JP2006294249A - 光情報媒体 - Google Patents
光情報媒体 Download PDFInfo
- Publication number
- JP2006294249A JP2006294249A JP2006210190A JP2006210190A JP2006294249A JP 2006294249 A JP2006294249 A JP 2006294249A JP 2006210190 A JP2006210190 A JP 2006210190A JP 2006210190 A JP2006210190 A JP 2006210190A JP 2006294249 A JP2006294249 A JP 2006294249A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- reproduction
- functional layer
- pit
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
【課題】回折限界を超える高解像度の再生が可能であり、かつ、再生パワーの線速度依存性が低い光情報媒体を提供する。
【解決手段】特定の材料から構成され、かつ前記特定の材料のそれぞれに対応した特定の厚さをもつ層10を、光情報媒体に設ける。前記特定の材料として、Nb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、ZnおよびBiからなる群から選択される少なくとも1種の元素を含む単体もしくは合金またはその化合物を用い、好ましくは単体またはその化合物を用いる。
【選択図】図1
【解決手段】特定の材料から構成され、かつ前記特定の材料のそれぞれに対応した特定の厚さをもつ層10を、光情報媒体に設ける。前記特定の材料として、Nb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、ZnおよびBiからなる群から選択される少なくとも1種の元素を含む単体もしくは合金またはその化合物を用い、好ましくは単体またはその化合物を用いる。
【選択図】図1
Description
本発明は、記録密度の高い光情報媒体およびその再生方法に関する。
光情報媒体には、コンパクトディスク等の再生専用光ディスク、光磁気記録ディスクや相変化型光記録ディスク等の書き換え可能型光記録ディスク、有機色素を記録材料に用いた追記型光記録ディスクなどがある。
光情報媒体は磁気記録媒体に比べ一般に情報密度を高くすることができるが、近年、画像等の膨大な情報の処理のためにさらに情報密度を高くすることが必要とされている。単位面積あたりの情報密度を高くするためには、トラックピッチを狭める方法と記録マーク間や位相ピット間を縮めて線密度を高くする方法とがある。しかし、再生光のビームスポットに対しトラック密度や線密度が高すぎる場合、C/N(carrier to noise ratio)が低くなってしまい、ついには信号再生が不可能となってしまう。信号再生時の分解能はビームスポット径によって決定され、具体的には、再生光の波長をλ、再生装置の光学系の開口数をNAとしたとき、一般に空間周波数2NA/λが再生限界となる。したがって、再生時のC/N向上や分解能向上のために再生光の短波長化やNA増大が有効であり、多くの技術的検討がなされているが、これらを導入するためには様々な技術的課題を解決する必要がある。
このような事情から、光の回折によって決定される再生限界を超えるための様々な方法、すなわち、いわゆる超解像再生方法が提案されている。
最も一般的な超解像再生方法は、記録層に重ねていわゆるマスク層を設ける方法である。この方法では、レーザービームスポットの強度分布がガウス分布であることを利用して、マスク層にビームスポットよりも小さな光学的開口を形成し、これによりビームスポットを回折限界より小さく絞る。この方法は、光学的開口形成のメカニズムの違いにより、ヒートモード方式とフォトンモード方式とに大別される。
ヒートモード方式では、マスク層のビームスポット照射部において、温度が一定値以上となった領域で光学特性が変化する。ヒートモード方式は、例えば特許文献1に記載された光ディスクにおいて利用されている。この光ディスクは、情報信号に応じて光学的に読み出し可能な記録ピットが形成された透明基板上に、温度によって反射率が変化する材料層を有する。すなわち、この材料層がマスク層として働く。同公報において上記材料層を構成する材料として具体的に挙げられている元素はランタノイドであり、実施例ではTbを使用している。同公報記載の光ディスクでは、読み出し光が照射されたときに、上記材料層の反射率が読み出し光の走査スポット内で温度分布により変化し、読み出し後、温度が低下した状態で反射率が初期状態に戻り、再生時に上記材料層が溶融することはない。なお、ヒートモード方式としては、例えば特許文献2に記載されているように、アモルファス−結晶転移する材料をマスク層に用い、ビームスポット内の高温領域を結晶転移させて反射率を向上させることにより超解像再生を行う媒体も知られている。しかし、この媒体では、再生後にマスク層を再びアモルファスに戻す必要があるので、実用的とはいえない。
ヒートモード方式では、光学的開口の寸法がマスク層の温度分布で一意的に決定されるため、媒体の線速度等の各種条件を考慮して再生光のパワーを厳密に制御する必要がある。そのため、制御系が複雑になり、媒体駆動装置が高価格になってしまう。また、ヒートモード方式では、繰り返し加熱によりマスク層が劣化しやすいので、繰り返し再生により再生特性が劣化しやすい。
一方、フォトンモード方式では、マスク層のビームスポット照射部において、フォトン量が一定値以上となった領域で光学特性が変化する。フォトンモード方式は、例えば特許文献3に記載された情報記録媒体、特許文献4に記載された光記録媒体、および特許文献5に記載された光情報記録媒体において利用されている。上記特許文献3には、マスク層として、フタロシアニンまたはその誘導体を樹脂または無機誘電体に分散させたもの、および、カルコゲナイドからなるものが記載されている。また、上記特許文献4では、上記再生光の照射により励起子のエネルギー準位に電子励起して光吸収特性が変化する禁制帯を有する半導体材料を含有する超解像再生膜をマスク層として用いており、マスク層の具体例としては、SiO2母材中にCdSe微粒子を分散させたものが挙げられている。また、上記特許文献5では、照射された光の強度分布と透過した光の強度分布とが非線形に変化するガラス層をマスク層として用いている。
フォトンモード方式の超解像再生媒体では、ヒートモード方式の超解像再生媒体と異なり、繰り返し再生による劣化が比較的生じにくい。
フォトンモード方式において光学特性が変化する領域は、入射フォトン数によって決定される。そして、入射フォトン数は、ビームスポットに対する媒体の線速度に依存する。また、フォトンモード方式でも、光学的開口の寸法は再生光のパワーに依存し、過剰なパワーを与えると光学的開口が過大になってしまうため、超解像再生が不可能となる。したがって、フォトンモード方式においても、線速度に応じて、また、読み取り対象のピットおよび記録マークの寸法に応じて、再生光のパワーを厳密に制御する必要がある。また、フォトンモード方式では、マスク層構成材料を再生光の波長に応じて選択しなければならない、すなわち、多波長再生に適応しにくい、という問題もある。
本発明の目的は、回折限界を超える高解像度の再生が可能であり、かつ、再生パワーの線速度依存性が低い光情報媒体を提供することである。
このような目的は、下記(1)〜(8)の本発明により達成される。
(1)凹凸を有するか、記録マークを形成可能であるか、前記凹凸を有すると共に記録マークが形成可能である情報記録面を備える光情報媒体であって、
空間分解能を向上させる機能を有する機能層を備えており、
この機能層は、Nb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、ZnおよびBiからなる群から選択される少なくとも1種の元素を含む単体もしくは合金またはその化合物から構成され、かつ、該機能層は、その組成に対応した特定の厚さを有することを特徴とする光情報媒体。
空間分解能を向上させる機能を有する機能層を備えており、
この機能層は、Nb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、ZnおよびBiからなる群から選択される少なくとも1種の元素を含む単体もしくは合金またはその化合物から構成され、かつ、該機能層は、その組成に対応した特定の厚さを有することを特徴とする光情報媒体。
(2)情報を保持するピットが設けられた基体を有し、この基体のピット形成面上に機能層を有し、4NA・PL(PLは前記ピットの最小長さ、NAは再生光学系の開口数)より長い波長の再生光を照射したときに、前記ピットが保持する情報の再生が可能であり、再生光の波長をλとし、前記基体の屈折率をnとしたとき、ピット深さdが媒体全体において、
λ/10n≦d<λ/6n
であり、
さらに、前記機能層は、Nb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、ZnおよびBiからなる群から選択される少なくとも1種の元素を含む単体もしくは合金またはその化合物から構成され、かつ、該機能層は、その組成に対応した特定の厚さを有することを特徴とする光情報媒体。
λ/10n≦d<λ/6n
であり、
さらに、前記機能層は、Nb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、ZnおよびBiからなる群から選択される少なくとも1種の元素を含む単体もしくは合金またはその化合物から構成され、かつ、該機能層は、その組成に対応した特定の厚さを有することを特徴とする光情報媒体。
(3)凹凸を有するか、記録マークを形成可能であるか、前記凹凸を有すると共に記録マークが形成可能である情報記録面を備える光情報媒体であって、
空間分解能を向上させる機能を有する機能層を備えており、
この機能層は、下記のいずれかの元素から構成され、かつ、該元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm
空間分解能を向上させる機能を有する機能層を備えており、
この機能層は、下記のいずれかの元素から構成され、かつ、該元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm
(4)凹凸を有するか、記録マークを形成可能であるか、前記凹凸を有すると共に記録マークが形成可能である情報記録面を備える光情報媒体であって、
空間分解能を向上させる機能を有する機能層を備えており、
この機能層は、下記のいずれかの元素に窒素、酸素、フッ素、硫黄および炭素からなる群から選択される少なくとも1つの元素を添加して構成され、かつ、この機能層に含まれる下記の元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm
空間分解能を向上させる機能を有する機能層を備えており、
