役割を果たすことが考えられるが、本発明者らは、アルカリ金属源、アルカリ土類金属源として、アルカリ(土類)金属ハロゲン化物を用いるとその効果を強く発揮させることができることを見出した。また、中でもナトリウムのハロゲン化物がより効果が高く、特に塩化ナトリウムが好ましいことも明らかとなった。
これは、おそらくこれまで知られていたナトリウムイオン等による皮膜安定化効果を、ハロゲン化物イオンがさらに高める相乗的な効果を示すことによるものと推定される。
As described above, it is considered that ions of alkali metal or alkaline earth metal play some role in stabilizing the film formed on the surface of the negative electrode active material when the battery is charged. It has been found that when an alkali (earth) metal halide is used as a source and an alkaline earth metal source, the effect can be exerted strongly. It was also found that sodium halide is more effective and sodium chloride is particularly preferred.
This is presumably due to a synergistic effect that halide ions further enhance the film stabilizing effect of sodium ions and the like that have been known so far.

以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not limited to the gist thereof. The content of is not specified.

[非水電解液二次電池用負極材料]
本発明の非水電解液二次電池用負極材料は、リチウムの吸蔵・放出が可能な負極活物質と、アルカリ(土類)金属ハロゲン化物とを含有することを特徴とする。
[Negative electrode material for non-aqueous electrolyte secondary battery]
The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is characterized by containing a negative electrode active material capable of occluding and releasing lithium and an alkali (earth) metal halide.

〈負極活物質〉
本発明に用いるリチウムの吸蔵・放出が可能な負極活物質としては、黒鉛から非晶質炭素材料にいたるまでの種々の黒鉛化度の炭素材料、およびLiと合金化可能な金属粒子からなる群から選ばれたものを用いることができるが、後述するように、中でも黒鉛ないし黒鉛よりも結晶性の劣る炭素材料(黒鉛化度の小さい炭素材料)が好ましく、さらには黒鉛を用いた場合がより好ましい。これは、これらはコスト的に安価であることと、電解液との反応性が高いため、本発明で用いるアルカリ(土類)金属ハロゲン化物がより効果的に作用するためである。
<Negative electrode active material>
The negative electrode active material capable of occluding and releasing lithium used in the present invention includes carbon materials of various degrees of graphitization ranging from graphite to amorphous carbon materials, and metal particles that can be alloyed with Li However, as will be described later, graphite or a carbon material having a lower crystallinity than carbon (a carbon material having a low graphitization degree) is preferable, and a case of using graphite is more preferable. preferable. This is because the alkali (earth) metal halide used in the present invention works more effectively because they are inexpensive and highly reactive with the electrolyte.

黒鉛としては天然黒鉛および人造黒鉛のいずれをも用いることができる。黒鉛は不純物の少ないものであるのが好ましく、必要に応じて種々の精製処理を施して用いる。
黒鉛としては、X線広角回折法による(002)面の面間隔(d002)が、3.37Å未満の黒鉛化度の大きいもの用いるのが好ましい。
As graphite, both natural graphite and artificial graphite can be used. It is preferable that graphite has few impurities, and it is used after being subjected to various purification treatments as necessary.
As the graphite, it is preferable to use a graphite having a large degree of graphitization of (002) plane spacing (d 002 ) of less than 3.37 mm by X-ray wide angle diffraction method.

人造黒鉛の具体例としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などの有機物を、通常2500〜3200℃の焼成温度で黒鉛化したものが挙げられる。   Specific examples of artificial graphite include coal tar pitch, coal heavy oil, atmospheric residue, petroleum heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride, Polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, imide resin, etc. Is mentioned.

また、黒鉛化度の小さい炭素材料としては、有機物を通常2500℃以下の温度で焼成したものが用いられる。有機物の具体例としては、コールタールピッチ、乾留液化油などの石炭系重質油;常圧残油、減圧残油などの直留系重質油;原油、ナフサなどの熱分解時に副生するエチレンタール等の分解系重質油などの石油系重質油;アセナフチレン、デカシクレン、アントラセンなどの芳香族炭化水素;フェナジンやアクリジンなどの窒素含有環状化合物;チオフェンなどの硫黄含有環状化合物;アダマンタンなどの脂肪族環状化合物;ビフェニル、テルフェニルなどのポリフェニレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチラールなどのポリビニルエステル類、ポリビニルアルコールなどの熱可塑性高分子などが挙げられる。   In addition, as the carbon material having a low graphitization degree, a material obtained by firing an organic substance at a temperature of usually 2500 ° C. or lower is used. Specific examples of organic substances include coal-based heavy oils such as coal tar pitch and dry-distilled liquefied oil; straight-run heavy oils such as atmospheric residual oil and vacuum residual oil; by-product during thermal decomposition of crude oil, naphtha, etc. Petroleum heavy oils such as cracked heavy oils such as ethylene tar; Aromatic hydrocarbons such as acenaphthylene, decacyclene and anthracene; Nitrogen-containing cyclic compounds such as phenazine and acridine; Sulfur-containing cyclic compounds such as thiophene; Aliphatic cyclic compounds; polyphenylenes such as biphenyl and terphenyl; polyvinyl esters such as polyvinyl chloride, polyvinyl acetate and polyvinyl butyral; and thermoplastic polymers such as polyvinyl alcohol.

これら黒鉛化度の小さい炭素材料の焼成温度は、通常600℃以上、好ましくは900℃以上、より好ましくは950℃以上であり、その上限は炭素材料に所望の黒鉛化度などにより異なるが、通常2500℃以下である。一般的には、2000℃以下、特に1400℃以下で焼成されることが多い。   The firing temperature of these carbon materials having a low degree of graphitization is usually 600 ° C. or higher, preferably 900 ° C. or higher, more preferably 950 ° C. or higher, and the upper limit varies depending on the degree of graphitization desired for the carbon material. It is 2500 degrees C or less. Generally, it is often fired at 2000 ° C. or lower, particularly 1400 ° C. or lower.

