JP2006278184A - Square battery and its manufacturing method - Google Patents
Square battery and its manufacturing method Download PDFInfo
- Publication number
- JP2006278184A JP2006278184A JP2005096847A JP2005096847A JP2006278184A JP 2006278184 A JP2006278184 A JP 2006278184A JP 2005096847 A JP2005096847 A JP 2005096847A JP 2005096847 A JP2005096847 A JP 2005096847A JP 2006278184 A JP2006278184 A JP 2006278184A
- Authority
- JP
- Japan
- Prior art keywords
- electrode body
- winding
- battery
- electrode
- wound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000004804 winding Methods 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims description 13
- 238000003892 spreading Methods 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 2
- 238000000748 compression moulding Methods 0.000 abstract description 26
- 238000004904 shortening Methods 0.000 abstract description 2
- 238000003825 pressing Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 15
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 12
- 238000007789 sealing Methods 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Primary Cells (AREA)
Abstract
Description
本発明は、正極と負極とがセパレータを介して巻回、加圧された長円形状の巻き取り電極体が、外装缶内に収納された角型電池及びその製造方法に関するものである。 The present invention relates to a prismatic battery in which an elliptical winding electrode body in which a positive electrode and a negative electrode are wound and pressurized via a separator is housed in an outer can, and a method for manufacturing the same.
近年、携帯電話、ノートパソコン、PDA等の電子機器の小型軽量化が進んでおり、これに伴って、電子機器に用いられる電池の小型軽量化が求められるようになってきた。この場合、角型電池は円筒型電池と比べて収納効率に優れるので、広く使用されるようになってきた。
ここで、上記角型電池の角型外装缶内に収納される巻き取り電極体の作製方法としては、以下に示すような方法が知られている。
2. Description of the Related Art In recent years, electronic devices such as mobile phones, notebook computers, and PDAs have been reduced in size and weight, and along with this, reduction in size and weight of batteries used in electronic devices has been demanded. In this case, the prismatic battery is more widely used because it has better storage efficiency than the cylindrical battery.
Here, as a method for producing the wound electrode body housed in the rectangular outer can of the rectangular battery, the following methods are known.
(1)下記特許文献1に示されるように、長尺シート状の正極と、長尺シート状の負極と、これら両極を絶縁するセパレータとを、平板状の巻き芯を用いて巻回し、その後この巻き芯を抜き取る事により長円状の巻き取り電極体を作製する方法。
(2)上記(1)と同様の正負両極と、セパレータとを、断面円形状の巻き芯を用いて巻回し、この巻き芯を抜き取った後、電極体を直径方向から押しつぶして断面形状を長円状にして、巻き取り電極体を作製する方法。また、下記特許文献2に示すように、巻き取り電極体を直径方向から押しつぶす際に、高温圧縮成型する方法も知られている。
(1) As shown in Patent Document 1 below, a long sheet-shaped positive electrode, a long sheet-shaped negative electrode, and a separator that insulates both electrodes are wound using a flat core, and then A method of producing an oval winding electrode body by extracting the winding core.
(2) The same positive and negative electrodes as in (1) above and a separator are wound using a winding core having a circular cross section, and after removing the winding core, the electrode body is crushed from the diameter direction to increase the cross sectional shape. A method of making a wound electrode body in a circular shape. Further, as shown in Patent Document 2 below, a method of high-temperature compression molding when crushing the winding electrode body from the diameter direction is also known.
しかしながら、上記従来技術では、以下に示すような課題を有していた。
(1)の技術の課題
(1)の技術では、テンションコントロールが困難であるということから、円筒形状に巻き取る場合に比べて巻き取り速度が遅くなるため、巻き取り時間がかかってしまい、角型電池の製造コストが高騰するという課題を有していた。
However, the above prior art has the following problems.
(1) Technical Problem Since the tension control is difficult in the technique (1), the winding speed is slower than in the case of winding into a cylindrical shape. There was a problem that the manufacturing cost of the type battery increased.
(2)の技術の課題
(2)の技術では、円形状の巻き取り電極体をダイレクトに長円形状にするため、所定の厚みにまで圧縮成型するのに長時間を要すると共に、圧縮成型後の巻き取り電極体が円形状に復帰しようとする力が働いて、巻き取り電極体を収納している電池缶が膨れるという課題を有していた。このような課題は、特に、巻き数が多く大電流充放電が必要な大型電池において顕著である。
(2) Technical Problems In the technique (2), since the circular winding electrode body is directly formed into an oval shape, it takes a long time to perform compression molding to a predetermined thickness, and after compression molding There was a problem that the battery can that accommodates the take-up electrode body swells due to the force of the take-up electrode body to return to a circular shape. Such a problem is particularly noticeable in a large battery having a large number of turns and requiring large current charge / discharge.
本発明は上記問題点を解消するためになされたものであって、巻き取り時や圧縮成型時の作業時間を短縮することにより、製造コストの低減を図りつつ、圧縮成型後の巻き取り電極体の復帰力を抑制することにより、電池缶が膨れるのを抑えることができる角型電池及びその製造方法を提供することを目的とするものである。 The present invention has been made in order to solve the above-mentioned problems, and shortens the working time at the time of winding or compression molding, thereby reducing the manufacturing cost and winding the electrode body after compression molding. It is an object of the present invention to provide a prismatic battery and a method for manufacturing the same that can prevent the battery can from swelling by suppressing the restoring force of the battery.