この機能層は、下記のいずれかの元素に窒素、酸素、フッ素、硫黄および炭素からなる群から選択される少なくとも1つの元素を添加して構成され、かつ、この機能層に含まれる下記の元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm
(5)情報を保持するピットが設けられた基体を有し、この基体のピット形成面上に機能層を有し、4NA・PL(PLは前記ピットの最小長さ、NAは再生光学系の開口数)より長い波長の再生光を照射したときに、前記ピットが保持する情報の再生が可能であり、再生光の波長をλとし、前記基体の屈折率をnとしたとき、ピット深さdが媒体全体において、
λ/10n≦d<λ/6n
であり、
さらに、前記機能層は、下記のいずれかの元素から構成され、かつ、該元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm
λ/10n≦d<λ/6n
であり、
さらに、前記機能層は、下記のいずれかの元素から構成され、かつ、該元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm
(6)情報を保持するピットが設けられた基体を有し、この基体のピット形成面上に機能層を有し、4NA・PL(PLは前記ピットの最小長さ、NAは再生光学系の開口数)より長い波長の再生光を照射したときに、前記ピットが保持する情報の再生が可能であり、再生光の波長をλとし、前記基体の屈折率をnとしたとき、ピット深さdが媒体全体において、
λ/10n≦d<λ/6n
であり、
さらに、前記機能層は、下記のいずれかの元素に窒素、酸素、フッ素、硫黄および炭素からなる群から選択される少なくとも1つの元素を添加して構成され、かつ、この機能層に含まれる下記の元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm
λ/10n≦d<λ/6n
であり、
さらに、前記機能層は、下記のいずれかの元素に窒素、酸素、フッ素、硫黄および炭素からなる群から選択される少なくとも1つの元素を添加して構成され、かつ、この機能層に含まれる下記の元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm
(7)前記(1)〜(6)のいずれかに記載の光情報媒体の機能層の上に、空気より熱伝導率の高い材質からなる保護層が設けられていることを特徴とする光情報媒体。
(8)前記保護層が樹脂からなることを特徴とする前記(7)に記載の光情報媒体。
本発明に係る光情報媒体は、前記したように、機能層が所定の元素から構成され、且つ、該元素に応じて所定の厚さを有するので、回折限界を超える高解像度の再生が可能であり、かつ、再生パワーの線速度依存性が低い。
機能層に窒素、酸素、フッ素、硫黄および炭素からなる群から選択される少なくとも1つの元素を添加して化合物化した場合、再生パワー範囲の拡大、最大C/Nの向上、超解像再生が可能な機能層の厚さの範囲の拡大、および繰り返し再生によるC/N劣化の抑制といった効果も得られる。
また、所定の機能層の上に空気より熱伝導率の高い材質からなる保護層を設けた場合、高パワーでの再生が可能となり、高C/Nが得られる。
本発明の光情報媒体は、情報記録面を有する。本明細書において情報記録面とは、ピットおよび/またはグルーブからなる凹凸を有するか、記録マークを形成可能であるか、前記凹凸を有すると共に記録マークが形成可能である領域を意味する。すなわち、本発明は、再生専用媒体および光記録媒体(追記型または書き換え可能型の媒体)のいずれにも適用できる。再生専用媒体では、基板表面に設けられたピットが情報記録面を構成し、光記録媒体では、記録層が情報記録面を構成する。記録層は、相変化型のもの、有機色素を主体とするもの、そのほかの有機材料や無機材料を主体とするものなどのいずれであってもよい。記録マークは、周囲に対し反射率等の光学定数が異なるもの、凹状のもの、凸状のもの等のいずれであってもよい。
本発明者らは、特定の材料から構成され、かつ前記特定の材料のそれぞれに対応した特定の厚さをもつ層を、光情報媒体に設けることにより、従来とは全く異なるメカニズムの超解像再生が可能になることを見いだした。本発明では、前記特定の材料として、Nb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、ZnおよびBiからなる群から選択される少なくとも1種の元素を含む単体もしくは合金またはその化合物を用い、好ましくは単体またはその化合物を用いる。本発明では、超解像再生を可能とする前記層を、機能層と呼ぶ。この機能層を設けることにより、光の回折によって決定される解像限界を下回る寸法のピット、グルーブ、記録マークが検出可能となる。
以下、本発明の詳細について説明する。
[図1に示す媒体構造への適用]
光情報媒体の構成例を、図1に示す。図1に示す光情報媒体1は、再生専用媒体であり、透光性を有する基体2の表面にピット21を有し、ピット形成面に密着して層10を有する。再生光は、図中下側から入射する。層10は、特定の組成かつ特定の厚さをもつときに前記機能層として働く。
光情報媒体の構成例を、図1に示す。図1に示す光情報媒体1は、再生専用媒体であり、透光性を有する基体2の表面にピット21を有し、ピット形成面に密着して層10を有する。再生光は、図中下側から入射する。層10は、特定の組成かつ特定の厚さをもつときに前記機能層として働く。
(層10を単体または合金から構成した場合)
図1に示す構造の光ディスクサンプルを、以下の手順で作製した。基体2には、射出成形により位相ピットを同時形成した直径120mm、厚さ0.6mmのディスク状ポリカーボネート(屈折率n=1.58)を用いた。この基体2は、螺旋状トラックをもつ環状のピット形成領域を同心円状に複数設け、それぞれのピット形成領域内でピット長を一定としたバンディッドタイプのものである。すなわち、1枚の基体に、異なる長さの位相ピットを形成したものである。各ピット形成領域におけるピット長(pit length)は図5に示す値とし、隣接ピット間のスペースはピットと同じ長さとした。層10は、厚さ15nmのSi層または厚さ100nmのAl合金(Al−1.7原子%Cr)層から構成した。なお、層10はスパッタ法により形成した。
図1に示す構造の光ディスクサンプルを、以下の手順で作製した。基体2には、射出成形により位相ピットを同時形成した直径120mm、厚さ0.6mmのディスク状ポリカーボネート(屈折率n=1.58)を用いた。この基体2は、螺旋状トラックをもつ環状のピット形成領域を同心円状に複数設け、それぞれのピット形成領域内でピット長を一定としたバンディッドタイプのものである。すなわち、1枚の基体に、異なる長さの位相ピットを形成したものである。各ピット形成領域におけるピット長(pit length)は図5に示す値とし、隣接ピット間のスペースはピットと同じ長さとした。層10は、厚さ15nmのSi層または厚さ100nmのAl合金(Al−1.7原子%Cr)層から構成した。なお、層10はスパッタ法により形成した。
これらのサンプルについて、光ディスク評価装置(レーザー波長635nm、開口数0.60)を用い、線速度を11m/s、再生パワーを3mWとして、C/Nを測定した。なお、この光ディスク評価装置におけるカットオフ空間周波数2NA/λは、
2NA/λ=1.89×103(ラインペア/mm)
なので、ピットと隣接ピット間のスペースとが同じ長さであるピット列は、その空間周波数が1.89×103(ラインペア/mm)以下であれば読み取り可能である。この場合、読み取り可能な空間周波数に対応するピット長(=スペース長)PLは、
PL≧λ/4NA=265(nm)
となる。したがって、ピット長265nm未満のピット列においてC/Nが得られれば、超解像再生が可能であるといえる。
2NA/λ=1.89×103(ラインペア/mm)
なので、ピットと隣接ピット間のスペースとが同じ長さであるピット列は、その空間周波数が1.89×103(ラインペア/mm)以下であれば読み取り可能である。この場合、読み取り可能な空間周波数に対応するピット長(=スペース長)PLは、
PL≧λ/4NA=265(nm)
となる。したがって、ピット長265nm未満のピット列においてC/Nが得られれば、超解像再生が可能であるといえる。
上記各サンプルにおけるピット長とC/Nとの関係を、図5に示す。図5において、厚さ15nmのSi層を有するサンプルでは、ピット長200〜250nmにおいて40dB以上のC/Nが得られている。一方、厚さ100nmのAl合金層を有するサンプルでは、ピット長250nm以下においてC/Nが0dBであり、信号が全く得られていない。そして、ピット長が、読み取り可能な空間周波数範囲内である300nmであると、Al合金層を有するサンプルのC/Nは、Si層を有するサンプルとほぼ同じとなる。この結果から、厚さ15nmのSi層を設けることにより、超解像再生が可能となることがわかる。
なお、本明細書において再生が可能であるとは、20dB以上のC/Nが得られる場合である。ただし、実用的には、好ましくは30dB程度以上、より好ましくは40dB程度以上のC/Nが得られる必要がある。
次に、層10をNb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、Zn、Bi、AuおよびAgのいずれかから構成し、かつその厚さを5〜100nmの範囲で変えて光ディスクサンプルを作製した。これらのサンプルのピット長250nmのピット列について、再生パワーを1〜7mWの範囲で変えてC/Nを測定した。C/N測定には上記光ディスク評価装置を用い、測定時の線速度は11m/sとした。表1〜表4に、層10の厚さとC/Nとの関係とを示す。なお、表1〜表4には、層10の各厚さにおいて再生パワーを1〜7mWの間で変えたときに得られた最も高いC/Nを、層10の構成材料別に表示してあり、表1には最大C/Nが40dB以上となったものを、表2には最大C/Nが30dB以上40dB未満となったものを、表3には最大C/Nが20dB以上30dB未満となったものを、表4には最大C/Nが20dB未満となったものを、それぞれ分類して示してある。
表1〜表4から、超解像再生を可能とするためには、構成元素に応じて層10の厚さを最適化する必要があることがわかる。例えば、表2に示されるように、層10がAl層であって、かつ厚さが15nmである場合は超解像再生が可能であるが、Al層の厚さが100nmになると、すなわち、CD−ROMやDVD−ROMなどの通常のROMディスクにおける反射層と同程度になると、通常のROMディスクと同様に超解像再生ができなくなることがわかる。
図6〜図9に、上記各サンプルのうち最大C/Nが得られたものについて、再生パワーPrとC/Nとの関係を示す。なお、図6〜図9に示すサンプルは、それぞれ表1〜表4に対応している。C/Nは、ピット長250nmのピット列について測定した。測定には上記光ディスク評価装置を用い、測定時の線速度は11m/sとした。図6〜図9から、大部分のサンプルでは、再生パワー増大に伴ってC/Nが増大する傾向があることがわかる。これらの図には再生出力は示していないが、再生出力もC/Nと同様な挙動を示した。なお、図6〜図9において高Pr側のデータが存在しないものは、そのPrにおいて層10が劣化して再生信号が得られなかったものか、評価装置の反射光検出系の飽和によりデータが得られなかったものである。