また、本発明で用いる負極活物質として好ましいものの一つは、前述の高黒鉛化度の黒鉛の表面を、上述のこれよりも黒鉛化度の小さい炭素材料で被覆したものである。このものは高黒鉛化度の黒鉛の表面を上述のコールタールピッチや種々の重質油などで被覆し、次いで焼成して被覆に用いた有機物を炭化させることにより得ることができる。このような2層構造の炭素材料における核の黒鉛と周囲の結晶化度の小さい炭素材料との合計に占める黒鉛の比率は、負極容量を大きくするため80重量%以上、特に85重量%以上であるのが好ましい。しかし、この比が大きすぎると被覆効果がうすれるので、この比は、99重量%以下であることが好ましい。核の黒鉛と周囲の被覆炭素材料との最も好ましい比は、85:15〜99:1(重量比)である。   Further, one preferable as the negative electrode active material used in the present invention is one in which the surface of the above-mentioned graphite having a high graphitization degree is coated with a carbon material having a lower graphitization degree than that described above. This can be obtained by coating the surface of graphite with a high degree of graphitization with the above-mentioned coal tar pitch, various heavy oils, etc., and then firing to carbonize the organic matter used for the coating. In such a two-layer carbon material, the ratio of graphite to the total of the core graphite and the surrounding carbon material with a low crystallinity is 80% by weight or more, particularly 85% by weight or more in order to increase the negative electrode capacity. Preferably there is. However, if this ratio is too large, the coating effect is lost, so this ratio is preferably 99% by weight or less. The most preferred ratio of core graphite to surrounding coated carbon material is 85:15 to 99: 1 (weight ratio).

黒鉛をはじめとするこれらの炭素材料は、平均粒径が、通常35μm以下、好ましくは25μm以下、最も好ましくは18μm以下であり、通常3μm以上であり、好ましくは5μm以上である。なお、黒鉛より結晶性が劣る炭素材は複数の粒子が凝集している二次粒子であってもよい。この場合は二次粒子の平均粒径が前述の範囲であることが好ましく、一次粒子の平均粒径は、通常15μm以下である。粒径が小さすぎると比表面積が大きくなりすぎ、電解液との反応が増加して不可逆容量が大きくなりやすい。また、負極活物質は非水電解液二次電池の負極を作成する際、バインダーと共に溶媒でスラリー化して集電体に塗布、乾燥して用いるが、粒径が大きすぎると塗布して電極化する際に、大塊によるいわゆる筋引きなどが起こり、均一な膜厚の活物質層の形成が困難となる。   These carbon materials including graphite have an average particle size of usually 35 μm or less, preferably 25 μm or less, most preferably 18 μm or less, usually 3 μm or more, and preferably 5 μm or more. Note that the carbon material that is less crystalline than graphite may be secondary particles in which a plurality of particles are aggregated. In this case, the average particle size of the secondary particles is preferably in the above-mentioned range, and the average particle size of the primary particles is usually 15 μm or less. If the particle size is too small, the specific surface area becomes too large, the reaction with the electrolyte increases, and the irreversible capacity tends to increase. Also, when preparing the negative electrode of a nonaqueous electrolyte secondary battery, the negative electrode active material is slurried with a solvent together with a binder, applied to a current collector and dried, but if the particle size is too large, it is applied to form an electrode. In doing so, so-called streaks due to large lumps occur, making it difficult to form an active material layer having a uniform thickness.

また、黒鉛をはじめとするこれらの炭素材料のBET吸着法の測定による比表面積(BET比表面積)は、下限が2m/g以上が好ましく、さらに4m/g以上がより好ましく、上限は20m/g以下が好ましく、さらには15m/g以下がより好ましい。これは、炭素材料の比表面積が小さすぎると本発明で用いるアルカリ(土類)金属ハロゲン化物が作用する際の有効性が低くなるためであり、高すぎると電解液との反応性が高くなりすぎ、それを抑制するためアルカリ(土類)金属ハロゲン化物を多く含有させる必要が出てきて、結果的に容量低下を招き非効率であるためである。 The specific surface area (BET specific surface area) by the measurement of the BET adsorption method of carbon materials including graphite, the lower limit is preferably not less than 2m 2 / g, more preferably at least more 4m 2 / g, the upper limit is 20m 2 / g or less is preferable, and 15 m 2 / g or less is more preferable. This is because if the specific surface area of the carbon material is too small, the effectiveness of the alkali (earth) metal halide used in the present invention is reduced, and if it is too high, the reactivity with the electrolyte is increased. This is because it is necessary to contain a large amount of alkali (earth) metal halide in order to suppress it, resulting in inefficiency due to a decrease in capacity.

負極活物質としては、上述の黒鉛や黒鉛化度の異なる炭素材料等の2種以上を混合して用いてもよい。   As the negative electrode active material, a mixture of two or more of the above-described graphite and carbon materials having different graphitization degrees may be used.

〈アルカリ(土類)金属ハロゲン化物〉
本発明に用いられるアルカリ(土類)金属ハロゲン化物は、アルカリ金属(Li,Na,K,Rb,Cs)、アルカリ土類金属(Be,Mg,Ca,Sr,Ba)の、フッ化物、塩化物、臭素化物、ヨウ化物であるが、コスト面や、化合物の取り扱いやすさからLiF、LiCl、NaF,NaCl等のハロゲン化ナトリウム、KF、KCl、MgF、MgCl、CaF、CaCl等が好ましく、特にハロゲン化ナトリウムが好ましい。これらのアルカリ(土類)金属ハロゲン化物は1種を単独で用いてもよく、2種以上を併用してもよい。
<Alkali (earth) metal halide>
Alkali (earth) metal halides used in the present invention are alkali metal (Li, Na, K, Rb, Cs), alkaline earth metal (Be, Mg, Ca, Sr, Ba) fluoride, chloride. , Bromide, and iodide, but from the viewpoint of cost and ease of handling of the compound, sodium halides such as LiF, LiCl, NaF, and NaCl, KF, KCl, MgF 2 , MgCl 2 , CaF 2 , CaCl 2, etc. Is preferable, and sodium halide is particularly preferable. These alkali (earth) metal halides may be used alone or in combination of two or more.

なお、電池に用いる際には、アルカリ(土類)金属ハロゲン化物は電解液に溶解し難いものであることが、本発明の効果を発現するためより好ましく、また負極材料中に含有させる際には、水溶液にして負極活物質と均一に混合できるように、水への溶解度が高いものであることが好ましい。   In addition, when used in a battery, it is more preferable that the alkali (earth) metal halide is difficult to dissolve in the electrolytic solution in order to exhibit the effects of the present invention, and when it is contained in the negative electrode material. Is preferably an aqueous solution having a high solubility in water so that it can be uniformly mixed with the negative electrode active material.