上記目的を達成するために、本発明のうち請求項1記載の発明は、正極と負極とがセパレータを介して巻回、加圧された長円形状の巻き取り電極体が、外装缶内に収納された角型電池において、上記巻き取り電極体における幅狭方向の電極厚みに対する幅広方向の電極厚みの比が、1.2未満に規制されることを特徴とする。
上記構成であれば、長円形状の巻き取り電極体の空洞部分における形状がより幅広形状となるので、円筒形状に復帰しようとする力が小さくなって、電池缶膨れが緩和されることになる。
In order to achieve the above object, the invention according to claim 1 of the present invention is characterized in that an oval winding electrode body in which a positive electrode and a negative electrode are wound and pressurized via a separator is disposed in an outer can. In the accommodated prismatic battery, the ratio of the electrode thickness in the wide direction to the electrode thickness in the narrow direction in the winding electrode body is restricted to less than 1.2.
With the above configuration, since the shape of the oval winding electrode body in the hollow portion becomes wider, the force to return to the cylindrical shape is reduced, and the battery can bulge is alleviated. .
請求項2記載の発明は請求項1記載の発明において、上記巻き取り電極体における巻回数が40回以上であることを特徴とする。
上記構成の如く、大容量電池では、高出力を達成するために塗布厚みを薄くしているが、巻回数が多い(通常、40回以上)ためにより膨らみの影響が出る可能性が高いが、請求項1記載の構成であれば、円筒形状に復帰しようとする力が小さくなって、電池缶膨れが緩和される。
The invention described in claim 2 is the invention described in claim 1, characterized in that the number of windings in the winding electrode body is 40 or more.
As in the above configuration, in a large-capacity battery, the coating thickness is reduced in order to achieve high output, but there is a high possibility that the influence of bulging will appear due to the large number of windings (usually 40 times or more). If it is the structure of Claim 1, the force which tries to return to a cylindrical shape will become small, and a battery can swelling will be relieved.
また、上記目的を達成するために、本発明のうち請求項3記載の発明は、中心部に空洞部を残した状態で、正極と負極とをセパレータを介して巻回して渦巻状の巻き取り電極体を作製する第1ステップと、上記巻き取り電極体の軸から離れる方向に上記空洞部を広げる第2ステップと、上記巻き取り電極体を外方から圧縮して、巻き取り電極体を長円形状に成型する第3ステップと、上記巻き取り電極体を外装缶内に収納する第4ステップと、を有することを特徴とする角型電池の製造方法。 In order to achieve the above object, the invention according to claim 3 of the present invention is characterized in that the positive electrode and the negative electrode are wound through a separator in a state where a hollow portion is left in the center, and a spiral winding is performed. A first step of producing an electrode body; a second step of expanding the cavity in a direction away from the axis of the winding electrode body; and compressing the winding electrode body from the outside to lengthen the winding electrode body A method for manufacturing a rectangular battery, comprising: a third step of forming a circular shape; and a fourth step of storing the winding electrode body in an outer can.
上記方法の如く、中心部に空洞部を残した状態で渦巻状の巻き取り電極体を作製する第1ステップの後に、巻き取り電極体の軸から離れる方向に空洞部を広げる第2ステップを有しているので、第3ステップの圧縮成型時には、巻き取り電極体の最内周部が長円形状となっている。したがって、第4ステップにおいて巻き取り電極体を外装缶内に収納した後において、巻き取り電極体が円筒形状に復帰しようとする力が小さくなるので、電池缶膨れが緩和される。 As in the above method, after the first step of producing the spiral wound electrode body with the cavity remaining in the center, there is a second step of expanding the cavity in the direction away from the axis of the wound electrode body. Therefore, at the time of compression molding in the third step, the innermost peripheral portion of the winding electrode body has an oval shape. Therefore, after the take-up electrode body is stored in the outer can in the fourth step, the force for the take-up electrode body to return to the cylindrical shape is reduced, so that the battery can bulge is alleviated.
請求項4記載の発明は請求項3記載の発明において、上記第1ステップにおける巻回数が40回以上であることを特徴とする。
上記方法であれば、請求項2記載の作用効果と同様の作用効果を奏する。
The invention described in claim 4 is the invention described in claim 3, characterized in that the number of windings in the first step is 40 or more.
If it is the said method, there exists an effect similar to the effect of Claim 2.
請求項5記載の発明は請求項3又は4記載の発明において、上記第2ステップにおいて、2本の押し広げ部材を空洞部内の巻き取り電極体に当接し、上記巻き取り電極体の軸から離れる方向に上記空洞部を広げることを特徴とする。
2本の押し広げ部材により巻き取り電極体を押し広げるだけで、巻き取り電極体の最内周部が長円形状となるので、第2ステップの工程を容易に実行することができる。
According to a fifth aspect of the present invention, in the third or fourth aspect of the present invention, in the second step, the two spreading members are brought into contact with the winding electrode body in the cavity and separated from the axis of the winding electrode body. The cavity is widened in the direction.
Since the innermost peripheral portion of the take-up electrode body is formed into an oval shape simply by spreading the take-up electrode body with the two spreading members, the step of the second step can be easily performed.
請求項6記載の発明は請求項5記載の発明において、上記押し広げ部材における巻き取り電極体と接触する部分が円弧又は楕円状をなすことを特徴とする。
上記の如く、押し広げ部材における巻き取り電極体と接触する部分が円弧又は楕円状であれば、第2ステップにおいて巻き取り電極体が破損するのを抑制できる。
According to a sixth aspect of the present invention, in the fifth aspect of the present invention, a portion of the spreading member that contacts the winding electrode body is formed in an arc or an ellipse.
As described above, if the portion of the spreading member that contacts the winding electrode body is an arc or an ellipse, it is possible to suppress the winding electrode body from being damaged in the second step.