図10〜図13に、上記各サンプルのうち最大C/Nが得られたものについて、再生パワーPrと反射光量との関係を示す。なお、図10〜図13に示すサンプルは、それぞれ表1〜表4に対応している。図13には、マスク層を利用する従来の超解像媒体の反射光量変化を示すために、マスク層として相変化材料層を有するディスクにおける結果を併記してある。このディスクは、前記基体上に、ZnS−SiO2からなる厚さ80nmの第1誘電体層、Ge2Sb2Te5からなる厚さ20nmのマスク層(相変化材料層)、ZnS−SiO2からなる厚さ23nmの第2誘電体層およびAlからなる厚さ100nmの反射層を、この順で積層したものであり、マスク層はスパッタにより形成した直後の状態(非晶質状態)である。反射光量は、ピット長250nmのピット列について測定した。この反射光量は、ピット列全体の平均反射光量である。すなわち、ピットと隣接ピット間のスペースとからなる記録トラックの平均反射光量である。測定には上記光ディスク評価装置を用い、測定時の線速度は11m/sとした。図10〜図13では、マスク層を有する比較サンプルを除き、再生パワーPrの増大にほぼ比例して反射光量が増大している。このことは、反射率が再生パワーの影響を実質的に受けないことを意味する。すなわち、再生パワーの変化に伴って複素屈折率(n+ik)が変化しないことを意味する。これに対し、マスク層を有する従来の超解像媒体では、光学的開口の形成に一定値以上の再生パワー(熱量または光量)が必要であり、前記一定値を境界として反射率が急激に変化する。その結果、図13の比較サンプルにおいて見られるように、再生パワーと反射光量との関係を示すグラフにおいて前記一定値に変曲点が存在することになる。なお、図13に記載された比較サンプルのPr−反射光量線において、Pr=2mWの位置に現れた変曲点はマスク層の結晶化によるものであり、Pr=6mWの位置に現れた変曲点はマスク層の溶融によるものである。
このように、超解像再生が可能な本発明サンプルでは、超解像再生が不可能であるサンプル(例えば図13に示すAu層またはAg層を有するサンプル)と同様に、反射率が再生パワーの影響を受けない。この結果から、本発明における超解像再生メカニズムが、ヒートモード方式またはフォトンモード方式によって光学的開口を形成する従来の超解像媒体とは異なり、温度変化または光量変化による反射率変化を利用するものではないことがわかる。
ただし、後述するように、相変化材料層も本発明における機能層として利用することが可能である。本発明における機能層として利用可能な相変化材料層では、非晶質であっても結晶質であっても、その複素屈折率を変化させない再生光を照射したときに超解像再生が可能である。
温度変化と反射率変化との関係について、さらに以下の実験を行った。この実験では、基体(厚さ1.2mmのスライドガラス)上に厚さ15nmのW層または厚さ100nmのW層をスパッタ法により形成して測定用サンプルを作製し、このW層の反射率の温度依存性を加熱顕微鏡により測定した。この測定に際し、昇温速度は30℃/分とし、反射率は波長635nmにおいて測定した。図14に、100〜400℃における反射率の温度依存性を示す。図14に示されるように、いずれの場合でも400℃までの加熱において反射率変化は実質的に認められない。この結果は、図10〜図13に示される結果とよく符合する。
図15に、層10を厚さ15nmのW層から構成したサンプルについて、再生パワーPrを1〜5mWの範囲で変え、かつ、線速度LVを3〜11m/sの範囲で変えたときのC/Nを示す。C/Nはピット長250nmのピット列について測定し、測定には上記光ディスク評価装置を用いた。図15では、C/Nの線速度依存性が実質的に認められないことがわかる。すなわち、この線速度範囲では、超解像再生に関する性能が線速度の影響を実質的に受けないことがわかる。したがって、この線速度域においては、線速度を変更した場合でも再生パワーを制御する必要がない。このように広い範囲において自在に線速度を選択できることは、従来の超解像媒体では、ヒートモード方式でもフォトンモード方式でも実現し得なかったことである。図15には厚さ15nmのW層を有するサンプルについての結果だけを示してあるが、上記各サンプルのうち超解像再生が可能なものすべてにおいて、このように広い線速度域においてC/Nの線速度依存性は実質的に認められなかった。
なお、上記各サンプルについて、再生光波長を780nmとして、ピット長250nmのピット列およびピット長300nmのピット列についてC/Nを測定したところ、超解像再生が可能であることが確認された。
また、層10をWとMoとの合金とし、かつ、層10の厚さを15nmとしたサンプルについて、上記光ディスク評価装置を用い、線速度を11m/sとして、ピット長250nmのピット列のC/Nを測定した。結果を図16に示す。図16から、合金を用いた場合でも超解像再生が可能であることがわかる。
また、層10を、スパッタ法により形成した非晶質状態のTb19.5Fe70.5Co7Cr3(原子比)合金から構成し、かつ、層10の厚さを15nmとしたサンプルについて、上記光ディスク評価装置を用い、線速度を11m/sとして、ピット長250nmのピット列のC/Nを測定した。なお、この組成の合金からなる層は、光磁気記録層として使用可能であるが、このサンプルでは、再生専用サンプルにおける反射層として使用している。図35に、このサンプルにおける再生パワーPrと反射光量との関係を示す。また、図36に、再生パワーPrとC/Nとの関係を示す。図35から、このサンプルにおいても、反射光量が再生パワーに依存して線形的に変化することがわかる。また、図36から、このサンプルにおいても超解像再生が可能であり、光磁気記録材料からなる層10が本発明における機能層として働くことがわかる。
また、層10を厚さ15nmのW層から構成したサンプルについて、層10の上に、厚さ0.6mmの平滑なポリカーボネート板を粘着剤シートにより接着し、このポリカーボネート板を通して再生光を入射させて再生を行った。なお、ポリカーボネート板の接着は、再生光学系の対物レンズの非点収差を補正するためである。その結果、ピット長250nmのピット列のC/Nは、再生パワー2mWで13.8dB、3mWで21.8dB、4mWで27.8dBであり、超解像再生が可能であった。この結果から、層10の上に透明樹脂層(粘着剤層)を形成し、これを通して再生を行う場合でも、超解像再生が可能であることがわかる。
(層10を化合物から構成した場合)
本発明の光情報媒体では、層10を窒化物、酸化物、フッ化物、硫化物、炭化物等の各種化合物から構成した場合でも超解像再生が可能であり、かつ、その場合に特有の効果が得られる。なお、この場合の化合物とは、化学量論組成の化合物に限らず、金属または半金属に対し窒素、酸素等を化学量論組成未満の比率で混入させたものも包含する。すなわち本発明は、層10が、単体または合金で超解像再生が可能な前記金属または半金属を含み、さらに、それ以外の元素、好ましくは窒素、酸素、フッ素、硫黄および炭素から選択される少なくとも1種の元素、を含む場合を包含する。このような化合物から層10を構成することにより、再生パワーマージンを広げることができ、C/N向上も可能となる。また、繰り返し再生に伴うC/N劣化を抑制することができる。以下、層10を化合物から構成した場合についての実験を説明する。
本発明の光情報媒体では、層10を窒化物、酸化物、フッ化物、硫化物、炭化物等の各種化合物から構成した場合でも超解像再生が可能であり、かつ、その場合に特有の効果が得られる。なお、この場合の化合物とは、化学量論組成の化合物に限らず、金属または半金属に対し窒素、酸素等を化学量論組成未満の比率で混入させたものも包含する。すなわち本発明は、層10が、単体または合金で超解像再生が可能な前記金属または半金属を含み、さらに、それ以外の元素、好ましくは窒素、酸素、フッ素、硫黄および炭素から選択される少なくとも1種の元素、を含む場合を包含する。このような化合物から層10を構成することにより、再生パワーマージンを広げることができ、C/N向上も可能となる。また、繰り返し再生に伴うC/N劣化を抑制することができる。以下、層10を化合物から構成した場合についての実験を説明する。
この実験に用いたサンプルでは、層10をAr雰囲気中でのスパッタまたはAr+反応性ガス雰囲気中での反応性スパッタにより構成した。スパッタターゲットには、Si、TaまたはAlを用い、反応性ガスには、N2またはO2を用いた。層10形成時の反応性ガス流量が相異なる各サンプルについて、再生パワーを1〜7mWの範囲で変えてピット長250nmのピット列においてC/Nを測定した。C/N測定には上記光ディスク評価装置を用い、測定時の線速度は11m/sとした。図17、図18および図19に、ターゲットとしてSi、TaおよびAlをそれぞれ用いたサンプルの再生パワーPrとC/Nとの関係を示す。なお、層10の厚さは、SiターゲットおよびTaターゲットを用いた場合が15nm、Alターゲットを用いた場合が30nmである。各図に示す反応性ガスの流量比(N2 ratio、O2 ratio)は、反応性ガス流量とAr流量との合計に対する反応性ガスの流量である。
図17に示されるように、N2流量比をゼロとしたとき、すなわち層10をSiから構成したときには、Pr=3mWでC/Nが極大となって4mWで減少し、5mWのときには層10の劣化のためにC/Nが得られなかった。また、図18に示されるように、層10をTaから構成したときには、Pr=1mWのときだけ再生が可能であり、それを超える再生パワーを加えると層10が劣化して再生が不可能となった。これに対し反応性ガスの流量比を増大させると、図17および図18に示されるように、低Pr側ではC/Nが低くなるが、より高い再生パワーが使用可能となるため最大C/Nが向上した。反応性ガスの流量比をさらに増大させると最大C/Nは低下し、最終的には超解像再生が不可能となった。
図19に示されるように、層10をAlから構成したとき、再生パワー3mW以上で評価装置の反射光検出系の飽和により超解像再生が不可能であったが、N2流量比を増大させていくと再生可能となり、極めて高いC/Nが得られた。N2流量比をさらに増大させると、最終的には超解像再生が不可能となった。
また、Ar+N2雰囲気中でGeターゲットをスパッタすることにより形成した厚さ15nmのGe−N層から層10を構成したサンプルにおいても、超解像再生が可能であった。上記光ディスク評価装置を用い、線速度を11m/sとし、このサンプルのピット長250nmのピット列におけるC/Nを測定したところ、再生パワー7mWで42.6dBであった。また、SiCターゲットを用いてAr雰囲気中でスパッタすることにより形成した厚さ15nmの層10を有するサンプルにおいても、超解像再生が可能であった。上記光ディスク評価装置を用い、線速度を11m/sとし、このサンプルのピット長250nmのピット列におけるC/Nを測定したところ、再生パワー5mWのとき20.2dB、6mWのとき23.9dB、7mWのとき27.9dBであった。そして、これらいずれの場合でも、再生パワー上昇に伴ってC/N向上が認められた。