本発明において、負極材料にアルカリ(土類)金属ハロゲン化物を含有させる方法としては、どのような方法を用いてもよいが、特に少量添加で均一にアルカリ(土類)金属ハロゲン化物を含有させるには、まずアルカリ(土類)金属ハロゲン化物を水に溶解させて水溶液とし、次いで負極活物質とこの水溶液とを混合し、その後混合液を濾過するなどして水分を除去した後、乾燥する方法が有効である。このような処理を行った場合、アルカリ金属ないしアルカリ土類金属のハロゲン化物は負極材料表面を覆う形で比較的均一に存在しているものと推定される。被覆が微量である場合、SEM観察等では明確なハロゲン化物の存在を確認する事が困難な場合がある。その場合TOF−SIMS等による表面分析でアルカリ金属ないしアルカリ土類金属の存在を確認できる。   In the present invention, any method may be used as a method for containing the alkali (earth) metal halide in the negative electrode material, but the alkali (earth) metal halide is uniformly contained especially by adding a small amount. First, an alkali (earth) metal halide is dissolved in water to form an aqueous solution, then the negative electrode active material and this aqueous solution are mixed, and then the mixed solution is filtered to remove moisture, followed by drying. The method is effective. When such a treatment is performed, it is presumed that the alkali metal or alkaline earth metal halide exists relatively uniformly in a form covering the surface of the negative electrode material. When the amount of the coating is very small, it may be difficult to confirm the presence of a clear halide by SEM observation or the like. In that case, the presence of alkali metal or alkaline earth metal can be confirmed by surface analysis using TOF-SIMS or the like.

本発明において、負極材料中のアルカリ(土類)金属ハロゲン化物量が少な過ぎても、本発明の効果を十分に得ることができず、多過ぎると逆に抵抗になり電気化学反応に悪影響を与えるため、負極材料中のアルカリ(土類)金属ハロゲン化物含有量には最適値がある。   In the present invention, even if the amount of alkali (earth) metal halide in the negative electrode material is too small, the effect of the present invention cannot be obtained sufficiently. Therefore, there is an optimum value for the alkali (earth) metal halide content in the negative electrode material.

負極材料のアルカリ(土類)金属ハロゲン化物含有量は、例えば、前述の負極材料へのアルカリ(土類)金属ハロゲン化物の含有方法において、用いるアルカリ(土類)金属ハロゲン化物水溶液のアルカリ(土類)金属ハロゲン化物濃度を調整することにより調節することができる。   The alkaline (earth) metal halide content of the negative electrode material is, for example, the alkali (earth) metal halide aqueous solution used in the above-described method for containing an alkaline (earth) metal halide in the negative electrode material. Class) It can be adjusted by adjusting the metal halide concentration.

アルカリ(土類)金属ハロゲン化物が被覆あるいは添着されるなどして、アルカリ(土類)金属ハロゲン化物が含有された本発明の負極材料中のアルカリ(土類)金属ハロゲン化物の含有量は、特に制限されないが、アルカリ(土類)金属換算の含有量の下限として100ppm(0.01重量%)以上が好ましく、200ppm(0.02重量%)以上がより好ましく、500ppm(0.05重量%)以上が特に好ましい。また、その上限としては、10000ppm(1.0重量%)以下が好ましく、9000ppm(0.9重量%)以下がより好ましく、5000ppm(0.5重量%)以下が特に好ましい。   The content of the alkali (earth) metal halide in the negative electrode material of the present invention containing the alkali (earth) metal halide is, for example, coated or attached with an alkali (earth) metal halide. Although not particularly limited, the lower limit of the content in terms of alkali (earth) metal is preferably 100 ppm (0.01 wt%) or more, more preferably 200 ppm (0.02 wt%) or more, and 500 ppm (0.05 wt%). The above is particularly preferable. Moreover, as the upper limit, 10,000 ppm (1.0 weight%) or less is preferable, 9000 ppm (0.9 weight%) or less is more preferable, 5000 ppm (0.5 weight%) or less is especially preferable.

この負極材料中のアルカリ(土類)金属ハロゲン化物の含有量は、例えば試料を充分な量の水中に分散し、負極材料中に含有されるアルカリ(土類)金属ハロゲン化物を抽出し、抽出されたアルカリ(土類)金属ハロゲン化物について、ICP−AES(誘導結合プラズマ発光分光分析:Inductively Coupled Plasma Atomic Emission Spectroscopy)等でアルカリ(土類)金属量を定量することにより求めることができる。   The content of the alkali (earth) metal halide in the negative electrode material is extracted, for example, by dispersing the sample in a sufficient amount of water and extracting the alkali (earth) metal halide contained in the negative electrode material. The obtained alkali (earth) metal halide can be determined by quantifying the amount of alkali (earth) metal by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy) or the like.

[非水電解液二次電池]
上述のような本発明の非水電解液二次電池用負極材料は、非水電解液二次電池の負極活物質層形成のための材料として用いられる。
[Nonaqueous electrolyte secondary battery]
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention as described above is used as a material for forming a negative electrode active material layer of a non-aqueous electrolyte secondary battery.

以下に、リチウムイオンを吸蔵・放出可能な正極および負極と、非水電解液を備える非水電解液二次電池であって、負極が、本発明の非水電解液二次電池用負極材料を含有する本発明の非水電解液二次電池について説明する。   The following is a nonaqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing lithium ions and a nonaqueous electrolyte, wherein the negative electrode is a negative electrode material for a nonaqueous electrolyte secondary battery of the present invention. The contained nonaqueous electrolyte secondary battery of the present invention will be described.

〈非水電解液〉
(有機溶媒)
非水電解液の有機溶媒としては、特に限定されるものではないが、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。
<Non-aqueous electrolyte>
(Organic solvent)
The organic solvent for the non-aqueous electrolyte is not particularly limited, but for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines , Esters, amides, phosphate ester compounds and the like can be used.

これらの代表的なものを列挙すると、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、4−メチル−2−ペンタノン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、ジメチルホルムアミド、ジメチルスルホキシド、リン酸トリメチル、リン酸トリエチル等の単独もしくは2種類以上の混合溶媒が挙げられる。   A typical list of these is dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyl-2-pentanone, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, benzo Nitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, dimethylformamide, dimethyl sulfoxide, trimethyl phosphate, triethyl phosphate, or a mixture of two or more types And the like.