本発明によれば、巻き取り時や圧縮成型時の作業時間を短縮することにより、製造コストの低減を図りつつ、圧縮成型後の巻き取り電極体の復帰力を抑制することにより、電池缶が膨れるのを抑えることができるという優れた効果を奏する。 According to the present invention, the battery can can be obtained by suppressing the return force of the wound electrode body after compression molding while reducing the manufacturing cost by shortening the working time during winding and compression molding. There is an excellent effect that swelling can be suppressed.
以下、本発明の内容を、図1〜図4に基づいてさらに詳細に説明するが、本発明は以下の最良の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。 Hereinafter, the content of the present invention will be described in more detail with reference to FIGS. 1 to 4, but the present invention is not limited to the following best modes, and may be appropriately changed within the scope not changing the gist thereof. Can be implemented.
図1は本発明の一実施例におけるリチウムイオン二次電池の斜視図、図2は図1のA−A線矢視断面図、図3は巻き取り電極体の分解斜視図、図4(a)〜(d)は巻き取り電極体の製造工程説明図である。
図1に示すように、有底方形筒状をなす外装缶1とこの外装缶1の開口部にレーザ溶接法により固定された封口板2とにより構成される収納空間内には、長円形状の巻き取り電極体3が配置されている。
1 is a perspective view of a lithium ion secondary battery according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, FIG. 3 is an exploded perspective view of a winding electrode body, and FIG. ) To (d) are explanatory diagrams of the manufacturing process of the wound electrode body.
As shown in FIG. 1, an oval shape is formed in a storage space constituted by an outer can 1 having a bottomed rectangular tube shape and a sealing plate 2 fixed to the opening of the outer can 1 by a laser welding method. The winding electrode body 3 is arranged.
上記巻き取り電極体3は、図3に示すように、それぞれ帯状の正極31と負極33の間に帯状のセパレータ32を介在させて、これらを渦巻き状に巻回し、更に広げ工程、加圧肯定等を経て長円形状になるように構成されている。上記正極31は、アルミニウム箔からなる帯状芯体35の両面にリチウム複合酸化物(LiCoO2)からなる正極活物質34を塗布して構成され、上記負極33は、銅箔からなる帯状芯体37の両面に炭素材料を含む負極活物質36を塗布して構成されている。また、上記セパレータ32には、非水電解液が含浸されている。 As shown in FIG. 3, the take-up electrode body 3 is formed by interposing a strip-shaped separator 32 between a strip-shaped positive electrode 31 and a negative electrode 33, winding them in a spiral shape, and further expanding the process. Etc., and is configured to have an oval shape. The positive electrode 31 is configured by applying a positive electrode active material 34 made of lithium composite oxide (LiCoO 2 ) to both surfaces of a band-shaped core 35 made of aluminum foil, and the negative electrode 33 is made of a band-shaped core 37 made of copper foil. The negative electrode active material 36 containing a carbon material is applied to both sides of the substrate. The separator 32 is impregnated with a non-aqueous electrolyte.
ここで、上記正極31には、正極活物質34の塗布されている塗工部と、正極活物質の塗布されていない非塗工部とが形成されている。又、負極33にも、負極活物質36の塗布されている塗工部と、負極活物質の塗布されていない非塗工部とが形成されている。正極31及び負極33は、それぞれセパレータ32上に幅方向へずらして重ね合わせ、正極31及び負極33の前記非塗工部をセパレータ32の両端縁からそれぞれ外側へ突出させた状態で、これらを渦巻き状に巻き取ることによって巻き取り電極体3が構成される。 Here, the positive electrode 31 is formed with a coated portion where the positive electrode active material 34 is applied and a non-coated portion where the positive electrode active material is not applied. The negative electrode 33 also has a coated portion where the negative electrode active material 36 is applied and a non-coated portion where the negative electrode active material is not applied. The positive electrode 31 and the negative electrode 33 are superimposed on the separator 32 while being shifted in the width direction, and the uncoated portions of the positive electrode 31 and the negative electrode 33 are projected outward from both end edges of the separator 32, respectively. The take-up electrode body 3 is formed by taking up in a shape.
この結果、該巻き取り電極体3においては、巻き軸方向の両端部の内、一方の端部では、正極31の非塗工部の芯体38が、セパレータ32の一方の端縁よりも外方へ突出し(以下、このような正極における突出した芯体部分を正極側突出芯体39aと称することがある)、他方の端部では、負極33の非塗工部の芯体39が、セパレータ32の他方の端縁よりも外方へ突出した(以下、このような負極における突出した芯体部分を負極側突出芯体39bと称することがある)構造となっている。 As a result, in the winding electrode body 3, the core body 38 of the non-coated portion of the positive electrode 31 is outside the one end edge of the separator 32 at one end of the both ends in the winding axis direction. (Hereinafter, the protruding core part of the positive electrode may be referred to as a positive electrode side protruding core 39a), and the core 39 of the non-coated part of the negative electrode 33 is a separator at the other end. 32 has a structure projecting outward from the other end edge of 32 (hereinafter, such a projecting core portion of the negative electrode may be referred to as a negative-side projecting core body 39b).