図20、図21および図22に、図17、図18および図19にそれぞれ示すサンプルの再生パワーPrと反射光量との関係を示す。これらの図では、前記した図10〜図13と同様に、再生パワーPrの増大にほぼ比例して反射光量が増大している。このことは、反射率が再生パワーの影響を実質的に受けないことを意味する。したがって、層10を化合物化しても、超解像再生のメカニズムは変わらないと考えられる。
図23に、Alターゲットを用いN2流量比を0または0.08とした場合について、層10の厚さとC/Nとの関係を示す。同図に示すC/Nは、再生パワーを1〜7mWの範囲で変化させたときの最大C/Nである。図23から、層10を窒化することにより、最大C/Nが向上すると共に、超解像再生が可能な層10厚さの範囲が著しく拡張されることがわかる。
次に、ターゲットとしてSiを用いたサンプルであって、N2を導入しなかったものと導入したものとについて、繰り返し再生を行ってC/Nの劣化を調べた。これらのサンプルにおける層10の厚さは、15nmとした。再生パワーは、N2を導入しなかったサンプルで3mW、導入したサンプルで6mWまたは7mWとした。結果を図24に示す。
図24において、N2を導入しなかったサンプルでは、10万回の再生後にはC/Nが10dBを超えて低下している。一方、N2を導入したサンプルでは、再生10万回後にもC/N低下はほとんど認められない。しかも、再生パワーを7mWとした場合には、N2を導入しなかったサンプルよりも初期C/Nが高くなっている。この結果から、層10を化合物化することにより、繰り返し再生の安定性が著しく向上することがわかる。
上記実験の結果に基づいて、層10を化合物から構成した場合の作用効果を以下に説明する。
上記実験において、金属薄膜または半金属薄膜に窒素、酸素、フッ素、硫黄、炭素などを導入していくと、導入量の増大に伴って薄膜は透明度を増していき、すなわち金属光沢を失っていき、化学量論組成付近まで導入量が増大すると透明度がかなり高くなった。図17〜図19のいずれにおいても、超解像再生が可能であったのは層10の透明度が比較的低いときであり、層10の透明度が比較的高くなると、超解像再生が不可能となった。そして、化合物化により層10の透明度が向上すると、低PrでのC/Nが低下した。この結果は、本発明における超解像再生にヒートモードが関与していることを示唆する。すなわち、層10の透明度向上により低PrでのC/Nが低下したことは、層10の光吸収率低下により到達温度が低くなったためと考えられる。ただし、本発明の媒体では、反射率が再生パワーの影響を実質的に受けないことから、本発明における超解像再生は、従来のヒートモード方式の超解像再生媒体と異なり、光学的開口の形成によるものではないと考えられる。
また、図17〜図19に示される結果から、層10に窒素または酸素を適当量添加して化合物化することにより、使用可能な再生パワー範囲が広くなり、かつ、最大C/Nが向上し得ることがわかる。再生パワー範囲の拡大および最大C/Nの向上には、化合物化による層10の化学的安定性の向上および透明性の増大が関与していると考えられる。また、図23に示される結果から、層10の化合物化により、超解像再生が可能な層10の厚さの範囲が著しく拡張されることがわかる。これには、化合物化による層10の透明性の増大が関与していると考えられる。また、図24に示される結果から、層10の化合物化により、繰り返し再生によるC/N劣化が著しく抑制されることがわかる。このC/N劣化抑制は、層10の化学的安定性の向上によると考えられる。
まず、化合物化による化学的安定性の向上およびそれによる作用効果について説明する。Au等の貴金属を除く金属または半金属は、自然界では酸化物、硫化物等の化合物の形で産出することが一般的である。このことは、金属または半金属が、通常環境下では単体として存在するよりも化合物として存在するほうが安定であることを示している。すなわち、金属または半金属は、化合物化により化学的安定性が大幅に向上する。一方、高パワー再生および繰り返し再生による層10の劣化は、層10の温度上昇に伴う化学変化(酸化等)によるものと考えられる。層10は空気と接しているため、再生パワー照射時の加熱によって劣化しやすいが、層10を化合物から構成すれば層10の化学的変化が抑制されるので、より高いパワーでの再生が可能となって最大C/Nが向上し、また、繰り返し再生によるC/N劣化が抑制されたと考えられる。したがって、層10の化合物化は、比較的低い再生パワーで劣化が生じる材料を用いる場合に、極めて有効である。
次に、化合物化による透明性の増大およびそれによる作用効果について説明する。上述したように、化合物化により層10の透明性が増大するので、光反射率は低下する。層10の光反射率が低下すると、反射光検出系の飽和が生じにくくなる。その結果、使用可能な再生パワーが増大して最大C/Nが向上したと考えられる。また、化合物化により層10の単位厚さあたりの透明度が向上するので、化合物化すれば、層10をより厚くしても反射光検出系の飽和が生じにくくなる。そのため、図23に示されるように、超解像再生が可能な層10厚さの範囲が著しく拡張されたと考えられる。したがって、層10の化合物化は、比較的低い再生パワーで反射光検出系の飽和が生じてしまう材料を用いる場合に、極めて有効である。
一方、窒素や酸素の導入量を多くした場合に超解像再生が不可能となったのは、層10の透明性が高くなりすぎ、すなわち層10の吸収係数がゼロに近づき、再生光が層10の機能を発現させることができなかったためと考えられる。したがって、層10を化合物化する際には、化合物化する対象の金属や半金属の種類に応じて、十分に高いC/Nが得られるように化合物化の程度を適宜設定する必要がある。具体的には、窒素や酸素などの導入量を化学量論組成未満に抑えることが好ましい。上記実験では、化学量論組成であるSiCを層10に用いた場合でも超解像再生が可能であったが、C量を減少させれば、より高いC/Nを得ることができる。
なお、上記実験では、層10を化合物化するために、窒素や酸素等の反応性ガスを用いる反応性スパッタ法、または化合物ターゲットを用いるスパッタ法を利用したが、これらのほか、例えばCVD法も利用することができる。
[図2に示す媒体構造への適用]
次に、図2に示す構造の媒体サンプルを作製した。このサンプルは、図1に示す媒体の層10の上に、通常の光情報媒体において一般的に設けられている樹脂製の保護層6(トップコート)を設けたものである。保護層6は、紫外線硬化型樹脂をスピンコート法により塗布後、紫外線照射により硬化して形成した。硬化後の保護層の厚さは10μmとした。このサンプルの層10は、厚さ15nmのSi層から構成した。なお、層10はスパッタ法により形成した。また、保護層を設けないほかは同様にして、参照サンプルも作製した。各サンプルのピット長250nmのピット列について、前記光ディスク評価装置を用いて、線速度11m/sで再生パワーを変えながらC/Nを測定した。図25に、各サンプルの再生パワーとC/Nとの関係を示す。
次に、図2に示す構造の媒体サンプルを作製した。このサンプルは、図1に示す媒体の層10の上に、通常の光情報媒体において一般的に設けられている樹脂製の保護層6(トップコート)を設けたものである。保護層6は、紫外線硬化型樹脂をスピンコート法により塗布後、紫外線照射により硬化して形成した。硬化後の保護層の厚さは10μmとした。このサンプルの層10は、厚さ15nmのSi層から構成した。なお、層10はスパッタ法により形成した。また、保護層を設けないほかは同様にして、参照サンプルも作製した。各サンプルのピット長250nmのピット列について、前記光ディスク評価装置を用いて、線速度11m/sで再生パワーを変えながらC/Nを測定した。図25に、各サンプルの再生パワーとC/Nとの関係を示す。
図25では、保護層のないサンプルのほうが全般的にC/Nが高くなっている。これは、保護層が放熱層として働いた結果、再生光照射時の層10の到達温度が低くなったためと考えられ、本発明における超解像再生にヒートモードが関与していることを示唆する。
図25において保護層なしのサンプルでは、再生パワーを上げていくとC/N上昇が頭打ちとなり、次いでC/Nが微減した後、再生パワー5mWにおいて層10の劣化により再生信号が得られなくなっている。これに対し保護層を設けたサンプルでは、再生パワー7mWに至るまで、なだらかにC/Nが単調増大している。この結果から、放熱層として機能する保護層は、再生パワー範囲を拡張する働きをもつといえる。
次に、層10構成元素および層10の厚さを表5に示すものとし、そのほかは図25に結果を示す両サンプルと同様にしてサンプルを作製し、保護層の有無によるC/Nへの影響を調べた。層10の厚さごとの最大C/Nおよびそれが得られたときの再生パワーを、表5に示す。
表5において層10をTaから構成した場合に注目すると、保護層を設けない場合には、厚さ10nmでは再生パワー2mWで劣化が生じてしまったため、最大C/Nは1mWのときの23.2dBであったが、保護層を設けた場合には再生パワー6mWまで信号が得られ、そのときのC/Nは35.8dBと著しく高くなっている。このほかのサンプルについても、保護層を設けることにより、より高い再生パワーが使用できることがわかり、特に、保護層を設けない場合に比較的低い再生パワーにおいて層10が劣化して高C/Nが得られなかったサンプルでは、保護層を設けたことにより高い再生パワーが使用可能となったことで、C/Nが著しく向上している。また、表5から、保護層を設けることにより、超解像再生が可能な層10厚さの範囲が著しく拡張されることがわかる。
以上の実験結果から、保護層を設けることによる効果が明らかである。保護層は空気に比べ熱伝導率が高いので、保護層を設けることにより層10の冷却が速くなる。また、保護層6により層10が空気から遮断される。その結果、保護層6を設けることにより、層10に熱が溜まりにくくなると共に層10に化学的変化が生じにくくなるので、より高いパワーの再生光を使用しても層10が劣化しなくなる。一方、本発明の光情報媒体は、前記した実験結果から明らかなように、一般に再生パワーの増大に伴って再生出力が増大し、この出力増大は再生時の加熱により層10が劣化するまで、または、その直前まで続く。したがって、保護層6を設けない場合に比較的低い再生パワーにおいて層10が劣化するサンプルに保護層を設けることにより、高パワーでの再生が可能となり、その結果、高C/Nが得られるものと考えられる。
次に上記保護層を設けたサンプルと設けないサンプルとについて繰り返し再生を行い、C/Nの劣化を調べた。これらのサンプルの層10には、厚さ10nmのGe層を用いた。再生パワーは、保護層を設けなかったサンプルで2mW、設けたサンプルで3mWまたは4mWとした。結果を図26に示す。