上記有機溶媒には、特に電解質を解離させるために高誘電率溶媒が含まれることが好ましい。ここで、高誘電率溶媒とは、25℃における比誘電率が20以上の化合物を意味する。高誘電率溶媒の中で、エチレンカーボネート、プロピレンカーボネートおよびそれらの水素原子をハロゲン等の他の元素またはアルキル基等で置換した化合物が好ましい。   The organic solvent preferably contains a high dielectric constant solvent in order to dissociate the electrolyte. Here, the high dielectric constant solvent means a compound having a relative dielectric constant of 20 or more at 25 ° C. Among the high dielectric constant solvents, ethylene carbonate, propylene carbonate, and compounds in which hydrogen atoms thereof are substituted with other elements such as halogen or alkyl groups are preferable.

このような高誘電率溶媒の、電解液に占める割合は、好ましくは20重量%以上、更に好ましくは30重量%以上、最も好ましくは40重量%以上である。電解液中の該高誘電率溶媒の含有量が少ないと、所望の電池特性が得られない場合がある。   The proportion of such a high dielectric constant solvent in the electrolytic solution is preferably 20% by weight or more, more preferably 30% by weight or more, and most preferably 40% by weight or more. If the content of the high dielectric constant solvent in the electrolytic solution is small, desired battery characteristics may not be obtained.

(リチウム塩)
上記有機溶媒に溶解させるリチウム塩としては、特に限定されるものではなく、従来公知のものをいずれも使用することができ、例えばLiClO、LiAsF、LiPF、LiBF、LiB(C、LiCl、LiBr、CHSOLi、CFSOLi、LiN(SOCF、LiN(SO、LiC(SOCF、LiN(SOCF等を用いることができる。これらのリチウム塩は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(Lithium salt)
The lithium salt dissolved in the organic solvent is not particularly limited, and any conventionally known salt can be used. For example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2 or the like can be used. These lithium salts may be used alone or in combination of two or more.

これらのリチウム塩の非水電解液中の濃度の下限値としては、通常0.5mol/L以上、中でも0.75mol/L以上、上限値としては、通常2mol/L以下、中でも1.5mol/L以下である。リチウム塩の濃度がこの上限値を超えると非水電解液の粘度が高くなり、電気伝導率も低下する。また、この下限値を下回ると電気伝導率が低くなるので、上記濃度範囲内で非水電解液を調製することが好ましい。   The lower limit of the concentration of these lithium salts in the non-aqueous electrolyte is usually 0.5 mol / L or more, especially 0.75 mol / L or more, and the upper limit is usually 2 mol / L or less, especially 1.5 mol / L. L or less. When the concentration of the lithium salt exceeds this upper limit, the viscosity of the non-aqueous electrolyte increases and the electrical conductivity also decreases. Moreover, since electrical conductivity will become low if less than this lower limit, it is preferable to prepare a non-aqueous electrolyte within the said concentration range.

〈正極〉
正極は、正極活物質とバインダーおよび導電剤とを有する。好ましくは、正極は、正極集電体と、正極活物質とバインダーと導電剤を含有する正極合材層とからなる。
<Positive electrode>
The positive electrode has a positive electrode active material, a binder, and a conductive agent. Preferably, the positive electrode includes a positive electrode current collector, a positive electrode active material, a binder, and a positive electrode mixture layer containing a conductive agent.

正極活物質は、Liを可逆的に吸蔵・放出できるものであればよいが、中でもリチウム遷移金属複合酸化物がより好ましい。リチウム遷移金属としては、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウム鉄酸化物、リチウムクロム酸化物、リチウムバナジウム酸化物、リチウムチタン酸化物、リチウム銅酸化物等を挙げることができる。具体的な組成式としては、例えば一般式LiMn、LiMnO、LiNiO、LiCoO、LiFeO、LiCrO、Li1+x、LiV、LiTi、LiCuO、LiCuOで表されるような化合物等を挙げることができる。これらは、さらに充放電時の安定化を図るため、主たる遷移金属元素の一部を別の金属元素で置き換えられていてもよい。 The positive electrode active material may be any material as long as it can reversibly occlude and release Li, and among these, a lithium transition metal composite oxide is more preferable. Examples of the lithium transition metal include lithium manganese oxide, lithium nickel oxide, lithium cobalt oxide, lithium iron oxide, lithium chromium oxide, lithium vanadium oxide, lithium titanium oxide, and lithium copper oxide. it can. Specific compositional formula, for example, the general formula LiMn 2 O 4, LiMnO 2, LiNiO 2, LiCoO 2, LiFeO 2, LiCrO 2, Li 1 + x V 3 O 8, LiV 2 O 4, LiTi 2 O 4, Examples thereof include compounds represented by Li 2 CuO 2 and LiCuO 2 . In order to further stabilize the charge / discharge, a part of the main transition metal element may be replaced with another metal element.

ただし、本発明の効果が顕著である点で、正極活物質はマンガンを含有することが好ましい。マンガンを含有するものとしては、リチウムマンガン系複合酸化物、特に一般式LiMnで表されるようなスピネル構造を有するリチウムマンガン複合酸化物や、最近研究が盛んである層状構造のLiNi1/3Mn1/3Co1/3やLiNi1/2Mn1/2等が好ましい。 However, the positive electrode active material preferably contains manganese in that the effect of the present invention is remarkable. Examples of manganese-containing compounds include lithium-manganese composite oxides, particularly lithium-manganese composite oxides having a spinel structure as represented by the general formula LiMn 2 O 4 , and LiNi 1 having a layered structure that has been actively studied recently. / 3 Mn 1/3 Co 1/3 O 2 and LiNi 1/2 Mn 1/2 O 2 are preferred.

これらの正極活物質は1種を単独で用いてもよく、2種以上を混合して用いてもよい。   These positive electrode active materials may be used alone or in a combination of two or more.

正極に使用されるバインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等が挙げられる。正極合材層中のバインダーの割合は、通常0.1重量%以上、好ましくは1重量%以上、さらに好ましくは5重量%以上であり、通常80重量%以下、好ましくは60重量%以下、さらに好ましくは40重量%以下、最も好ましくは10重量%以下である。正極合材層中のバインダーの割合が低すぎると、活物質を十分に保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させることがあり、一方高すぎると電池容量や導電性を下げることがある。   Examples of the binder used for the positive electrode include polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), NBR ( Acrylonitrile-butadiene rubber), fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose and the like. The ratio of the binder in the positive electrode mixture layer is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and usually 80% by weight or less, preferably 60% by weight or less, Preferably it is 40 weight% or less, Most preferably, it is 10 weight% or less. If the ratio of the binder in the positive electrode mixture layer is too low, the active material cannot be sufficiently retained, the positive electrode mechanical strength may be insufficient, and the battery performance such as cycle characteristics may be deteriorated. May reduce capacity and conductivity.