上記正極側突出芯体39aには、図2に示すように、正極集電部材4が取り付けられており、この正極集電部材4は前記封口板2に固定された正極端子10と正極リード板18を介して電気的に接続されている一方、上記負極側突出芯体39bは、負極集電部材5が取り付けられており、この負極集電部材5は前記封口板2に固定された負極端子11と負極リード板19を介して電気的に接続されている。尚、上記正極端子10は絶縁パッキング6を介してナット7により封口板2に固定され、上記負極端子11は絶縁パッキング8を介してナット9により封口板2に固定されている。 As shown in FIG. 2, a positive electrode current collector 4 is attached to the positive electrode side protruding core 39a. The positive electrode current collector 4 includes a positive electrode terminal 10 fixed to the sealing plate 2 and a positive electrode lead plate. 18, while the negative electrode side protruding core body 39 b is attached with a negative electrode current collecting member 5, and the negative electrode current collecting member 5 is fixed to the sealing plate 2. 11 and the negative electrode lead plate 19 are electrically connected. The positive terminal 10 is fixed to the sealing plate 2 by the nut 7 through the insulating packing 6, and the negative terminal 11 is fixed to the sealing plate 2 by the nut 9 through the insulating packing 8.
上記封口板2は板状をなし、略中央部には安全弁15と注液口16とが設けられている。上記安全弁15は、他の部位より薄肉となっているドーム状をなし、電池内圧力が所定値を超えた場合には、安全弁15が破砕して、電池内のガスを電池外に放出する構成である。また、上記注液孔16には、電池内を密閉するための注液栓17が嵌め込まれている。 The sealing plate 2 has a plate shape, and a safety valve 15 and a liquid injection port 16 are provided in a substantially central portion. The safety valve 15 has a dome shape that is thinner than other parts, and when the internal pressure of the battery exceeds a predetermined value, the safety valve 15 is crushed to release the gas in the battery to the outside of the battery. It is. The liquid injection hole 16 is fitted with a liquid injection stopper 17 for sealing the inside of the battery.
ここで、上記構造のリチウムイオン二次電池を、以下のようにして作製した。
・正極の作製
先ず、正極活物質としての平均粒径5μmを有するリチウム複合酸化物(LiCoO2)の粉末と導電剤としての人造黒鉛とを質量比9:1で混合して、正極合剤を得た。次に、粘着剤であるポリフッ化ビニリデンをN−メチル−2−ピロリドン(NMP)に溶解させて、NMP溶液を調製した後、上記正極合剤と上記ポリフッ化ビニリデンとの質量比が95:5となるように、上記正極合剤と上記NMP溶液とを混合して、スラリーを調製した。その後、このスラリーを正極芯体となる厚さ20μmのアルミニウム箔の両面にドクターブレード法により塗布し(但し、アルミニウム箔の幅方向の端部には、スラリーを塗布しない一定幅の非塗工部を設けている)、更に、150℃で2時間の真空乾燥を施すことにより正極31を作製した。
Here, the lithium ion secondary battery having the above structure was produced as follows.
Preparation of positive electrode First, a lithium composite oxide (LiCoO 2 ) powder having an average particle diameter of 5 μm as a positive electrode active material and artificial graphite as a conductive agent are mixed at a mass ratio of 9: 1 to obtain a positive electrode mixture. Obtained. Next, after the polyvinylidene fluoride as an adhesive was dissolved in N-methyl-2-pyrrolidone (NMP) to prepare an NMP solution, the mass ratio of the positive electrode mixture to the polyvinylidene fluoride was 95: 5. The positive electrode mixture and the NMP solution were mixed so that a slurry was prepared. Thereafter, this slurry is applied to both surfaces of an aluminum foil having a thickness of 20 μm to be a positive electrode core by a doctor blade method (however, a fixed width non-coating portion where slurry is not applied to the end in the width direction of the aluminum foil) In addition, the cathode 31 was produced by vacuum drying at 150 ° C. for 2 hours.
・負極の作製
先ず、炭素塊(d002値=3.356Å;Lc値>1000)に空気流を噴射して粉砕し、炭素粉末を作製した。次に、結着剤であるポリフッ化ビニリデンをNMPに溶解させてNMP溶液を調製し、上記炭素粉末と上記ポリフッ化ビニリデンとの質量比が85:15となるように混練してスラリーを調製した。次いで、このスラリーを負極芯体となる厚さ20μmの銅箔の両面にドクターブレード法により塗布し(但し、銅箔の幅方向の端部には、スラリーを塗布しない一定幅の非塗工部を設けている)、更に、150℃で2時間の真空乾燥を施すことにより負極33を作製した。
-Production of negative electrode First, carbon powder (d 002 value = 3.356Å; Lc value> 1000) was jetted and pulverized to produce carbon powder. Next, polyvinylidene fluoride as a binder was dissolved in NMP to prepare an NMP solution, and a slurry was prepared by kneading so that the mass ratio of the carbon powder to the polyvinylidene fluoride was 85:15. . Next, this slurry was applied to both surfaces of a 20 μm thick copper foil serving as a negative electrode core by a doctor blade method (however, a non-coated portion having a constant width where no slurry was applied to the end in the width direction of the copper foil) Further, the negative electrode 33 was produced by vacuum drying at 150 ° C. for 2 hours.
・電解液の調製
エチレンカーボネートとジエチルカーボネートとを体積比1:1の割合で混合した溶媒に、LiPF6をlmol/Lの割合で溶解させて、電解液を調製した。
Electrolytic solution volume ratio and preparation of ethylene carbonate and diethyl carbonate 1: mixed solvent at a ratio of 1, by dissolving LiPF 6 at a rate of I mol / L, to prepare an electrolytic solution.