図26において、保護層なしのサンプルの初期C/Nは41.3dBであるが、16,000回の再生により約10dB低下している。一方、保護層を設けたサンプルでは、再生パワー3mWでの初期C/Nは38.3dBとやや低いが、再生10万回後までC/Nは全く低下せず、再生パワー4mWでは、初期C/Nが42.7dBとより高くなり、しかも、再生10万回後のC/Nが39.7dBであり、劣化が極めて小さい。この結果から、保護層を設けることにより、繰り返し再生の安定性が著しく向上することがわかる。この安定性の向上は、層10の冷却速度の向上および層10が空気から遮断されたことによると考えられる。
以上の実験では樹脂からなる保護層を用いたが、空気より熱伝導率の高いものであれば、酸化物、窒化物、硫化物、炭化物等の各種無機化合物からなる保護層であっても、同様な効果が得られることは明らかである。
[層10の厚さ]
上記した各実験の結果から、金属または半金属の単体から構成した場合の層10の好ましい厚さは、構成元素別に、
Nb:100nm以下、
Mo:70nm以下、特に45nm以下、
W:70nm以下、特に40nm以下、
Mn:100nm以下、特に70nm以下、
Pt:40nm以下、特に30nm以下、
C:100nm以下、
Si:100nm以下、
Ge:100nm以下、
Ti:100nm以下、
Zr:100nm以下、特に25〜100nm、
V:100nm以下、
Cr:30nm以下、特に15nm未満、
Fe:80nm以下、特に50nm以下、
Co:70nm以下、特に45nm以下、
Ni:70nm以下、特に50nm以下、
Pd:40nm以下、特に30nm以下、
Sb:100nm以下、特に60nm以下、
Ta:100nm以下、特に60nm以下、
Al:20nm以下、特に15nm未満、
In:100nm以下、特に10nm未満、
Cu:10nm以下、
Sn:40nm以下、
Te:70nm以下、
Zn:40〜90nm、
Bi:45〜70nm
であることがわかる。なお、厚さ100nmでも十分に高いC/Nが得られているものは、特性の点では厚さの上限を100nmに設定する必要性はないが、生産性の低下を防ぐために、通常は厚さ100nm以下とすることが好ましい。また、いずれの元素から構成した場合でも、層10の厚さは2nm以上であることが好ましい。層10が薄すぎると、反射率が低くなってトラッキングサーボがかかりにくくなるほか、十分なC/Nが得られにくくなる。
上記した各実験の結果から、金属または半金属の単体から構成した場合の層10の好ましい厚さは、構成元素別に、
Nb:100nm以下、
Mo:70nm以下、特に45nm以下、
W:70nm以下、特に40nm以下、
Mn:100nm以下、特に70nm以下、
Pt:40nm以下、特に30nm以下、
C:100nm以下、
Si:100nm以下、
Ge:100nm以下、
Ti:100nm以下、
Zr:100nm以下、特に25〜100nm、
V:100nm以下、
Cr:30nm以下、特に15nm未満、
Fe:80nm以下、特に50nm以下、
Co:70nm以下、特に45nm以下、
Ni:70nm以下、特に50nm以下、
Pd:40nm以下、特に30nm以下、
Sb:100nm以下、特に60nm以下、
Ta:100nm以下、特に60nm以下、
Al:20nm以下、特に15nm未満、
In:100nm以下、特に10nm未満、
Cu:10nm以下、
Sn:40nm以下、
Te:70nm以下、
Zn:40〜90nm、
Bi:45〜70nm
であることがわかる。なお、厚さ100nmでも十分に高いC/Nが得られているものは、特性の点では厚さの上限を100nmに設定する必要性はないが、生産性の低下を防ぐために、通常は厚さ100nm以下とすることが好ましい。また、いずれの元素から構成した場合でも、層10の厚さは2nm以上であることが好ましい。層10が薄すぎると、反射率が低くなってトラッキングサーボがかかりにくくなるほか、十分なC/Nが得られにくくなる。
また、層10を化合物化した場合には、前記実験結果から明らかなように、層10の好ましい厚さ範囲が拡張される。
次に、機能層を合金から構成する場合について説明する。なお、以下の説明における機能元素とは、それ単体で機能層を構成し得る元素を意味する。
前記したW−Mo合金のように、単純固溶型の2元系合金から機能層を構成する場合であって、両元素共に機能元素である場合、図16に示すように合金層は機能層として働く。
単純固溶型の合金層では、構成元素の少なくとも1種、好ましくはすべてが機能元素であることが望ましい。構成元素全体に占める機能元素のモル比は、好ましくは50%以上である。
前記した光磁気記録材料層のような非晶質合金層においても、単純固溶型の合金層と同様に、構成元素の少なくとも1種、好ましくはすべてが機能元素であることが望ましい。構成元素全体に占める機能元素のモル比は、好ましくは50%以上である。
後述するAg−In−Sb−Te系の相変化材料は、結晶化したときにSb相と他の相とが分離する相分離型合金であるが、このような相分離型合金では、構成相の少なくとも1種、好ましくは全部が、単独で機能層を構成し得るものであることが望ましい。例えば結晶化したAg−In−Sb−Te系合金におけるSb相は、単独で機能層として働く。
単体層と同様に、合金層においても機能層として働くためには厚さの制限がある。例えば単純固溶型の合金層では、図16に示すように、各機能元素の単体層が機能層として働く厚さに合金層の厚さを設定すればよいと考えられる。
ただし、合金層の具体的な組成および厚さは、それぞれの組成および厚さにおいて合金層が機能層として働くかどうかを実際に検証して決定することが好ましい。例えば、前記したGe2Sb2Te5からなる相変化材料のような金属間化合物は、一般に、その構成元素のそれぞれ単体からは類推できない挙動を示すことが多い。
[図3(A)および図3(B)に示す媒体構造への適用]
次に、図3(A)および図3(B)にそれぞれ示す構造の媒体に本発明を適用した場合の実験について説明する。図3(A)に示す光情報媒体1は、再生専用光情報媒体であり、透光性を有する基体2の表面にピット21を有し、ピット形成面側に層10を有する。基体2と層10との間には第1誘電体層31が設けられ、層10上には第2誘電体層32が設けられている。すなわち図3(A)に示す媒体は、図1に示す媒体の層10の上下を誘電体層で挟んだものである。また、図3(B)に示す媒体は、図3(A)に示す媒体の第2誘電体層32上に、金属層5を設けた構造である。
次に、図3(A)および図3(B)にそれぞれ示す構造の媒体に本発明を適用した場合の実験について説明する。図3(A)に示す光情報媒体1は、再生専用光情報媒体であり、透光性を有する基体2の表面にピット21を有し、ピット形成面側に層10を有する。基体2と層10との間には第1誘電体層31が設けられ、層10上には第2誘電体層32が設けられている。すなわち図3(A)に示す媒体は、図1に示す媒体の層10の上下を誘電体層で挟んだものである。また、図3(B)に示す媒体は、図3(A)に示す媒体の第2誘電体層32上に、金属層5を設けた構造である。
図3(A)に示す構成をもつ光ディスクサンプルは、以下の手順で作製した。基体2は、前記実験で用いた基体と同じである。層10は、厚さ15nmのSb層から構成した。なお、層10はスパッタ法により形成した。第1誘電体層31は、厚さ150nmの窒化ケイ素層から構成した。第2誘電体層32は、厚さ20nmの窒化ケイ素層から構成した。これらの窒化ケイ素層は、Si3N4をターゲットとしてAr雰囲気中においてスパッタ法により形成した。
また、図3(A)に示す構成のサンプルの第2誘電体層32上に、金属層5を形成することにより、図3(B)に示す構成のサンプルを作製した。金属層5は、厚さ100nmのAl層から構成した。このAl層は、Alをターゲットとしてスパッタ法により形成した。
各サンプルのピット長250nmのピット列について、前記光ディスク評価装置を用いて、再生パワーおよび線速度を変えながらC/Nを測定した。
図27(A)に、金属層5なしのサンプルの再生パワーとC/Nとの関係を示し、図27(B)に、金属層5を設けたサンプルの再生パワーとC/Nとの関係を示す。なお、これら各図に示すデータは、線速度が11m/sのときのものである。図27(A)および図27(B)から、図3(A)および図3(B)にそれぞれ示す構成とした場合でも、超解像再生が可能であることがわかる。
また、図27(A)および図27(B)では、図6〜図9に示される大部分のサンプルと同様に、再生パワー増大に伴ってC/Nが単調に増大している。これら各図には再生出力は示していないが、再生出力も再生パワー増大に伴って単調に増大していた。
図28に、金属層5なしのサンプルのピット長300nmのピット列について、再生パワーとC/Nとの関係を示す。図28から、回折によって決まる再生限界よりもピット長が大きい場合には、通常の媒体と同様にC/Nが再生パワーに依存しないことがわかる。
次に、図27(A)と図27(B)とを比較して、金属層5の有無が再生パワーPrおよびC/Nに与える影響を考察する。
再生パワーを1〜2mWとしたときには、金属層5のないサンプルのほうがC/Nが高くなっている。これは、前記した保護層と同様に金属層5が放熱層として働いた結果、再生光照射時の層10の到達温度が低くなったためと考えられ、本発明における超解像再生にヒートモードが関与していることを示唆する。
また、金属層5なしのサンプルでは、再生パワーをさらに上げていくと、C/N上昇が頭打ちとなり、再生パワーを5mWとしたときには層10の劣化により再生信号が得られなくなっている。これに対し金属層5を設けたサンプルでは、再生パワー5mWに至るまで単調にC/Nが上昇し、金属層5なしのサンプルよりも最終的にC/Nが高くなっている。この結果から、層10構成材料を適宜選択して再生パワー増大に伴ってC/Nが単調増大するように構成した場合、放熱層および空気遮断層として機能する金属層5を設けることにより、再生パワーの上限が高くなり、その結果、より高いC/Nが実現し得ることがわかる。
図29(A)に、上記した金属層5なしのサンプルの線速度とC/Nとの関係を示し、図29(B)に、上記した金属層5を設けたサンプルの線速度とC/Nとの関係を示す。再生パワーPrは、図中に示してある。これら各図から、図3(A)または図3(B)に示す構造とした場合でも、超解像再生が可能な線速度範囲内でC/Nの線速度依存性が実質的に認められないことがわかる。また、金属層5を設けなかったサンプルでは、再生パワー4mWかつ線速度8m/s以下のとき、および、再生パワー5mWのとき層10が劣化してしまい、再生が不可能となったが、金属層5を設けたサンプルでは、図29(B)に示すように、再生パワー5mWでも3〜11m/sのすべての線速度で高C/Nが得られている。すなわち、放熱層および空気遮断層として機能する金属層5は、線速度マージンを広げる効果を示す。
図3(B)に示す構造において、層10を厚さ20nmのAg5.6In3.8Sb63.2Te25.2Ge2.2(原子比)合金層から構成し、第1誘電体層31を厚さ85nmのZnS(80モル%)−SiO2(20モル%)層から構成し、第2誘電体層32を厚さ20nmのZnS(80モル%)−SiO2(20モル%)層から構成し、金属層5を厚さ100nmのAl−1.7モル%Cr層から構成したサンプルを作製した。なお、これらの層はいずれもスパッタ法により形成した。このサンプルにおいて、形成直後(as-deposited)の層10は非晶質状態であった。なお、この組成の合金からなる層は、相変化型記録層として使用可能であるが、このサンプルでは、層10を記録層としては使用していない。