また、正極合材層の導電剤としては、天然黒鉛、人造黒鉛等の黒鉛や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料を挙げることができる。正極合材層中の導電剤の割合は、通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは1重量%以上であり、通常50重量%以下、好ましくは30重量%以下、さらに好ましくは15重量%以下である。正極合材層中の導電剤の割合が低すぎると導電性が不十分になることがあり、逆に高すぎると電池容量が低下することがある。   Examples of the conductive agent for the positive electrode mixture layer include graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke. The proportion of the conductive agent in the positive electrode mixture layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 1% by weight or more, and usually 50% by weight or less, preferably 30% by weight. Hereinafter, it is more preferably 15% by weight or less. If the proportion of the conductive agent in the positive electrode mixture layer is too low, the conductivity may be insufficient. Conversely, if it is too high, the battery capacity may be reduced.

正極に使用する集電体の材質としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が用いられ、好ましくはアルミニウムである。集電体の厚さは、通常1〜1000μm、好ましくは5〜500μm程度である。集電体が厚すぎると非水電解液二次電池全体としての容量が低下し、薄すぎると機械的強度が不足することがある。   As the material of the current collector used for the positive electrode, aluminum, stainless steel, nickel-plated steel or the like is used, and preferably aluminum. The thickness of the current collector is usually about 1 to 1000 μm, preferably about 5 to 500 μm. If the current collector is too thick, the capacity of the non-aqueous electrolyte secondary battery as a whole decreases, and if it is too thin, the mechanical strength may be insufficient.

正極は、前述の正極活物質とバインダーと導電剤、必要に応じて添加されるその他の添加剤とを溶媒でスラリー化したものを集電体に塗布して乾燥することにより作成することができる。   The positive electrode can be prepared by applying a slurry obtained by slurrying the above-described positive electrode active material, a binder, a conductive agent, and other additives added as necessary with a solvent to a current collector, and drying the positive electrode active material. .

スラリー化のために用いる溶媒としては、通常、バインダーを溶解する有機溶剤が使用される。例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が用いられるがこれらに限定されない。これらは1種を単独で用いても、複数種を併用してもよい。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化することもできる。   As the solvent used for slurrying, an organic solvent that dissolves the binder is usually used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran and the like are used, but not limited thereto. These may be used individually by 1 type, or may use multiple types together. Moreover, a dispersing agent, a thickener, etc. can be added to water, and an active material can also be slurried with latex, such as SBR.

このようにして形成される正極合材層の厚さは、通常1〜1000μm、好ましくは10〜200μm程度である。正極合材層が厚すぎると導電性が低下する傾向にあり、薄すぎると容量が低下する傾向にある。   The thickness of the positive electrode mixture layer thus formed is usually about 1 to 1000 μm, preferably about 10 to 200 μm. If the positive electrode mixture layer is too thick, the conductivity tends to decrease, and if it is too thin, the capacity tends to decrease.

なお、塗布・乾燥によって得られた正極合材層は、活物質の充填密度を上げるためローラープレス等により圧密化するのが好ましい。   The positive electrode mixture layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the active material.

〈負極〉
負極は通常、正極の場合と同様、負極活物質とバインダーさらには必要に応じて導電剤を含む負極合材層を集電体上に形成されてなる。この際、使用するバインダーや、必要に応じて使用される導電剤としては、正極で使用するものと同様のものを使用することができる。
本発明においては、この負極活物質として、本発明の負極材料を用いる。なお、本発明の負極材料は、異なる負極活物質を用いたもの、異なるアルカリ(土類)金属ハロゲン化物を用いたものなどの2種以上を併用しても良い。また、本発明の負極材料と、アルカリ(土類)金属ハロゲン化物を含まない、通常の負極活物質とを混合使用しても良い。
<Negative electrode>
As in the case of the positive electrode, the negative electrode is usually formed by forming a negative electrode active material, a binder, and, if necessary, a negative electrode mixture layer containing a conductive agent on the current collector. In this case, as the binder to be used and the conductive agent to be used as necessary, the same ones as used for the positive electrode can be used.
In the present invention, the negative electrode material of the present invention is used as the negative electrode active material. In addition, the negative electrode material of the present invention may be used in combination of two or more types such as those using different negative electrode active materials and those using different alkali (earth) metal halides. Further, the negative electrode material of the present invention and a normal negative electrode active material not containing an alkali (earth) metal halide may be mixed and used.

負極材料に対するバインダーの比率は通常0.1重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上であり、通常20重量%以下、好ましくは10重量%以下、さらに好ましくは5重量%以下である。バインダーの割合が低すぎると、負極材料を十分に保持できずに負極の機械的強度が不足し、サイクル特性等の電池性能を悪化させることがあり、一方高すぎると電池容量や導電性を下げることがある。   The ratio of the binder to the negative electrode material is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more, usually 20% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less. If the binder ratio is too low, the negative electrode material cannot be sufficiently retained and the negative electrode mechanical strength may be insufficient, which may deteriorate battery performance such as cycle characteristics. On the other hand, if the binder ratio is too high, the battery capacity and conductivity may be reduced. Sometimes.

負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用され、好ましくは銅が用いられる。集電体の厚さは、通常1〜1000μm、好ましくは5〜500μm程度である。集電体が厚すぎると非水電解液二次電池全体としての容量が低下し、薄すぎると機械的強度が不足することがある。   As the current collector for the negative electrode, copper, nickel, stainless steel, nickel-plated steel or the like is used, and copper is preferably used. The thickness of the current collector is usually about 1 to 1000 μm, preferably about 5 to 500 μm. If the current collector is too thick, the capacity of the non-aqueous electrolyte secondary battery as a whole decreases, and if it is too thin, the mechanical strength may be insufficient.