・電池の組立
先ず、図4(a)に示すように、直径L1=20mmの巻芯21に、イオン透過性のポリプロピレン製微多孔膜からなるセパレータ32を数回巻いた後、セパレータ32が正極31と負極33との間に介在する様に、セパレータ32、正極31、セパレータ32及び負極33の4枚を重ね合わせて、これらを渦巻き状に60回巻回した後、巻芯21を抜き取って、巻き取り電極体3を作製した(巻き取り電極体の直径L2=40mm)。この際、正極31及び負極33は、それぞれセパレータ32上に幅方向へずらして重ね合わせ、正極31及び負極33の非塗工部をセパレータ32の両端縁からそれぞれ外側へ突出させた状態で、これらを巻き取った。次に、同図(b)に示すように、押し広げ部材である2本の円柱状の軸22(直径L3=5mm)を巻き芯穴23に挿入し、2本の軸を左右に広げる事により、同図(c)に示すように、円筒状の巻き取り電極体3を長円形状にした。その後、同図(d)に示すように、圧縮成型を行って、所定の寸法にした。
Battery Assembly First, as shown in FIG. 4A, a separator 32 made of an ion-permeable polypropylene microporous film is wound several times around a winding core 21 having a diameter L1 = 20 mm. The separator 32, the positive electrode 31, the separator 32, and the negative electrode 33 are overlapped so as to be interposed between the negative electrode 31 and the negative electrode 33, and these are wound in a spiral shape 60 times, and then the core 21 is removed. The wound electrode body 3 was produced (the diameter L2 of the wound electrode body = 40 mm). At this time, the positive electrode 31 and the negative electrode 33 are respectively superimposed on the separator 32 while being shifted in the width direction, and the uncoated portions of the positive electrode 31 and the negative electrode 33 are protruded outward from both end edges of the separator 32, respectively. Rolled up. Next, as shown in FIG. 2B, two cylindrical shafts 22 (diameter L3 = 5 mm) as expansion members are inserted into the core hole 23, and the two shafts are expanded to the left and right. Thus, as shown in FIG. 3C, the cylindrical winding electrode body 3 was formed into an oval shape. Thereafter, as shown in FIG. 4D, compression molding was performed to obtain predetermined dimensions.
しかる後、上記巻き取り電極体3における正極側突出芯体39aに正極集電部材4を取り付けると共に、負極側突出芯体39bに負極集電部材5を取り付けた。これと並行して、絶縁パッキング6を介してナット7により正極端子10を封口板2に固定すると共に、絶縁パッキング8を介してナット9により負極端子11を封口板2に固定した後、両端子10、11に、各々、正極リード板18、負極リード板19を取り付けた。 Thereafter, the positive electrode current collecting member 4 was attached to the positive electrode side protruding core body 39a of the winding electrode body 3, and the negative electrode current collecting member 5 was attached to the negative electrode side protruding core body 39b. In parallel with this, the positive terminal 10 is fixed to the sealing plate 2 by the nut 7 through the insulating packing 6, and the negative terminal 11 is fixed to the sealing plate 2 by the nut 9 through the insulating packing 8, and then both terminals A positive electrode lead plate 18 and a negative electrode lead plate 19 were attached to 10 and 11, respectively.
この後、これら正極リード板18と負極リード板19とに、各々、上記正極集電部材4と負極集電部材5とを溶接した。次いで、この状態の巻取り電極体3を外装缶1内に収納するとともに、封口板2を外装缶1の開口部に被せて、封口板2を外装缶1に溶接した。最後に、封口板2の注液孔16から電解液を注入した後、注液孔16を注液栓17によって封止することにより、図1に示す状態のリチウムイオン二次電池を作製した。 Thereafter, the positive electrode current collecting member 4 and the negative electrode current collecting member 5 were welded to the positive electrode lead plate 18 and the negative electrode lead plate 19, respectively. Next, the wound electrode body 3 in this state was accommodated in the outer can 1, and the sealing plate 2 was covered with the opening of the outer can 1, and the sealing plate 2 was welded to the outer can 1. Finally, after injecting the electrolytic solution from the liquid injection hole 16 of the sealing plate 2, the liquid injection hole 16 was sealed with a liquid injection stopper 17, thereby producing a lithium ion secondary battery in the state shown in FIG.
(実施例)
実施例としては、前記発明を実施するための最良の形態で示したリチウムイオン二次電池を用いた。
このようにして作製した電池を、以下、本発明電池Aと称する。
(Example)
As an example, the lithium ion secondary battery shown in the best mode for carrying out the invention was used.
The battery thus produced is hereinafter referred to as the present invention battery A.
(比較例)
図5(a)(b)に示すように、巻き取り電極体3を作製した後に圧縮成型を行う(圧縮成型を行う前に軸を用いて巻き取り電極体3を左右に広げる工程を設けない)こと以外は本発明電池と同様にして、リチウムイオン二次電池を作製した。
このようにして作製した電池を、以下、比較電池Xと称する。
(Comparative example)
As shown in FIGS. 5A and 5B, compression molding is performed after the winding electrode body 3 is manufactured (the step of expanding the winding electrode body 3 to the left and right using the shaft before compression molding is not provided). Except for this, a lithium ion secondary battery was produced in the same manner as the battery of the present invention.
The battery thus produced is hereinafter referred to as comparative battery X.
(実験1)
上記本発明電池Aと比較電池Xとにおいて、各電池における電池作製直後の電池缶の厚みと、1日経過後の電池缶の厚みとを測定し、1日経過後の電池缶の膨れ量を算出したので、その結果を表1に示す。
(Experiment 1)
In the present invention battery A and comparative battery X, the thickness of the battery can immediately after the battery production and the thickness of the battery can after 1 day in each battery were measured, and the swelling amount of the battery can after 1 day was calculated. The results are shown in Table 1.