形成直後のサンプルにおける再生パワーPrと反射光量との関係を図37に示す。この図から、Pr=2mWまでは反射光量がPr増大に伴って線形的に増大し、2mWと2.5mWとの間で結晶化が生じて反射光量が急激に変化することがわかる。このサンプルについて、上記光ディスク評価装置を用い、線速度を11m/sとして、ピット長250nmのピット列のC/Nを測定した。Prに対し反射光量が線形的に変化するPr≦2mWの範囲でのC/Nを図38に示す。図38から、このサンプルではPr≦2mWの範囲において超解像再生が可能であることがわかる。このサンプルにおける誘電体層は透明度が高く、前述したように透明度の高い誘電体層は超解像再生には寄与しない。また、厚さ100nmのAl−1.7モル%Cr層も超解像再生には寄与しない。したがって、図38に示される結果は、非晶質状態の相変化材料層が本発明における機能層として働くことを示している。
次に、このサンプルの層10をバルクイレーザーにより初期化(initialized)、すなわち結晶化した後、上記と同様にして反射光量およびC/Nを測定した。結果を図37および図38にそれぞれ示す。この結果から、結晶化した相変化材料層を層10として有する再生専用媒体においても、再生パワーPrに対し反射光量が線形的に変化し、この範囲において超解像再生が可能であることがわかる。
なお、再生専用媒体に機能層として相変化材料層を設ける場合、図3(B)に示す媒体構造に限らず、例えば図1、図2および図3(A)にそれぞれ示す構造のいずれであってもよく、その他の構造であってもよい。使用する媒体構造は、例えば再生波長などの各種条件に応じて適宜決定すればよい。
[図4(A)および図4(B)に示す媒体構造への適用]
次に、図4(A)および図4(B)にそれぞれ示す構造の媒体に本発明を適用した場合の実験について説明する。
次に、図4(A)および図4(B)にそれぞれ示す構造の媒体に本発明を適用した場合の実験について説明する。
図4(A)に示す光情報媒体は光記録媒体であり、透光性を有する基体2の表面にグルーブ22を有し、グルーブ形成面側に、第1誘電体層31、層10、第2誘電体層32、記録層4および第3誘電体層33をこの順で有する。基体2を透過して入射した光は、層10を透過して記録層4に到達し、記録層4で反射した後、再び層10および基体2を透過して、出射される。
図4(A)に示す構造をもつ光ディスクサンプルは、以下の手順で作製した。各誘電体層は、Si3N4をターゲットとしてAr雰囲気中においてスパッタ法により形成した。第1誘電体層31の厚さは170nm、第2誘電体層32の厚さは20nm、第3誘電体層33の厚さは20nmとした。層10は、GeまたはWから構成し、厚さは15nmまたは100nmとした。記録層4は相変化型のものであり、ターゲットとしてAg−In−Sb−Te−Ge合金を用い、Ar雰囲気中でスパッタ法により形成した。記録層の組成(原子比)は、組成式(AgaInbSbcTed)1-eGeeにおいて、a=0.07、b=0.05、c=0.59、d=0.29、e=0.05とした。記録層4の厚さは20nmとした。
図4(B)に示す光情報媒体は光記録媒体であり、透光性を有する基体2の表面にグルーブ22を有し、グルーブ形成面側に、第1誘電体層31、記録層4、第2誘電体層32、層10および第3誘電体層33をこの順で有する。基体2を透過して入射した光は、記録層4を透過して層10に到達し、層10で反射した後、再び記録層4および基体2を透過して、出射される。図4(A)に示す構造をもつ光ディスクサンプルは、層10と記録層4との位置関係を逆転させたほかは、図4(B)に示す構造のサンプルと同様にして作製した。
これらのサンプルを前記光ディスク評価装置に載せ、線速度2m/sで単一信号を記録した。この単一の信号の周波数は、記録マーク長が200nmとなるように決定した。なお、この実験では、相変化型記録層を初期化(結晶化)せずに非晶質のままで用いた。
次に、上記光ディスク評価装置を用いて、これらのサンプルのC/Nを線速度11m/sで測定した。その結果、下記表6に示す結果が得られた。
表6から、光記録媒体においても、本発明による超解像再生が可能であることがわかる。なお、上記した再生専用型サンプルに比べC/Nが全般に低くなっているのは、媒体構造、具体的には各誘電体層の厚さが最適化されていないためであり、表6においてC/Nが20dB未満となっているものも、媒体構造を最適化することにより20dB以上のC/Nを得ることが可能である。層10として厚さ100nmのW層を用いたサンプルは、層10を再生光がほとんど透過しなかったためにC/Nが得られなかったと考えられる。
なお、記録後の記録層を透過型電子顕微鏡により観察したところ、層10としてGe層を有するサンプルのうち図4(A)に示される構造のものでは、記録層が穿孔されて記録マークとなっていた。一方、そのほかのサンプルでは、非晶質の記録層に結晶質の記録マークが形成されていた。
図4(A)および図4(B)は、機能層を通して記録層に再生光を照射するか、記録層を通して機能層に再生光を照射する構成である。しかし、記録パワー照射により記録マークを形成可能な材料から機能層を構成すれば、機能層が記録層を兼ねる構成とすることができる。
[図4(C)に示す媒体構造への適用]
次に、図4(C)に示す構造の媒体に本発明を適用した場合の実験について説明する。
次に、図4(C)に示す構造の媒体に本発明を適用した場合の実験について説明する。
図4(C)に示す光情報媒体は光記録媒体であり、透光性を有する基体2の表面にグルーブ22を有し、グルーブ形成面側に、第1誘電体層31、層10、第2誘電体層32および金属層5をこの順で有する。記録再生光は、基体2を通して入射する。図4(C)に示す構造は、図3(B)に示す再生専用媒体において、ピット21をグルーブ22に変更したものである。
前記Ag5.6In3.8Sb63.2Te25.2Ge2.2合金からなる相変化材料層を層10として有し、かつ、図3(B)に示す構造をもつ前記再生専用サンプルと同様にして、図4(C)に示す構造をもつ光記録ディスクサンプルを作製した。層10、第1誘電体層31および第2誘電体層32の組成および厚さは、前記再生専用サンプルと同じとした。
この光記録ディスクサンプルの層10をバルクイレーザーにより初期化(結晶化)した後、上記光ディスク評価装置を用い、線速度6m/s、記録パワー13mW、消去パワー5mWの条件で、層10に単一信号を記録した。この単一信号の周波数は、層10に形成される非晶質記録マークの長さが200nmとなるように決定した。次に、上記光ディスク評価装置を用いて、このサンプルのC/Nを線速度6m/sで測定した。再生パワーPrとC/Nとの関係を図39に示す。なお、図39に示す再生パワー範囲では、非晶質記録マークは消去されない。
図39から、このサンプルにおいても超解像再生が可能であることがわかる。前述したように、第1誘電体層31、第2誘電体層32および金属層5は超解像再生には寄与しないため、このサンプルにおける層10は、記録層として働くと同時に、本発明における機能層として働くことがわかる。
このように、記録パワー照射により記録マークを形成可能な材料から機能層を構成すれば、機能層が記録層を兼ねる構成とすることができる。
なお、後述するように、本発明における超解像再生には再生パワーが大きな影響を与えると考えられるので、図4(C)に示すように層10が機能層と記録層とを兼ねる構成では、層10の結晶化温度を高くしたり、第2誘電体層32を薄くする急冷構造としたり、第2誘電体層32および/または金属層5を熱伝導率の高い材料から構成したりすることにより、高パワーの再生光を使用可能とすることが望ましい。ただし、その場合でも、記録特性を著しく阻害しないように、媒体設計を行うことが好ましい。
[超解像再生の作用]
以上に示した実験結果から、本発明により実現する超解像再生が、従来の超解像再生と全く異なったものであることがわかる。
以上に示した実験結果から、本発明により実現する超解像再生が、従来の超解像再生と全く異なったものであることがわかる。
まず、従来の超解像再生では、前述したように、ヒートモード方式においてもフォトンモード方式においても、マスク層にレーザービームを照射し、レーザービームスポット内のエネルギー分布を利用してビームスポットよりも小さな領域の透過率または反射率を向上させる。そのため、例えば前記特開平11−86342号公報の図9に示されるように、再生パワーを増大させていくとC/Nが上昇し、マスク層の光透過率が一定に達するとC/Nの上昇は頭打ちとなり、さらに再生パワーを増大させると、光学的開口(透過率上昇領域)が大きくなりすぎてC/Nが急激に低下する。なお、従来の超解像再生媒体では、反射率上昇を利用するタイプにおいても、再生パワー変化に対するC/Nの挙動は同様となる。
また、従来の超解像再生では、マスク層に光学的開口を形成するために一定以上の熱量またはフォトン量が必要であるため、超解像再生が可能となる再生パワーに閾値が存在し、かつ、この閾値を境界として媒体の反射率が急激に変化する。
また、従来の超解像再生では、再生パワーを一定にして線速度を変えながら再生する場合、線速度が速くなるにしたがって、ビームスポット中央付近の温度が低くなり、また、入射フォトン数が少なくなる。したがって、従来の超解像再生では、ヒートモード方式であってもフォトンモード方式であっても、線速度変化に伴いC/Nが大きく変化してしまう。
これに対し本発明における超解像再生では、図6〜図9および図17〜図19に示されるように、再生パワーPrの増大に伴うC/Nの上昇、それに続く頭打ち、それに続く微減は見られるが、層10の劣化により再生信号が得られなくなる場合を除き、C/Nが急激に低下することはない。また、図10〜図13および図20〜図22から導かれるように、反射率が再生パワーの影響を受けない。また、本発明における超解像再生では、図15、図29(A)および図29(B)に示されるように、広い線速度域においてC/Nの線速度依存性が実質的に認められない。これらの結果から、本発明における機能層は、従来の超解像媒体におけるマスク層などとは全く異なったメカニズムで超解像再生を可能にしていると考えられる。すなわち、本発明では、再生光照射により層10に透過率または反射率の変化した微小な領域が形成されるのではなく、例えば、層10自体が空間分解能を向上させているとも考えられる。
本発明における超解像再生には、前述したようにヒートモードが関与していると考えられる。このことを確認するため、再生光照射時の層10の到達温度とC/Nとの関係を調べた。層10の到達温度は、再生パワー、再生光波長(635nm)における層10構成材料の屈折率および吸収係数、層10構成材料の熱伝導率、定圧比熱および密度、層10の厚さ、レーザービームのスポット径、媒体の線速度(11m/s)をパラメータとして算出した。層10の到達温度とC/Nとの関係を示すグラフを、層10の厚さごとに分けて図30〜図32に示す。