負極も、正極と同様に前述の負極材料とバインダーと、必要に応じて添加される導電剤やその他の添加剤とを溶媒でスラリー化したものを集電体に塗布して乾燥することにより作成することができる。スラリー化のために用いる溶媒としては、正極の作成に用いる溶媒と同様のものを用いることができる。   Similarly to the positive electrode, the negative electrode is prepared by applying a slurry of the above-described negative electrode material, a binder, and a conductive agent and other additives that are added as necessary, to a current collector and drying it. can do. As the solvent used for slurrying, the same solvent as used for preparing the positive electrode can be used.

このようにして形成される負極合材層の厚さは、通常1〜1000μm、好ましくは10〜200μm程度である。負極合材層が厚すぎると導電性が低下する傾向にあり、薄すぎると容量が低下する傾向にある。   The thickness of the negative electrode mixture layer thus formed is usually about 1 to 1000 μm, preferably about 10 to 200 μm. If the negative electrode mixture layer is too thick, the conductivity tends to decrease, and if it is too thin, the capacity tends to decrease.

なお、塗布・乾燥によって得られた負極合材層は、活物質の充填密度を上げるためローラープレス等により圧密化するのが好ましい。   The negative electrode mixture layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the active material.

〈セパレーター〉
本発明の非水電解液二次電池は、正極と負極との間にセパレーターを介在させることが好ましい。このセパレータとしては、微多孔性の高分子フィルムが用いられ、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子よりなるものが用いられる。セパレーターの化学的および電気化学的安定性は重要な因子である。この点からポリオレフィン系高分子が好ましく、電池セパレーターの目的の一つである自己閉塞温度の点からポリエチレン製であることが望ましい。
<separator>
In the non-aqueous electrolyte secondary battery of the present invention, a separator is preferably interposed between the positive electrode and the negative electrode. As this separator, a microporous polymer film is used, and a separator made of a polyolefin polymer such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, polybutene or the like is used. The chemical and electrochemical stability of the separator is an important factor. In this respect, a polyolefin-based polymer is preferable, and it is desirable that the polymer is made of polyethylene in view of the self-occluding temperature which is one of the purposes of the battery separator.

ポリエチレンセパレーターの場合、高温形状維持性の点から超高分子量ポリエチレンであることが好ましく、その分子量の下限は好ましくは50万、さらに好ましくは100万、最も好ましくは150万である。他方分子量の上限は、好ましくは500万、更に好ましくは400万、最も好ましくは300万である。分子量が大きすぎると、流動性が低すぎて加熱された時セパレーターの孔が閉塞しない場合があるからである。   In the case of a polyethylene separator, ultrahigh molecular weight polyethylene is preferable from the viewpoint of high temperature shape maintenance, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1,500,000. On the other hand, the upper limit of the molecular weight is preferably 5 million, more preferably 4 million, and most preferably 3 million. This is because if the molecular weight is too large, the pores of the separator may not close when heated because the fluidity is too low.

〈電池構成〉
本発明の非水電解液二次電池は、上述した正極と、負極と、非水電解液と、必要に応じて用いられるセパレータとを、適切な形状に組み立てることにより製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも可能である。
<Battery configuration>
The non-aqueous electrolyte secondary battery of the present invention is manufactured by assembling the above-described positive electrode, negative electrode, non-aqueous electrolyte, and separator used as necessary into an appropriate shape. Furthermore, other components such as an outer case can be used as necessary.

その電池形状は特に制限されず、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。一般的に採用されている形状の例としては、シート電極およびセパレータをスパイラル状にしたシリンダータイプ、ペレット電極およびセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極およびセパレータを積層したコインタイプ、シート電極およびセパレータを積層したラミネートタイプなどが挙げられる。また、電池を組み立てる方法も特に制限されず、目的とする電池の形状に合わせて、通常用いられている各種方法の中から適宜選択することができる。   The battery shape is not particularly limited, and can be appropriately selected from various commonly used shapes according to the application. Examples of commonly used shapes include a cylinder type with a spiral sheet electrode and separator, a cylinder type with an inside-out structure combining a pellet electrode and a separator, a coin type with stacked pellet electrodes and a separator, and a sheet Examples include a laminate type in which electrodes and separators are laminated. The method for assembling the battery is not particularly limited, and can be appropriately selected from various commonly used methods according to the shape of the target battery.

以上、本発明の非水電解液二次電池の一般的な実施形態について説明したが、本発明の非水電解液二次電池は上記実施形態に制限されるものではなく、その要旨を超えない限りにおいて、各種の変形を加えて実施することが可能である。   The general embodiment of the non-aqueous electrolyte secondary battery of the present invention has been described above, but the non-aqueous electrolyte secondary battery of the present invention is not limited to the above-described embodiment and does not exceed the gist thereof. As long as it is possible, various modifications can be made.

次に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to description of a following example, unless the summary is exceeded.

実施例1
BET比表面積11.8m/gの天然黒鉛(X線広角回折法による(002)面の面間隔(d002)3.356Å)0.3gを0.1重量%の塩化ナトリウム(NaCl)水溶液100ml中に分散させ30分攪拌した後、吸引濾過を行い、次いで100℃の真空乾燥を6時間行って、塩化ナトリウムが被着された天然黒鉛(負極材料)を得た。
この負極材料を、バインダーであるポリフッ化ビニリデン(PVdF)と9:1(重量比)の割合で、N−メチル−2−ピロリドン(NMP)溶媒中に混合してスラリー化し、集電体の銅箔に塗布して乾燥した後プレスして負極とした。
Example 1
Natural graphite having a BET specific surface area of 11.8 m 2 / g (surface distance (d 002 ) of 3.356 mm by X-ray wide angle diffraction method (d 002 ) 3.356 mm) 0.3 g of 0.1% by weight sodium chloride (NaCl) aqueous solution After dispersing in 100 ml and stirring for 30 minutes, suction filtration was performed, followed by vacuum drying at 100 ° C. for 6 hours to obtain natural graphite (negative electrode material) coated with sodium chloride.
This negative electrode material was mixed in a N-methyl-2-pyrrolidone (NMP) solvent at a ratio of 9: 1 (weight ratio) with polyvinylidene fluoride (PVdF) as a binder to form a slurry. After applying to a foil and drying, it was pressed to obtain a negative electrode.