表1から明らかなように、本発明電池Aは電池膨れ量が0.1mmで、殆んど膨れなかったのに対して、比較電池Xは電池膨れ量が0.6mmで、大きく膨れていることが認められる。これは、本発明電池Aの巻き取り電極体では、圧縮成型する前に巻き取り電極体を巻き芯穴部から左右に広げ長円形状にしているため、圧縮成型後の厚み復帰が緩和されるのに対して、比較電池Xの巻き取り電極体では、円筒状の巻き取り電極体を作製した後に直接圧縮成型しているので、圧縮成型後の厚み復帰が緩和されないという理由によるものと考えられる。また、本発明電池Aは比較電池Xに比べて、圧縮成型して所定の厚みにする時間も短縮できるという利点もある。 As is clear from Table 1, the battery A of the present invention had a battery expansion amount of 0.1 mm and hardly expanded, whereas the comparative battery X had a battery expansion amount of 0.6 mm and greatly expanded. It is recognized that This is because in the wound electrode body of the present invention battery A, the wound electrode body is expanded to the left and right from the winding core hole portion before compression molding, and is formed into an oval shape. On the other hand, in the wound electrode body of the comparative battery X, since the cylindrical wound electrode body is directly compression-molded, it is considered that the thickness recovery after compression molding is not relaxed. . In addition, the battery A of the present invention has an advantage that the time for compression molding to a predetermined thickness can be shortened as compared with the comparative battery X.
(実験2)
上記本発明電池Aと比較電池Xにおいて、圧縮成型後の巻き取り電極体における幅狭方向の電極体厚み(図6におけるL5)に対する幅広方向の電極体厚み(図6におけるL4)の比率(L4/L5であり、以下、電極体厚み比率と称することもある)について調べたので、その結果を表2に示す。
(Experiment 2)
In the present invention battery A and comparative battery X, the ratio of the electrode body thickness in the wide direction (L4 in FIG. 6) to the electrode body thickness in the narrow direction (L5 in FIG. 6) (L4) in the wound electrode body after compression molding / L5, which may be hereinafter referred to as the electrode body thickness ratio), and the results are shown in Table 2.
表2から明らかなように、本発明電池Aでは、電極体厚み比率が1.05と小さいのに対して、比較電池Xでは、電極体厚み比率が1.2〜1.25と大きくなっていることが認められる。これは、比較電池Xでは、圧縮成型する前に巻き取り電極体を巻き芯穴部から左右に広げ長円形状にしていないため、圧縮成型時に幅広方向の内周部における電極に緩みが生じるのに対して、本発明電池Aでは、圧縮成型する前に巻き取り電極体を巻き芯穴部から左右に広げ長円形状にしているため、圧縮成型時に幅広方向の内周部における電極に緩みが生じ難くなるという理由によるものと考えられる。
また、上記のような電極体厚み比率であれば、本発明電池Aは比較電池Xに比べて、長円形状の巻き取り電極体の空洞部分における形状がより幅広となるので(図6におけるL6が大きくなるので)、円筒形状に復帰しようとする力が小さくなる。したがって、電池の膨れが抑制されることになる。
As apparent from Table 2, in the battery A of the present invention, the electrode body thickness ratio is as small as 1.05, whereas in the comparative battery X, the electrode body thickness ratio is as large as 1.2 to 1.25. It is recognized that This is because, in the comparative battery X, the winding electrode body is not expanded in the left and right directions from the winding core hole portion before the compression molding, so that the electrode in the inner peripheral portion in the wide direction is loosened during the compression molding. On the other hand, in the battery A of the present invention, since the winding electrode body is expanded from the core hole portion to the left and right before the compression molding, the electrode in the inner peripheral portion in the wide direction is loosened during the compression molding. This is probably because it is difficult to occur.
Further, when the electrode body thickness ratio is as described above, the battery A of the present invention is wider in the hollow portion of the oval winding electrode body than the comparative battery X (L6 in FIG. 6). Therefore, the force to return to the cylindrical shape is reduced. Therefore, the swelling of the battery is suppressed.
(実験3)
上記本発明電池Aと比較電池Xにおいて、圧縮成型直後の幅狭方向の電極体総厚み(図7におけるL7)と、1日経過後の幅狭方向の電極体総厚みとを測定し、下記式(1)で示す厚み復帰率について調べたので、その結果を表3に示す。
厚み復帰率=(1−[圧縮成型直後の幅狭方向の電極体総厚み/1日経過後の幅狭方向の電極体総厚み])×100(%)・・・(1)
(Experiment 3)
In the present invention battery A and comparative battery X, the total thickness of the electrode body in the narrow direction immediately after compression molding (L7 in FIG. 7) and the total thickness of the electrode body in the narrow direction after the passage of one day were measured, and the following formula Since the thickness recovery rate shown in (1) was examined, the results are shown in Table 3.
Thickness recovery rate = (1− [total thickness of electrode body in narrow direction immediately after compression molding / total thickness of electrode body in narrow direction after 1 day]) × 100 (%) (1)
表3から明らかなように、本発明電池Aでは、厚み復帰率が8%と小さいのに対して、比較電池Xでは、厚み復帰率が15%と大きくなっていることが認められる。これは、実験2と同様の理由であるが、別言すれば、比較電池Xでは、圧縮成型する前に巻き取り電極体を巻き芯穴部から左右に広げ長円形状にしていないため、圧縮成型後に幅広方向のストレスが緩和されないのに対して、本発明電池Aでは、圧縮成型する前に巻き取り電極体を巻き芯穴部から左右に広げ長円形状にしているため、圧縮成型後に幅広方向のストレスが緩和されるという理由によるものと考えられる。
上記の如く、本発明電池Aは比較電池Xに比べて厚み復帰率が小さいので、電池の膨れが抑制される。
As is apparent from Table 3, it can be seen that the battery A of the present invention has a small thickness recovery rate of 8%, whereas the comparative battery X has a large thickness recovery rate of 15%. This is the same reason as in Experiment 2. In other words, in Comparative Battery X, the winding electrode body was not expanded in the left and right directions from the core hole before compression molding, so that it was not compressed. The stress in the wide direction is not relieved after molding, but in the battery A of the present invention, the winding electrode body is expanded left and right from the winding core hole part before compression molding, so that the width is increased after compression molding. This is thought to be due to the fact that the direction stress is relieved.