これらのグラフのいずれにおいても、層10の到達温度とC/Nとに相関が認められ、この相関は特に図30において明瞭である。すなわち、層10の構成元素によらず、層10の到達温度が高くなるほどC/Nが高くなる傾向が認められる。ただし、C/Nが立ち上がる温度は、構成元素によって異なる。この結果からも、本発明における超解像再生にヒートモードが関与していることが強く示唆される。
層10の到達温度によってC/Nがほぼ決定されるとすると、より短波長の再生光を利用することにより、より低いパワーの再生光で超解像再生が可能となる。レーザービームのスポット径は、レーザー波長が短いほど小さくでき、その結果、パワー密度を高くできる。そのため、短波長のレーザービームを用いれば、より低いパワーで、ビームスポット内を所定の温度まで昇温できる。したがって、短波長において吸収係数が特に低くならない限り、再生波長が短いほど、低い再生パワーが使用可能である。このことを確認するため、再生光の波長を410nm、再生パワーを3mW、媒体の線速度を11m/sとした場合について、層10の到達温度を求めた。そして、このときの到達温度と、再生光波長を635nm、再生パワーを3mW、媒体の線速度を11m/sとしたときの層10の到達温度とを比較した。その結果、再生光の短波長化により、すべての構成材料において到達温度が上昇することが確認された。例えば層10をCuから構成した場合の到達温度は、波長635nmで66℃であったが、波長410nmでは488℃となった。
上述したように、本発明における超解像再生では、機能層の温度が重要な役割を担っていると考えられる。このことを確認するため、さらに以下の実験を行った。
上記実験で作製したサンプルのうち、厚さ15nmのSi層からなる層10を有するものについて、ピット長250nmのピット列のC/Nを室温(RT)で測定した。続いて、このサンプルを60℃の恒温槽に2日間保存した後、C/Nを測定し、続いて冷凍庫に10分間保存した後、C/Nを測定し、続いて、60℃の恒温槽に5分間保存した後、C/Nを測定した。これらのC/N測定結果を、図33に示す。図33において再生パワーが同じ場合のC/Nを比較すると、高温保存によりC/Nが向上し、低温保存によりC/Nが低下することが明瞭にわかる。この結果から、本発明における超解像再生に機能層の温度が関与していることが明らかである。
[再生方法]
本発明の媒体では、上述したように、再生時の機能層温度とC/Nとが相関する。したがって本発明では、機能層の温度を、機能層構成材料に応じた所定値以上に昇温させることにより、超解像再生を行うことができる。本発明では、機能層を所定温度以上に昇温するために、再生光(レーザービーム)照射だけを利用してもよいが、これに加え、環境温度の昇温を利用してもよい。また、環境温度の制御だけで機能層の温度を所定値以上に設定できれば、機能層を実質的に昇温させない程度の再生パワーで超解像再生を行うこともできる。環境温度の昇温を利用すれば再生パワーを低く抑えることができるので、層10の反射率が高すぎて反射光検出系に飽和が生じる場合に有効である。また、環境温度の昇温を利用する場合、あらかじめ一定の温度まで昇温した状態で再生パワーを照射して所定温度まで昇温させればよいので、再生時の機能層の昇温速度を小さくできる。したがって、急激な昇温によって劣化しやすい材料から機能層を構成する場合に有効である。
本発明の媒体では、上述したように、再生時の機能層温度とC/Nとが相関する。したがって本発明では、機能層の温度を、機能層構成材料に応じた所定値以上に昇温させることにより、超解像再生を行うことができる。本発明では、機能層を所定温度以上に昇温するために、再生光(レーザービーム)照射だけを利用してもよいが、これに加え、環境温度の昇温を利用してもよい。また、環境温度の制御だけで機能層の温度を所定値以上に設定できれば、機能層を実質的に昇温させない程度の再生パワーで超解像再生を行うこともできる。環境温度の昇温を利用すれば再生パワーを低く抑えることができるので、層10の反射率が高すぎて反射光検出系に飽和が生じる場合に有効である。また、環境温度の昇温を利用する場合、あらかじめ一定の温度まで昇温した状態で再生パワーを照射して所定温度まで昇温させればよいので、再生時の機能層の昇温速度を小さくできる。したがって、急激な昇温によって劣化しやすい材料から機能層を構成する場合に有効である。
環境温度を上昇させるには、駆動装置内に各種の加温手段を設け、媒体全体または再生対象領域付近を部分的に加温すればよい。加温手段としては、例えば駆動装置内の媒体と対向する位置に面状発熱体を設けたり、光ピックアップの動きと連動して動く抵抗加熱コイルを光ピックアップ近傍に設けたりすればよい。
本発明の媒体では、層10の構成材料および媒体構造に応じて、使用可能な再生パワーに上限が存在する。したがって、これらの条件に応じた最適再生パワーを本発明の媒体にあらかじめ記録しておき、再生前に前記最適再生パワーを読み出して、この最適パワーで再生を行うことが好ましい。また、必要に応じ、試し再生を行って最適再生パワーを決定してもよい。
[ピット深さ]
位相ピットを有する従来の読み出し専用媒体では、位相ピットが設けられている基体の屈折率をn、再生光の波長をλとしたとき、一般に、再生出力は位相ピットの深さがλ/4nのとき最大となることが知られている。また、トラッキングにプッシュ−プル法を用いる場合、トラッキングエラー信号(プッシュ−プル信号)は位相ピットの深さがλ/8nのときに最大になり、一方、λ/4nのときにゼロになることが知られている。そのため、従来の読み出し専用媒体では、位相ピットの深さを両者の中間であるλ/6nとすることが一般的である。
位相ピットを有する従来の読み出し専用媒体では、位相ピットが設けられている基体の屈折率をn、再生光の波長をλとしたとき、一般に、再生出力は位相ピットの深さがλ/4nのとき最大となることが知られている。また、トラッキングにプッシュ−プル法を用いる場合、トラッキングエラー信号(プッシュ−プル信号)は位相ピットの深さがλ/8nのときに最大になり、一方、λ/4nのときにゼロになることが知られている。そのため、従来の読み出し専用媒体では、位相ピットの深さを両者の中間であるλ/6nとすることが一般的である。
これに対し上記機能層を有する本発明の媒体では、再生出力が最大となるピットの深さが、従来の読み出し専用媒体とは異なる。図34に、本発明の媒体におけるピット深さとC/Nとの関係を示す。図34に結果を示す実験には、図2に示す構造の光ディスクサンプルを用いた。基体2には、射出成形により位相ピットを同時形成した直径120mm、厚さ1.2mmのディスク状ポリカーボネート(屈折率n=1.58)を用いた。ピット長は0.29μm、0.37μmおよび0.44μmの3種とした。隣接ピット間のスペースはピットと同じ長さとした。また、ピット深さは、図34のグラフの横軸に示される値とした。なお、同図に示されるピット深さは、再生光の波長λと、波長λにおける基体の屈折率nとで規格化した値である。層10は、厚さ15nmのGe層から構成し、保護層6は、前記したサンプルと同様に、厚さ10μmの紫外線硬化型樹脂から構成した。
この実験では、レーザー波長:680nm、開口数NA:0.55、再生可能なピット長:0.31μm以上の短波長タイプの再生系と、レーザー波長:780nm、開口数NA:0.50、再生可能なピット長:0.39μm以上の長波長タイプの再生系とを用い、再生パワーは短波長タイプにおいて4mW、長波長タイプにおいて7mWとし、線速度は両タイプ共に11m/sとして、再生を行った。長さ0.44μmのピットは、両タイプ共に再生限界より大きいので、通常再生が可能である。長さ0.37μmのピットは、短波長タイプでは通常再生が行われ、長波長タイプでは超解像再生が行われることになる。長さ0.29μmのピットは、短波長タイプでも超解像再生が行われることになる。
図34から、通常再生となる場合には、従来から知られているとおりλ/4n付近で最大C/Nが得られることがわかる。一方、超解像再生となる場合には、λ/8n付近においてC/Nが最大となることがわかる。すなわち、超解像再生となる場合、再生出力とトラッキングエラー信号出力とを共に確保するために従来選択されていたλ/6nよりピット深さを浅くしたほうが、より高い再生出力が得られることがわかる。そして、超解像再生となる場合には、ピット深さを従来に比べ著しく浅いλ/10nとしても、最大C/Nからの落ちが少ないことがわかる。
なお、図34では再生出力ではなくC/Nを示してあるが、上記実験において再生出力が最大となるピット深さとC/Nが最大となるピット深さとは一致した。
以上の実験結果から、本発明の媒体において、超解像再生の対象となる微小ピットの再生出力を優先したい場合には、ピット深さdを媒体全体において
λ/10n≦d<λ/6n、特に
λ/9n≦d≦λ/7n
とすることが好ましい。
λ/10n≦d<λ/6n、特に
λ/9n≦d≦λ/7n
とすることが好ましい。
なお、例えば、図3(A)に示す構造の媒体において基体2を通して再生光を入射させる場合、第1誘電体層31は比較的薄いため、ピットとそれ以外の領域とで第1誘電体層31の厚さは同じとなる。したがって、層10が第1誘電体層31のような他の層を介して基体2上に形成されている場合でも、ピット深さの好ましい範囲は基体2の屈折率nを用いて表すことができる。
また、図1において基体2の凹凸を逆にし、さらに、層10の上に薄い透明樹脂層を設け、この透明樹脂層を通して再生光を入射させる構成とした場合、上記した好ましいピット深さの算出に用いる屈折率は、透明樹脂層の屈折率である。また、その場合において透明樹脂層を設けない場合には、好ましいピット深さの算出に用いる屈折率は、空気の屈折率である。すなわち、これらの場合、再生光入射側に存在する透明樹脂層や空気の屈折率を、基体の屈折率とみなす。
超解像再生が必要なλ/4NA未満の長さをもつピットと、通常再生できるλ/4NA以上の長さをもつピットとが共に存在する場合には、両ピットの深さを異なるものとすれば、両ピットにおいて共に高い再生出力が得られる。この場合、長さがλ/4NA未満のピットの深さdSと、長さがλ/4NA以上のピットの深さdLとは、
dS<dL
が成立するように設定する。高出力を得るためには、dSは
λ/10n≦dS<λ/6n、特に
λ/9n≦dS≦λ/7nであることが好ましい。一方、dLは、
λ/8n<dL<λ/4n、特に
λ/7n≦dL≦λ/5n
であることが好ましい。
dS<dL
が成立するように設定する。高出力を得るためには、dSは
λ/10n≦dS<λ/6n、特に
λ/9n≦dS≦λ/7nであることが好ましい。一方、dLは、
λ/8n<dL<λ/4n、特に
λ/7n≦dL≦λ/5n
であることが好ましい。
深さの異なる2種のピットを形成するためには、例えばフォトリソグラフィーを利用するマスタリングの際に、感度の異なる2種のフォトレジストを用いればよい。その場合、感度の低いフォトレジスト層を下層とし、感度の高いフォトレジスト層を上層として積層し、浅いピットのパターンを形成する場合には上層だけ感光するように露光を行い、深いピットのパターンを形成する場合には上層に加えて下層も感光するように露光を行えばよい。また、吸収波長の異なる2種のフォトレジストを用い、積層構造のフォトレジスト層を形成してもよい。その場合も、上層だけの感光と、上層および下層の両方の感光とを独立して行えばよい。