この負極について、次の方法で電気化学的特性の評価を行い、結果を表1に示した。
2032型コインセルを使用し、作用極に前記負極、対極にリチウム金属を用いた。電解液にはエチレンカーボネートとジエチルカーボネートの1:1(重量比)の混合溶媒に1mol/LのLiClOを溶解したものを用いた。
試験は、対極Li/Li基準で0.0V〜2.0Vの範囲で、電流密度C/2(175mA/g)の定電流にて、充電(Liイオンの挿入)、放電(Liイオンの脱離)を行いその容量と効率を測定することにより行った。
The negative electrode was evaluated for electrochemical characteristics by the following method, and the results are shown in Table 1.
A 2032 type coin cell was used, and the negative electrode was used for the working electrode and lithium metal was used for the counter electrode. As the electrolytic solution, a solution obtained by dissolving 1 mol / L of LiClO 4 in a 1: 1 (weight ratio) mixed solvent of ethylene carbonate and diethyl carbonate was used.
The test was performed at a constant current of C / 2 (175 mA / g) at a current density in the range of 0.0 V to 2.0 V on the basis of the counter electrode Li / Li + and charged (insertion of Li ions) and discharged (of Li ions). Desorption) and measuring the capacity and efficiency.

実施例2
負極活物質の原料となる天然黒鉛を分散させるNaCl水溶液の濃度を0.5重量%としたこと以外は、実施例1と同様にして負極材料を調製し、同様に負極の作成および電気化学的特性の評価を行い、結果を表1に示した。
Example 2
A negative electrode material was prepared in the same manner as in Example 1 except that the concentration of the NaCl aqueous solution in which natural graphite as a raw material for the negative electrode active material was dispersed was 0.5% by weight. The characteristics were evaluated and the results are shown in Table 1.

比較例1
負極材料として天然黒鉛をそのまま用い、実施例1と同様に負極の作成および電気化学的特性の評価を行い、結果を表1に示した。
Comparative Example 1
Using natural graphite as the negative electrode material as it was, preparation of the negative electrode and evaluation of electrochemical characteristics were performed in the same manner as in Example 1, and the results are shown in Table 1.

比較例2
天然黒鉛を分散させる水溶液に0.1重量%の炭酸ナトリウム(NaCO)水溶液を用いたこと以外は、実施例1と同様にして負極材料を調製し、同様に負極の作成および電気化学的特性の評価を行い、結果を表1に示した。
Comparative Example 2
A negative electrode material was prepared in the same manner as in Example 1 except that a 0.1 wt% sodium carbonate (Na 2 CO 3 ) aqueous solution was used as the aqueous solution in which natural graphite was dispersed. The characteristics were evaluated and the results are shown in Table 1.

比較例3
天然黒鉛を分散させる水溶液に0.5重量%のNaCO水溶液を用いたこと以外は、実施例1と同様にして負極材料を調製し、同様に負極の作成および電気化学的特性の評価を行い、結果を表1に示した。
Comparative Example 3
A negative electrode material was prepared in the same manner as in Example 1 except that a 0.5 wt% Na 2 CO 3 aqueous solution was used as the aqueous solution in which natural graphite was dispersed. Similarly, preparation of the negative electrode and evaluation of electrochemical characteristics were performed. The results are shown in Table 1.

比較例4
天然黒鉛を分散させる水溶液に5重量%のNaCl水溶液を用いたこと以外は、実施例1と同様にして負極材料を調製し、同様に負極の作成および電気化学的特性の評価を行い、結果を表1に示した。
Comparative Example 4
A negative electrode material was prepared in the same manner as in Example 1 except that a 5 wt% NaCl aqueous solution was used as the aqueous solution in which natural graphite was dispersed. Similarly, the negative electrode was prepared and the electrochemical characteristics were evaluated. It is shown in Table 1.

なお、表1には、各実施例および比較例における負極材料中に含まれるNaClまたはNaCO由来のNa含有量をICP−AESによって分析定量した結果も併記した。 Table 1 also shows the results of analysis and quantification of Na content derived from NaCl or Na 2 CO 3 contained in the negative electrode materials in Examples and Comparative Examples by ICP-AES.

Figure 2006310265
Figure 2006310265

表1の結果から、実施例1,2のようにNaCl水溶液処理を施した活物質の方が、比較例1のように何も処理しない場合や、比較例2,3のように特許文献2にあるようなNaCO水溶液処理を施した場合よりも、それを負極材料として用いた電池の放電容量ないし初期効率が大きく、優れた性能を発現することが分かる。
また、比較例4のように、負極材料中のNaCl含有量は多すぎると容量の低下を伴い、好ましくないことが分かる。
なお、図1に実施例2の電池と比較例1の電池の初期充放電試験カーブを示す。図1より、実施例2の電池の方が比較例1の電池よりも分極が少ないため充電容量が大きく、そのため放電容量も大きくなっていることが分かる。
これらのことから、NaClを含む負極材料を用いた負極を使用した非水電解液二次電池は、可逆容量が高く、出力も大きくなることが予想される。
From the results of Table 1, the active material treated with the NaCl aqueous solution as in Examples 1 and 2 was not treated at all as in Comparative Example 1, or Patent Document 2 as in Comparative Examples 2 and 3. It can be seen that the discharge capacity or initial efficiency of a battery using the negative electrode material is higher than that of the Na 2 CO 3 aqueous solution treatment as shown in FIG.
Further, as in Comparative Example 4, it is understood that if the NaCl content in the negative electrode material is too large, the capacity is decreased, which is not preferable.
FIG. 1 shows initial charge / discharge test curves of the battery of Example 2 and the battery of Comparative Example 1. FIG. 1 shows that the battery of Example 2 is less polarized than the battery of Comparative Example 1 and thus has a larger charge capacity and therefore a larger discharge capacity.
From these facts, a nonaqueous electrolyte secondary battery using a negative electrode using a negative electrode material containing NaCl is expected to have a high reversible capacity and a large output.

電気化学的特性に優れた本発明の非水電解液二次電池用負極材料を備える本発明の非水電解液二次電池は、電池性能に優れ、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ等の小型機器、および、電気自動車、ハイブリッド自動車等の大型機器などを挙げることができるが、何らこれらに限定されるものではない。   The non-aqueous electrolyte secondary battery of the present invention comprising the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention having excellent electrochemical characteristics is excellent in battery performance and can be used for various known applications. is there. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. , Electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, lighting fixtures, toys, gaming devices, small devices such as watches, strobes, cameras, and large devices such as electric vehicles and hybrid vehicles However, the present invention is not limited to these examples.

実施例2の電池と比較例1の電池の初期充放電試験カーブを示すグラフである。It is a graph which shows the initial stage charge / discharge test curve of the battery of Example 2, and the battery of Comparative Example 1.