As described above, the battery A of the present invention has a smaller thickness recovery rate than that of the comparative battery X, so that swelling of the battery is suppressed.
〔その他の事項〕
(1)上記実施例では、押し広げ部材(軸22)として円柱状のものを用いたが、このようなものに限定するものではなく、板状のものであっても良い。但し、板状のものを用いる場合には、巻き取り電極体の破損を防止すべく、巻き取り電極体と接触する部分が円弧又は楕円状であることが望ましい。また、押し広げ部材が円柱状である場合には、直径は5mmに限定するものではなく、3〜6mm程度であれば良い。
[Other matters]
(1) In the above-described embodiment, a cylindrical member is used as the spreading member (shaft 22). However, the member is not limited to this and may be a plate member. However, when a plate-shaped member is used, it is desirable that the portion in contact with the winding electrode body is an arc or an ellipse in order to prevent the winding electrode body from being damaged. Moreover, when the spreading member is cylindrical, the diameter is not limited to 5 mm, and may be about 3 to 6 mm.
(2)本発明を適用できる電池としては、上記リチウムイオン二次電池に限定するものではなく、ニッケル−カドミウム蓄電池やニッケル−水素蓄電池といった他の種類の二次電池、或いは、乾電池、リチウム電池などの一次電池に対しても幅広く適用することができる。 (2) The battery to which the present invention can be applied is not limited to the lithium ion secondary battery, but other types of secondary batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries, dry batteries, lithium batteries, and the like. The present invention can be widely applied to primary batteries.
本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源のみならず、電気自動車やハイブリッド自動車の車載用電源等の大型電池に適用することもできる。 The present invention can be applied not only to a driving power source of a mobile information terminal such as a mobile phone, a notebook computer, and a PDA, but also to a large battery such as an in-vehicle power source of an electric vehicle or a hybrid vehicle.
1:外装缶
3:巻き取り電極体
31:正極
32:セパレータ
33:負極
1: Exterior can 3: Winding electrode body 31: Positive electrode 32: Separator 33: Negative electrode
Claims (6)
上記巻き取り電極体における幅狭方向の電極厚みに対する幅広方向の電極厚みの比が、1.2未満に規制されることを特徴とする角型電池。 In the rectangular battery in which the positive electrode and the negative electrode are wound and pressed through a separator, and an elliptical winding electrode body is housed in an outer can,
The ratio of the electrode thickness of the wide direction with respect to the electrode thickness of the narrow direction in the said winding electrode body is controlled by less than 1.2, The square battery characterized by the above-mentioned.
上記巻き取り電極体の軸から離れる方向に上記空洞部を広げる第2ステップと、
上記巻き取り電極体を外方から圧縮して、巻き取り電極体を長円形状に成型する第3ステップと、
上記巻き取り電極体を外装缶内に収納する第4ステップと、
を有することを特徴とする角型電池の製造方法。 A first step of producing a spiral wound electrode body by winding a positive electrode and a negative electrode through a separator while leaving a hollow portion in the center;
A second step of expanding the cavity in a direction away from the axis of the winding electrode body;
A third step of compressing the winding electrode body from the outside and molding the winding electrode body into an oval shape;
A fourth step of storing the wound electrode body in an outer can;
A method for producing a prismatic battery, comprising:
The method for manufacturing a prismatic battery according to claim 5, wherein a portion of the push-out member that contacts the winding electrode body forms an arc or an ellipse.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005096847A JP2006278184A (en) | 2005-03-30 | 2005-03-30 | Square battery and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005096847A JP2006278184A (en) | 2005-03-30 | 2005-03-30 | Square battery and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006278184A true JP2006278184A (en) | 2006-10-12 |
Family
ID=37212726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005096847A Pending JP2006278184A (en) | 2005-03-30 | 2005-03-30 | Square battery and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006278184A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007157676A (en) * | 2005-12-08 | 2007-06-21 | Kaido Seisakusho:Kk | Element press mechanism device |
WO2009093397A1 (en) * | 2008-01-22 | 2009-07-30 | Toyota Jidosha Kabushiki Kaisha | Battery and production method therefor |
WO2010001229A1 (en) * | 2008-07-02 | 2010-01-07 | Toyota Jidosha Kabushiki Kaisha | Battery |
US20100151301A1 (en) * | 2008-12-16 | 2010-06-17 | Samsung Electronics Co., Ltd. | Battery and battery pack comprising the same |
WO2011048769A1 (en) * | 2009-10-22 | 2011-04-28 | パナソニック株式会社 | Flat secondary battery electrode group, method for manufacturing same, and flat secondary battery with flat secondary battery electrode group |
WO2012111077A1 (en) * | 2011-02-14 | 2012-08-23 | トヨタ自動車株式会社 | Secondary cell and battery assembly |
CN106532136A (en) * | 2016-12-12 | 2017-03-22 | 惠州Tcl金能电池有限公司 | Square flexibly-packaged battery and manufacturing method therefor |
US11171394B2 (en) | 2016-08-26 | 2021-11-09 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery and battery pack |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000173646A (en) * | 1998-12-03 | 2000-06-23 | Nippon Chemicon Corp | Manufacturing device for lithium-ion secondary battery |