なお、上記したピット深さの制御については、再生専用媒体に限らず、記録媒体のアドレスピットなどにも適用可能である。
2…基体
21…ピット
22…グルーブ
31…第1誘電体層
32…第2誘電体層
33…第3誘電体層
4…記録層
5…金属層
6…保護層
10…層
21…ピット
22…グルーブ
31…第1誘電体層
32…第2誘電体層
33…第3誘電体層
4…記録層
5…金属層
6…保護層
10…層
Claims (8)
- 凹凸を有するか、記録マークを形成可能であるか、前記凹凸を有すると共に記録マークが形成可能である情報記録面を備える光情報媒体であって、
空間分解能を向上させる機能を有する機能層を備えており、
この機能層は、Nb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、ZnおよびBiからなる群から選択される少なくとも1種の元素を含む単体もしくは合金またはその化合物から構成され、かつ、該機能層は、その組成に対応した特定の厚さを有することを特徴とする光情報媒体。 - 情報を保持するピットが設けられた基体を有し、この基体のピット形成面上に機能層を有し、4NA・PL(PLは前記ピットの最小長さ、NAは再生光学系の開口数)より長い波長の再生光を照射したときに、前記ピットが保持する情報の再生が可能であり、再生光の波長をλとし、前記基体の屈折率をnとしたとき、ピット深さdが媒体全体において、
λ/10n≦d<λ/6n
であり、
さらに、前記機能層は、Nb、Mo、W、Mn、Pt、C、Si、Ge、Ti、Zr、V、Cr、Fe、Co、Ni、Pd、Sb、Ta、Al、In、Cu、Sn、Te、ZnおよびBiからなる群から選択される少なくとも1種の元素を含む単体もしくは合金またはその化合物から構成され、かつ、該機能層は、その組成に対応した特定の厚さを有することを特徴とする光情報媒体。 - 凹凸を有するか、記録マークを形成可能であるか、前記凹凸を有すると共に記録マークが形成可能である情報記録面を備える光情報媒体であって、
空間分解能を向上させる機能を有する機能層を備えており、
この機能層は、下記のいずれかの元素から構成され、かつ、該元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm - 凹凸を有するか、記録マークを形成可能であるか、前記凹凸を有すると共に記録マークが形成可能である情報記録面を備える光情報媒体であって、
空間分解能を向上させる機能を有する機能層を備えており、
この機能層は、下記のいずれかの元素に窒素、酸素、フッ素、硫黄および炭素からなる群から選択される少なくとも1つの元素を添加して構成され、かつ、この機能層に含まれる下記の元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm - 情報を保持するピットが設けられた基体を有し、この基体のピット形成面上に機能層を有し、4NA・PL(PLは前記ピットの最小長さ、NAは再生光学系の開口数)より長い波長の再生光を照射したときに、前記ピットが保持する情報の再生が可能であり、再生光の波長をλとし、前記基体の屈折率をnとしたとき、ピット深さdが媒体全体において、
λ/10n≦d<λ/6n
であり、
さらに、前記機能層は、下記のいずれかの元素から構成され、かつ、該元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm - 情報を保持するピットが設けられた基体を有し、この基体のピット形成面上に機能層を有し、4NA・PL(PLは前記ピットの最小長さ、NAは再生光学系の開口数)より長い波長の再生光を照射したときに、前記ピットが保持する情報の再生が可能であり、再生光の波長をλとし、前記基体の屈折率をnとしたとき、ピット深さdが媒体全体において、
λ/10n≦d<λ/6n
であり、
さらに、前記機能層は、下記のいずれかの元素に窒素、酸素、フッ素、硫黄および炭素からなる群から選択される少なくとも1つの元素を添加して構成され、かつ、この機能層に含まれる下記の元素に対応した下記に示す厚さを有することを特徴とする光情報媒体。
Nb:2〜100nm
Mo:2〜70nm
W:2〜70nm
Mn:2〜100nm
Pt:2〜40nm
C:2〜100nm
Si:2〜100nm
Ge:2〜100nm
Ti:2〜100nm
Zr:2〜100nm
V:2〜100nm
Cr:2〜30nm
Fe:2〜80nm
Co:2〜70nm
Ni:2〜70nm
Pd:2〜40nm
Sb:2〜100nm
Ta:2〜100nm
Al:2〜20nm
In:2〜100nm
Cu:2〜10nm
Sn:2〜40nm
Te:2〜70nm
Zn:40〜90nm
Bi:45〜70nm - 請求項1〜6のいずれかに記載の光情報媒体の機能層の上に、空気より熱伝導率の高い材質からなる保護層が設けられていることを特徴とする光情報媒体。
- 請求項7において、
前記保護層が樹脂からなることを特徴とする光情報媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006210190A JP2006294249A (ja) | 1999-07-02 | 2006-08-01 | 光情報媒体 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18980099 | 1999-07-02 | ||
JP24229399 | 1999-08-27 | ||
JP26782399 | 1999-09-21 | ||
JP30255899 | 1999-10-25 | ||
JP37506799 | 1999-12-28 | ||
JP2006210190A JP2006294249A (ja) | 1999-07-02 | 2006-08-01 | 光情報媒体 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000182125A Division JP3866016B2 (ja) | 1999-07-02 | 2000-06-16 | 光情報媒体およびその再生方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006294249A true JP2006294249A (ja) | 2006-10-26 |
Family
ID=37414612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006210190A Pending JP2006294249A (ja) | 1999-07-02 | 2006-08-01 | 光情報媒体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006294249A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008257849A (ja) * | 2007-04-06 | 2008-10-23 | Commissariat A L'energie Atomique | 超解像光記録媒体 |
JP2009037698A (ja) * | 2007-08-02 | 2009-02-19 | Nec Corp | 光学情報記録媒体及び光学情報再生方法 |
-
2006
- 2006-08-01 JP JP2006210190A patent/JP2006294249A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008257849A (ja) * | 2007-04-06 | 2008-10-23 | Commissariat A L'energie Atomique | 超解像光記録媒体 |
JP2009037698A (ja) * | 2007-08-02 | 2009-02-19 | Nec Corp | 光学情報記録媒体及び光学情報再生方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3866016B2 (ja) | 光情報媒体およびその再生方法 | |
KR100734641B1 (ko) | 광기록매체, 광기록/재생장치, 광기록장치 및 광재생장치,광기록매체용 데이터 기록/재생 방법 및 데이터 기록방법및 데이터 재생 방법 | |
JP3255051B2 (ja) | 光学的情報記録用媒体 | |
KR100770808B1 (ko) | 광기록매체, 이의 제조방법, 광기록매체 상에 데이터를기록하는 방법 및 데이터 재생방법 | |
JP4814476B2 (ja) | 光情報媒体の再生方法 | |
KR100685061B1 (ko) | 광기록매체 및 이를 제조하기 위한 방법, 및 광기록매체상에 데이터를 기록하기 위한 방법 및 광기록매체로부터데이터를 재생하는 방법 | |
KR20060033027A (ko) | 광기록매체 및 이를 생산하기 위한 제조방법, 및광기록매체에 대한 데이터 기록방법 및 데이터 재생방법 | |
KR100770806B1 (ko) | 광기록매체와 그 제조방법 및 광기록매체에 대한 데이터기록방법 및 데이터 재생방법 | |
KR100770807B1 (ko) | 광기록매체 및 이를 제조하는 방법, 광기록매체에 대한데이터기록방법 및 데이터재생방법 | |
JP4354733B2 (ja) | 光記録媒体 | |
JP2004158145A (ja) | 光記録媒体 | |
JP2000229479A (ja) | 光記録媒体 | |
US7348124B2 (en) | High-density readable only optical disk | |
US20060188685A1 (en) | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium | |
JP2006294249A (ja) | 光情報媒体 | |
JP3255172B2 (ja) | 光学的情報記録用媒体 | |
JP2004171631A (ja) | 光記録媒体 | |
WO2007135827A1 (ja) | 光学情報記録媒体、光学情報再生方法および光学情報再生装置 | |
JP2008018607A (ja) | 追記型光記録媒体 | |
JP3980544B2 (ja) | 光情報記録媒体 | |
JP2004241103A (ja) | 光記録媒体およびその製造方法 | |
JP2007141417A (ja) | 追記型光記録媒体およびその製造方法 | |
JP2004185798A (ja) | 光記録媒体 | |
JP2004227720A (ja) | 光記録媒体 | |
JP2005289044A (ja) | 光学的情報記録媒体とその製造方法、記録方法及び記録装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090707 |