Claims (9)

リチウムの吸蔵・放出が可能な負極活物質と、アルカリ金属のハロゲン化物および/またはアルカリ土類金属のハロゲン化物とを含有することを特徴とする非水電解液二次電池用負極材料。   A negative electrode material for a non-aqueous electrolyte secondary battery, comprising: a negative electrode active material capable of inserting and extracting lithium; and an alkali metal halide and / or an alkaline earth metal halide. 負極活物質が、黒鉛および/または黒鉛より結晶性の劣る炭素材料を主成分とするものであることを特徴とする請求項1に記載の非水電解液二次電池用負極材料。   2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is mainly composed of graphite and / or a carbon material that is less crystalline than graphite. 黒鉛および/または黒鉛より結晶性の劣る炭素材料の比表面積が、2m/g以上、20m/g以下であることを特徴とする請求項1または2記載の非水電解液二次電池用負極材料。 3. The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the specific surface area of graphite and / or a carbon material that is less crystalline than graphite is 2 m 2 / g or more and 20 m 2 / g or less. Negative electrode material. アルカリ金属のハロゲン化物がハロゲン化ナトリウムであることを特徴とする請求項1ないし3のいずれか1項に記載の非水電解液二次電池用負極材料。   4. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the alkali metal halide is sodium halide. 5. アルカリ金属のハロゲン化物および/またはアルカリ土類金属のハロゲン化物を含む水溶液と、リチウムの吸蔵・放出が可能である活物質とを混合した後、水分を除去、乾燥することにより得られることを特徴とする請求項1ないし4のいずれか1項に記載の非水電解液二次電池用負極材料。   It is obtained by mixing an aqueous solution containing an alkali metal halide and / or an alkaline earth metal halide and an active material capable of occluding and releasing lithium, and then removing and drying the moisture. The negative electrode material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4. アルカリ金属のハロゲン化物および/またはアルカリ土類金属のハロゲン化物の含有量が、アルカリ金属および/またはアルカリ土類金属換算の含有量で100ppm以上10000ppm以下であることを特徴とする請求項1ないし5のいずれか1項に記載の非水電解液二次電池用負極材料。   6. The content of alkali metal halide and / or alkaline earth metal halide is 100 ppm or more and 10,000 ppm or less in terms of alkali metal and / or alkaline earth metal equivalent. The negative electrode material for nonaqueous electrolyte secondary batteries of any one of these. リチウムイオンを吸蔵・放出可能な正極および負極、非水電解液を備える非水電解液二次電池であって、該負極が、請求項1ないし6のいずれか1項に記載の非水電解液二次電池用負極材料を含有することを特徴とする非水電解液二次電池。   A nonaqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte, wherein the negative electrode is the nonaqueous electrolyte according to any one of claims 1 to 6. A nonaqueous electrolyte secondary battery comprising a negative electrode material for a secondary battery. 正極に含まれる正極活物質がリチウム遷移金属複合酸化物であることを特徴とする請求項7に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 7, wherein the positive electrode active material contained in the positive electrode is a lithium transition metal composite oxide. リチウム遷移金属複合酸化物がマンガンを含有することを特徴とする請求項8に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 8, wherein the lithium transition metal composite oxide contains manganese.
JP2006017852A 2005-03-31 2006-01-26 Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same Pending JP2006310265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017852A JP2006310265A (en) 2005-03-31 2006-01-26 Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005102833 2005-03-31
JP2006017852A JP2006310265A (en) 2005-03-31 2006-01-26 Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2006310265A true JP2006310265A (en) 2006-11-09

Family

ID=37476894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017852A Pending JP2006310265A (en) 2005-03-31 2006-01-26 Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2006310265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123473A (en) * 2007-11-14 2009-06-04 Sony Corp Nonaqueous electrolyte battery
WO2010147225A1 (en) * 2009-06-16 2010-12-23 住友化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising same
JP2013125662A (en) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same
CN103229338A (en) * 2010-11-26 2013-07-31 丰田自动车株式会社 Negative electrode active material for lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235297A (en) * 1993-12-27 1995-09-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH11111342A (en) * 1997-10-07 1999-04-23 Yuasa Corp Lithium secondary battery
JPH11162520A (en) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2003168432A (en) * 2001-12-03 2003-06-13 Hitachi Powdered Metals Co Ltd Graphite particle for negative electrode of nonaqueous secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235297A (en) * 1993-12-27 1995-09-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH11111342A (en) * 1997-10-07 1999-04-23 Yuasa Corp Lithium secondary battery
JPH11162520A (en) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2003168432A (en) * 2001-12-03 2003-06-13 Hitachi Powdered Metals Co Ltd Graphite particle for negative electrode of nonaqueous secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123473A (en) * 2007-11-14 2009-06-04 Sony Corp Nonaqueous electrolyte battery
WO2010147225A1 (en) * 2009-06-16 2010-12-23 住友化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising same
CN102804456A (en) * 2009-06-16 2012-11-28 住友化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising same
EP2445037A4 (en) * 2009-06-16 2014-05-21 Sumitomo Chemical Co NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY COMPRISING THE SAME
CN103229338A (en) * 2010-11-26 2013-07-31 丰田自动车株式会社 Negative electrode active material for lithium ion secondary battery
US10008712B2 (en) 2010-11-26 2018-06-26 Toyota Jidosha Kabushiki Kaisha Negative electrode active material for lithium ion secondary battery
JP2013125662A (en) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4407205B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5202239B2 (en) Lithium secondary battery
JP4604505B2 (en) Method for producing lithium difluorophosphate, non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP5426763B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP4363436B2 (en) Secondary battery
KR101073223B1 (en) anode mixture for lithium secondary battery and Lithium secondary battery using the same
WO2013035361A1 (en) Nonaqueous electrolyte secondary battery
JP2005251456A (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using the same
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JP4483253B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2014147983A1 (en) Non-aqueous electrolyte secondary battery
WO2010147225A1 (en) Negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising same
JP2007165296A (en) Lithium secondary battery
JP2007165299A (en) Lithium secondary battery
JP2006310265A (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN110603683A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2016046042A (en) Nonaqueous electrolyte power storage device
KR102439849B1 (en) Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2011029160A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous secondary battery including the same
JP2011023343A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery equipped with it
JP2007165301A (en) Lithium secondary battery
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP2018152158A (en) Operation method of nonaqueous power storage device
JP2004327211A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717