JP2001085000A (en) * | 1999-09-14 | 2001-03-30 | At Battery:Kk | Thin battery and method of manufacturing the same |
JP2001202985A (en) * | 2000-01-21 | 2001-07-27 | Shin Kobe Electric Mach Co Ltd | Cylindrical lithium-ion battery |
JP2001313062A (en) * | 2000-04-27 | 2001-11-09 | Yuasa Corp | Film package type battery |
JP2002117825A (en) * | 2000-10-06 | 2002-04-19 | Denso Corp | Manufacturing method of flat-state winding-type electrode |
-
2005
- 2005-03-30 JP JP2005096847A patent/JP2006278184A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000173646A (en) * | 1998-12-03 | 2000-06-23 | Nippon Chemicon Corp | Manufacturing device for lithium-ion secondary battery |
JP2001085000A (en) * | 1999-09-14 | 2001-03-30 | At Battery:Kk | Thin battery and method of manufacturing the same |
JP2001202985A (en) * | 2000-01-21 | 2001-07-27 | Shin Kobe Electric Mach Co Ltd | Cylindrical lithium-ion battery |
JP2001313062A (en) * | 2000-04-27 | 2001-11-09 | Yuasa Corp | Film package type battery |
JP2002117825A (en) * | 2000-10-06 | 2002-04-19 | Denso Corp | Manufacturing method of flat-state winding-type electrode |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007157676A (en) * | 2005-12-08 | 2007-06-21 | Kaido Seisakusho:Kk | Element press mechanism device |
WO2009093397A1 (en) * | 2008-01-22 | 2009-07-30 | Toyota Jidosha Kabushiki Kaisha | Battery and production method therefor |
KR101175462B1 (en) | 2008-01-22 | 2012-08-20 | 도요타지도샤가부시키가이샤 | Production method for battery |
US8734537B2 (en) | 2008-01-22 | 2014-05-27 | Toyota Jidosha Kabushiki Kaisha | Battery production method |
WO2010001229A1 (en) * | 2008-07-02 | 2010-01-07 | Toyota Jidosha Kabushiki Kaisha | Battery |
US8293391B2 (en) | 2008-07-02 | 2012-10-23 | Toyota Jidosha Kabushiki Kaisha | Battery |
US8415048B2 (en) * | 2008-12-16 | 2013-04-09 | Samsung Electronics Co., Ltd. | Battery and battery pack comprising the same |
US20100151301A1 (en) * | 2008-12-16 | 2010-06-17 | Samsung Electronics Co., Ltd. | Battery and battery pack comprising the same |
WO2011048769A1 (en) * | 2009-10-22 | 2011-04-28 | パナソニック株式会社 | Flat secondary battery electrode group, method for manufacturing same, and flat secondary battery with flat secondary battery electrode group |
CN103370810A (en) * | 2011-02-14 | 2013-10-23 | 丰田自动车株式会社 | Secondary cell and battery assembly |
US20130316210A1 (en) * | 2011-02-14 | 2013-11-28 | Masahiro Morita | Secondary battery and assembled battery |
WO2012111077A1 (en) * | 2011-02-14 | 2012-08-23 | トヨタ自動車株式会社 | Secondary cell and battery assembly |
JP5664937B2 (en) * | 2011-02-14 | 2015-02-04 | トヨタ自動車株式会社 | Secondary battery and assembled battery |
KR101572339B1 (en) * | 2011-02-14 | 2015-11-26 | 도요타지도샤가부시키가이샤 | Secondary cell and battery assembly |
US10680215B2 (en) * | 2011-02-14 | 2020-06-09 | Toyota Jidosha Kabushiki Kaisha | Secondary battery and assembled battery |
US11171394B2 (en) | 2016-08-26 | 2021-11-09 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery and battery pack |
CN106532136A (en) * | 2016-12-12 | 2017-03-22 | 惠州Tcl金能电池有限公司 | Square flexibly-packaged battery and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4806270B2 (en) | Square battery | |
JP5543269B2 (en) | Secondary battery | |
JP5218808B2 (en) | Lithium ion battery | |
JP3683181B2 (en) | Lithium secondary battery | |
JP5541957B2 (en) | Multilayer secondary battery | |
WO2011052126A1 (en) | Electrode, secondary battery, and method for manufacturing secondary batteries | |
WO2019098056A1 (en) | Lithium ion secondary battery | |
JP2007273183A (en) | Negative electrode and secondary battery | |
JP4563264B2 (en) | Lithium secondary battery | |
CN105684193A (en) | Method of manufacturing nonaqueous electrolyte secondary battery | |
JP3786349B2 (en) | Non-aqueous secondary battery | |
CN114762182B (en) | Sealed battery | |
JPH06181069A (en) | Nonaqueous electrolyte secondary battery | |
WO2013047515A1 (en) | Non-aqueous electrolyte secondary battery | |
JP2004303597A (en) | Lithium secondary battery and manufacturing method of the same | |
JP7209196B2 (en) | Cylindrical secondary battery | |
JP2011222128A (en) | Secondary battery | |
JP2011187241A (en) | Nonaqueous electrolyte secondary battery | |
JP2008243704A (en) | Cylindrical non-aqueous electrolyte battery | |
JP4361445B2 (en) | Lithium secondary battery | |
JP2006278184A (en) | Square battery and its manufacturing method | |
JP2010015852A (en) | Secondary battery | |
JP2005071640A (en) | Flat nonaqueous electrolyte secondary battery | |
JP2016126953A (en) | Method for reducing unevenness in charging secondary battery, and method for manufacturing secondary battery | |
JP4827112B2 (en) | Flat non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110413 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111012 |